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Abstract

In this paper we introduce a new class of dynamic graph algorithms called quasi-fully dynamic

algorithms, which are much more general than the backtracking algorithms and are much simpler
than the fully dynamic algorithms. These algorithms are especially suitable for applications in
which a certain core connected portion of the graph remains �xed, and fully dynamic updates
occur on the remaining edges in the graph.

We present very simple quasi-fully dynamic algorithms with O(logn) worst case time, per
operation, for 2-edge connectivity and cycle equivalence. The former is deterministic while
the latter is Monte-Carlo type randomized. For 2-vertex connectivity, we give a randomized
Las Vegas algorithm with O(log4 n) expected amortized time per operation. We introduce the
concept of quasi-k-edge-connectivity, which is a slightly relaxed version of k-edge connectivity,
and show that it can be maintained in O(logn) worst case time per operation. We also analyze
the performance of a natural extension of our quasi-fully dynamic algorithms to fully dynamic
algorithms.

The quasi-fully dynamic algorithm we present for cycle equivalence (which has several ap-
plications in optimizing compilers) is of special interest since the algorithm is quite simple, and
no special-purpose incremental or backtracking algorithm is known for this problem.

1 Introduction

Dynamic graph algorithms have received a great deal of attention in the last few years (see e.g.,
[4]). These algorithms maintain a property of a given graph under a sequence of suitably re-
stricted updates and queries. Throughout this paper we will be concerned with edge updates
(insertions/deletions) only: insertion/deletion of isolated vertices can be implemented trivially in
all the known dynamic graph algorithms. The existing dynamic algorithms can be classi�ed into
three types depending on the nature of (edge) updates allowed:

� Partially Dynamic: Only insertions are allowed (Incremental) or only deletions are al-
lowed (Decremental).

� Backtracking: Arbitrary insertions are allowed. But only backtracking deletions (Undo
operation) are allowed [17].

� Fully Dynamic: Arbitrary insertions and arbitrary deletions are allowed.

�Department of Computer Sciences, The University of Texas at Austin, Austin, TX 78712. This research was
supported in part by the NSF grant CCR/GER-90-23059. E-mail: fmadhukar,vlrg@cs.utexas.edu. An extended
abstract of this work will appear in [14].
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Fully dynamic algorithms tend to involve complicated data structures and are quite di�cult
to implement. The deterministic fully dynamic algorithms for 2-edge connectivity (given in [3]),
2-vertex connectivity (given in [10]) and cycle equivalence (given in [8]) are good examples of this.
The randomized fully dynamic algorithms for 2-edge connectivity (given in [9, 15]) and 2-vertex
connectivity (given in [11]) are pretty involved too. In fact, the 2-vertex connectivity algorithm of
[11] does not work for some graphs in which the maximum degree is !(polylog(n)) ([13]). In view
of this, simpler algorithms will be more useful for applications which do not require the generality
of the fully dynamic algorithms.

With this motivation, we consider another class of dynamic algorithms, where both insertions
and deletions are allowed but the deletions are slightly restricted. The restriction is as follows:
The algorithm maintains a spanning forest F of the current graph G. Arbitrary edge insertions
are allowed; Arbitrary nonforest edge deletions are allowed; But deletion of a forest edge is allowed
only if it is a cut edge. An operation which attempts to delete an edge of F which is not a cut
edge, will be considered invalid. Such a valid sequence of operations, w.r.t. F , will be referred to
as a quasi-fully dynamic sequence of operations (w.r.t. F ) and the algorithms that support such a
sequence of operations will be called quasi-fully dynamic algorithms. The algorithm will detect if a
given operation is valid or not, and if not, it would ag an error.

Why quasi-fully dynamic algorithms?
Firstly, these algorithms are more general than backtracking algorithms; i.e., a backtracking

sequence of operations is a quasi-fully dynamic sequence (w.r.t. a suitable spanning forest F ). By
maintaining F in a natural way, we can show that during a backtracking sequence of updates, a
forest edge is deleted only if it is a cut edge. This natural way of maintaining F is the following: If u
and v are in di�erent connected components when the edge (u; v) is added, then this edge is added
to F . Otherwise (u; v) never enters F . In this scenario when (u; v) 2 F is about to be deleted, all
the edges that were inserted after (u; v) would have been removed and hence (u; v) would be a cut
edge.

Another useful feature of the quasi-fully dynamic algorithms is the following: these algorithms
can be extended to handle the invalid deletions in a way which is more e�cient than rebuilding
the entire data structure. On the other hand, in the backtracking algorithm of [17], performing
an invalid operation requires the rebuild of the entire data structure. As expected, these invalid
deletions can be very expensive in the worst case. Section 5 discusses this feature.

Secondly, these algorithms are much simpler than the fully dynamic algorithms. For instance,
the quasi-fully dynamic algorithms for 2-edge connectivity and cycle equivalence are as simple as
maintaining a dynamic tree data structure. For the sake of completeness, a brief review of the
essential features of the dynamic tree data structure is given in the appendix (section 6).

Thirdly, these algorithms would be ideal for situations where some core structure (of the input
graph) remains �xed and the updates occur only on the remaining part. The only requirement is
that we should be able to extract a spanning tree from the core structure.

Throughout the paper, n denotes the number of vertices in the graph G. Unless otherwise
mentioned, deletions considered in quasi-fully dynamic algorithms will be valid ones only. The
current status of the dynamic algorithms for connectivity, 2-connectivity and cycle equivalence is
summarized below.
Connectivity: Backtracking connectivity can be solved in �(logn= log logn) time per operation
by a straightforward application of the backtracking algorithm for the union-�nd problem (see
[22, 21]). Currently the best deterministic fully dynamic connectivity algorithm takes O(

p
n) time

per update and O(1) per query [3]. In [9] a randomized fully dynamic algorithm, taking O(log3 n)
amortized expected time per update and O(logn= log log n) worst case time per query, is presented.
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This paper also gives a simpler deterministic fully dynamic connectivity algorithm with O(
p
n logn)

time per update. An empirical study of the dynamic connectivity algorithms is presented in [1].
2-Edge Connectivity and Quasi-k-Edge Connectivity: An incremental algorithm withO(�(m;n))
amortized time per operation was given in [23, 16]. A backtracking algorithm with O(logn) worst
case time per operation is presented in [17]. The best known deterministic fully dynamic algorithm
takes O(

p
n) time per update and O(logn) time per query [3]. A randomized fully dynamic al-

gorithm with an O(log4 n) expected amortized time per update and O(logn= log logn) worst case
time per query is claimed in [9]: the details of the algorithm presented there are rather sketchy. A
somewhat di�erent randomized fully dynamic algorithm with polylog time per operation is given
in [15].

In this paper, we present a simple quasi-fully dynamic algorithm with the same time bounds
as the backtracking case: O(logn) worst case time per operation. We then introduce the concept
of quasi-k-edge connectivity and show that the above algorithm can be extended to answer the
quasi-k-edge connectivity queries within the same time bounds.
Cycle Equivalence: Two edges e1 and e2 of an undirected graph are cycle equivalent i� the set
of cycles that contain e1 is exactly the same as the set of cycles that contain e2. Finding the cycle
equivalence classes is central to several compilation problems. (See [12, 20, 6] for some applications
of cycle equivalence.) As mentioned in [8], dynamic algorithms for this problem can speed up
incremental compilers.

No special-purpose incremental or backtracking algorithms are known for this problem. The
only dynamic algorithms known for handling an incremental or a backtracking sequence of updates
are the fully dynamic algorithms. A deterministic fully dynamic algorithm with O(

p
n logn) time

per update and O(log2 n) time per query is presented in [8]. A randomized fully dynamic algorithm
with O(log3 n) amortized expected time for updates and queries is given in [9].

In this paper, we present a very simple randomized quasi-fully dynamic algorithm which takes
O(logn) worst case time per operation. This algorithm is Monte-Carlo type. We also show some
connection of cycle equivalence to 3-edge connectivity.

Our quasi-fully dynamic algorithm for cycle-equivalence is of special interest because of the
absence of special-purpose incremental/backtracking algorithms for this problem.
2-Vertex Connectivity: Incremental algorithms with O(�(m;n)) amortized time per operation
are given in [23, 16]. A backtracking algorithm with O(logn) worst case time per operation is pre-
sented in [17]. The best known deterministic fully dynamic algorithm takes O(

p
n log2 n) amortized

time per update and O(1) worst case time per query [10]. A randomized fully dynamic algorithm
with an O(log4 n) expected amortized time per update and O(log2 n) worst case time per query
is stated in [11]: however, this algorithm does not work for some graphs in which the maximum
degree is !(polylog(n)) ([13]).

In this paper, we present a randomized quasi-fully dynamic algorithm that takes O(log4 n)
amortized expected time per operation. This is the largest class of dynamic operations for which a
polylog time bound per operation is currently known for biconnectivity on general graphs.
Towards Fully Dynamic Algorithms: In section 5, we analyze the complexity of fully dynamic
algorithms obtained from our quasi-fully dynamic algorithms by implementing the invalid deletions
in a natural way. We show that these algorithms can take 
(n) time for certain operations. We
also show that if we use a uniform random spanning tree, the worst case complexity is 
(

p
n) per

operation. We leave open the possibility that some other natural extension of our quasi-dynamic
algorithms could give fully dynamic algorithms that run in poylog time.
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2 2-Edge Connectivity

In this section, we present a straightforward quasi-fully dynamic algorithm for 2-edge connectivity.
Queries ask whether a given pair of vertices, u and v are 2-edge connected (or equivalently, whether
there are at least two edge-disjoint paths between u and v). The algorithm takesO(logn) worst-case
time for insertions, (valid) deletions and queries.

Let G = (V;E) be a graph and F � E be a spanning forest of G. We use Fuv to denote the
tree path between vertices u and v. Edges in F will be called tree edges and edges in E � F will
be called nontree edges. A tree edge e is said to be covered (with respect to F ) by a nontree edge
(u; v) i� e lies on Fuv . Equivalently, e lies on the fundamental cycle of nontree edge (u; v). For
an edge e 2 E, we de�ne CoverSetF (e) = fe0 2 E � F : e lies on the fundamental cycle of e0

w.r.t. Fg. Observe that for a nontree edge e 2 E � F , CoverSetF (e) = feg, and for a cutedge
e 2 F , CoverSetF (e) = ;. We sometimes use coverF (e) to denote jCoverSetF (e)j. Throughout
this paper, unless otherwise mentioned, covering will be with respect to F only and the subscript
F will be dropped when there is no ambiguity.

Fact 1 [5] Two vertices u and v are 2-edge connected i� coverF (e) � 1 for every edge e 2 Fuv .

We store F in a dynamic tree data structure ([19]) with edge costs representing the cover values.
The basic idea behind our algorithm is that the cover values of the tree edges (which are su�cient to
answer the queries) can be maintained easily under insertions and valid deletions. During insertion
(or deletion) of nontree edges we add +1 (or �1) to the cover values on the corresponding tree
path. Deletion of a tree edge is allowed only if it is a cut edge. Such a deletion will not a�ect the
cover values of other tree edges. This is because such a tree edge does not lie on the fundamental
cycle of any nontree edge. Hence its removal does not change any fundamental cycles and therefore
does not change the cover values. To answer a query we just need to check the minimum cover
value on the corresponding tree path. The implementations of the operations are briey described
below.
Query(u; v): If u and v are in di�erent trees, then return no. If they are in the same tree, then
perform evert(v) followed by min cost(u). If the minimum value is zero, then return no. Otherwise
return yes.
Insert(u; v): If u and v are in the same tree, then mark (u; v) as a nontree edge and perform
evert(v) and add cost path(u; 1). If u and v are in di�erent trees, then mark (u; v) as a tree edge
and modify F as follows : perform evert(u), followed by link(u; v); set cover(u; v) 0.
Delete(u; v): If (u; v) is a nontree edge, then perform evert(v) followed by add cost path(u;�1).
If (u; v) is a tree edge and if it is not a cut edge, then report invalid deletion. If it is a cut edge
then modify F as follows: perform evert(v) followed by cut(u).
Complexity: To check whether a tree edge is a cut edge, we can just check whether its cover
value is zero. Testing whether u and v are in the same tree can be done by performing evert(v)
and checking whether root(u) = v. Thus each of the insert, delete and query operations uses
only a constant number of dynamic tree operations, and hence takes O(logn) worst case time. If
amortized O(logn) time is su�cient, then a simpler implementation of dynamic trees can be used
(see section 6).
Other Types of 2-Edge Connectivity Queries: We note that our algorithm can be extended
to answer two other types of 2-edge connectivity queries as well.

Firstly, we can test whether a given edge e is a cut edge. For this, we just need to check whether
e 2 F and cover(e) = 0. This takes O(logn) time per operation in the worst-case.
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Secondly, we can also test whether the entire graph is 2-edge connected. This query is equivalent
to asking whether there exists a cut edge in the entire graph. To answer this query, it su�ces to
�nd the global minimum cover value (i.e., mine2F coverF (e)) and check whether it is zero. The
original dynamic tree data structure (of [19]) supports the path minimum operation but does not
support the global minimum operation. An extension of the dynamic tree data structure which also
supports the global minimum operation, in O(log2 n) worst-case time per operation, is outlined in
the appendix (section 6).

2.1 Quasi-k-Edge Connectivity

In this subsection, we introduce the concept of quasi-k-edge connectivity which is a restriction of
the concept of k-edge connectivity to the case where only the valid edge deletions are allowed. We
show that quasi-k-edge connectivity information can be maintained easily with O(logn) worst case
time per operation.

De�nition 1 (Quasi-k-Edge Connectivity) Given a graph G = (V;E) with a spanning forest F ,
two vertices u; v 2 V are said to be quasi-k-edge connected i� with respect to F , no quasi-fully
dynamic sequence of k � 1 edge deletions disconnects u and v.

Observe that u and v are quasi-2-edge connected (w.r.t. any spanning forest) i� they are 2-edge
connected. For k > 2, it is possible that a pair of vertices u and v that are quasi-k-edge connected
are not k-edge connected, since there could exist a set of k� 1 edges (of which at least two are tree
edges), whose deletion disconnects u and v.

The relevance of this concept can be understood by considering graphs for which a core part
remains �xed while updates occur on the remaining part. Assume that we can extract a (�xed)
spanning tree T from the core part of the graph. Then, all valid sequences of edge deletions are
quasi-fully dynamic sequences. Further, if vertices u and v are quasi-k-edge connected, then at
least k � 1 valid deletions are needed on the current graph in order to reduce the number of paths
between u and v to one, which is the minimum possible (since T forms a core part of the graph).

Lemma 1 Two vertices u; v are quasi-k-edge connected, w.r.t. a spanning forest F , i� coverF (e) �
k � 1 for every edge e 2 Fuv.
Proof: (!) Suppose there exists e 2 Fuv such that coverF (e) < k � 1. Then by deleting the
edges in CoverSetF (e) followed by e, would disconnect u and v. Clearly this is a sequence of at
most k � 1 valid edge deletions. Hence u and v cannot be quasi-k-edge connected w.r.t. F .

( ) Suppose u and v are not quasi-k-edge connected. Let s = he1; e2; : : :ejsji be a sequence of
at most k � 1 valid edge deletions that disconnects u and v. Without loss of generality, assume
that ejsj 2 Fuv . As the deletion of ejsj is valid at that point in the sequence, it follows that
CoverSetF (ejsj) � fe1; e2; : : :ejsj�1g and hence coverF (ejsj) < k � 1, which is a contradiction.

The above lemma immediately implies a quasi-fully dynamic algorithm with O(logn) worst case
time per operation. The update operations are implemented exactly as in the 2-edge connectivity
case. A query asks whether u and v are quasi-k-edge connected (w.r.t. F ). It can be answered as
follows:
Query(u; v): If u and v are in di�erent trees, then return no. If they are in the same tree, then
perform evert(v) followed by min cost(u). If the minimum value is less than k� 1, then return no.
Otherwise return yes.

Thus each of the insert, (valid) delete, quasi-k-edge connectivity queries can be performed in
O(logn) worst-case time.
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3 Cycle Equivalence

We present a simple quasi-fully dynamic randomized algorithm for the cycle equivalence problem
(de�ned below) that takes O(logn) worst-case time for updates (insertions and valid deletions) and
queries.

De�nition 2 (Cycle Equivalence) Edges e1; e2 2 E are cycle equivalent i� the set of cycles that
contain e1 is exactly the same as the set of cycles that contain e2.

Note that edges e1 and e2 are cycle equivalent i� CoverSet(e1) = CoverSet(e2). A pair of edges
(e1; e2) will be called a cut-edge pair i� the removal of e1 and e2 increases the number of connected
components in the graph. As observed in [8] two edges are cycle equivalent i� they are a cut-edge
pair in the graph.

3.1 Isolating Lemma

In this subsection, we describe a simple probabilistic lemma which is the basis for our cycle equiva-
lence algorithm. A set system (S;Q) consists of a �nite set S of elements, i.e., S = fx1; x2; : : :xjSjg,
and a family Q of subsets of S, i.e., Q = fS1; S2; : : :SjQjg with Sj � S, for 1 � j � jQj. We assign
a weight w(xi) to each element xi 2 S, and de�ne the weight of a subset Sj to be

P
xi2Sj

w(xi).

Lemma 2 [18] (Unique Set Isolating Lemma) Let (S;Q) be a set system. If the elements in
S are assigned integer weights chosen randomly and uniformly from [1 : : :2jSj], then Pr[Minimum
weight subset in Q is unique] � 1=2.

The above lemma enables us to assign random polynomial weights such that a single subset in
Q is isolated from the other subsets in Q. We strengthen the above lemma so that we can isolate
all subsets in Q. i.e., we want each subset in Q to have a distinct weight. If exponential weights are
allowed, this task becomes easy (even deterministically): just assign w(xi) = 2i, and represent each
subset as a bit vector of length jSj. However as we restrict ourselves to polynomial sized weights
only, the task is no longer trivial. The following lemma gives a randomized method for this task,
using only polynomial sized weights.

Lemma 3 (All Sets Isolating Lemma) Let (S;Q) be a set system. Let Z = jQj2jSj. If the
elements in S are assigned integer weights chosen randomly and uniformly from [1 : : :Z], then
Pr[every subset in Q gets a distinct weight] � 1=2.

Proof: Let W : S ! [1 : : :Z] be a uniformly random weight assignment. An element y 2 S is said
to be W -bad if there exist distinct subsets Si; Sj in Q such that y 2 Si � Sj and W (Si) = W (Sj).

Consider a �xed element y 2 S. Suppose we �x W (x), for all the elements, x in S, except y.
W (y) is still to be chosen. We are interested in knowing the number of values of W (y) that would
make itW -bad. For each pair (Si; Sj) such that y 2 Si�Sj , there is at most one value ofW (y) that
would make W (Si) = W (Sj). Hence there are at most jQj2=2 values of W (y) that could cause y to
become W -bad. Hence PrW [y is W -bad] � jQj2=2Z = 1=(2jSj). Here, the subscript W indicates
that the probability is over all choices of W . We now have,

PrW [Some two subsets in Q get the same weight with assignment W ]
= PrW [9Si; Sj 2 Q such that Si 6= Sj and W (Si) = W (Sj)]
= PrW [9x 2 S such that x is W -bad]
�Px2S PrW [x is W -bad]
� 1=2.
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In the second step above, we used the fact that any element x 2 (Si�Sj)[(Sj�Si) will be W -bad.
In the third step, we used the Boole's inequality.

Corollary: Let Z = jQj2jSj. If the elements in S are assigned integer weights uniformly at
random from [1 : : :NZ], then Pr[some two distinct subsets in Q get the same weight] � 1=(2N):

3.2 Algorithm for Cycle Equivalence

Let S = E � F be the set of nontree edges in G and let Q = fCoverSet(e) : e 2 Eg. We note that
(S;Q) is a set system, with jSj � jEj < n2 and jQj � jEj < n2. Hence, we can choose Z = n6.

For each nontree edge of G, we assign a random weight chosen uniformly from [1 : : :NZ]. Let
W be this random weight assignment. For an edge e 2 E, de�ne cost(e) = W (CoverSet(e)). Then
it follows from the isolating lemma that with high probability, e1 and e2 are cycle equivalent i�
cost(e1) = cost(e2). Our quasi-fully dynamic algorithm is based on this idea, and is outlined below.

For a nontree edge e 2 E � F , as CoverSet(e) = feg, we have cost(e) = w(e). Note that
the cost of a nontree edge does not change as long as that edge is in the graph. For a tree edge
e 2 F , we maintain cost(e) using a dynamic tree data structure. We store F in a dynamic tree
data structure with costs on (tree) edges. The update operations (insertions and valid deletions)
are very similar to those in 2-edge connectivity. The only di�erence is the following: when an edge
e = (u; v) is inserted as a nontree edge, then we pick w(e) uniformly at random from [1::NZ] and
perform add cost path(Fuv ; w(e)) (instead of add cost path(Fuv ; 1) in the 2-edge connectivity case).
Correspondingly, when a nontree edge e = (u; v) is deleted, we perform add cost path(Fuv ;�w(e)).
For a query(e1; e2), it su�ces to check whether cost(e1) = cost(e2). For a tree edge e, the cost(e)
can be obtained from the dynamic tree in O(logn) time.
Complexity and Error Probability: If we choose N to be a polynomial in n, the costs will still
be polynomial in n (i.e., they are only O(logn) bits long). Hence addition operations on these can
still be done in O(1) time, assuming that each word in memory is of size �(logn). Thus updates
and queries can be performed in O(logn) worst-case time.

The above algorithm is a Monte-Carlo randomized algorithm. For each query, there is a nonzero
probability that it may return yes even when e1 and e2 are not cycle equivalent. The probability of
error can be made as small as desired. To be precise, it can be made O(n�c) for any constant c, by
choosing N = nc. When a sequence of operations is performed on the graph, the error probabilities
will add up. To keep the overall error probability small, it su�ces to modify the range of the weights
suitably. For instance, if we know an upper boundM on the number of operations (insertions, valid
deletions, queries) to be performed, then by choosing the weights from [1::(MNZ)], we can show
that Pr[Algorithm gives a wrong answer some time during the sequence] � 1=(2N). In this case,
the weights will be O(logM + logn) bits long and each addition operation on these weights would
take O(maxf1; logM= logng) time. Hence each operation would cost O(logn+ logM) time in the
worst-case.

3.3 Relation to 3-Edge Connectivity

A 3-edge connectivity query asks whether there are 3 edge-disjoint paths between two given vertices
u and v. The following lemma gives a characterization of the 3-edge connectivity property and
reveals its close connection to the cycle equivalence problem.

Lemma 4 Two vertices u and v are not 3-edge connected i� one of the following holds:

1. There exists a tree edge e on Fuv such that cover(e) � 1; OR
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2. There exists a tree edge e on Fuv and another tree edge y on F � Fuv such that e and f are
cycle equivalent.

Proof: (Sketch) Condition (1) of the requirement accounts for cut edges e (i.e., cover(e) = 0)
and cut edge pairs (e; f) where e is a tree edge and f is a nontree edge (i.e., cover(e) = 1).

Condition (2) accounts for cut edge pairs (e; f) where both e and f are tree edges. By the result
in [8], two edges e and f are cycle equivalent i� they are cut edge pair. A cut edge pair (e; f), of
tree edges, separates vertices u and v i� one of them lies on Fuv and the other lies on F � Fuv .

Condition (1) can be checked easily by storing F as a dynamic tree data structure augmented
with edge costs as the cover value (as in the 2-edge connectivity algorithm, section 2). The only
remaining task for obtaining a quasi-fully dynamic algorithm for 3-edge connectivity is to be able
to check condition (2). In view of its close relation to the cycle equivalence problem, it would be
interesting to see if this can be tested e�ciently.

4 2-Vertex Connectivity

In the 2-vertex connectivity problem, a query asks whether two given vertices u and v are in
the same biconnected component of G (or equivalently, whether there exist two vertex-disjoint
paths between u and v). In this section, we present a quasi-fully dynamic algorithm for 2-vertex
connectivity.

Let F be a spanning forest of G. For a vertex v, we use NF (v) to denote the set of neighbors
of v in F . Let x; y 2 NF (v). We use (F � v)x to denote the subtree of F � v that contains x. We
de�ne the neighborhood graph of v, denoted NGF (v), as follows: the vertex set is NF (v); an edge
(x; y) is present in NGF (v) i� there exists a nontree edge in G between (F �v)x and (F �v)y . The
following lemma is a direct consequence of the above de�nition.

Lemma 5 Suppose x; y 2 NF (v). Then x and y belong to the same biconnected component of G
i� x and y belong to the same connected component of NGF (v).

Our dynamic algorithm uses some additional parameters which are de�ned below. For x; y 2
NF (v), we use Dv(x; y) to denote the number of nontree edges in G from (F � v)x to (F � v)y.
We also de�ne Cv(x; y) to be 1 if x; y belong to the same connected component of NGF (v)� (x; y)
and 0 otherwise. Here, NGF (v) � (x; y) denotes the graph obtained by deleting the edge (x; y),
if it exists, from NGF (v). Observe that Cv(x; y) captures the existence of an indirect path (i.e.,
using more than one edge) from x to y in NGF (v) while Dv(x; y) captures the existence of a direct
path (i.e., using exactly one edge) from x to y in NGF (v). Finally, we use Lv(x; y) to denote
Cv(x; y)+Dv(x; y). By the above lemma, x and y belong to the same biconnected component of G
i� Lv(x; y) > 0. Strictly speaking, the above three de�nitions must specify the underlying spanning
forest F ; but for ease of notation we drop F when there is no ambiguity.

We store F , augmented with costs at vertices, in a dynamic tree data structure (see section 6,
theorem 2). The costs on the vertices have the following interpretation: If vertex v lies on a solid
path, with (v; x) and (v; y) as its solid edges, then cost(v) = Lv(x; y). Otherwise (i.e., if v has
atmost one solid edge incident on it) cost(v) is arbitrary.

Fact 2 [7] Two vertices u and v are biconnected i� after making Fuv a solid path, no internal
vertex on Fuv has cost 0.
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4.1 Overview of the Algorithm

To determine whether u and v are biconnected, we will transform the tree path Fuv into a solid
path, and check whether the minimum cost on this solid path is zero. We will see later that even
for inserting (or deleting) a nontree edge (u; v) it su�ces to transform the tree path Fuv into a solid
path and increment (or decrement) the cost of each vertex on this solid path by one.

Hence the basic requirement is to convert the tree path Fuv into a solid path. Using the expose
and evert operations, this takes O(logn) amortized time, provided no costs are updated. However,
our data structure has to update the cost of a vertex v whenever the edges incident on v change
from solid to dashed or vice-versa. The basic dynamic tree operation that converts dashed edges
into solid edges (and vice-versa) is the splice operation (see section 6). We will show that the splice
operation can be extended so that the costs at the vertices involved in the splice operation can be
correctly updated in roughly O(log3 n) amortized expected time. This would imply that each of
the update/query operations takes roughly O(log4 n) amortized expected time.
Additional Data Structures: The modi�ed neighborhood graph of a vertex v, denoted by
NG0

F (v), is de�ned as follows: if vertex v has two solid edges, say (v; x) and (v; y), then NG0
F (v) =

NGF (v) � (x; y); otherwise NG0
F (v) = NGF (v). Note that NG0

F (v) changes if the solid edges
incident on v change. For each vertex v, we store the modi�ed neighborhood graph, NG0

F (v), in a
randomized fully dynamic connectivity data structure [9].

For each vertex v, we also use a dictionary DDSv to store the nonzero Dv(x; y) values. To
keep the space requirements small, the zero Dv(x; y) values are not stored. A dictionary is a
data structure that supports insert, delete and search operations on a set of items. Dictionary
implementations which take O(log r) worst case time for each operation are well known (r is the
number of items in the dictionary). More speci�cally, the DDSv stores the set fDv(x; y) : x; y 2
NT (v) and Dv(x; y) > 0g. The items in DDSv are indexed by the (x; y) tuple.

4.2 The Update and Query Operations:

In the next subsection we present an augmented splice operation that correctly updates the costs on
the vertices when their incident edges change from dashed to solid or vice-versa. In this subsection,
we present simple implementations of the update and query operations assuming that the splice
operation (and hence the expose and evert operations) correctly updates the costs.
Query(u; v): If u and v are in di�erent trees, then return no. If u and v are in the same tree, then
perform evert(v) followed by min cost(u). This gives the minimum cost on the solid path Fuv . If
the minimum value is zero, then return no. Otherwise return yes.
Insert(u; v): If u and v are in the same tree, then mark (u; v) as a nontree edge. We convert the
tree path Fuv into a solid path and add 1 to all the costs on this path as follows: perform evert(v)
followed by add cost path(u; 1). If u and v are in di�erent trees, then mark (u; v) as a tree edge
and modify F (and the neighborhood graphs) as follows: perform evert(u), followed by link(u; v);
set cover(u; v) 0; Add isolated vertices u and v in NG0

F (v) and NG0
F (u) respectively.

Delete(u; v): If (u; v) is a nontree edge, then we make the path Fuv solid and decrement the costs
along the path as follows: perform evert(v) followed by add cost path(u;�1). If (u; v) is a tree
edge and if it is not a cut edge then report invalid deletion. If it is a cut edge, we modify F (and
the neighborhood graphs) as follows: perform evert(v), followed by cut(u); Remove the isolated
vertices u and v from NG0

T (v) and NG0
T(u) respectively.

Note that each of the above operations invokes a constant number of dynamic tree operations.
Proof of Correctness: To prove that the queries give the correct answer, it su�ces to argue that
for every vertex v, as long as edges (v; x) and (v; y) remain solid, cost(v) is always equal to Lv(x; y).
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Lemma 6 Suppose that at a vertex v, edges (v; x) and (v; y) become solid at some time and that
the cost(v) is correctly set to Lv(x; y) at that time. Then as long as both (v; x) and (v; y) remain
solid, after any sequence of updates and queries, cost(v) will be equal to Lv(x; y).

Proof: As Lv(x; y) = Cv(x; y) +Dv(x; y), we will show that Cv(x; y) will not change at all and
that changes in Dv(x; y) are correctly reected in cost(v).

Firstly, note that NG0
F (v) does not change as long as both (v; x) and (v; y) remain solid. This

is because, the only way NG0
F (v) can change is if a nontree edge between (F � v)w and (F � v)z

is inserted or deleted for some w; z 2 NF (v) (w; z 6= x; y). But when this happens edges (v; w) and
(v; z) become solid and atleast one of (v; x) and (v; y) becomes dashed. This implies that Cv(x; y)
does not change.

Secondly, insertion (deletion) of a nontree edge from (F�v)x to (F�v)y increments (decrements)
both cost(v) and Dv(x; y).

To complete the proof of correctness, it remains to ensure that cost(v) is correctly initialized each
time the solid edges at v change. We do this in the next subsection.

4.3 Modifying the Splice Operation

The original splice operation is briey outlined in the appendix (section 6). In this subsection, we
look at the modi�cations to the splice operation which are needed to ensure that cost(v) is correctly
initialized each time the solid edges ar v change.

Let v be a parent of w and also let (v; y) and (v; x) be the solid edges incident on v. We only
consider the case where both x and y exist. The other cases can be handled in a similar fashion.
The splice(w) operation converts the dashed edge (w; v) to solid and the solid edge (v; y) to dashed.
During this conversion, we need to store and update the parameters corresponding to the outgoing
solid edge (v; y). More speci�cally, we update the modi�ed neighborhood graph of v (i.e., NG0

F (v))
and we also store the parameter Dv(x; y) in DDSv. Similarly for the incoming solid edge (w; v),
we update NG0

F (v) and compute the new cost(v) using DDSv(w; x) and NG0
F (v). The extended

splice operation, which performs all these updates, is outlined below in pseudocode.

Splice(w):
f parent(w) = v; Edge (w; v) is solid g
f Current solid edges at v are (v; x) and (v; y) g

begin

Perform the steps of the original splice operation (see section 6);
fFor outgoing solid edge (v; y) g

Compute Cv(x; y) by a query Connected(x; y)? in NG0
F (v);

Dv(x; y) cost(v)� Cv(x; y);
if Dv(x; y) > 0 then

insert edge(x; y) into NG0
F (v);

insert item(x; y;Dv(x; y)) into DDSv;
endif

f For incoming solid edge (w; v) g
delete edge(w; x) from NG0

F (v) if this edge exists;
Compute Cv(x; w) by a query Connected(x; w)? in NG0

F (v);
Search for Dv(x; w) in DDSv;
if found then delete item(x; w;Dv(x; w)) from DDSv;

10



else Dv(x; w) 0
endif

cost(v) Cv(x; w) +Dv(x; w)
end

Let G = (V;E) be a graph with n vertices and m0 initial edges. For the sake of simplicity,
we keep all n vertices in NG0

F (v), for each v 2 V , instead of just jNF (v)j. Moreover, for the sake
of analysis, we build the NG0

F (v) structures as follows: We �rst put n isolated vertices in each
of them. We then insert the m0 edges of G one at a time into our quasi-fully dynamic 2-vertex
connectivity structure, which causes the appropriate modi�cations of NG0

F (v). This ensures that
each of the NG0

F (v) starts with no initial edges.

Theorem 1 Let G = (V;E) be a graph with n vertices and m0 initial edges.

1. Space Bound: Our quasi-fully dynamic algorithm for 2-vertex connectivity uses O(n2 logn)
space.

2. Time Bound: The expected running time for a sequence of k insert, (valid) delete and
biconnectivity query operations is O(n2 logn+ (k +m0) log

4 n).

Proof:
In our proof we will make use of the following result:

Fact 3 (Fully Dynamic Connectivity Data Structure) [9] Let G = (V;E) be a graph with n vertices
and m0 initial edges. Then the expected time for a sequence of k insert, delete and connectivity
queries on G is O(k log3 n+m0 logn). At an instant when G has m edges, this data structure uses
O((m+ n) logn) space.

We now prove Theorem 1:
Space Bound: The dynamic tree data structure uses O(n) space. We will show that the space re-
quirement of all the fully dynamic connectivity data structures and all the dictionaries put together
is O(n2).

Let dv denote jNF (v)j, the degree of v in F . The number of edges in NG0
F (v) is atmost O(d2v).

Hence, by fact 3, the fully dynamic connectivity data structure for NG0
F (v) needs O((n+d2v) logn)

space. On the other hand, the dictionary DDSv stores atmost d2v items and hence uses O(d2v)
space. Hence the space taken by all these put together is O(

P
v2V d

2

v logn) which is O(n2 log n), as
P

v2V dv � 2(n� 1).
Time Bound: Initializing each of the NG0

F (v) with n isolated vertices takes O(n2 log n) time.
As the initial m0 edges are also inserted using the insert operation, we can analyze the entire
algorithm as a sequence of k +m0 operations.

Firstly, as each insert/delete/query causes O(logn) splices (see subsection 6), the total number
of splice operations is O((k+m0) logn). This implies that the total number of updates/queries to
all the dictionary and connectivity data structures (i.e, NG0

F (v)) is atmost O((k +m0) logn). For
the dictionary, each update/query takes O(logn) time.

It remains to analyze the time spent over all the connectivity structures. Let k0v be the number
of update/query operations on NG0

F (v). >From the above arguments, it follows that
P

v2V k
0
v

is O((k +m0) logn). By fact 3, a sequence of k0v update/query operations on NG0
F (v) takes an

expected time of O(k0v log
3 n) as the initial NG0

F (v) has zero edges. Summing it up, the expected
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time spent over all connectivity structures is O((k +m0) log
4 n).

Thus if k = 
(m0 + n2), the above theorem implies an amortized expected cost of O(log4 n)
per operation.

5 Towards Fully Dynamic Algorithms

In this section, we analyze the performance of fully dynamic algorithms obtained by a natural
extension of our quasi-fully dynamic algorithms. To extend the quasi-fully dynamic algorithms to
fully dynamic algorithms we need to show how the invalid tree edge deletions are to be handled.
Recall that, for a tree edge e 2 F , CoverSetF (e) = fe0 2 E � F : e0 covers e with respect to Fg.
Deleting a tree edge e with CoverSet(e) = ; is a valid operation and it is handled by the quasi-fully
dynamic algorithm. On the other hand, deletion of a tree edge e with CoverSet(e) 6= ; is an invalid
operation in the quasi-fully dynamic case.

One natural way of implementing an invalid deletion of a tree edge e is the following: �rst �nd
CoverSet(e), delete the nontree edges in CoverSet(e) one at a time, then delete the tree edge e
(which is now a cut edge), and then reinsert the edges of CoverSet(e) one at a time. Pick a random
edge of CoverSet(e) to replace e in F . The complexity of this implementation is analyzed below.
Finding CoverSet(e): We store G in a randomized fully dynamic connectivity data structure
([9]) with F as the spanning forest. For a tree edge e, the CoverSet(e) can be found as follows:
let e0 be the random edge found by the algorithm in [9] to replace e in F . Remove e0 and �nd
its next replacement, remove that and so on until no more replacements exist. All these removed
replacement edges form the CoverSet(e).
Overall Complexity: Using the above method for �nding the CoverSet(e), the time taken to
delete e is O(jCoverSet(e)j � polylog(n)). However, in the worst case, jCoverSet(e)j can be 
(m)
as shown by the example below. This implies that for the above natural implementation of invalid
deletions, there exist sequences of operations in which the expected cost of deleting an edge is

(m).
Worst Case Example for this Algorithm: Consider the following sequence of insertions: we
�rst create a path P of length n � 1, with vertices 1; 2 : : :n in that order. Let e be the middle
edge, i.e., (n=2; n=2 + 1), of this path (assuming n is even). Now we add edges from every vertex
in f1; 2 : : :n=2g to every vertex in fn=2 + 1; : : :ng. All these edges will be nontree edges and form
the CoverSet(e). Hence jCoverSet(e)j is 
(m).

Interestingly, a similar result holds even if F were chosen uniformly at random from the set of
all labeled spanning trees of G (see, e.g., [2] for properties and construction of random spanning
trees).

Lemma 7 Let U be the uniform distribution on the set F of all labeled spanning forests of G =
(V;E) (i.e., U [Fi] = 1=jFj). Then, 9G and 9e 2 E, such that the expected cost of deleting e using
the fully dynamic algorithm described above is 
(

p
n).

Proof: We �rst introduce some notations and de�nitions. Let F = fF1; F2; : : :FNg be the set of
all labelled spanning forests of G = (V;E). Consider an edge e 2 E. Let Fe = fF 2 F : e 2 Fg,
the set of forests containing e. Recall that CoverSetF (e) = feg for F =2 Fe (because e =2 F ).
For an edge e, let h(U; e) denote the expected cost of deleting e, when the spanning forest F is
chosen according to U . Then we have, h(U; e) = EU [cost of deleting edge e] =

P
Fi2F PrU [F =

Fi] � jCoverSetFi
(e)j � polylog(n).
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Consider the graph G = (V;E) consisting of t cycles C1; C2; : : :Ct (each consisting of n
t
+ 2

edges) such that each of them contains a �xed edge e = (u; v) and Ci � fu; vg, Cj � fu; vg are
vertex disjoint for all i 6= j (1 � i; j � t). The parameter t will be chosen later. We have jV j = n+2
and jEj = n + t + 1. As G is connected, the number of nontree edges will be t.

If e is chosen to be a tree edge, then E � T must contain exactly one edge from each Ci � feg
for 1 � i � t. Hence the number of spanning trees that contain e, jFej = (n

t
+ 1)t. For each tree

T 2 Fe, jCoverSetT (e)j = t.
If e is not a tree edge, then E � T must contain no edges from Ck � feg for exactly one k and

exactly one edge from Ci � feg for all i 6= k (here, 1 � i; k � t). Hence jF � Fej = t(n
t
+ 1)t�1.

For each tree T 2 F � Fe, jCoverSetT (e)j = 1. Using the fact that PrU [F = Fi] = 1=jFj, we now
have,

h(U; e) =
t(n

t
+ 1)t + t(n

t
+ 1)t�1

(n
t
+ 1)t + t(n

t
+ 1)t�1

� polylog(n) = n+ 2t
n
t
+ t+ 1

� polylog(n):

Choosing t =
p
n, we get h(U; e) = 
(

p
n).

We leave it as an open question to determine whether there exists some other reasonable ex-
tension of our quasi-fully dynamic algorithms that leads to fully dynamic algorithms that run in
polylog time per operation.
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6 APPENDIX

Data Structure for Dynamic Trees - Review and Extension

For the sake of completeness, we give a brief review of the data structure for dynamic trees given
by [19]. For further details, see [19]. We also give an extension of this data structure that also
supports the global minimum operation.
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The data structure for dynamic trees given in [19] maintains a forest of vertex-disjoint rooted
trees, with real valued costs on the edges, under the eight operations described below. The data
structure can be easily modi�ed to handle costs on vertices, instead of on the edges.

� parent(vertex v) : Return the parent of v. If v is a tree root, return Null.

� root(vertex v) : Return the root of the tree containing v.

� cost(edge e) : Return the cost of the edge e (if the edge e exists).

� mincost(vertex v) : Return the vertex w closest to root(v) such that the edge (w; parent(w))
has the minimum cost among edges on the tree path from v to root(v). Assumes that v is
not a tree root.

� add cost path(vertex v, real k) : Modify the costs of all edges on the tree path from v to
root(v) by adding k to the cost of each edge.

� link(vertex v; w, real k) : Combine the trees containing v and w by adding the edge (v; w)
of cost k, making w the parent of v. This operation assumes that v and w are in di�erent
trees and v is a tree root.

� cut(vertex v) : Divide the tree containing v into two trees by deleting the edge (v; parent(v)).
This operation assumes that v is not a tree root. Assumes that v is a not a tree root.

� evert(vertex v): Modify the tree containing v by rerooting it at v; i.e., reverse the direction
of every edge on the path from v to the original root.

The dynamic tree data structure of [19] partitions the edges into two kinds: solid and dashed
such that atmost one solid edge enters any vertex. Thus, every vertex is incident to atmost two solid
edges. The solid edges de�ne a collection of solid paths which partition the vertices. These solid
paths are connected by dashed edges. The solid paths are stored in balanced binary trees which
makes it possible to have a fast implementation of path operations (like, root(v), add cost path(v),
mincost(v) and evert(v)).

To implement any of the above operations, the basic requirement is to convert a given tree
path (usually the tree path from v to root(v)) into a solid path. The dynamic tree data structure
implicitly allows for such a transformation, using the expose operation. The expose operation is
implemented using a basic operation called splice which essentially converts a dashed edge into a
solid edge. The semantics of splice are given below. In section 4, we augment the splice operation
to handle the requirements of our quasi-fully dynamic algorithm for 2-vertex connectivity.

Splice(vertex w) : Let parent(w) = v. This operation assumes that the edge (w; v) is dashed.
It converts the edge (w; v) to solid. If there was a solid edge (y; v) coming into v, then it will be
converted to dashed. This operation also extends the solid path p coming in to w, by appending
to p the edge (w; v) and the solid path leaving v.

The following theorem implies that the dynamic tree operations can be performed in O(logn)
amortized time per operation. We use this implementation of dynamic trees for our 2-vertex
connectivity algorithm.

Theorem 2 ([19], Theorem 5) (With naive partitioning and representation of solid paths as locally
biased binary trees), Any sequence of m dynamic tree operations can be performed in O(m logn)
operations.
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The following theorem implies an O(logn) worst case time per operation. Using this imple-
mentation, we achieve the O(logn) worst case time bounds for our 2-edge connectivity (section 2
and cycle equivalence (section 3) algorithms. However, as stated in [19], this implementation of
dynamic trees is more complicated than the previous one and the former one may perform better
in practice (in the amortized sense). So if amortized time bounds are su�cient, we can use the
previous implementation.

Theorem 3 ([19], Theorem 8) (With partitioning by size and a representation of solid paths as
globally biased binary trees), Any dynamic tree operation takes O(logn) time in the worst case.

Extension to Support the Global Minimum Operation

Recall that the original dynamic tree data structure allows the path minimum operation only. The
global minimum operation asks for an edge e such that cost(e) = mine02F cost(e

0). To support
this query we use some additional data structures. Speci�cally, we use a heap that allows us to
insert an item, delete an item and �nd the minimum valued item among all the items in the heap.
Implementations of the heap that take O(log r) worst-case time per operation, are well known.
Here, r is the number of items currently in the heap.

The items in the heap will be the solid paths and the light edges of the dynamic tree data
structure. The value of a light edge will be its cost while the value of a solid path will be the
minimum cost on that path. Whenever the solid paths or light edges or their costs change, we
modify the heap. As only O(logn) paths change during a single dynamic tree operation, the time
taken for maintaining this augmented dynamic tree structure is O(log2 n) per operation. The
queries can be answered in O(logn) time. Note that we cannot a�ord to store all the edges in the
heap because a single add cost path operation on the dynamic tree could change 
(n) edge costs
simultaneously, and this would require 
(n) heap operations to update all the edge costs.

Thus, by using this heap along with the dynamic tree data structure, we can also support the
global minimum operation in O(log2 n) worst-case time per operation.
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