
In IEEE Symp. on Foundations of Comp. Sci. (FOCS’91). Copyright  IEEE

A Linear Time Algorithm for Triconnectivity Augmentation1

(Extended Abstract)

Tsan-sheng Hsu Vijaya Ramachandran

Department of Computer Sciences, University of Texas at Austin, Austin, TX 78712

Abstract

We consider the problem of �nding a smallest set of
edges whose addition triconnects an undirected graph.
This is a fundamental graph-theoretic problem that has
applications in designing reliable networks and fault-
tolerant computing.

We present a linear time sequential algorithm for
the problem. This is a substantial improvement over
the best previous algorithm for this problem, which
runs in O(n(n+m)2) time on a graph with n vertices
and m edges.

1 Introduction

The problem of augmenting a graph to reach a cer-
tain connectivity requirement by adding edges has im-
portant applications in network reliability [5, 18] and
fault-tolerant computing. One version of the augmen-
tation problem is to augment the input graph to reach
a given connectivity requirement by adding a smallest
set of edges. We refer to this problem as the smallest
augmentation problem.

The following results are known for solving the
smallest augmentation problem on an undirected
graph to satisfy a vertex connectivity requirement.
Eswaran & Tarjan [2] gave a lower bound on the small-
est number of edges for biconnectivity augmentation
and proved that the lower bound can be achieved.
Rosenthal & Goldner [16] developed a linear time se-
quential algorithm for �nding a smallest augmenta-
tion to biconnect a graph; however, the algorithm in
[16] contains an error. Hsu & Ramachandran [10]
gave an corrected linear time sequential algorithm.
An O(log2 n) time parallel algorithm on an EREW
PRAM using a linear number of processors for �nd-
ing a smallest augmentation to biconnect an undi-
rected graph was also given in Hsu & Ramachan-
dran [10], where n is the number of vertices in the
input graph. Watanabe & Nakamura [24, 26] gave an
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O(n(n+m)2) time sequential algorithm for �nding a
smallest augmentation to triconnect a graph with n

vertices and m edges. There is no polynomial time
algorithm known for �nding a smallest augmentation
to k-vertex-connect a graph, for k > 3.

Results on other versions of augmentation problems
can be found in [1, 2, 4, 6, 7, 12, 14, 17, 21, 22, 23, 24,
25, 27].

In this paper, we present a linear time sequential
algorithm for �nding a smallest augmentation to tri-
connect a graph. The algorithm is divided into two
stages. During the �rst stage, we biconnect the input
graph. Then in the second stage, we triconnect the re-
sulting biconnected graph using the smallest number
of edges. We have to make sure that the total num-
ber of edges added in these two stages is minimum. It
turns out that we cannot use the algorithm in Hsu &
Ramachandran [10] to implement stage 1, since there
exists a graph G such that any smallest augmentation
for biconnecting G does not lead to a smallest aug-
mentation for triconnecting G. An example is shown
in Figure ??. Note that for edge-connectivity, it is
shown in [14, 22] that there exists a smallest augmen-
tation to k-edge-connect a graph G such that it is
included in a smallest augmentation to (k + 1)-edge-
connect G, for an arbitrary k.

Owing to space limitation, many proofs are omit-
ted in this abstract. They can be found in the full
paper[11].

2 De�nitions

2-block [2, 3, 16]
Given an undirected graph G with a set of vertices V ,
let V = fVij1 � i � kg be a set of subsets of V such
that [ki=1Vi = V and two vertices u and w are in the
same subset if and only if there is a simple cycle in
G which contains u and w or u = w. The induced
subgraph of G on each set of vertices Vi, 1 � i � k, is
a 2-block. The union of all 2-blocks includes all edges
in G that are not cut-edges. A 2-block containing only
one vertex is called a trivial 2-blocks. A trivial 2-block



of G is called a cut-block if it is a cutpoint.

2-block graph

Given an undirected graph G, we de�ne its 2-block
graph, 2-blk(G), as follows. Each cutpoint and 2-block
that is not a cut-block is represented by a vertex in
blk(G). The vertices of 2-blk(G) that represent blocks
that are not 2-blocks are called b-vertices and those
representing cutpoints are called c-vertices. For a ver-
tex u in 2-blk(G), let Vu = fug if u is a c-vertex and
Vu = fwjw is a vertex in the corresponding 2-block
represented by ug if u is a b-vertex. The induced sub-
graph of G on Vu is the corresponding subgraph of u.
Two vertices u and w in 2-blk(G) are adjacent if and
only if any one of the following conditions is true: (i)
jVuj = 1, jVwj = 1 and the vertex in Vu and the vertex
in Vw are adjacent in G; (ii) jVuj = 1 and Vu � Vw;
(iii) jVwj = 1 and Vw � Vu. It is well-known that
2-blk(G) is a forest. If G is connected, 2-blk(G) is a
tree. If 2-blk(G) is a tree, we refer to it as a 2-block
tree. For a vertex v in G, let d2(v) be the degree of its
corresponding c-vertex in 2-blk(G) if v is a cutpoint.
If v is not a cutpoint, let d2(v) = 1. For more on prop-
erties of 2-blk(G), see [10]. An example of a graph and
its 2-blk(G) is shown in Figure ??.

Tutte component

The Tutte components of a biconnected graph are the
triconnected components de�ned in Tutte [20] (see
also Ramachandran [15]). Each Tutte component can
be a single vertex, a triconnected component, a sim-
ple cycle (a polygon) or a pair of vertices with at least
three edges between them (a bond).

3-block graph

Given a 2-block H of G, we de�ne the 3-block graph,
3-blk(H), as follows. The 3-block graph contains three
sets of vertices: �-vertices, �-vertices and �-vertices.
For every Tutte component ofH that is a single vertex
or a triconnected component, we create a �-vertex in
3-blk(H). A Tutte component that consists of only one
vertex is a trivial Tutte component. For every polygon
Q ofH, we create a �-vertex; if w is a vertex in Q with
degree 2 in H, we create a �-vertex bw for w, and we
call w the corresponding Tutte component represented
by bw. Let z1 and z2 be the two vertices in Q that are
adjacent to w. We create a �-vertex for the pair of
vertices z1 and z2. For every pair of vertices a1 and
a2 in H, we create a �-vertex for (a1,a2) if we have
performed a Tutte split with respect to a1 and a2 in
H. An example of a �-vertex, �-vertex and �-vertex
is shown in Figure ??.

Vertices u and v in 3-blk(H) are adjacent if any
one of the following conditions is true: (i) u is a �-
vertex corresponding to a Tutte component Hu that

is a triconnected component, v is a �-vertex and Hu

contains the pair of vertices corresponding to v; (ii)
u is a �-vertex corresponding to a degree-2 vertex w

in H and v is the �-vertex corresponding to the pair
of vertices in H that are adjacent to w; (iii) u is a
�-vertex corresponding to a polygon Q in H, v is �-
vertex corresponding to a pair of vertices z1 and z2 in
Q; (iv) interchanging u and v in any one of the previ-
ous three conditions. We call the pairs of vertices that
correspond to �-vertices Tutte pairs. It is known that
the number of Tutte pairs in an n-node biconnected
graph is O(n) [13, 15].

>From [9, 15, 20], we know that 3-blk(H) is a tree
if H is a 2-block. We call this tree a 3-block tree. We
call the set of trees corresponding to 2-blocks in G the
3-block graph of G or 3-blk(G). Each Tutte component
that corresponds to a �-vertex in the 3-block graph is
a 3-block of G. Given a graph G with n vertices and
m edges, 2-blk(G) and 3-blk(G) can be computed in
O(n+m) time using procedures in [9, 15]. Examples
of 3-block graphs are shown in Figures ?? & ??.

The implied path in the 2-block graph

Let G be an undirected graph and let u and v be two
distinct vertices in G. Let G0 be the graph obtained
from G by adding the edge (u,v) and let bu and bv
be the two vertices in 2-blk(G) whose corresponding
subgraphs contain u and v, respectively. We denote
the path P2 between bu and bv in 2-blk(G) the implied
path between u and v in 2-blk(G) (we let P2 = [bu] if
there is no such path).

Block-sequence, separating-sequence and

cut-sequence

Let Y be the set of all b-vertices in P2 and those c-
vertices in P2 whose corresponding cutpoints are cut-
blocks. Let jY j = r and yi be the ith vertex in Y

encountered when we traverse P2 starting form bu to
bv. We construct a separating-sequence W = [w1 =
u;w2; � � � ; w2r�1; w2r = v] for vertices u and v such
that for 1 < i < r, w2i�1 and w2i are the two cutpoints
adjacent to yi if yi is a b-vertex; w2i�1 and w2i are the
two vertices adjacent to yi in G if yi is a cutpoint;
w2 and w2k�1 are cutpoints adjacent to y1 and yr,
respectively. Note that w2i and w2i+1 can be equal, for
1 � i < r; they are di�erent if and only if any there is
at least one c-vertex in fyi,yi+1g. A cut-sequence C =
[u; c1; � � � ; cx; v] for vertices u and v is a sequence of
vertices inG such that ci is the cutpoint corresponding
to the ith c-vertex encountered when we traverse P2
from bu to bv and x is the number of c-vertices in P2.
An example is shown in Figure ??.

The collection of implied paths

For 1 � i � r, let Hi be the corresponding 2-block



represented by yi if yi is b-vertex; let Hi be the corre-
sponding cutpoint represented by yi if yi is a c-vertex.
For 1 � i � r, let Qi = [Hi] if yi is a c-vertex; other-
wise, let Qi be the path in 3-blk(Hi) between the two
�-vertices that correspond to Tutte components con-
taining w2i�1 and w2i. Each Qi, 1 � i � r, is chosen
such that both w2i�1 and w2i are each contained in
exactly one of the Tutte components corresponding to
�-vertices in Qi if yi is a b-vertex. Note that w2i and
w2i+1 can be equal, for 1 � i < r; they are di�erent if
and only if there are a sequence of more than one cut-
point between yi and yi+1 in P2. If there is more than
one Tutte component that contains wi, 1 � i � 2r, we
choose an arbitrary one. We call Q = fQ1; � � � ; Qrg
the collection of implied paths between u and v in 3-
blk(G). If G is biconnected, r = 1; Q1 is also called the
implied path between u and v in 3-blk(G). An example
of these de�nitions is shown in Figure ??.
Separating degree

Given a �-vertex s, let (a1,a2) be its corresponding
Tutte pair. We de�ne d3((a1; a2)) or d3(s) to be
the degree of z in the 3-block graph. We know that
d3((a1; a2)) � 2 for any Tutte pair (a1,a2). Recall
that for a vertex v in G, d2(v) is the degree of v in
2-blk(G) if v is a cutpoint; d2(v) is 1 if v is not a
cutpoint. Given a graph with h connected compo-
nents, the separating degree of a Tutte pair (a1,a2),

sd((a1; a2)), is
P2

i=1 d2(ai) + d3((a1; a2)) + h�4. We
will show (Claim 1 in Section 3) that the separating
degree of a Tutte pair is equal to the smallest number
of edges needed to connect the graph obtained from
G by removing the Tutte pair. The separating degree
for the corresponding �-vertex s, sd(s), is equal to
sd((a1; a2)).
The triconnectivity augmentation number

Given a graph G, the triconnectivity augmentation
number of G is the smallest number of edges needed
to triconnect G.

3 A Lower Bound for the Triconnec-

tivity Augmentation Number

In this section, we state a lower bound for the tri-
connectivity augmentation number. This lower bound
turns out to be the exact triconnectivity augmentation
number.
Separating degrees of �-vertices

We state a claim to justify the way the separating
degree of a Tutte pair in a 3-block graph is de�ned.
Claim 1 The separating degree of a Tutte pair is
equal to the smallest number of edges needed to con-
nect the graph obtained from G by removing the Tutte
pair. 2

3-block leaf and isolated 3-block vertex

We identify �-vertices in a 3-block graph whose cor-
responding Tutte components must contain a new in-
coming edge if we want to triconnect the input graph.

De�nition 1 Given a �-vertex b, let Hb be its corre-
sponding Tutte component of G. A degree-1 vertex b is
a 3-block leaf if any one of the following conditions
is true: (i) Hb consists of only one vertex u and u is
not a cutpoint; (ii) if Hb contains any cutpoint c of G,
c is in a Tutte pair of G contained in Hb. (Note that
(i) holds if and only if u is in a polygon.) A degree-0
�-vertex b is an isolated 3-block vertex if any one
of the following conditions is true: (i) Hb contains at
most 2 cutpoints; (ii) Hb consists of only one vertex
u and the degree of u in G is at most 2.

Figure ?? illustrates a 3-block leaves. Note that if
G is biconnected, then a degree-1 vertex in 3-blk(G)
must be a 3-block leaf.
Demanding vertex

De�nition 2 Given a 3-block leaf or an isolated 3-
block vertex b in 3-blk(G), let Hb be its corresponding
Tutte component. A vertex u in Hb is a demanding
vertex of b if any one of the following conditions is
true: (i) u is not a cutpoint or in any Tutte pair of
G contained in Hb; (ii) b is an isolated 3-block vertex
and Hb consists of only the vertex u. The vertex u is
also called a demanding vertex in G.

Claim 2 Let b be a 3-block leaf or an isolated 3-block
vertex in 3-blk(G). Then there is at least one demand-
ing vertex of b. 2

When we specify the 3-block graph of a graph G, we
will include a demanding vertex for each 3-block leaf
and each isolated 3-block vertex in 3-blk(G).
The weight of a graph

We now de�ne the weight of a graph, which we will re-
late later to the number of edges needed to triconnect
the graph.

De�nition 3 Let H be a 2-block in a graph G

whose corresponding vertex in 2-blk(G) is rH . Let
l3(H) be the number of 3-block leaves in H. We
de�ne the weight of the graph G, w(G), to beP

8 2-blocks H maxf3 � d2(rH); l3(H)g, if G is not
biconnected. Otherwise, let w(G) = l3(G).

Massive, critical and balanced

For an undirected graph G with the weight w(G), a
Tutte pair z or its corresponding �-vertex is massive if

sd(z) > dw(G)2 e. A Tutte pair z or its corresponding �-

vertex is critical if sd(z) = dw(G)
2 e. If no Tutte pair in

G is massive, then G and its 3-block graph are called



balanced. Given a �-vertex v in 3-blk(G), let 3-blk(G)
� v be the graph obtained from 3-blk(G) by removing
v. A v-chain is a component of 3-blk(G) � v which
contains only one 3-block leaf in 3-blk(G). The 3-block
leaf of 3-blk(G) in a v-chain is called the v-chain leaf.
A lower bound of the triconnectivity

augmentation number

We now state a lower bound for the triconnectivity
augmentation number for a general undirected graph.

Lemma 1 Given an undirected graph G, we need at

least maxfd,dw(G)2 eg edges to triconnect G, where d

is the largest separating degree among all �-vertices in
3-blk(G).
Proof: The �rst component of the lower bound comes
from Claim 1. For the other component of the lower
bound, suppose that G0 is triconnected and is obtained
from G by adding a smallest set of edges. For each 2-
block H, we must have at least 3�d2(rH ) new incom-
ing edges in G0. For each 3-block leaf in 3-blk(H),
the induced subgraph on vertices corresponding to
it must contain at least one new incoming edge in

G0. Hence we need at least dmaxf3�d2(rH );l3(H)g
2 e new

edges for each 2-block H. The total number of new

edges needed is thus dw(G)2 e. Hence we need at least

maxfd,dw(G)2 eg edges in G0. This proves the lemma.
2

4 Finding a Smallest Augmentation to
Triconnect a Biconnected Graph

In this section, we consider the problem of �nd-
ing a smallest set of edges to triconnect a bicon-
nected graph. We show that the lower bound given
in Lemma 1 can be achieved, and we give a linear
time algorithm to �nd a smallest augmentation to tri-
connect the graph.

4.1 Properties of the 3-Block Tree for a
Biconnected Graph

In this section, we explore properties of 3-blk(G)
that will be used in the following sections, where G is
a biconnected graph.

First we give bounds on the number of massive and
critical �-vertices in 3-blk(G). They are similar to
the bounds on the number of massive and critical c-
vertices in 2-blk(G) given in [10]. Proofs in [10] can
be easily modi�ed to prove the following claim.

Claim 3 Let s1 be a �-vertex with the largest separat-
ing degree among all �-vertices in 3-blk(G) and let si
be a �-vertex with the largest separating degree among
all �-vertices other than s1; � � � ; si�1, for 2 � i � 3.

Then the following �ve properties hold.
(i)
P3

i=1 d3(si)�4 � l3(G), where l3(G) is the number
of degree-1 vertices in 3-blk(G).
(ii) If blk(G) has more than two �-vertices, then

d3(s3) �
l3(G)+4

3 .
(iii) There can be at most one massive �-vertex in
blk(G).
(iv) If there is a massive �-vertex in blk(G), then there
is no critical �-vertex in blk(G).
(v) There can be at most two critical �-vertices in
blk(G) if l3(G) > 2. 2

Given an input biconnected graph G, its 3-block
graph and a graph G0 obtained from G by adding an
edge between two distinct vertices u and v, we now
describe a method to obtain 3-blk(G0) from 3-blk(G)
by local updating operations on 3-blk(G) instead of
computing it directly from G0. Let P3 be the implied
path between u and v in 3-blk(G).

We de�ne the implied graph GP3 of G on the path
P3 as follows. GP3 contains vertices and edges that are
in Tutte components of G corresponding to �-vertices
in P3. For every �-vertex q in P3, let s

q
a and s

q
b be the

two �-vertices connected to q in P3. Let (aq1,a
q
2) and

(bq1,b
q
2) be the Tutte pairs represented by sqa and s

q

b,
respectively. If sqa is adjacent to a �-vertex in P3 that
corresponds to a trivial Tutte component fwg, then
let aq1 = w and let aq2 = w. The same procedure is
applied on sqb , b

q
1 and b

q
2. We assume that if we traverse

clockwise around the simple cycle Cq represented by
q starting from a

q
1, the sequence of vertices visited in

faq2,b
q
1,b

q
2g is b

q
1, b

q
2 and a

q
2. We add the edge (aq1,b

q
1) to

GP3 if aq1 6= b
q
1 and we add the edge (aq2,b

q
2) to GP3 if

a
q
2 6= b

q
2. An example is shown in Figure ??.

Claim 4 Given a biconnected graph G and two de-
manding vertices u and v in G where u and v are in
di�erent Tutte components, let P3 be the implied path
in 3-blk(G) between u and v. The implied graph on
P3, GP3 , is biconnected if and only if u and v are not
both in trivial Tutte components or there is more than
one �-vertex in P3. 2

We now de�ne the crack operation which is useful
in describing the relation between 3-blk(G) and the
3-block graph of G after adding an edge.

De�nition 4 Let G be a biconnected graph and let
G0 be the graph obtained from G by adding an edge be-
tween two demanding vertices u and v in G, where
u and v are in di�erent Tutte components. Let
P3,q,s

q
a,s

q
b ,a

q
1,a

q
2,b

q
1 and b

q
2 be the path and vertices de-

�ned above. The crack operation on q with respect to
P3 consists of the following procedures. (i) We add
the edge (aq1,b

q
1) to the simple cycle Cq corresponding



to q if aq1 6= b
q
1 and (aq1,b

q
1) is not an edge in Cq. The

edge (aq2,b
q
2) is added under the same condition for aq2

and bq2. For each new simple cycle C created by adding
these edges, we create a new �-vertex if C contains a
Tutte pair in Cq (excluding (aq1,a

q
2) and (bq1,b

q
2)).

(ii) After performing operations given in part i, let q1
and q2 be the two �-vertices corresponding to simple
cycles created in part i that contain only (aq1,b

q
1) and

only (aq2,b
q
2), respectively. New �-vertices s1 (corre-

sponds to new Tutte pair (aq1,b
q
1)) and s2 (corresponds

to new Tutte pair (aq2,b
q
2)) are added and connected to

q1 and q2, respectively. (iii) After performing oper-
ations given in parts i and ii, let s be a �-vertex in
3-blk(G) such that s 6= sqa and s 6= s

q

b . An edge (s,q)
in 3-blk(G) is changed to (s,q1) or (s,q2) depending
on whether the Tutte pair represented by s is on the
simple cycle represented by q1 or by q2.

Note that the crack operation creates at most two �-
vertices. If there are two �-vertices created by per-
forming the crack operation on a �-vertex q with re-
spect to a path P3, then P3 is non-adjacent on q. Oth-
erwise, P3 is adjacent on q. An example is shown in
Figure ??.

Lemma 2 states the relations between 3-blk(G) and
3-blk(G0), where G0 is the graph obtained from G by
adding an edge.

Lemma 2 Let G be an input biconnected graph and
let G0 be the graph obtained from G by adding an edge
between two vertices u and v in G, where u and v

are in di�erent Tutte components. Let P3 be the im-
plied path between u and v in 3-blk(G). We can ob-
tain 3-blk(G0) from 3-blk(G) by applying the following
operations. (i) Edges in P3 are eliminated. Vertices
and edges in 3-blk(G) that are not in P3 remain in
3-blk(G0). (ii) The �-vertices in P3 shrink into a new
�-vertex bP3 in 3-blk(G0) if u and v are not both in
trivial Tutte components or there is more than one �-
vertex in P3. The corresponding Tutte component of
bP3 is GP3 [ (u; v), where GP3 is the implied graph on
P3. Otherwise, �-vertices in P3 are eliminated. (iii)
A vertex s in P3 with d3(s) = 2 is eliminated in 3-
blk(G0) if s is a �-vertex or a �-vertex. A �-vertex s
in P3 with d3(s) � 3 is adjacent to bP3 if bP3 exists.
(iv) A �-vertex q in P3 with d3(q) � 3 is cracked
(De�nition 4) and new �-vertices are connected to bP3
if bP3 exists. If bP3 does not exist, we create a new �-
vertex q0 and the two �-vertices created by the crack
operation are connected to q0.
Proof: Parts i and iii are trivial. We only prove parts
ii and iv. GP3 is biconnected (Claim 4) if u and v

are not both in trivial Tutte components or there is
more than one �-vertex in P3. >From the de�nition of

GP3 , we know that the removal of any Tutte pair in
GP3 will result in a graph with two connected compo-
nents which contain u and v, respectively. Thus the
graph G0

P3
obtained from GP3 by adding (u,v) is tri-

connected. It is also true that G0
P3

is maximal (no
vertex can be added such that the resulting graph is
still triconnected). This proves part ii. We know that
pairs of endpoints between edges added in cracking
�-vertices correspond to new Tutte pairs. Every new
Tutte pair created is contained in G0

P3
. This proves

part iv. 2

An example of updating the 3-block graph is shown in
Figure ??. The following is a corollary of Lemma 2.

Corollary 1 Let G0 be the graph obtained from G by
adding an edge between any two demanding vertices
u and v in G. The degree of a �-vertex s in P3, the
implied path in 3-blk(G) between u and v, with degree
> 2 in 3-blk(G) is decreased by 1 in 3-blk(G0). 2

De�nition 5

[The leaf-connecting condition for triconnecting a
biconnected graph]
Let G be a biconnected graph and let u and v be two
demanding vertices in G. Let P3 be the implied path
between u and v in 3-blk(G). The pair of vertices u
and v satis�es the leaf-connecting condition if and
only if any one of the following conditions is true: (i)
the path P3 contains a �-vertex of degree at least 4;
(ii) the path P3 contains two vertices of degree at least
3; (iii) there exists a �-vertex in P3 such that P3 is
non-adjacent on it.

Lemma 3 Let G be a biconnected graph and G0 be the
graph obtained from G by adding a new edge (u,v). Let
l3(G) and l3(G0) be the numbers of degree-1 vertices
in 3-blk(G) and 3-blk(G0), respectively. If u and v

satisfy the leaf-connecting condition (De�nition 5) and
l3(G) > 3, then l3(G

0) = l3(G)� 2.

Proof:We know that two degree-1 vertices in 3-blk(G)
that correspond to Tutte components containing u and
v are eliminated. If u and v satisfy the leaf-connecting
condition, the only �-vertex created has a degree at
least 2. Since we do not create any degree-1 vertex,
the lemma holds. 2

4.2 An Algorithm for Triconnecting a Bi-
connected Graph Using the Smallest
Number of Edges

We will show after the description of the algorithm
that by using algorithmaug2to3 given below, the lower
bound given in Lemma 1 can be reduced by 1 each
time we add a new edge. We now describe the algo-
rithm.



f� The algorithm �nds a smallest augmentation to tricon-

nect G, where G is biconnected with � 4 vertices. �g

graph function aug2to3(graph G); f� The algorithmic

notation used here is from Tarjan [19]. �g

T := 3-blk(G);

let l3(G) be the number of degree-1 vertices in T ;

do l3(G) � 2 !

let s1 be a �-vertex with the largest degree in T ;

1. if s1 is massive ! v := s1; w := s1

j s1 is not massive !

let s2 be a �-vertex with the largest degree in

T other than s1;

let d3(s2) = 0 if s2 does not exist;

let b1 be a non-�-vertex with the largest degree

in T ;

if d3(s1) > 2 !

2. v := s1;

3. if d3(s2) > 2 ! w := s2

j d3(s2) � 2 and d3(b1) > 2 ! w := b1

j d3(s2) � 2 and d3(b1) � 2 ! w := v

�

j d3(s1) � 2 !

let b2 be a non-�-vertex with the largest

degree in T other than b1;

4. v := b1;

if d3(b2) > 2 ! v := b2

j d3(b2) � 2 ! w := v �

�

�;

if v = w and v is a �-vertex and d3(v) > 3 !

5. �nd two degree-1 vertices y and z such that the

path between them in T is non-adjacent on v

j v 6= w or v is not a �-vertex or d3(v) � 3 !

6. if s1 is massive ! �nd two s1-chain leaves y and

z

j s1 is not massive !

�nd two degree-1 vertices y and z such that

the path between them passes through v and

w

�

�;

�nd demanding vertices u1 and u2 of y and z,

respectively; f� Claim 2 shows that this is

always possible. �g

add an edge between u1 and u2;

update the 3-block graph T ;

if l3(G) 6= 3 ! l3(G) := l3(G)� 2

j l3(G) = 3 ! l3(G) := l3(G) � 1 �

od;

return G

end aug2to3;

Before the proof of correctness for algorithm
aug2to3, we state a claim for an input graph G that
is unbalanced. The proof of this claim is similar to a
proof in [10, 16].

Claim 5 Let G be an unbalanced biconnected graph
with at least 4 vertices. Let s be the massive �-vertex

in 3-blk(G) and let � = d3(s) � 1 � d l3(G)2 e. There
are 2� + 2 s-chains in 3-blk(G). Let M be the set of
s-chain leaves. By adding 2k; k � �, edges to connect
2k + 1 vertices of M, we reduce both d3(s) and the
number of leaves in the 3-block tree by k. 2

Claim 6 Let d be the largest separating degree among
all �-vertices in 3-blk(G) and let l3(G) be the number
of degree-1 vertices in 3-blk(G). If G is biconnected
with at least 4 vertices, we can triconnect G by adding

maxfd,d l3(G)2 eg edges using algorithm aug2to3.

Proof: If 3-blk(G) contains a massive vertex s1, then
the two s1-chain leaves are found in steps 1 and 6. If
3-blk(G) is balanced, all critical vertices are found in

steps 2 and 3. Thus if d � d l3(G)2 e, then d is decreased
by 1 (Corollary 1). The pair of vertices u1 and u2 also
satis�es part ii of the leaf-connecting condition (De�-
nition 5) by steps 2, 3 and 4 if possible. Otherwise, it
satis�es part i of the leaf-connecting condition by step
4 or part iii of the leaf-connecting condition by steps 4

and 5. Thus if d < d l3(G)2 e, l3(G) decreases by 2 each
time algorithm aug2to3 adds an edge. The algorithm

guarantees that maxfd,d l3(G)2 eg decreases by 1 each

time we add an edge. We know that maxfd,d l3(G)2 eg
= 0 implies that 3-blk(G) is a single �-vertex. Thus G
is triconnected if G contains at least 4 vertices. Hence
the claim is true. 2

Theorem 1 The triconnectivity augmentation num-

ber for a biconnected graph G equals maxfd,d l3(G)2 eg,
where d+1 is the largest degree among all �-vertices in
3-blk(G) and l3(G) is the number of degree-1 vertices
in 3-blk(G). 2

Claim 7 Algorithm aug2to3 runs in O(n + m) time
on a graph with n vertices and m edges. 2

5 Finding a Smallest Augmentation to

Triconnect a Graph

In this section, we consider the problem of �nd-
ing a smallest augmentation to triconnect any undi-
rected graph. We show that the lower bound given in
Lemma 1 can be always achieved by giving an algo-
rithm for it. Finally, we describe a linear time imple-
mentation for the algorithm.



5.1 Properties of the 3-Block Graph

In this section, we study properties of the 3-block
graph that are used in the next section for designing
an algorithm to �nd a smallest augmentation to tri-
connect a graph. We �rst study the changes made
on the 3-block graph after adding an edge into the
original graph in De�nition 6 and Lemma 4. Then in
Claim 8, Claim 9, Lemma 5 and Corollary 3, we show
that we can always decrease the lower bound given in
Lemma 1 by 1 by adding an edge.

Let G0 be the graph obtained from G by adding
an edge between two demanding vertices u and v in
G. We describe the updating operation performed on
3-blk(G) after adding an edge.

De�nition 6 Let G0 be the graph obtained from G by
adding an edge between two demanding vertices u and
v in G, where u and v are in di�erent Tutte compo-
nents. Given fQ1; � � � ; Qrg, the collection of implied
paths in 3-blk(G) between u and v, the block sequence
[y1; � � � ; yr], the separating-sequence [w1; � � � ; w2r] and
the cut-sequence [u,c1; � � � ; cx,v], we can obtain 3-
blk(G0) from 3-blk(G) by performing the following op-
erations. (i) For each Qi, 1 � i � r, we perform the
operation given in Lemma 2 on the 3-block tree that
contains Qi if Qi contains more than 1 vertex. (ii) A
new �-vertex is created with its corresponding simple
cycle [u,c1; � � � ; cx,v,u]. Each pair of vertices w2i�1

and w2i, 1 � i � r, is a Tutte pair. The correspond-
ing �-vertex for Tutte pair (w2i�1,w2i) is incident on
the new �-vertex created. (iii) For each c-vertex yi,
1 � i � r, we create a �-vertex and connect it to the
�-vertex corresponds to Tutte pair (w2i�1,w2i). (iv)
For each b-vertex yi, 1 � i � r, the �-vertex corre-
sponding to the Tutte pair (w2i�1,w2i) is incident on
the �-vertex z whose corresponding Tutte component
contains w2i�1 and w2i if z exists. (v) We merge �-
vertices corresponds to the same Tutte pair and delete
degree-1 �-vertices.

The following lemma can be easily derived from
Lemma 2, the de�nition of Tutte split and the de�-
nition of the 3-block graph. An example is shown in
Figure ??.

Lemma 4 Let G0 be the graph obtained from G by
adding an edge between two demanding vertices u and
v, where u and v are in di�erent Tutte components.
Given fQ1; � � � ; Qrg, the collection of implied paths
between u and v in 3-blk(G), and P2, the implied
path in 2-blk(G) between u and v, the 3-block graph
for G0 can be obtained from 3-blk(G) by perform-
ing the updating operations de�ned in De�nition 6 in
O(jP2j+

Pr

i=1 jQij) time. 2

We know that if G is biconnected, there can be
at most two critical �-vertices in 3-blk(G) (Claim 3).
But this is not true for G is not biconnected (a similar
claim is also given in [26]). We now state a claim
about the set of all critical �-vertices in 3-blk(G) for
a general graph G. In general, if there are more than
2 critical �-vertices in 3-blk(G), we can partition the
set of critical �-vertices into at most two subsets such
that either a subset has one �-vertex or Tutte pairs
corresponding to critical �-vertices in a subset share a
common cutpoint.

Claim 8 Let G be a connected graph with w(G) > 2.
Let S = fs1; � � � ; srg be the set of critical �-vertices in
3-blk(G). Given S, let =1 = fc j c is a cutpoint that
is shared by more than one Tutte pair represented by
members of Sg. Let =2 = fs j s 2 S and 6 9c2 =1

such that the Tutte pair represented by s contains cg.
Then j=1j+ j=2j � 2.
Proof: The proof uses 3 propositions and is given in
[11]. All propositions are proved by �rst �nding sep-
arating degrees of �-vertices in S and a lower bound
value for w(G) in all possible cases and then deriving
a contradiction by the fact that the separating degree

of any critical �-vertex must be equal to dw(G)2 e. 2

Corollary 2 Let G be a connected graph with w(G) >
2. We can �nd two demanding vertices u1 and u2
in G such that each critical �-vertex is either in one
of the paths in the collection of implied paths between
u1 and u2 in 3-blk(G) or its corresponding Tutte pair
contains a cutpoint in the implied path between them
in 2-blk(G). 2

Claim 9 states some conditions under which sepa-
rating degrees of certain �-vertices decrease by 1.

Claim 9 Let G be an undirected graph and let u and
v be two demanding vertices in G. Let G0 be the graph
obtained from G by adding the edge (u,v) and let s be
a �-vertex in 3-blk(G) with sd(s) � 3. Then sd(s)
decreases by 1 in G0 if any one of the following condi-
tions is true: (i) s is in one of the path in the collection
of implied paths between u and v in 3-blk(G); (ii) the
corresponding Tutte pair of s contains a cutpoint in
the implied path between u and v in 2-blk(G). 2

Lemma 5 states a condition under which the weight
of the graph decreases by 2 after adding an edge.

Lemma 5 Let G0 be the graph obtained from a graph
G by adding an edge between two distinct demanding
vertices u and v. Then w(G0) = w(G) � 2 if u and v

are in di�erent connected components or in di�erent
2-blocks. 2



By Lemma 5 and Corollary 2, we now show that
in any biconnected graph, we can always decrease the
lower bound given in Lemma 1 by 1 by adding an edge.

Corollary 3 Let G be a connected graph that is not
biconnected. We can �nd two demanding vertices u1
and u2 in G such that they satisfy the condition given
in Corollary 2 and w(G [ f(u1; u2)g) = w(G)� 2.
Proof: If we can �nd two demanding vertices not in
the same 2-block that satisfy the condition given in
Corollary 2 or any two critical �-vertices whose Tutte
pairs share a common cutpoint, then Lemma 5 shows
w(G[f(u1; u2)g) = w(G)�2. Let u1 and u2 be in the
2-blockH; every critical �-vertex is also inH and they
do not share any cutpoint. >From Claim 8, we know
that there can be at most two critical �-vertices whose
Tutte pairs do not share cutpoint. If there is only
one critical �-vertex in H, we can easily substitute
one of u1 and u2 for a demanding vertex in a 2-block
that is not H such that u1 and u2 satisfy both the
conditions given in Corollary 2 and Lemma 5. Thus
w(G[ f(u1; u2)g) = w(G)� 2. For the case of having
two critical �-vertex in H, their degrees in 3-blk(G)
must be greater than 2 since G is not biconnected and
they are the only two critical �-vertices in 3-blk(G).
By Lemma 3, the number of 3-block leaves decreases
by 2. Thus the weight of G decreases by 2 after adding
(u1,u2). 2

5.2 An Algorithm for Triconnecting an
Undirected Graph Using the Smallest
Number of Edges

In the following algorithm, aug3, we �nd a pair of
demanding vertices u and v in G such that the col-
lection of implied paths Q in 3-blk(G) between u and
v passes through the massive �-vertex or all critical
�-vertices if G is connected. If G is not connected, u
and v are demanding vertices in G that are in di�er-
ent connected components. We also have to make sure
that w(G) is reduced by 2 if 3-blk(G) is balanced by
satisfying the conditions given in Lemma 5.

f� The graph G has at least 4 vertices; the algorithm �nds

a smallest augmentation to triconnect G. �g

graph function aug3(graph G);

T2 := 2-blk(G); T3 := 3-blk(G);

let w(G) be the weight of G; f� De�nition 3. �g

do w(G) � 2 and 9 a c-vertex in T2 !

if G is not connected !

1. �nd y and z that are 3-block leaves or isolated

3-block vertices in di�erent trees of T3
j G is connected !

let d be the largest separating degree among all

�-vertices in T3;

if d > dw(G)
2 e ! f� There exists an unique

massive �-vertex in T3 (Claim 10). �g

2. let s be the massive �-vertex in T3;

3. �nd two s-chain leaves y and z in T3

j d � dw(G)
2 e !

4. �nd y and z that are 3{block leaves or

isolated 3-block vertices in T3 such that

demanding vertices u and v of y and z,

respectively, satisfy the condition given

in Corollary 3 f� Corollary 3 shows that

this is always possible. �g

�

�;

5. �nd demanding vertices u1 and u2 of y and z,

respectively; f� Claim 2 shows that this is

always possible. �g

add an edge between u1 and u2;

update the 2-block graph T2;

update the 3-block graph T3;

if G is connected and d > dw(G)
2 e !

w(G) := w(G)� 1

j G is not connected or d � dw(G)
2 e !

w(G) := w(G)� 2

�

od;

f� G is biconnected. �g

return aug2to3(G)

end aug3;

Claim 10 If there exists a massive �-vertex s1 in 3-
blk(G), then a �-vertex s2 with the largest separating
degree among �-vertices other than s1 is not massive

or critical. Let � = sd(s1) � dw(G)2 e. There are at
least 2�+2 s1-chains in 3-blk(G). LetM be the set of
s1-chain leaves. By adding 2k; k � �, edges to connect
2k + 1 vertices of M, we reduce both sd(s1) and the
weight of the graph by k. 2

Claim 11 Let G be an undirected graph with at
least 4 vertices. We can triconnect G by adding

maxfd,dw(G)2 eg edges using algorithm aug3, where d

is the largest separating degree among all �-vertices in
3-blk(G) and w(G) is the weight of G.

Proof: If G is not connected, algorithm aug3 �nds u1
and u2 in di�erent connected components at steps 1

and 5. >From Lemma 5, we know that dw(G)2 e is de-
creased by 1. >From the de�nition of separating de-
gree, d is decreased by 1 because the number of con-
nected components is decreased by 1. >FromClaim10,
we know that there can be at most one massive ver-
tex s if d > dw(G)2 e. Algorithm aug3 �nds s at step

2. We reduce maxfd,dw(G)2 eg by 1 by adding a new



edge between two s-chain leaves (step 3) if G is con-
nected and unbalanced. If G is balanced, algorithm
aug3 adds an edge (u1,u2) such that u1 and u2 are
two demanding vertices satisfy the condition given in

Corollary 3. Thus dw(G)2 e is decreased by 1 and G re-
mains balanced. Algorithm aug3 keeps doing this un-
til G is biconnected. Notice that if G is biconnected,
w(G) = l3(G). At this point, algorithm aug3 calls
algorithm aug2to3 on the current biconnected graph.
Hence by Claim 6, the claim is true. 2

Theorem 2 The triconnectivity augmentation num-

ber for a graph G equals maxfd,dw(G)2 eg, where d is
the largest separating degree among all �-vertices in
3-blk(G) and w(G) is the weight of G. 2

5.3 A Linear Time Implementation

Let sG be the sum of the separating degrees of all
Tutte pairs in the 3-block graph of a graph G with n

vertices and m edges. By using techniques similar to
those described in [10] and the proof of Claim 7, algo-
rithm aug3 can be implemented to run inO(n+m+sG)
time. Since sG could be 
(n2) for a graph with n ver-
tices, we do not have a linear time implementation for
algorithm aug3 if m is not �(n2). However, Lemma 6
([26] stated a similar claimwhich is part of the lemma)
tells us of a possible method to obtain a linear time
implementation.

Lemma 6 Given a critical Tutte pair s1 and another
Tutte pair s2, s1 6= s2, in a connected graph G, let s1
and s2 share a common cutpoint c. Let s1 = (c; a1)
and let s2 = (c; a2). Then d3(s1) � d3(s2)+2(d2(a2)�
1). If s2 is also critical, then d2(a1) = 1 and d2(a2) =
1. 2

Lemma 6 says that for a set of more than 1 criti-
cal �-vertex whose corresponding Tutte pairs share a
common cutpoint c, the other vertices in these Tutte
pairs are not cutpoints. Let Sc be the set of Tutte
pairs share c and let Jc be the subset of Sc with the
largest degree in 3-blk(G) among all Tutte pairs in Sc.
A Tutte pair s in Sc is a candidate if and only if any
one of the following conditions is true: (i) Jc = fsg;
(ii) s 2 Jc and only the vertex c in each Tutte pair
in Jc is a cutpoint; (iii) s 2 Jc and both vertices in
s are cutpoints. We can �nd a candidate for any Sc.
Lemma 6 also states that if jScj � 2 and any one of
the candidates is not critical, then none of the Tutte
pairs in Sc is critical.

Let n be the number of vertices and m be the num-
ber of edges in the input graph. Using Lemma 6 and
the sorted table data structure given in [16], we can
implement algorithm aug3 in O(n+m) time.

Given a set of p nodes V with a key in each node
whose value is O(p), the sorted table is an array L of
O(p) entries. The ith entry of L points to a doubly
linked list which contains all nodes in V with the key
value i. For Tutte pairs that do not share any cutpoint
with any other Tutte pairs, we maintain a sorted table
using their separating degrees as keys. Entries are up-
dated whenever their separating degrees are changed.
The sum of the separating degrees of all �-vertices in
the sorted table is O(n).

Given a sorted table L, an equivalent sorted list is a
doubly linked list on entries of L that does not point
to an empty list. The relative order of entries in L
is preserved. For each cutpoint c that is shared by
Tutte pairs Sc = f(c; a1); � � � ; (c; ar)g, where r � 2, we
maintain the following information: yc, a candidate
for Sc (yc is updated only if the current candidate no
longer satis�es the condition of being a candidate) and
Qc, a sorted list on the set of �-vertices corresponding
to Tutte pairs in Sc with their degrees in the 3-block
graph as their key values. Note that we must re-choose
yc, where c is a cutpoint, if and only if a degree in
3-blk(G) for a Tutte pair is changed or a degree in 2-
blk(G) for a cutpoint becomes 1. Thus we only have
to re-choose O(n) times. Thus the above information
can be maintained in totally O(n) time.

For a cutpoint c, let its yc be (c,ac). We maintain
an entry with key value sd(yc) in the sorted table if
and only if any one of the following conditions is true:
(i) ac is not a cutpoint; (ii) jSac j � 1; (iii) jSac j > 1
and yc = yac . This makes sure that if we update (de-
crease) the degree of a cutpoint, only a constant num-
ber of entries in the sorted table are updated. Note
that if we have to change yc for a cutpoint c, we only
have to get a constant number of entries in and out
the sorted table. Every entry in the sorted table is
updated whenever its separating degree is changed.

During the augmentation using algorithm aug3, we
create new �-vertices by creating new polygons. The
sum of the degrees in the 3-block graph of all created
�-vertices is O(n). Since the sum of the degrees of all
�-vertices in the 3-block graph, the sum of the degrees
of all c-vertices in the 2-block graph and the sum of
the separating degree of all �-vertices in 3-blk(G) are
all O(n), the total time to update the sorted table is
O(n). Using the above method, we can implement
algorithm aug3 in linear time.

Claim 12 Algorithm aug3 runs in linear time. 2

6 Conclusion

In this paper, we have presented a linear time se-



quential algorithm for �nding a smallest augmenta-
tion to triconnect an undirected graph. The algo-
rithm is divided into two stages. During the �rst
stage, we biconnect the input graph. Then we tricon-
nect the resulting biconnected graph using the small-
est number of edges in the second stage. We have
to make sure that the total number of edges added
in these two stages is minimum. We �rst described
a linear time sequential algorithm to triconnect a bi-
connected graph using the smallest number of edges.
Then we presented a linear time algorithm to bicon-
nect a graph such that the set of edges added is a
subset of edges needed to triconnect the graph using
the smallest number of edges.
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