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ABSTRACT

We present a new algorithm based on open ear decomposition for testing

vertex four-connectivity and for finding all separating triplets in a triconnected

graph. A sequential implementation of our algorithm runs inO(n2) time and a

parallel implementation runs inO(log2 n) time usingO(n2) processors on an

ARBITRARY CRCW PRAM, wheren is the number of vertices in the graph.

This improves previous bounds for the problem for both the sequential and paral-

lel cases. The sequential time bound is the best possible, to within a constant fac-

tor, if the input is specified in adjacency matrix form, or if the input graph is

dense.

1. Introduction

This paper deals with the problem of determining four connectivity in an undirected graph.

Connectivity is an important graph property and there has been a considerable amount of work on

algorithms for determiningk-connectivity in graphs. An important application of this property is

that ak-connected network can operate in a reliable manner in the presence of up tok node or

link failures.
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A preliminary version of this paper appeared in theProceedings of the 28th Annual IEEE Symposium on Foundations of
Computer Science,1987 [KanRa].



- 2 -

There are well-known sequential linear-time algorithms for determining vertex connectivity

and biconnectivity (see e.g., [Ev]), as well as triconnectivity [HoTa,MiRa2]. The best previously-

published deterministic sequential algorithms for testing graph 4-connectivity have time complex-

ity O(nm), wheren is the number of vertices in the input graph andm is the number of edges.

There are two such algorithms. One is based on a reduction to network flow [EvTa, Ev2, Ga,

GiSo]. The other uses theO(m) algorithm for testing triconnectivity [HoTa, MiRa2] to test four-

connectivity in a triconnected graph inO(mn) time by deleting each vertex of the graph in turn,

and testing triconnectivity in the resulting graph; this algorithm also finds all separating triplets in

the graph, if the graph is not triconnected. For the problem of finding all separatingk-sets, it is

known that the number of separatingk-sets in ak-connected graph isO(n2) for any fixedk [Ka].

We also note that there are some randomized algorithms for testingk-connectivity for k > 3

[BeX,LiLoWi]; the running time of these algorithms isΩ(n5/2).

In this paper we present a new sequential algorithm, based on open ear decomposition [Lo,

MaScVi, MiRa, Wh], that tests vertex four-connectivity and finds all separating triplets in a tri-

connected graph inO(n2) time. This represents an improvement in the running time over all pre-

vious algorithms for the problem, both deterministic and probabilistic. We also present a parallel

implementation of the algorithm, which runs inO(log2 n) time usingO(n2) processors on an

ARBITRARY CRCW PRAM. For comparison the best previous processor count for an NC algo-

rithm for this problem isO(nm), which is obtained by runningn parallel applications of the paral-

lel triconnectivity algorithms in [MiRa2,RaVi] on the input graph with a vertex deleted.

Our algorithm thus gives improved performance bounds for both the sequential and parallel

case. It also gives a completely new method for the four-connectivity problem, which is of inter-

est in itself. We also note that the algorithm is easily modified to work for edge four-connectivity

as well with the same time and processor bounds: we use an ear decomposition instead of an open

ear decomposition. While a sequentialO(n2) time algorithm is already known for edge four-con-

nectivity [Ma], our algorithm gives the best processor count for an NC algorithm for edge four-

connectivity. We do not elaborate further on this.

The rest of this paper is organized as follows. In section 2 we describe the model of parallel

computation we use. Section 3 gives graph-theoretic definitions. Section 4 relates open ear

decomposition to vertex four-connectivity, and gives a high-level description of the four-connec-

tivity algorithm. Finally, in section 5, we show how to implement this algorithm inO(n2) sequen-

tial time, and inO(log2 n) parallel time withn2 processors on an ARBITRARY CRCW PRAM.

2. Model of Parallel Computation

The model of parallel computation that we will be using is theParallel Random Access

Machineor PRAM [KarRa], which consists of several independent sequential processors, each

with its own private memory, communicating with one another through a global memory. In one

step, each processor can read one global or local memory, execute a single RAM operation, and

write into one global or local memory location.
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PRAMs are classified according to restrictions on global memory access. An EREW PRAM

is a PRAM for which simultaneous access to any memory location by different processors is for-

bidden for both reading and writing. In a CREW PRAM simultaneous reads are allowed but no

simultaneous writes. A CRCW PRAM allows simultaneous reads and writes. In this case we have

to specify how to resolve write conflicts. We will use the ARBITRARY model in which any one

processor participating in a concurrent write may succeed, and the algorithm should work cor-

rectly regardless of which one succeeds. Of the three PRAM models we have listed, the EREW

model is the most restrictive, and the ARBITRARY CRCW model is the most powerful. Any

algorithm for the ARBITRARY CRCW PRAM that runs in parallel timeT using P processors

can be simulated by an EREW PRAM (and hence by a CREW PRAM) in parallel timeT log P

using the same number of processors,P (see, e.g., [KarRa]).

Let S be a problem that, on an input of sizen, can be solved on a PRAM by a parallel algo-

rithm in parallel timet(n) with p(n) processors. The quantityw(n) = t(n) ⋅ p(n) represents the

work done by the parallel algorithm. Any PRAM algorithm that performs workw(n) can be con-

verted into a sequential algorithm running in timew(n) by having a single processor simulate

each parallel step of the PRAM inp(n) time units. More generally, a PRAM algorithm that runs

in parallel timet(n) with p(n) processors also represents a PRAM algorithm performingO(w(n))

work for any processor countP < p(n).

Define polylog(n) =
k>0
∪ O(logk n). Let S be a problem for which currently the best sequen-

tial algorithm runs in timeT(n). A PRAM algorithmA for S, running in parallel timet(n) with

p(n) processors isefficientif

a) t(n) = polylog(n); and

b) the workw(n) = p(n) ⋅ t(n) is T(n) ⋅ polylog(n).

An efficient parallel algorithm is one that achieves a high degree of parallelism and comes

to within a polylog factor of optimal speed-up. A major goal in the design of parallel algorithms

is to find efficient algorithms witht(n) as small as possible. The simulations between the various

PRAM models make the notion of an efficient algorithm invariant with respect to the particular

PRAM model used. For more on the PRAM model and PRAM algorithms, see [KarRa].

Our efficient parallel algorithm for four-connectivity works on an ARBITRARY CRCW

PRAM. Some of the subroutines also work on the more restrictive EREW PRAM model within

the same processor and time bounds.

3. Graph-theoretic Definitions

An undirected graph G= (V, E) consists of avertex set Vand anedge set Econtaining

unordered pairs of distinct elements fromV. A path P in G is a sequence of vertices

< v0, . . . , vk > such that (vi−1, vi )∈E, i = 1,. . . , k. The pathP containsthe verticesv0, . . . , vk and

the edges (v0, v1), . . . , (vk−1, vk) and hasendpoints v0, vk, and internal vertices v1, . . . , vk−1.
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Given a path <v0, . . . , vk >, vi is to theleft of v j andv j is to theright of vi if i < j . The pathP is

a simple pathif v0, . . . , vk−1 are distinct andv1, . . . , vk are distinct.P is asimple cycleif it is a

simple path andv0 = vk. A single vertex is a trivial path with no edges.

Let P =< v0, . . . , vk−1 > be a simple path. The pathP(vi , v j ), 0 ≤ i , j ≤ k − 1 is the simple

path connectingvi and v j in P, i.e., the path <vi , vi+1, . . . , v j >, if i ≤ j or the path

< v j , v j+1, . . . , vi >, if j < i . Analogously,P[vi , v j ] consists of the path segments obtained when

the edges and internal vertices ofP(vi , v j ) are deleted fromP.

Let G = (V, E) be an undirected graph and letV′⊆V. A graphG′ = (V′, E′) is a subgraph

of G if E′⊆E ∩{( vi , v j )|vi , v j ∈V′}. The subgraph of G induced by V′ is the graph

G′′ = (V′, E′′) whereE′′ = E ∩ {( vi , v j )|vi , v j ∈V′}.

An undirected graphG = (V, E) is connected if there exists a path between every pair of

vertices inV. For a graphG that is not connected, aconnected componentof G is a maximal

induced subgraph ofG which is connected.

A vertex v∈V is anarticulation point (a.p.)or cutpoint of a connected undirected graph

G = (V, E) if the subgraph induced byV −{ v} is not connected.G is biconnectedif it contains

no articulation point.

Let G = (V, E) be a biconnected undirected graph.G is triconnected if for all pairs of ver-

ticesv1, v2∈V the induced subgraph onV −{ v1, v2} is connected.

Let G = (V, E) be a biconnected graph which is not triconnected. A(nontrivial) separating

pair in G is a pair of verticesu, v in V whose removal decomposesG into two or more connected

components. Atrivial separating pairis a pair of verticesu, v with (u, v) an edge (note that a pair

of vertices can be both a trivial and a nontrivial separating pair). Acandidate pairis a trivial or

nontrivial separating pair; acandidate setis a set of vertices such that each pair in the set is a can-

didate pair.

A triplet (v1, v2, v3) of unordered distinct vertices inV is a separating triplet of a tricon-

nected graph if the subgraph induced byV −{ v1, v2, v3} is not connected.G is four-connectedif it

contains no separating triplet.

An ear decomposition[Lo,Wh] D = [P0, . . . , Pr−1] of an undirected graphG = (V, E) is a

partition ofE into an ordered collection of edge disjoint simple pathsP0, . . . , Pr−1 such thatP0 is

a simple cycle and each endpoint ofPi , i = 1,. . . , r − 1 is contained in somePj , j < i , while none

of its internal vertices are contained in anyPj , j < i . The paths inD are called theears. Dis an

open ear decompositionif none of thePi , i = 1,. . . , r − 1 is a simple cycle. Atrivial ear is an ear

consisting of a single edge. A graph has an open ear decomposition if and only if it is bicon-

nected [Wh].

Let G = (V, E) be a biconnected graph, and letQ be a subgraph ofG. We define the

bridges of Q in G  as follows(see, e.g., [Ev]): LetV′ be the vertices inG − Q, and consider the

partition ofV′ into classes such that two vertices are in the same class if and only if there is a path
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connecting them which does not use any vertex ofQ. Each such classK defines a(nontrivial)

bridge B= (VB, EB) of Q, whereB is the subgraph ofG with VB = K ∪ {vertices ofQ that are

connected by an edge to a vertex inK }, and EB containing the edges ofG incident on a vertex in

K . The vertices ofQ which are connected by an edge to a vertex inK are called theattachments

of B. An edge (u, v) in G − Q, with bothu andv in Q, is atrivial bridge of Q, with attachmentsu

andv. The nontrivial and trivial bridges together form the bridges ofQ in G.

Let G = (V, E) be a biconnected graph, and letQ be a subgraph ofG. We define thebridge

graph of Q, S= (VS, ES) as follows: Let the bridges ofQ in G be Bi , i = 1,. . . , k. Then

VS = V(Q) ∪{ B1, . . . , Bk} and ES = E(Q) ∪ {( v, Bi )| v∈V(Q), 1 ≤ i ≤ k, andv is an attachment

of Bi }.

Let G = (V, E) be a graph and letP be a simple path inG. If each bridge ofP in G contains

exactly one vertex not onP, and there is a bridgeB of P with the endpoints ofP as attachments,

then we callG thestar graph of Pand denote it byG(P). We denote the bridges ofP in G(P) by

stars. The unique vertex of a star that is not contained inP is called itscenter. Note that, in a

connected graphG, the bridge graph of any simple path inG is a star graph.

Let G(P) be a star graph, and letS1, . . . , Sk be some of the stars inG(P). The operation of

coalescingthe starsSi , i = 1,. . . , k removes these stars and replaces them by a new starS whose

attachments are the union of the attachments ofS1, . . . , Sk.

Let G be a biconnected graph with an open ear decompositionD = [P0, . . . , Pr−1]. Let the

bridges of Pi in G that contain non-attachment vertices on ears numbered lower thani be

B1, . . . , Bl . We shall call these theanchor bridges of Pi . The ear graph of Pi , denoted by

Gi (Pi ), is the graph obtained from the bridge graph ofPi by coalescing all stars corresponding to

anchor bridges, and by deleting multiple two-attachment bridges. We will call this coalesced star,

theanchoring starof Gi (Pi ). For any two verticesx, y on Pi , we denote byVi (x, y), the internal

vertices ofPi (x, y); we denote byVi [x, y], the vertices in (Pi [x, y] −{ x, y}) ∪ {vertices in the

anchor bridges ofPi }. For a star graphG(P) with no anchoring star, the setV(x, y) represents

the vertices inP(x, y) − { x, y}, and the setV[x, y] represents the vertices inP[x, y] − { x, y}.

Figure 1 illustrates some of our definitions relating to bridges.

Tw o starsSj andSk in a star graphG(P), whereP is a simple path,interlace(see, e.g., [Ev,

p. 149]) if one of the following two hold:

1) there exist four distinct verticesa, b, c, d in increasing order inP such thata andc belong to

Sj (Sk) andb andd belong toSk (Sj ); or

2) there are three distinct vertices onP that belong to bothSj andSk.

Given a star graphG(P), thecoalesced graph G′ of G is the graph obtained fromG by coa-

lescing all pairs of stars that interlace.
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a)G with open ear decompositionD = [P0,P1,P2, P3, P4];

P0 =< 1, 2, 3, 4, 5, 1  >,P1 =< 3, 7, 6, 5  >,P2 = <  6, 4  >,P3 =< 7, 8, 6  >,P4 =< 3, 5  >.

b) Bridges ofP1.

c) Bridge graphG1 of P1.

d) Ear Graph ofP1

figure 1

Illustrating the definitions
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4. Open Ear Decomposition and Four-connectivity

Lemma 1Let G = (V, E) be a triconnected undirected graph for whicht = (x, y, z) forms a sepa-

rating triplet. LetD = [P0, . . . , Pr−1] be an open ear decomposition forG and letGi (Pi ) be the ear

graph of earPi . Then there exists an earPi in D that contains two of the three vertices int, sayx

and y, such that bothVi (x, y) andVi [x, y] contain a vertex other thanz, and every path from a

vertex inVi (x, y) to a vertex inVi [x, y] in Gi passes throughx, y or z. Further earPi uniquely

determines a connected componentC in the subgraph induced byV − { x, y, z}, in the sense that

no other earPj in G that containsx, y and a vertex in C, has the property thatVj (x, y) − { x, y, z}

is nonempty, and every path between a vertex inVj (x, y) and a vertex inVj [x, y] in Gj contains

x, y, or z.

Proof Since t = (x, y, z) forms a separating triplet, the subgraph ofG induced byV −{ x, y, z}

contains at least two connected components. LetC1 andC2 be two such connected components.

Case 1The first earP0 contains no vertex inC2 (see figure 2):

figure 2

Case 1 in the proof of Lemma 1

Consider the lowest-numbered ear,Pi , that contains a vertexv in C2. Since its endpoints are

distinct and must be contained in lower-numbered ears,Pi must enterC2 through one of the three

vertices int, sayx, and must leaveC2 through one of the remaining two vertices int, sayy. Thus

Pi must contain two of the three vertices int, andVi (x, y) contains at least one vertex other than

z. Further, all vertices inVi (x, y) lie in C2, and none of the vertices inVi [x, y] lie in C2. Thus the

vertices inVi (x, y) are separated from the vertices inVi [x, y] by t.

To prove the second claim of the lemma for this case, letC2 = C, and supposePj is an ear

that containsx and y and also a vertex, sayu, in C. Then j > i , sincePi is the lowest-numbered
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ear to contain a vertex inC. SincePi containsx andy, x andy must be the endpoints ofPj , and

all other vertices on it lie inC ∪ { z}. Further, sincei < j and vertexv is contained inPi , the ver-

tices in the bridge ofPj containingv (call it B′) are inVj [x, y], and sinceC is a connected com-

ponent in the subgraph induced byV −{ x, y, z}, there is a path fromB′ to the vertexu in Vj (x, y)

that avoidsx, y, andz. This establishes the second claim of the lemma for this case.

Case 2 P0 contains a vertex inC2:

If P0 contains no vertex inC1, then case 1 applies toC1. OtherwiseP0 contains at least one

vertex inC1 and one vertex inC2. But then, sinceP0 is a simple cycle, it must contain two of the

three vertices int, sayx andy, such that (by the argument of case 1), every path from a vertex in

V0(x, y) to a vertex inV0[x, y] containsx, y or z, and P0 is the unique ear with this property,

which has a vertex inC2. Thus, by takingC2 to beC, the lemma is established.[]

We will say that a separating triplett = (x, y, z) separatesear Pi if Pi contains two of the

vertices int, sayx andy, with Vi (x, y) not a subset of {z}, and the vertices inVi (x, y) are discon-

nected from the vertices inVi [x, y] in the subgraph ofG induced byV − { x, y, z}. We will

denote this by writingt as i([x, y], z) to indicate thatPi containsx and y, andVi (x, y), which

contains a vertex other thanz, is separated fromVi [x, y] by { x, y, z}. By Lemma 1, every separat-

ing triplet in G separates some ear, and hence can be written in the above form. We will write

i([x, y], z) as simply ([x, y], z), if the ear number is obvious from the context.

Analogously, for a star graphG(P), a triplet of verticest = ([x, y], z) in G separates Pif P

containsx and y, V(x, y) −{ z} and V[x, y] −{ z} are non-empty, and the vertices inV(x, y) are

separated from the vertices inV[x, y] when x, y andz are deleted fromG(P).

Lemma 2 Let G = (V, E) be a triconnected graph with an open ear decomposition

D = [P0, . . . , Pr−1]. Let i([x, y], z) separatePi . If Pi does not containz then

i) z is an articulation point in one of the bridges ofPi , and

ii) if Pj is the largest-numbered ear that containsz, then j > i .

Proof Let B be the bridge ofPi containingz. Then B has an attachment in bothVi (x, y) and

Pi [x, y] −{ x, y}, since otherwise,x, y would be a separating pair. Leta be an attachment ofB in

Vi (x, y) and letb be an attachment ofB in Pi [x, y] −{ x, y}. Suppose there is a pathp betweena

and b in B that avoidsz. Then, if x, y, and z are removed fromG, the vertices ofVi (x, y) will

remain connected to the vertices ofVi [x, y] by the pathp. But this is not possible since ([x, y], z)

separatesPi . Hence, every path betweena andb in B must pass throughz, i.e., z is a cutpoint of

B.

Let C be the connected component containingVi (x, y) in G −{ x, y, z}. To prove the second

claim of the lemma, we note that, by Lemma 1,Pi is the lowest numbered ear containing a vertex

in C. Hence every edge (w, z) with w in C must belong to an ear numbered greater thani . By the

first part of this proof, we know that there is at least one such edge (w, z). This proves the second

part of the lemma.[]
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Using Lemma 2, we can classify triplets separating earPi into two types: Type 1 separating

triplets are those for whichPi contains all three vertices; type 2 separating triplets are those for

which Pi contains two vertices, and the third is an articulation point in one of the bridges ofPi .

Type 1 separating triplets can be further classified into three types (see figure 3): Type 1a, in

which z is to the left ofx andy on Pi , type 1b, in whichz is to the right ofx andy, and type 1c,

in which z is betweenx andy on Pi .

a) Type 1a triplet

b) Type 1b triplet

c) Type 1c triplet

figure 3

Classification of type 1 separating triplets
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Let ([x, y], z) be a type 2 triplet separatingPi . By Lemma 2,z is a cutpoint in a bridge,B,

of Pi , and z lies on an earPj , j > i . We shall refer to such cutpoints ashigh cutpoints. Let

B1, . . . , Bk be the connected components ofB - { z}, and letC be the set of remaining bridges of

Pi . ThenC
k

i=1
∪{ Bi } are the bridges ofPi in G - { z}. Let Ji (z) be the ear graph ofPi in G - { z}.

Lemma 3Let G be a triconnected graph, and letGi (Pi ) be the ear graph ofPi . Then,

a) ([x, y], z) is a type 1 triplet separatingPi in G if and only if it is a type 1 triplet separatingPi in

Gi .

b) ([x, y], z) is a type 2 triplet separatingPi in G if and only if (x, y) is a pair separatingPi in

Ji (z).

Proof We note that, sinceG is triconnected, every anchor bridge ofPi in G has attachments to the

two endpoints ofPi , and to at least one internal vertex ofPi ; we shall call thisFact 1. We prove

parts a) and b) of the lemma separately.

a) First we note that if ([x, y], z) is a type 1 triplet separatingPi in the ear graphGi then it cer-

tainly separatesPi in G.

For the reverse, two cases arise:

i) If x and y are the endpoints ofPi , then by Fact 1, ([x, y], z) is a  type 1 triplet separatingPi if

and only if every anchor bridge ofPi has exactly one internal attachment onPi , and that attach-

ment is atz. If this holds inG then it continues to hold in the ear graphGi , since by coalescing

such anchor bridges, we do not create any new attachments.

ii) If either x or y is not an endpoint ofPi , then no anchor bridge ofPi can have an attachment in

Vi (x, y) −{ z}. Once again, this condition will continue to hold if all anchor bridges are coalesced,

and hence will be true inGi if it was true inG.

b) As in case a), if (x, y) is a pair separatingPi in Ji (z) then clearly ([x, y], z) is a type 2 triplet

separatingPi in G. For the reverse, once again, two cases arise.

i) z is a high cutpoint in an anchor bridgeB. Let B decompose into bridges

B1, . . . , Br ,C1, . . . ,Cs when z is removed, where theBj are the anchor bridges ofPi in G −{ z}

and theCk are nonanchor bridges. By Lemma 1, eachBj has all of its attachments inPi [x, y] and

eachCk has all of its attachments inPi (x, y) or all of its attachments inPi [x, y]. Also, since

([x, y], z) is a triplet separatingPi in G, any bridge ofPi other thanB will have either all of its

attachments inPi (x, y) or all of its attachments inPi [x, y]. Hencex, y will separatePi in Ji (z).

If one of x or y is not an endpoint ofPi , then every anchor bridgeB′ other thanB has no

attachment inVi (x, y). This continues to hold inGi as well.

ii) z is a cutpoint in a non-anchor bridge: In this case no anchor bridge ofG can have an attach-

ment inVi (x, y), and the result follows by an argument as in case i.[]
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Finally, we make the following observation on the size of all of the ear graphs inG.

Observation Let G be ann-node,m-edge triconnected graph with an open ear decompositionD.

Let Hi (Qi ), i = 1,. . . , s be the bridge graphs of the nontrivial ears inD, and for eachi , let earQi

haveni nodes, and let the bridges ofQi in Hi havemi edges. Then

i)
s

i=1
Σ ni = O(n);

ii)
s

i=1
Σ mi = O(n2).

Proof

i) The number of nontrivial ears inG, excludingP0, is no more thann − 3, and each node inG is

an internal node of exactly one nontrivial ear. Hence, charging the end vertices of each nontrivial

earQi to its indexi , we obtain
s

i=1
Σ ni ≤ n + 2(n − 3), which isO(n).

ii) Each edge inG appears at most once as an internal attachment in theQi and at mostn times as

an end attachment in theQi , i = 1,. . . , s. Hence,
s

i=1
Σ mi ≤ m + 2(n − 3)n, which isO(n2).[]

Based on the characterization in Lemmas 1, 2 and 3, we obtain the following high-level

algorithm to find all separating triplets in a triconnected graph.

Four Connectivity Algorithm: Finding All Separating Triplets in a Triconnected Graph

G = (V, E)

1) Find an open ear decompositionD = [P0, . . . , Pr−1] for G.

2) For i = r − 1,r − 2,. . . , 0 do

if Pi is a nontrivial earthen

A) Construct the ear graphGi (Pi ).

B) UseGi (Pi ) to find all type 1 triplets separatingPi .

C) In the bridges ofPi , find the cutpoints that lie on ears numbered higher thani , and use

them to find all type 2 triplets separatingPi .

Let |V| = n and |E| = m. Step 1 has a linear-time sequential algorithm and anO(log n) time

parallel algorithm withO(m) processors on a CRCW PRAM [MaScVi, MiRa]. Step 2A has a

linear-time sequential algorithm and anO(log n)-time parallel algorithm withO(m log n) proces-

sors on an ARBITRARY CRCW PRAM [MiRa2, RaVi].
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Let ni be the number of vertices contained inPi , andmi be the number of edges incident on

vertices contained inPi . In section 5.1, we present algorithms to find type 1 triplets separating a

nontrivial earPi in O(n2
i + mi ) sequential time, and inO(log ni ) parallel time withn2

i processors

on an EREW PRAM. In section 5.2, we show how to find all high cutpoints in the bridges of

each ear, org anized in a forest of block-trees, in
i
ΣO(n + mi ) time plus some additional time for

processing trivial ears, which isO(m) over the execution of the entire algorithm. This parallelizes

into anO(log2 n) time algorithm to find cutpoints in bridges of all nontrivial ears on an ARBI-

TRARY CRCW PRAM withn2 processors. We use this to develop an algorithm to find all type 2

triplets in
i
ΣO(n ⋅ ni + mi )) sequential time, and inO(log2 n) parallel time using

i
ΣO(n ⋅ ni + mi )

processors on an ARBITRARY CRCW PRAM. Thus by the Observation we obtain anO(n2)

time sequential implementation of Algorithm 1, as well as anO(log2 n) time parallel implementa-

tion on an ARBITRARY CRCW PRAM withn2 processors.

5. Finding All Triplets that Separate an Ear

5.1. Finding Type 1 Separating Triplets

In this section we give algorithms to find type 1a, 1b and 1c separating triplets on an earPi .

Recall that ([x, y], z) is a type 1 triplet separatingPi , if x, y and z lie on Pi , and the vertices in

Vi (x, y) are separated from the vertices inVi [x, y] when x, y andz are removed fromPi .

As shown in Lemma 3, ifx and y are the endpoints of earPi then ([x, y], z) form a type 1

triplet separatingPi if and only if the anchoring star inGi (Pi ) has exactly one internal attachment

on Pi , and that attachment isz. This is a simple condition that can be checked in constant time

with mi processors. For finding any other type 1 triplet separatingPi , it suffices to view the ear

graphGi (Pi ) as the pathPi together with a collection of stars, and to identify all type 1 triplets

separatingPi in Gi . For this we can work with a star graphG(P) without any reference to the

fact that it is the ear graph of an ear.

Let G(P) be a star graph withk vertices onP, l stars, and a total ofp edges on the stars. We

present anO(k2 + p) time sequential algorithm and anO(log k) time parallel algorithm with

k2 + p processors on an EREW PRAM to find all type 1 triplets separatingP in G(P). Assume

that the vertices onP are numbered in order as 1,. . . , k from left to right.

For a closed interval [x, y] on P, let

L[x, y] be the leftmost attachment among all stars that have an attachment in [x, y],

S[x, y] be the second leftmost attachment among all stars that have an attachment in [x,y], and

R[x, y] and M [x, y] be the rightmost and second rightmost attachments, respectively, of stars that

have an attachment in [x, y].

The following lemma is straightforward.
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Lemma 4Let x, y, z be three vertices onP. Then

a) ([x, y], z) is a type 1a triplet separatingP if and only if L[x + 1, y − 1] = z, S[x + 1, y − 1] ≥ x

andR[x + 1, y − 1] ≤ y; and

b) ([x, y], z) is a type 1b triplet separatingP if and only if R[x + 1, y − 1] = z, M [x + 1, y − 1] ≤ y

andL[x + 1, y − 1] ≥ x.

We computeL[x, y], S[x, y], R[x, y] and M [x, y] for every interval [x, y] with x ≤ y by a

doubling technique that first computes these values incrementally for intervals whose size is a

power of 2, and then computes the values for all remaining intervals. This algorithm runs in

O(k2 + p) time sequentially, and inO(log k) time on an EREW PRAM withk2 + p processors.

Algorithm 1: Finding Type 1A Triplets

1.1) Initialize: For i = 1,. . . , k computeL[i , i ], S[i , i ], R[i , i ], and M [i , i ]. These values can be

computed inO(k + p) sequential time andO(log k) parallel time on an EREW PRAM with

k + p processors by using bucket sort to order the star edges in increasing order of attach-

ment, with ties broken in decreasing order of the leftmost (rightmost) attachment of the star

the edge belongs to forL[i , i ] andS[i , i ] (for R[i , i ] and M [i , i ]).

1.2) For j = 1,. . . , log k compute, for eachi , L[i , i + 2 j − 1] from L[i , i + 2 j−1 − 1] and

L[i + 2 j−1, i + 2 j − 1]. Similarly computeS[i , i + 2 j ], R[i , i + 2 j ] and M [i , i + 2 j ]. Each of

these values can be computed in constant time in parallel, and hence sequentially as well.

Thus, this total step takesO(k log k) time sequentially andO(log k) parallel time on an

EREW PRAM withk processors.

1.3) For each pair [x, y], x < y, let i xy be the integer satisfyingx + 2i xy ≤ y < x + 2i xy+1. Compute

L[x, y] from the pre-computed valuesL[x, x + 2i xy − 1] and L[y − 2i xy + 1, y] in constant

time. Similarly computeS[x, y], R[x, y] and M [x, y]. As in step 2, each of these values can

be computed in constant time, and hence this step requiresO(k2) sequential time; it is

straightforward to implement this inO(log k) parallel time on an EREW PRAM withk2

processors.

An analogous procedure identifies type 1b separating triplets.

For type 1c separating triplets, letL[x, y] and R[x, y] be as before. Letzl be a vertex in

[x, y] which is an attachment of a star with an attachment atL[x, y]; analogously letzr be a ver-

tex in [x, y] which is an attachment of a star with an attachment atR[x, y]. Let S′[x, y] be the

leftmost attachment of stars with an attachment in [x, y] - { zl } and let M ′[x, y] be the rightmost

attachment among stars with an attachment in [x, y] - { zr }. Then the following lemma is again

straightforward.

Lemma 5 The triplet ([x, y], z) is a type 1c triplet separatingP if and only if

S′[x + 1, y − 1] ≥ x, M ′[x + 1, y − 1] ≤ y and one of the following three conditions hold:
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a) zl = zr = z; or

b) L[x + 1, y − 1] ≥ x andz = zr ; or

c) R[x + 1, y − 1] ≤ y andz = zl .

Using Lemma 5 we can compute the type 1c triplets separatingP in a manner analogous to

the method used for finding type 1a and 1b triplets separatingP.

5.2. Finding Type 2 Triplets Separating an Ear

There are many implementation details in this algorithm. We giv e a high-level description

first, and then elaborate on each of the steps. We use the result in Lemma 2 that if ([x, y], z) is a

type 2 triplet separatingPi , thenz is a high cutpoint, i.e.,z is a cutpoint in one of the bridges of

Pi , andz belongs to a higher-numbered ear thanPi . Observe that the number of blocks (bicon-

nected components) and the number of articulation points in the bridges of an earPi is no more

thann. As a matter of notation, we will denote the star(s) in the ear graphGi (Pi ) corresponding

to a bridge or a collection of bridgesB of Pi by s(B), and similarly, the bridge(s) ofPi corre-

sponding to a star or a collection of starsS of Gi by b(S). We now present the high-level algo-

rithm for finding type 2 triplets separatingPi . For convenience we assume that the vertices ofG

are numbered so that any vertex contained inPi has a smaller number than a vertex in the interior

of anyPj , j > i .

Algorithm 2: Finding Type 2 Triplets

2.1) For each stars of Gi , we construct a listL(s) of those pairs of verticesx, y on Pi for which

s is the only star that has an attachment inVi (x, y) andVi [x, y]. Note that there can be no

more thanni
2 entries in the lists for all of the stars ofGi , since each pair can appear on at

most one list. The list for each star is in lexicographically increasing order on (x, y).

2.2) For each earPi , we determine the high cutpoints in each of its bridges.

2.3) For each bridgeB of Pi , for each high cutpointa in B, we find all pairs of vertices separat-

ing Pi in Pi ∪(B − { a}) (note that we donot include the remaining bridges ofPi in this

graph), using the triconnectivity algorithm in [MiRa2,RaVi]. These separating pairs can be

specified as candidate sets (see section 3). We maintain these candidate sets for all cut-

points for a given bridgeB in a properly sorted manner; we call this thecandidate represen-

tation for B.

2.4) We compare the entries inL(s) for eachs with pairs of vertices in a candidate set in the can-

didate representation forb(s), and each match gives a type 2 separating triplet forPi .

We need the following observation.

Observation Let z be a high cutpoint of a bridgeB of Pi , andx, y, a pair of vertices onPi . Then

([x, y], z) is a type 2 triplet separatingPi if and only if
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a) (x, y) is a pair separatingPi in the graphPi ∪(B −{ z}), and

b) s(B) is the only star ofGi that has an attachment in bothVi (x, y) and inVi [x, y].

Proof If ([ x, y], z) is a type 2 triplet separatingPi , then by part b of Lemma 3 we know that (x, y)

separatesPi in Ji (z). Hence (x, y) is certainly a pair separatingPi in Pi ∪(B −{ z}). Further if

any other bridgeB′ of Pi has an attachment in bothVi (x, y) andVi [x, y], then removal ofx, y and

z leavesVi (x, y) connected withVi [x, y], which is not possible since ([x, y], z) separatesPi by

assumption. Hence part b) of the observation must hold as well.

For the reverse, assume that parts a) and b) hold. Then it follows thatx, y is a pair separat-

ing Pi in G - { z}, since by b), no bridge other thanB can connectVi (x, y) with Vi [x, y] in G -

{ x, y, z}. Hence ([x, y], z) must be a type 2 triplet separatingPi .[]

All pairs of vertices onPi satisfying property b) appear on the listL(s(B)), which we con-

struct in step 1. The pairs satisfying property a) are those that lie in a common candidate set in the

candidate representation forB, which we construct in step 2. In step 3 we scan these two sets of

pairs of vertices, and identify matches between the two sets; each such match gives a type 2 triplet

separatingPi , and every type 2 triplet separatingPi appears as such a match. This establishes the

correctness of the above algorithm.

We now explain how to implement steps 2.1 through 2.4 to obtain the stated time and pro-

cessor bounds.

STEP 2.1

The algorithm for step 2.1 is similar to the algorithms for finding type 1 separating triplets.

By Lemma 3, ifx and y are the endpoints of earPi , then the anchoring star ofGi is the unique

star containing vertices in bothVi (x, y) andVi [x, y]. For any other pairx, y we can work with a

star graphG(P) without any reference to the fact that it is the ear graph of an ear.

As in section 5.1, given a star graphG(P) we compute certain values for each interval of

vertices onP. The values computed areL[x, y], S′′[x, y], R[x, y] and M ′′[x, y], whereL[x, y]

and R[x, y] are, as before, the leftmost and rightmost attachments, respectively, among all stars

that have an attachment in the closed interval [x, y]. Let sl be a star with attachments atL[x, y]

and in [x, y], and similarly, letsr be a star with attachments atR[x, y] and in [x, y]. S′′[x, y] is

the leftmost attachment among all stars with an attachment in [x, y] except starsl ; similarly,

M ′′[x, y] is the rightmost attachment among all stars with an attachment in [x, y] except sr .

From these definitions, the following lemma is straightforward.

Lemma 6Stars is the only star that has an attachment inV(x, y) andV[x, y] if and only if one of

the following three hold:

a) S′′[x + 1, y − 1] ≥ x, R[x + 1, y − 1] ≤ y ands = sl ; or

b) L[x + 1, y − 1] ≥ x, M ′′[x + 1, y − 1] ≤ y ands = sr ; or
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c) S′′[x + 1, y − 1] ≥ x, M ′′[x + 1, y − 1] ≤ y ands = sl = sr .

Using Lemma 6 and the method of section 5.1, we can form the listsL(s) for all stars of all

nontrivial ears inO(n2) sequential time and inO(log n) parallel time on an EREW PRAM withn2

processors.

STEP 2.2

Sequential Algorithm

Let Hi =
i

j=0
∪ Pj . Let A1, . . . , Ak be the bridges ofHi . Let Bj be Aj with its attachment

edges and vertices deleted. Asplit of Pi is an articulation point in one of theBj . An ex-nodeof Pi

is a vertex in one of theBj adjacent to an attachment onHi . An adj-nodeof Pi is an ex-node,

which is adjacent to an vertex onPi . For example, in figure 4,H1 has four nontrivial bridges and

one trivial bridge; verticesa, b andc are some of the split nodes ofP1; verticesa, d ande are

some of the ex-nodes ofP1 of which a andd are adj-nodes as well. We observe that by Lemma

2, if ([x, y], z) is a type 2 triplet separatingPi then z is a split or ex-node ofPi or z must be an

attachment of one of theAj on Hi−1.

We org anize the splits and ex-nodes ofPi in a forest ofsplit-treesanalogous to the tree of

biconnected components. There is one split-tree for eachBj , whose vertices are the splits, ex-

nodes and blocks ofBj . There is an edge between a split and each block it lies in, as well as an

edge between each ex-node (that is not also a split) and the unique block in which it lies. Foru

an ex-node, letA(u, j ) be the j th smallest vertex adjacent tou and belonging toHi−1, if it exists,

null otherwise, for j = 1, 2, 3, 4. By our numbering scheme for vertices,A(u, j ), j = 1,. . . , 4

(when defined) represent four distinct vertices on lowest numbered ears adjacent tou. For exam-

ple, in figure 4 vertexk has A(k, 1) = 1, A(k, 2) = 5, A(k, 3) = φ , A(k, 4) = φ . The number of

entries inA(u, j ), over all ex-nodesu, is O(n).

Let Fi−1 be Hi−1 with the two endpoints ofPi deleted. (In figure 4F0 is the single vertex

0.) Let A(u) be the set of two smallest non-null vertices inFi−1 ∩
{ A(u, 1), A(u, 2), A(u, 3), A(u, 4)}. By construction,A(u) contains the two smallest numbered

vertices inFi−1 adjacent tou (when they exist), and can be obtained in constant time per ex-node,

since we have theA(u, j ). Note that if we didnot have theA(u, j ), finding theA(u) would take

time proportional to the number of edges incident on the ex-nodes and that could be as large as

θ (m).

From the forest of split-trees we derive the forest of trees of biconnected components (or

block-trees) of the bridges ofPi by first constructing theaugmented graphas follows: We aug-

ment the vertex set of the forest of split-trees by adding in vertexv to representHi−1, -- a poten-

tial ‘high-block’ (i.e., a connected component that contains no high cutpoints), and we add in the

set of verticesU =
ex−nodesu

∪ A(u), -- potential high cutpoints. We put in an edge betweenv and

each vertex inU as well as edges betweenu and vertices inA(u), for each ex-nodeu.
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a) GraphG with open ear decomposition indicated by ear number along edges.

b) Some splits, ex-nodes and adj-nodes forP1 in G.

figure 4

Illustrating step 2.2 for finding type 2 separating triplets

Observe that a vertexw in Hi−1 is a high cutpoint in a bridge ofPi if and only if, for some

split-treeT of Pi , w is the only vertex inFi−1 that is adjacent to a vertex inT. Since by construc-

tion A(u) includes the two smallest vertices adjacent tou, if they lie in Fi−1, it follows thatw is a

high cutpoint in a bridge ofPi if and only if it is a cutpoint in the augmented graph. Similarly, an

ex-nodeu in a split-treeT is a cutpoint separating vertices inT from the rest of the bridge ofPi if

and only ifu has an attachment inFi−1 and no other ex-node inT has an attachment inFi−1. This

again holds if and only ifu is a cutpoint in the augmented graph. Hence the blocks and articula-

tion points in this augmented graph are precisely the blocks and articulation points in the bridges
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of Pi . We find these inO(n) sequential time, using a linear-time algorithm for biconnectivity [Ta].

At this point we have the forest of block-trees for the bridges ofPi . In additionalO(mi ) time, we

can obtain all of the adj-nodes by scanning all edges incident on the internal vertices ofPi .

All that remains is to obtain incrementally the split-trees forPl and theA(u, j ) for the new

ex-nodes ofPl in an efficient way, wherePl is the next nontrivial ear. To update information for

Pl , we first process the forest of split-trees forPi to eliminate those splits and blocks that disap-

pear and the new ones that appear whenPi , Pi−1, . . . , Pl+1 are added. This is done in

O(n + mi + l − i) time by finding blocks, cutpoints and ex-nodes in the graph
j

∪ Bj

i

k=l+1
∪ Pk ∪

{attachment edges of eachBj in the interior ofPi }. This gives us the split-trees forPl . The new

exnodes forPl are the nodes in the interior ofPi adjacent to a vertex inHl ; in particular, this

includes the nodes in the interior ofPi adjacent to its endpoints. We compute theA(u, j ) values

for these new exnodes. This computation takesO(m) time over the entire execution of the algo-

rithm. Now we are ready to find type 2 triplets separatingPl .

Parallel Implementation of Step 2.2:

This step is similar to the algorithms in [MiRa2, RaVi] that find the ear graphs of all non-

trivial ears. The only difference is that we now find the forest of block-trees instead of connected

components. For this we can use any efficient parallel block finding algorithm [MaScVi, MiRa,

TaVi]. By noting that the total size of the graphs present at each stage of the algorithm isO(n2),

we obtain anO(log2 n) time parallel algorithm on an ARBITRARY CRCW PRAM withn2 pro-

cessors.

STEP 2.3

Sequential Algorithm

We number the vertices in the forest of block-trees in post-order with respect to a depth first

search. We label each attachment edge toPi in the bridges ofPi by the number of the block it

belongs to (since each such edge is incident on an adj-node, this is done in constant time per

edge). We remove any multiple occurrences of edges with the same block number and attach-

ment. Since the number of blocks and the number of articulation points isO(n) (over all bridges

of Pi ) this step can be done inO(n + mi ) time for all of the bridges.

We now sort (using bucket sort) the labeled attachment edges in increasing order of the

attachments, with edges having the same attachment sorted in increasing order of their label, and

we leave the sorted edges in stacks corresponding to their attachment number. Now, with another

post-order traversal of the block-trees, we can determine, for each cutpoints of each bridgeB of

earPi , the stars formed fromB whens is deleted fromB, in O(n + mi ) time.

At this point, for each high cutpointx of bridge B, we hav es(B −{ x}), the collection of

stars formed fromB when x is removed fromB. Each of these stars has no more thanni attach-

ments. Using the algorithm in [MiRa2] we can find the separating pairs onPi corresponding to
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these stars inO(k ⋅ ni ) time, wherek is the number of stars. These are organized as the vertices

on the faces of the planar embedding of the coalesced graph ofPi ∪ s(B −{ x}) [MiRa2]; we call

this thecandidate collectionfor s(B −{ x}). This has anO(k ⋅ ni ) size representation. We find

such a collection for each cutpoint. This procedure takesO(n ⋅ ni ) time over all cutpoints of all

bridges ofPi , since the number of stars formed in all of these graphs is no more than 2n.

In order to execute step 2.4 efficiently, we store the candidate collections in a special way.

Let us confine our attention to a specific bridgeB (note that the candidate collections are obtained

bridge by bridge). LetX andY be a pair of candidate sets in the set of candidate collections for

B. Then we note that the spans ofX andY are either disjoint or one contains the other (thespan

of a candidate set is the interval [a, b], wherea is the lowest numbered andb is the highest num-

bered vertex in the candidate set). We represent these candidate sets in a special form called the

candidate representation of Bas follows: We maintain each candidate set as a list, acandidate

list, with vertices ordered in increasing order of their number. We hav eni stacks, one for each

vertex onPi , and in the stack for vertexv, we place pointers to all candidate lists that containv.

These pointers are arranged in increasing order of the lowest-numbered vertex in the candidate

list, with ties broken in decreasing order of the highest-numbered vertex in the candidate list (the

topmost pointer points to the candidate list with the lowest numbered vertex). For each candidate

list we maintain a pointer to the current lowest-numbered vertex in the candidate list; initially the

pointer for each candidate list points to its lowest-numbered vertex.

Parallel Implementation of Step 2.3:

This step can be implemented on earPi in O(log2 n) time with O(n ⋅ ni ) processors using

efficient parallel algorithms for computing post-order numbering on trees [TaVi], for sorting [Co]

and for finding separating pairs in a star graph [MiRa2].

STEP 2.4

Sequential Algorithm:

We scan the entries inL(s(B)) in order. If the current entry is (x, y), we look at the topmost

candidate listR in the stack for vertexy in the candidate representation for bridgeB and check its

current lowest-numbered vertexz. If z > x then we proceed to the next entry inL(s(B)). If z = x

then we have found a match, and hence a type 2 triplet separatingPi . If z < x, we move the

pointer forR along the list until it points to a vertexu ≥ x. If u = x, then we have located a type 2

triplet and we leave the pointer atu. If u = y then we pop the pointer toR off the stack and pro-

ceed to check the next candidate list in the stack fory; if y > u > x we leave the pointer atu and

proceed to the next entry inL(s(B)). It is easy to see that this scan locates all type 2 triplets

([x, y], z) with z in B, and the time it takes is proportional to the sizes ofL(s(B)) and the candi-

date lists forB. Hence, over all bridges ofPi this procedure takes timeO(n2
i + n ⋅ ni ) = O(n ⋅ ni ).

Parallel Implementation of Step 2.4:
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To implement step 2.4 in parallel we allow ourselvesO(log n) time per entry (x, y) on

L(s(B)) to determine ifx lies in the same candidate list asy for some entry in stacky; this is

accomplished by binary search on the entries in stacky followed by a binary search on the ver-

tices in the relevant candidate listR.
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