
In SIAM J. Computing, 1993, pp. 587-616.

FINDING TRICONNECTED COMPONENTS BY LOCAL
REPLACEMENT1

DONALD FUSSELL 3;5 , VIJAYA RAMACHANDRAN2;3
AND RAMAKRISHNA

THURIMELLA4;5

Abstract. We present a parallel algorithm for �nding triconnected components on a CRCW

PRAM. The time complexity of our algorithm is O(logn) and the processor-time product is O((m +

n) log logn) where n is the number of vertices, and m is the number of edges of the input graph. Our

algorithm, like other parallel algorithms for this problem, is based on open ear decomposition but it

employs a new technique, local replacement, to improve the complexity. Only the need to use the

subroutines for connected components and integer sorting, for which no optimal parallel algorithm

that runs in O(log n) time is known, prevents our algorithm from achieving optimality.

1. Introduction. A connected graph G = (V;E) is k-vertex connected if it has
at least (k+1) vertices and removal of any (k� 1) vertices leaves the graph connected.
Designing e�cient algorithms for determining the connectivity of graphs has been a
subject of great interest in the last two decades. Applications of graph connectivity
to problems in computer science are numerous. Network reliability is one of them:
algorithms for edge and vertex connectivity can be used to check the robustness of
a network against link and node failures respectively. In spite of all the attention
this subject has received, O(m + n)-time sequential algorithms for testing k-edge and
k-vertex connectivity of an n node m vertex graph are known only for k < 3 [5],[12].
Recently, Gabow has devised a very nice algorithm for edge connectivity. His algorithm,
unlike previous algorithms for connectivity, does not appeal to Menger's theorem. It
runs in O(km log(n2=m)) time [9]. The algorithms for vertex connectivity for 3 < k �p
n currently require O(k2n2) time [14], [2], [20].
The subject of this paper is the parallel complexity of 3-vertex connectivity. The

importance of 3-vertex connectivity stems from the fact that if a planar graph is 3-
vertex connected (triconnected), then it has a unique embedding on a sphere. Hence
an e�cient algorithm that divides a graph into triconnected components is sometimes
useful as a subroutine in problems like planarity testing and planar graph isomorphism.

We present in this paper an algorithm, based on open ear decomposition, for di-
viding a biconnected graph into triconnected components. The model of computation

1 A preliminary version of this paper was presented at the 16th International Colloquium on Au-

tomata, Languages, and Programming.
2 This work was supported in part by Joint Services Electronics Program under Contract N00014-

85-C-0149 at the Coordinated Science Laboratory, University of Illinois, Urbana, IL 61801, and by

NSF Contract CCR 89-10707.
3 Department of Computer Sciences, University of Texas at Austin, Austin, TX 78712.
4 This work was done while this author was with the University of Texas at Austin. Presently with

Department of Mathematics and Computer Science, University of Denver, Denver, CO 80208.
5 Supported in part by the ONR under Contracts N00014-86-K-0763 and N00014-86-K-0597.

1

used in this paper is a concurrent-read-concurrent-write PRAM where write con
icts
are resolved arbitrarily (the ARBITRARY CRCW PRAM model). See [15] for a dis-
cussion on the PRAM model. Our algorithm runs in O(logn) time performing at most
O((m + n) log logn) work where m and n are the number of edges and the number of
vertices of the input graph respectively.

The �rst optimal sequential triconnected component algorithm (based on depth-
�rst search (DFS)) was given by Hopcroft and Tarjan in 1972 [11]. Several parallel
algorithms (e.g. [13], [16]) have been developed since then for the triconnected com-
ponent problem using techniques other than DFS, since the question of �nding a DFS
spanning tree e�ciently in parallel remains one of the major open problems in the area
of parallel algorithm design. The algorithms in [13], [16] use parallel matrix multiplica-
tion as a subroutine, hence their processor complexity is far from optimal. Signi�cant
progress has been made in recent years: �rst, Miller and Ramachandran [18] gave an
O(log2 n) parallel algorithm; later, Ramachandran and Vishkin [22] gave an algorithm
with O(logn) parallel time for the more restricted problem of �nding separating pairs.
A drawback with both these algorithms is that the work performed by them in the
worst-case is O(log2 n) factor o� the optimal. Independent of [18] and [22], Fussell and
Thurimella [7] came up with a parallel algorithm for �nding separating pairs whose
time complexity is O(logn) while the work performed is only O(logn) factor o� the op-
timal; detecting separating pairs forms the central part of any triconnected component
algorithm.

The chief method employed by [18] and [22] can be broadly classi�ed as divide-and-
conquer. Additional complexity improvements are unlikely using this approach due to
the \end-node sharing" problem: the di�culty arising from two or more ears sharing
an end vertex. A novel technique known as local replacement was introduced in [7] as a
method for obtaining e�cient parallel reductions.

Using the local replacement technique and building on the algorithm in [7], we ob-
tain an algorithm for triconnected components. A new linear-time sequential algorithm,
an alternative to the algorithm of Hopcroft and Tarjan, for �nding triconnected compo-
nents can be easily extracted from our paper. We remark that a di�erent presentation
of the results of this paper is available in [21].

2. Preliminaries . Let V (G) and E(G) stand, respectively, for the vertex set and
the edge set of a graph G. Assume jV (G)j = n and jE(G)j = m. We denote an edge
between x and y as (x; y) or simply xy. A connected graph G is k-vertex connected
if jV (G)j > k and at least k vertices must be removed to disconnect the graph. A
biconnected graph (or a block) is a 2-vertex connected graph. A pair of vertices fx; yg of
a biconnected graph is a separating pair if the number of components of the subgraph
induced by V (G)�fx; yg is more than one. An ear decomposition starting with a vertex
P0 of an undirected graph G is a partition of E(G) into an ordered collection of edge
disjoint simple paths P0; P1; :::; Pk such that P1 is a simple cycle starting and ending at

2

P0, and for Pi, 1 � i � k, each end point is contained in some Pj for some j < i, and no
internal vertex of Pi is contained in any Pj; j < i. Each of these paths Pi is an ear. P0
is called the root of the decomposition and is referred to as r. If the two end vertices of
a path Pi do not coincide, then Pi is an open ear. In an open ear decomposition every
ear Pi, 1 < i � k, is open.

Theorem 2.1. ([Whitney]) [27] A graph has an open ear decomposition i� it is
biconnected.
From the above theorem, we can conclude that the subgraph induced by the vertices of
the ears of P1; P2; :::; Pi, for all i, 1 � i � k, is biconnected.

An ear is a nontrivial ear if it consists of more than one edge; otherwise it is a
trivial ear. For an ear P , and two vertices x and y of P , P [x; y] (resp. P (x; y)) denotes
the segment of P that is between x and y, inclusive (resp. exclusive) of x and y. The
segments P (x; y] and P [x; y) of P are de�ned similarly. A vertex is internal to an ear if
it is not one of the end vertices of that ear. For two vertices v and w on P , P �P [v; w]
refers to the segment(s) of P formed by V (P)� V (P [v; w]).

As an ear decomposition is a partition on the edge set of a graph, each edge (v; w)
belongs to an unique ear (denoted by ear(vw)). Notice that, except for the root, each
v is internal to exactly one ear; call it ear(v). Refer to Fig. 2 for an example of a
biconnected graph and an open ear decomposition for it. The following de�nition labels
each vertex v depending on the position of v on ear(v).

Starting with an arbitrary end vertex p of P , de�ne the position of p on P , pos(p; P),
to be zero. For every vertex v of P , v 6= r, the position of v on P , pos(v; P) is
equal to the number of edges between p and v on P . When a vertex v is an internal
vertex of P , we omit the second argument and write simply pos(v). The value of
pos(x; P), for x 62 V (P) is unde�ned. Some example pos values for the graph of Fig.
2 are pos(g) = pos(g; 2) = 3, pos(d; 6) = 0, pos(r; 1) = 0, pos(4; e) = 4 and pos(1; j)
is unde�ned. For a pair of vertices u; v of P , u is to the left (resp. right) of v if
pos(u; P) < pos(v; P) (resp. pos(u; P) > pos(v; P)). The vertex of P that has no
vertices of P to its left (resp. right) is called the left end point of P (resp. right end
point of P).

For the sake of completeness, we include the de�nition of bridges. Let G = (V;E)
be a biconnected graph, and let Q be a subgraph of G. We de�ne the bridges of Q
in G as follows (see, e.g., [5], p. 148): Let V 0 be the vertices in G � Q, and consider
the partition of V 0 into classes such that two vertices are in the same class if and only
if there is a path connecting them which does not use any vertex of Q. Each such
class K de�nes a nontrivial bridge B = (VB; PB) of Q, where B is the subgraph of G
with VB = K [fvertices of Q that are connected by an edge to a vertex in Kg, and
PB containing the edges of G incident on a vertex in K. The vertices of Q that are
connected by an edge to a vertex in K are called the attachments of B and these edges
are called the attachment edges of B. An edge (u; v) in G�Q, with both u and v in Q,

3

is a trivial bridge of Q, with attachments u and v. The trivial and nontrivial bridges
together constitute the bridges of Q.
Remark : Throughout the paper, we will only address how to detect pairs where r 62
fx; yg. The pairs in which one of the vertices is r can be detected as a special case by
�nding the articulation points of the graph induced by V (G)� frg within the claimed
resource bounds.

Lemma 2.2. If fx; yg is a separating pair of a graph G, then there exists a nontrivial
ear P in any open ear decomposition of G such that fx; yg is a pair of non-adjacent
vertices on P .

Proof. Let C be a connected component induced by V (G) � fx; yg such that
r 62 V (C). Then, P is the minimum of fear(v) j v 2 V (C)g.

Definition 1. An ear P is separated by fx; yg , if x and y are non-adjacent
vertices of P , and P (x; y) is separated from the lower-numbered ears in G� fx; yg.

Notice that the number of ears separated by a pair of vertices fx; yg is one less
than the number of connected components of G � fx; yg. The location of separating
pairs on an ear P can be stated precisely in terms of the attachments of the bridges of
P .

Theorem 2.3. fx; yg is a separating pair that separates ear P i� (i) there exists
a nontrivial ear P containing x and y as non-adjacent vertices, (ii) the bridge Br of P
in G that contains r has no attachments on P (x; y), and (iii) for all other bridges B of
P in G, if B has an attachment on P (x; y), then all attachments of B are on P [x; y].

Proof. (=)) Let P be an ear separated by fx; yg. Assume, for contradiction, that
the forward implication is not true. From De�nition 1, we know that x and y are not
adjacent on P . For P , either Br has an attachment P (x; y) or there is a B with one
attachment on P (x; y) and one on P � P [x; y]. In either case, there is a path from one
of the vertices of P (x; y) to r in G� fx; yg which contradicts the assumption that P is
separated by fx; yg.
((=) There must be at least one vertex v of P between x and y as they are not adjacent
on P . For all such v, there cannot be a path in G � fx; yg from v to r as that would
imply a bridge of P in G with at least two attachments|one on P (x; y) and the other
on P � P [x; y]. Therefore, the segment P (x; y) is disconnected from the components
containing lower-numbered ears when x and y are deleted from G.

The theorem given above assures that each ear P together with the bridges of P
are su�cient for extracting separating pairs and that each ear with its bridges can be
considered in isolation. But if we were to consider each ear and all its bridges in their
entirety, the number of edges involved could be far more than O(m). However, notice
that for an ear P , the information about its bridges that is of relevance in �nding
separating pairs is contained only in those edges of the bridges which are incident on
P . We can succinctly encode the information about separating pairs by building a
collection of simple graphs as shown in the following.

4

Definition 2. The collection H consists of simple graphs one for each nontrivial
ear of G. The graph HP 2 H for the ear P is as follows. Suppose that x and y are the
end points of P and that pos(x) < pos(y). Each HP is such that V (HP) = V (P)[frPg
and E(HP) is as follows. (i) For each vertex v 2 V (P), an edge (v; rP) is added, if
the bridge of P that contains the root r has an attachment at v. Otherwise, (ii) at
most two edges are added to E(HP) by considering the bridges (possibly trivial) of P
which have an attachment at v. Let a be the leftmost attachment of one such bridge
where a is further to the left than the leftmost attachment for any other bridge that
has an attachment at v. The edge (v; a) is added, if a belongs to P [x; v). Similarly, an
edge (v; b) is added where b the rightmost vertex that can be reached from v through a
bridge of P . (See Fig. 2.)

An example of an ear P with its bridges and its corresponding HP is illustrated
in Fig. 2. Suppose that v and w are on P with pos(v) < pos(w). From the de�nition
of HP , it follows that there is a bridge of P in G with one attachment on P (v; w) and
another on P �P [v; w] i� there is a bridge of P in HP with one attachment on P (v; w)
and another on P � P [v; w]. Hence, by Theorem 2.3,

Corollary 2.4. fv; wg is separating pair that separates P i� fv; wg is a separat-
ing pair in HP .

3. An Algorithm for Separating Pairs. Lemma 2.2 tells us that, in our search
for separating pairs, we do not have to consider those vertex pairs for which there is no
single ear containing them. If we are further assured some how that every separating
pair belongs to the internal vertices of some ear, then we can e�ciently reduce the
problem of �nding separating pairs to that of �nding biconnected components. The
idea is to build a multigraph by collapsing the internal vertices of every nontrivial ear
to a single vertex. Observe that if fx; yg is a separating pair that is internal to P and
P (x; y) contains a vertex of degree greater than two, then the vertex in the multigraph
that is obtained by shrinking the internal vertices of P is an articulation point. We

elaborate more on this reduction in Section 3.2. But before we proceed to this reduction,
we need to address a more serious di�culty: For a separating pair fx; yg, there need not
be any ear in an open ear decomposition, for which x and y are internal. Section 3.1
shows how to circumvent this problem. In Section 3.2 we show how to �nd a collection

of graphs similar to H that succinctly encode separating pairs. Finally, in Section 3.3
we address the extraction and the output representation of separating pairs.

3.1. Making Separating Pairs Internal to an Ear. In this subsection we show
how to build a graph G0, the local replacement graph. This graph is such that for
every separating pair fx; yg that separates P in G, there is a corresponding separating
pair fxP ; yPg and an ear P 0 in G0 such that xP and yP are internal vertices of P 0.
Furthermore, for every separating pair fxP ; yQg of G0, fx; yg is a separating pair in G.
Roughly, the strategy is to divide the graph G into a set of paths by splitting at the end

5

vertices of the nontrivial ears of an open ear decomposition. This would result in making
several copies of a vertex, i.e. one copy for each nontrivial ear that contains it. Next,
we add new edges to connect up the di�erent copies of a vertex. The main di�culty
is in �guring out an e�cient way to connect the split vertices without jeopardizing the
primary goal of preserving the overall structure of separating pairs.

Definition 3. (i) De�ne
!

G to be a directed acyclic version of G which is obtained
by the following construction. Suppose (a; b) is one of the end edges of P1, and that
(b; c) is next to (a; b) on P1. Then, give a direction to (a; b). Orient the rest of P1 in

the opposite direction. Now,
!

G is obtained by giving directions to the remaining ears
of G so that the resulting digraph is acyclic.

(ii) De�ne
!

T to be directed spanning tree rooted at a obtained by removing the last

edge in each directed ear, Pi, i > 1, in
!

G, and deleting (b; c) in the case of P1.

(iii) De�ne

T to be the directed spanning tree rooted at b obtained as shown below.

Let

G be the graph resulting form reversing the directions of the edges of
!

G. Then,

T

is obtained by deleting the last edge of each ear Pi, i > 1, in

G, and deleting the end
edge of P1 other than (a; b), in the case of P1.

Fig. 3.1 illustrates the above de�nitions. One e�cient way to obtain
!

G, for a given
G, is by st-numbering the vertices of G where (s; t) is an edge of P1 with s = r, and
directing each edge of an ear from the lower-numbered vertex to the higher-numbered.
As each end point of every nontrivial ear belongs to a lower-numbered ear, we have

Proposition 3.1. The ear numbers of the edges of the tree path from any vertex

v to the root r in
!

T decrease monotonically.
Definition 4. Pxy refers to an ear P with fx; yg as the end points. If P is directed

from x to y in
!

G, then we denote it as P!
xy
.

The following useful lemma relates the attachments of a bridge and
!

G.
Lemma 3.2. Let B be a bridge of P!

xy
that contains no edge with an ear number

less than P . Then, if B has an attachment edge (z; y) (resp. (x; z)) at y (resp. x), then

zy (resp. xz) is directed from z to y (resp. x to z) in
!

G, i.e. xz 62 E(
!

T).
Proof. We will only prove the case when B has an attachment at y. A similar proof

can be derived when B has an attachment at x. Fig. 3.1 illustrates the statement of
the lemma. Let ear(z) = Q where the edges of Q belong to E(B). Suppose the lemma
does not hold, i.e. Q is directed such that the edge zy is directed from y to z. Trace a

path
!

G as shown in the following. Start from y and traverse until the last vertex of Q,
say w, is encountered. Suppose ear(w) = S, for some S that belongs to B. In an ear
decomposition, as an end point of each ear belongs to a lower-numbered ear, we have
S < Q. Now, trace the edges of the ear S along the direction given to S until the last
vertex of S is reached. This process, when continued in this fashion, uses edges of B
with monotonically decreasing ear labels. Therefore, we must eventually encounter a

6

vertex of P . From that vertex of P , we can reach y by going along the direction given
to P . In other words, if the lemma does not hold, we can trace a cycle starting and

ending at y in
!

G which contradicts the fact that
!

G is acyclic.
Using these directed graphs, we show how to build the local replacement graph in the
following.
Algorithm Build G0

Input: A graph G, an open ear decomposition of G, and the directed graph
!

G and its

associated spanning trees
!

T ,

T .
Output: A graph G0 (local replacement graph) in which each separating pair of G is
internal to some ear of G0.

1. Construction of V (G0)
V (G0) = fvP j v 2 V (P) for some nontrivial ear Pg. Refer to vP as a copy of
v.

2. Construction of E(G0)
(a) Initialize E(G0) to f(uP ; vP) j (u; v) 2 E(P)g.
(b) For every nontrivial ear P!

vw
, add an edge as follows. If the least-common-

ancestor of v and w (henceforth denoted as lca(v; w)) in
!

T is v, then let

Q be the ear number of the �rst tree edge in the path from v to w in
!

T .

Then, add (vP ; vQ) to E(G
0). If lca(u; w) 6= v in

!

T , then add (vP ; vQ) to
E(G0) where Q is such that v is internal to Q.

(c) Repeat Step 2b with
!

T and
!

G replaced by

T and

G, respectively.
(d) For all trivial ears uv, if u and v are internal to ears P and Q, respectively,

then add (uP ; vQ) to E(G
0).

Fig. 3.1 shows various stages of Step 2 on an example graph. The above algorithm
does not quite su�ce for our purposes, i.e. it need not be the case that there is a
separating pair fx; yg in G that separates an ear P i� fxP ; yPg is a separating pair in
G0. This happens if the input graph G contains two or more ears with the same end
points. Consider an example. Refer to the graph G of Fig. 3.1(i) and consider the

subgraph G � fhg obtained by deleting h and edges incident on h. In G � fhg, the
separating pair fb; dg separates the ear 2, but not 1. In the local replacement graph

corresponding to G � fhg, i.e. in G0 � fh4; b4; d4g of Fig. 3.1, the pair fb2; d2g is not
a separating pair. Before we give the �nal step of Build G0, we need the following
de�nitions.

Definition 5. (i) An ear is a parallel ear if there is another ear with the same
end points.
(ii) Consider the following partition on a set of parallel ears with fx; yg as the end points.
For each connected component C of G � fx; yg, denote the minimum of fear(v) j v 2
V (C)g by P . Each such P is in a di�erent partition. Additionally, if the end points of P
are x and y, then the partition containing P contains exactly (no more or no less) those

7

ears parallel to P whose internal vertices belong to C. Remaining ears with fx; yg as
the end points, can be put in other (or additional) partitions arbitrarily. Each partition
is called a bundle of parallel ears.
(iii) The ear with the smallest label of a bundle is called the representative for that
bundle.
In the example graph of Fig. 3.1, ears 2, 3 are in one bundle and 4 is in a bundle by
itself. Now, we describe a method to handle parallel ears.

Algorithmically, partitioning a collection of ears into sets of parallel ears is easy, as
it is just grouping ears according to the end points. However, to further classify them
into bundles is nontrivial. In the following, we give an alternate de�nition for a bundle
of parallel ears that is equivalent to De�nition 5(ii).

Definition 6. De�ne, recursively, when an ear Q depends on an ear P as follows.
(a) P depends on P . (b) An ear Q depends on P , if Q is not parallel to P and for each
of the end points v of Q, there exists an ear R that depends on P such that v 2 V (R).

Definition 7. De�ne, recursively, a bundle of parallel ears as follows. Two parallel
ears P and Q are in the same bundle if one of the following holds. (a) There is a path
from an internal vertex of P to an internal vertex of Q such that for every edge uv of
that path, if ear(uv) = Rab, then there exists ears that depend on either P or Q which
contain ear(a) and ear(b). (b) There is another parallel ear R such that P;R and R;Q
are in the same bundle.

Suppose that fx; yg separates a parallel ear P and that the component C of G �
fx; yg containing P (x; y) also contains the internal vertices of Qxy. Then, notice that
for all v 2 V (C), ear(v) depends on P or an ear parallel to P (such as Q) whose internal
vertices belongs to C. Therefore, it follows that the above de�nition is equivalent to
De�nition 5(ii).

In the following, the �rst step shows how to partition parallel ears into bundles
e�ciently. Informally, it is as follows. First, we build an auxiliary graph Gp based on
the parallel ears of G. Gp is such that P and Q belong to the same bundle i� the
corresponding pair of vertices p and q are in the same connected component in Gp.
The graph Gp is built by making use of the local replacement graph that is available
after Step 2b. Observe that after Step 2b, each ear is hooked only at one of its ends.

Therefore, the partial G0 after Step 2b is a tree. Denote it by
!

Tl. Now, we describe the
method.
Algorithm Build G0 (continued)

3. Adjust E(G0) for parallel ears
(a) Identify bundles

Let Gp be an auxiliary graph whose vertices p correspond to the parallel

ears P of G. The edges of Gp are added by making use of the tree
!

Tl.
Consider two parallel ears P!

xy
and Q!

xy
. An edge (p; q) 2 E(Gp) i� there

exists an ear R!
ab

(possibly, a trivial ear) that satis�es the following two

8

properties. (i) fa; bg \ fx; yg = ;. (ii) Let a and b are internal to the ears

U and W , respectively. Then, the tree paths in
!

Tl from the lca(aU ; bW)
to aU and bW start with the edges added by Step 2b for P and Q.

(b) Adjust E(G0) for parallel ears
For each connected component C of Gp do the following. Find a spanning
tree T and root it at the vertex with the smallest label (say p). Let P be
the ear corresponding to p. For each ear Q!

vw
, Q 6= P , such that q belongs

to T : (i) delete the end edges of Q added to E(G0) in Step 2, and (ii) add
(vS; vQ) and (wS; wQ) to E(G

0) where s is the parent of q in T .
At the end of Step 3 of Build G0, we still have a partition of the edge set into

disjoint paths. However, because of the rearrangement of edges in Step 3b, the end
points of an ear may not lie on a lower-numbered ear if we continue to use the old ear
labels for G0. But this de�ciency is inconsequential to the rest of our algorithm and
hence we continue to use old ear labels. Notationally, if P is an ear of G, the path in
G0 consisting P together with two new end edges created by local modi�cations will be
referred to as P 0.
The following two propositions can be proved by induction and De�nition 6 and De�-
nition 7.

Proposition 3.3. If an ear Q depends on P!
xy
, then both end points of Q0 belong

to the subtree of
!

Tl rooted at xP .
Proposition 3.4. If an ear Q depends on P , then there is a path from any vertex

of Q to an internal vertex of P such that if uv belongs to this path, then ear(uv) depends
on P .

Theorem 3.5. Two parallel ears P!
xy

and Q are in the same bundle i� p and q are
in the same connected component in Gp.

Proof. In what follows, we use the notation Step 3. Since, P and Q are parallel, Q

is directed from x to y in
!

G. Furthermore, from the construction in Step 2 it follows

that they have the same parent in
!

Tl; Call it xS . Denote the subtrees of
!

Tl rooted at
xP and at xQ by Tp and Tq, respectively. Assume w.l.o.g. that aU is in Tp.
((=) Assume (p; q) 2 E(Gp). If an ear R satis�es the condition (ii) of Step 3a, then
by Proposition 3.3, R depends neither on P nor on Q. Conversely, if R is the ear
with smallest label that depends on neither P nor Q, then, by De�nition 6, R cannot
have both its ends points in one of Tp; Tq. Hence, R satis�es the conditions of Step 3a.
Assume w.l.o.g. that R is the ear with the smallest label that satis�es the conditions of
Step 3a. As U and W contain the end vertices of R, U < R and V < R. Since R is the
ear with smallest label that satis�es the conditions of Step 3a, U depends on P and W
depends on Q. Then, by condition (i) of Step 3a and Proposition 3.4, there is a path
from an internal vertex of P to an internal vertex of Q which satis�es the condition (a)
of De�nition 7.

9

(=)) Assume there are no ears parallel to P except Q in the bundle containing P . As
the condition (b) of De�nition 7 is transitive, it su�ces to prove just this case. Suppose
that P < Q. We are required to show that there exists an ear R that satis�es the
conditions of Step 3. Consider the subgraph D of G formed by P , Q, and all those
ears of G that depend on either P or Q. It can be proved by induction that P and Q
are in di�erent bridges of fx; yg in D, i.e. there is no path from an internal vertex of
P to that of Q. Denote the bridge of fx; yg in D containing P and Q by Dp and Dq,
respectively. If P and Q are in the same bundle, then, by De�nition 6 and the fact
that there are no other parallel ears in D, there must exist an ear R that connects a
non-attachment vertex of Dp, say a, to a non-attachment vertex of Dq, say b. As a and
b are non-attachment vertices of Dp and Dq, neither of them is from fx; yg. Therefore,
R satis�es condition (i) of Step 3a. Since a and b are internal to ears that depend on
P and Q, respectively, the end vertices of R0 belong to Tp and Tq by Proposition 3.3.
That is, R satis�es condition (ii) of Step 3a.

The reverse direction of the above theorem can be stated equivalently as follows.
Corollary 3.6. If (p; q) 2 Gp, then there is a path from an internal vertex of P

to an internal vertex of Q such that this path does not use any vertices of P or of ears
parallel to P .

Next, we prove the correctness of Build G0. The following simple facts are useful
in the proofs. Observe that the number of copies of a vertex v in G0 is one more than
the number of nontrivial ears for which v is an end point, i.e. it is 1 + (degree(v)� 2).
The algorithm Build G0 adds an edge only between two copies of the same vertex and
it adds one edge for every end point of every nontrivial ear. See Fig. ??. Therefore,

Proposition 3.7. (i) The edges that connect di�erent copies of a single vertex v
form a tree. Therefore, there is a path between any two copies of v in G0 that uses only
other copies v. As a consequence, for a vertex v 62 V (P), all copies of v belong to a
single bridge of P 0 in G0. (ii) The graph G can be obtained from G0 by collapsing, for
each v, all copies of v into one.

Definition 8. For an ear P , we say a bridge of P is a relevant bridge if for each
ear Q that belongs to it (a) Q > P , and (b) if Q parallel to P , then Q is in the same
bundle as P . If a bridge is not relevant, then it is said to be irrelevant.
Observe that for a set of parallel ears with x and y as the end vertices, if one of the

ears in
!

G is directed from x to y, then all of them are directed from x to y. After Step
2 (but before Step 3), if P and Q are parallel in G, then P 0 and Q0 are parallel in G0 by
the construction of Step 2. As Step 3 does not change the end edges created in Step 2
for the representatives, we have

Proposition 3.8. If P and Q are parallel ears such that each is a representative
of its bundle, then P 0 and Q0 have the same end points in G0.
For a subgraph D of G, let E(D) = fear(uv) j uv 2 E(D)g. The following can be
derived from De�nition 8 and the de�nition of open ear decomposition.

10

Proposition 3.9. Suppose that B is a relevant bridge of P . If B contains an
edge of an ear Q, then B contains all edges of Q,i.e. if Q 2 E(B), then all edges of Q
belong to B.
Another useful fact can be derived from the de�nition of open ear decomposition by
using the minimum of E(B).

Proposition 3.10. If B is a bridge of an ear P that contains an edge whose ear
label is less than P , then B has attachments at the end vertices of P .

Lemma 3.11. Consider a relevant bridge B of P!
xy

(resp. P
xy
) in G. Suppose it

contains an ear Q with one end point at x (resp. y) and the other at v 62 V (P). Then,

the lca(x; v) (resp. lca(y; v)) in
!

T (resp.
!

T) is x (resp. y).
Proof. We will prove the lemma when Q has an attachment at y. A similar proof

works when Q has an attachment at y. We will show that x is an ancestor of v in
!

T . Observe that all paths from v to r in G must go through a vertex of P because v
belongs to a bridge of P and this bridge does not contain r. Speci�cally, the tree path
from v to r must have a vertex, say w, of P . This vertex w of P cannot be y, because,

by Lemma 3.2, y is not reachable in
!

T from v. Hence, the tree path from v to r must
encounter a vertex w from P [x; y). Now, the last vertex of P on this tree path is x

because of the direction given to P . Therefore, the tree path from v to r in
!

T contains

x. In other words, x is an ancestor of v in
!

T .
Lemma 3.12. Consider a relevant bridge B of P!

xy
in G. Suppose it contains an

ear Q with one end point at u 2 V (P) and the other at v 62 V (P). If lca(u; v) = u,

then the edges on the tree path from v to u in
!

T belong to either P or to those ears of
B whose label is less than Q.

Proof. Assume ear(v) is U for some U 2 E(B). By the de�nition of a relevant
bridge, U > P . We traverse the tree path from v to u. As argued in the proof for the
previous lemma, we must encounter a vertex z of P from P [x; y) in this traversal. Now,
u is an ancestor of v because lca(u; v) = u. Therefore, z is a descendant of u. Finish
the traversal of the tree path from z to u by taking the edges of P from z to u. In this
traversal, initially U belongs to a relevant bridge, namely B. Also, whenever the ear
labels change from, say, P1 to P2, for P1; P2 6= P , the switch occurs at the end vertex of
P1. This end vertex is a non-attachment vertex of B, because otherwise we would have
moved from P1 to P instead of to P2. Hence, P1 and P2 are in the same bridge of P .
Since U belongs to P , P1 and, hence, P2 belongs to B. In summary, we showed that
the traversal of the tree path from v to u uses the edges of the ears of B and possibly
some of P .

Theorem 3.13. Let Bq be the bridge of P!
xy

in G containing the ear Q. Let BLq

be the bridge of P 0 in G0 containing the ear Q0. Then, (i) for every ear S, if S 2 E(Bq),
then S 0 2 E(BLq). Additionally, (ii) if Bq is relevant bridge, then for every S 0, if
S 0 2 E(BLq), then S 2 E(Bq).

11

Proof. If two ears Q and S are in the same bridge B of P in G, then there must be
a path between a vertex of Q and a vertex of S consisting of only the non-attachment
vertices of B. Then, by Proposition 3.7, it follows that there is a single bridge of P 0 in
G0 containing Q0 and S 0. That proves part (i).

Next, we will prove using induction that if two ears belong to two di�erent bridges
B1 and B2 in G, then they belong to two di�erent bridges of P 0 in G0 provided at least
one of B1; B2 is a relevant bridge. For the base of the induction, we start with the
subgraph D1 of G

0 formed by P 0 plus fQ0 j either Q < P , or Q is the minimum labeled
ear of a bridge of P , or Q is parallel to P and Q is the representative of its bundleg. The
ith induction step consists of building Di from Di�1 by adding the smallest ear from
E(G) � E(Di�1). This ear is added in a manner that conforms with the construction
rules of Step 2 and Step 3, and thus we maintain the invariant that Di is a subgraph of
G0 at all times.

To show that D1 satis�es the base case, we claim that each ear of a relevant bridge
of P in G is in a bridge (of P 0) by itself in D1. First, observe these ears have their
end points on P in G. In Build G0, the end edges for the minimum labeled ears of a
relevant bridge of P are decided in Step 2 and these are not changed later in Step 3. To
prove the claim, it su�ces to show that each of these ears is attached in Step 2 to some
vertices of P 0. All parallel ears are attached to the end vertices of P 0 by Proposition
3.8. For any other ear Q!

vw
, v; w 2 V (P), if w = y, then v 6= x because we assumed

that Q is not parallel to P . In that case, lca(v; w) 6= v in
!

T (because the end edge of P

incident on y is not present in
!

T) and vQ is attached to vP . The other end point w is

attached to wP , because lca(w; v) = w = y in

T and the tree path from w to v starts
with an edge of P . The cases arising from the other positions for v and w on P can be
analyzed similarly to conclude that vQ and wQ are attached to vP and wP respectively.

Now, we prove the induction step. Assume, inductively, the theorem holds when
the smallest (i � 1) ears from E(G) � E(D1) are added. Consider the ith smallest ear

Q!
uv
.
Suppose there is an ear (possibly P) parallel to Q!

uv
. Then, from the construction

of Step 3b we notice that Q is attached to the copies of u and v say uS and vS where
s is (in the notation of Step 3b) the parent of q in T . The case when S = P results
in creating a new bridge when Q0 is added to Di�1 and the induction step is trivially
true. But if s 6= p and (s; q) 2 E(Gp), then by Corollary 3.6 there is a path between
an internal vertex of Q to an internal vertex of S that does not use any vertices of ears
parallel to Q. Speci�cally, this path does not use any vertices of P . Hence S and Q are
in the same bridge of P in G.

Next, assume Q!
uv

has no parallel ears. Let ear(u) and ear(v) be S and U , respec-
tively. We will do a case analysis depending on the position of u and v.

Assume neither u nor v belong P . Then, by Proposition 3.7, Q0 is connected to
a non-attachment vertex of the bridge of P 0 (in Di�1) containing S

0 (call it BLs) to a

12

non-attachment vertex of the bridge containing U 0 (call it BLu). Clearly S and U (and
hence the ears of G corresponding to the ears of BLs and BLu) are in one bridge of P
in G because of the path (namely Q) between them that uses no vertices of P .

Now, consider the case when both u and v belong to P , i.e. P = S = U . Then, it
cannot be that u = x and v = y as that would make Q have an ear (namely P) parallel
to it. Hence one of the end vertices of Q must be internal to P . In this case, by a proof
similar to the one used for the base case, it can be argued that Q0 is attached to two of
the vertices of P 0. In other words, if both u and v belong to V (P), then a new bridge
gets created and the induction step holds.

Next, assume that one of u; v belongs to P and the other does not. Assume w.l.o.g.
u belongs P . Clearly, U and Q are in a single bridge of P in G because they are
connected at v. Therefore, if Q0 attaches itself to the bridge of P 0 in Di�1 that contains
U 0 (denote this bridge by BLu), then the induction step holds because U (and all the
ears corresponding to the ears of BLu) and Q are in a single bridge of P in G. We
will show that this is indeed the case, i.e. Q0 attaches itself to BLu. Notice that, by
Proposition 3.7, as v 62 V (P), there exists a bridge of P 0 in Di�1 that contains all copies
of v. Therefore, vQ is connected to a copy of v that belongs to BLu. It remains to
be shown that vQ is not connected to a non-attachment vertex of a bridge other than

BLu. Consider the lca(u; v) in
!

T . If lca(u; v) 6= u, then uQ is connected to uP by

Step 2. Otherwise, by Lemma 3.12, the tree path in
!

T from v to u consists of edges of
either P or of the ears from E(BLu). Therefore, uQ is connected to uP or uW where
W 2 E(BLu).

3.2. A Reduction to Biconnected Components. We brie
y alluded to reduc-
ing triconnectivity to biconnectivity at the beginning of Section 3. We elaborate more
on this reduction here. In this subsection, we show how to �nd a collection similar to
H that encodes separating pairs. There are two reasons for �nding a collection that is
only similar to H and not H itself as de�ned before. The �rst is that the new collection
su�ces for our purposes, and the second reason is that it can be computed by an easy
reduction to any biconnected component algorithm.

Recall the de�nition of H from De�nition 2. It consists of a graph HP for each
nontrivial ear P!

xy
. We slightly change the de�nition of HP as it is di�cult to e�ciently

check, for v 2 V (P), if the bridge of P containing the root r is adjacent to v.
Definition 9. The graph HP is de�ned as in De�nition 2 with the following

modi�cation to part (i) of that de�nition. We say that (v; rP) is added to E(HP) if v
is adjacent to w and w belongs to an irrelevant bridge of P .

Even though the resulting collection is slightly di�erent, we will continue to denote

it by H. Let us examine and see whether this new de�nition of graph HP also encodes
the set of separating pairs of G. If the bridge containing w also contains the root r,
then the new rule results in the same HP . Otherwise, the bridge containing w must

13

necessarily have attachments at x and y by Proposition 3.10. Therefore, we would have
added (v; x) and (v; y) to E(HP) instead of (v; rP). A pair of vertices of P that is
not a separating pair before would not be a separating pair now. The converse also
holds except for the pair fx; yg. In this case, notice that we would detect fx; yg as a
separating pair on HQ where fx; yg separates Q. This is because, by De�nition 1, all
vertices of Q(x; y) are adjacent to vertices of bridges of Q relevant to Q. Therefore, the
edges added to E(HQ) for the vertices of Q(x; y) are identical irrespective of whether
the old rule is used or the new one.

Next, we show how to build H by a reduction to biconnected components. The
biconnected component algorithm is run on a multigraphGe (the subscript e to indicate
that Ge is built from the ears of G0) constructed from G0 and its ears.

Definition 10. Let P 0 be a nontrivial ear hv0; v1; : : : ; vki of length greater than
two, i.e. k � 3. The graph Ge is obtained from G0 by contracting all such ears P 0 by
merging the internal vertices v1; v2; :::; vk�1 into a single vertex p.

Fig. 3.2 shows the multigraph Ge for the local replacement graph and its ear
decomposition shown Fig. ??. Recall that the representative (say P) of a bundle of
parallel ears is the ear of that bundle with the smallest label. Observe that the end
points P belong to a lower-numbered ear that is not parallel to P . This observation
together with the de�nition of open ear decomposition imply the following simple fact.

Proposition 3.14. If D is a biconnected component of Ge, then the vertex of D
with the minimum label is either r or an articulation point of Ge.

There is a correspondence between the relevant bridges of Pxy in G, the bridges
of P 0[xP ; yP] in G0, and the connected components resulting from deleting p from Ge.
The relation between the latter two is simple: From the de�nition of Ge, it follows that
the ears Q and R are in the same bridge of P 0[xP ; yP] in G

0 i� q and r are in the same
component in Ge � fpg. The relation between the attachments of the bridges of P in
G and that of the bridges of P 0[xP ; yP] in G

0 is stated below.
Theorem 3.15. Suppose that Bq (resp. BLq) is a bridge of P!

xy
(resp. P 0) in G

(resp. G0) containing Q (resp. Q0).
(i) Bq relevant to P i� BLq has no attachments at the end vertices of P 0 in G0.
(ii) Assume that Bq is relevant to P . Then, Bq has an attachment at v i� BLq has an
attachment at vP .

Proof. (i) Assume Bq is a relevant bridge for P . It can be proved that the attach-
ments of BLq are from P 0[xP ; yP] by an inductive proof similar to the one used to show
part (ii) of Theorem 3.13. The invariant that should be maintained at all times is that
if Q belongs to a relevant bridge, then the bridge of P 0 containing Q0 in Di has all its
attachments on P 0[xP ; yP].

Assume Bq is not a relevant bridge. There are two kinds of irrelevant bridges. The
ones that have an ear less than P and the ones that have an ear (say Q) parallel to P
from a di�erent bundle. If Bq is of the �rst kind, then BLq contains an ear less than

14

P 0 by Theorem 3.13(i). If in addition BLq contains a parallel ear to P from the bundle
of P , then from the construction of Step 3b it follows that BLq has attachments at the
end vertices of P 0. Otherwise, consider the subgraph of G0 consisting of P 0, the ears
of BLq that have no parallel ears, plus the representatives of the bundles of ears that
belong to BLq. Clearly, this subgraph is biconnected and the labels on the ears de�ne
an open ear decomposition. Therefore, by Proposition 3.10, BLq has attachments at
the end vertices of P 0. Next, assume that Bq is an irrelevant bridge because it contains
an ear S parallel to P such that P and S are in di�erent bundles. Assume w.l.o.g. that
S is the representative of its bundle. By Proposition 3.8, the end points of S 0 and the
end points of the representative of the bundle of P 0 are the same. Therefore, BLq has
attachments at the end vertices of P 0.
(ii) Assume BLq has an attachment at vP and that this attachment belongs to an ear
S 0 of BLq. Since Bq is a relevant bridge, by part (ii) of Theorem 3.13, S 2 E(Bq). By
Proposition 3.7, v 2 V (S). Therefore, Bq has an attachment at v.

Consider the only if direction of the theorem. Let S!
vw

denote the ear from the

bridge Bq with the least label that has an attachment at v. Then, if lca(v; w) 6= v in
!

T ,
then, by Lemma 3.11, v is an internal vertex of P . Therefore, by Step 2c, vS is attached
to vP . Otherwise, i.e. lca(v; w) = v, then, by Lemma 3.12, the tree path from u to v
consists of the edges from either P or the ears of Bq with a label less than S. As there
are no ears of Bq less than S incident v, the tree path must end with the edges of P .
Hence, by Step 2, vS is attached to the vertex vP .

The (ii)nd part of the above theorem implies the following.
Corollary 3.16. fx; yg is a separating pair that separates P in G i� fxP ; yPg

separates P 0 in G0.
Proof. Consider the bridges of P [x; y] in G and that of P 0[xP ; yP] in G

0.
We exploit this correspondence in building H. The nontrivial part in building HP

is in identifying which edges to add, if any, for a vertex v of P [x; y]. This involves
knowing the extreme attachments of the relevant bridges of P adjacent to v. If there
are any bridges of P that are relevant, then p would be an articulation point in Ge; and
each block D of Ge attached to p that does not contain r0 corresponds to a relevant
bridge of P . Therefore, we give a common label, called � label, to all vertices (except
p) of each such block D of Ge. This � label is a 3-tuple hP; a; bi: a and b are the pos
labels of the extreme attachments of the bridge of P that corresponds to D and the
�rst tuple re
ects the fact that these attachments are on P . We will denote the �rst,
second and the third tuple of �(q) by �(q):1, �(q):2 and �(q):3, respectively.

It turns out that the � labeling can be computed e�ciently by a slight modi�cation
of any biconnected component algorithm as shown below. Given � labeling, the edges
that need to be added to build HP can be �gured out quite easily.
Algorithm Build H
Input: A graph G, an open ear decomposition of G, pos labeling for each ear, and the

15

local replacement graph G0 for that decomposition.
Output: A collection of graphs H (built on the top of each nontrivial ear of G) that
encode separating pairs succinctly.

1. Build a multigraph Ge from G0 by merging the internal vertices of each non-
trivial ear P 0 into a single vertex p. Discard the self loops from Ge.

2. Find the biconnected components D1; D2; :::; Dk of Ge.
3. Label the vertices of Ge with 3-tuples:

For each Di do the following. Let p be the vertex of Di with the smallest label.
For each q 2 V (Di)� fpg, set the 1st component of �(q) to P . Of all edges ps
of Di incident on p, consider those that have an image, say cd, in G. Assume
c 2 V (P). (See Fig. 3.2.) Let a and b the minimum and the maximum,
respectively, of the pos labels of all such c. Then, a and b are the second and
third components of �(q).

4. Build HP for each nontrivial ear P using the � labels:
(a) Assign V (HP) = V (P) [frPg.
(b) Initialize E(HP) = E(P). For every vertex v 2 V (P), add the following

edges. For an edge vw 2 E(G), w 62 V (P), denote ear(w) by Q.
(i) If �(q):1 is less than P , then add (v; rP) to E(HP). Otherwise, add

two edges as shown in the next step.
(ii) Let a be such that pos(a) = minff�(q):2 j ear(w) = q and vw 2

E(G), w 62 V (P)g [fpos(w) j vw 2 E(G) and v; w 2 V (P)gg. Add
(v; a) to E(HP). Also, add (v; b) where b is obtained similarly by
using max and �(q):3.

Lemma 3.17. Consider an ear P , and an edge vw 2 E(G), w 62 V (P), where v
is an internal vertex of P . Let ear(w) be Q. Then, if the bridge Bq of P containing Q
contains no ear less than P , then �(q):1 = P .

Proof. If Bq contains ears parallel to P , then they would have to be in the same
bundle with P because of the the edge vw. Therefore, Bq is a relevant bridge of P .
Now, it follows from part (i) of Theorem 3.15, that the bridge containing Q0 would have
all its attachments on the internal vertices of P 0. Then, p would be an articulation point
that is on every path between q and the root vertex r in Ge. Therefore, �(q):1 � P .
But p and q are in the same block because the edge vw of G causes an edge between p
and q in Ge. Hence, �(q):1 = P .

Theorem 3.18. Algorithm Build H computes H as de�ned in De�nition 9.
Proof. Consider an ear P!

xy
and an internal vertex v of P . We need to argue that

the construction carried out in Step 4 is correct. Suppose there is an edge vw 2 E(G),
w 62 V (P). Denote ear(w) by Q. Denote the bridge of P containing Q by Bq and the
minfE(Bq)g by N . Note that whether vw is a trivial ear or one of the end edges of Q,
it causes an edge to be added between p and q in Ge. Therefore, there is a block that
contains both p and q.

16

According to De�nition 9, the edge (v; rP) is added to E(HP) i� N is less than P .
Consider the construction in Step 4. We claim that N < P i� �(q):1 is less than P .
To prove the forward direction of the claim, we need to prove that the block D of Ge

containing p and q contains an articulation point m such that M < P . By Proposition
3.14, it is su�cient to show that p is not the articulation point in D with the smallest
label. Because N < P , the bridge Bq is irrelevant to P . Now, if p is an articulation
point that appears on every path from q to the root r0, then BLq of P

0 containing Q0

in G0 has all its attachments on P [xP ; yP]. This contradicts part (i) of Theorem 3.15.
Hence, p cannot be the articulation point with the smallest label in D. Consider the
reverse direction. Assume for contradiction that �(q):1 less than P but N � P . Clearly,
N 6= P because N belongs to a bridge of P . But if N > P , then, from Lemma 3.17,
�(q):1 is exactly P and not less than P .

Next, consider the case when there is an edge vw 2 E(G), w 62 V (P), but for all
such edges �(q):1 is not less than P . By the claim of the previous paragraph, if �(q):1
is not less than P , then N > P . Therefore, by Lemma 3.17, �(q):1 = P . That is, every
bridge of P 0 with an attachment at v has all its attachments on P 0[xP ; yP]. Because of
the edge vw, each such bridge Bq is a relevant bridge of P . Therefore, by part (ii) of
Theorem 3.15, the attachments of BLq on P

0 are identical to the attachments of Bq on
P . From the de�nition of Ge, the attachments of Bq become the edges of Ge incident on
p where these edges belong to the block containing q. The attachments of Bq that are
closest to x and y are re
ected in the second and third tuples of �(q), as computed in
Step 3. Therefore, Step 4b(ii) computes the E(HP) as de�ned in part (ii) of De�nition
2.

3.3. The Extraction and Output Representation of Separating Pairs. Ob-
serve that in O(m + n) time we cannot possibly list all separating pairs of a graph as
there could be O(n2) of them. For example, in a simple cycle every pair of non-adjacent
vertices is a separating pair. That is, a cycle of n vertices has n(n � 3)=2 separating

pairs. Our output representation is a set of paths referred to as candidate lists such
that a pair of vertices fu; vg separates P i� u and v are non-adjacent on P and there
is a candidate list generated from HP that contains u and v. Such a representation of
separating pairs is su�cient to divide a graph into triconnected components.

Let us reexamine the graph HP of H from the previous subsection. Assume HP

happens to be planar and that it is drawn in the plane as shown in Fig. 3.3, i.e.
P appears as a horizontal line and all its bridges in HP are drawn on the top. (This
embedding will be referred, henceforth, as a canonical embedding.) Then, an important,
but easy to see, observation that follows from Theorem 2.3 is that a pair of vertices x
and y separates P i� a bounded region in the canonical embedding of HP contains x and
y. This fact can be used quite e�ectively in producing candidate lists as demonstrated
below.
Algorithm Find Candidate Lists

17

Input: A collection of planar graphs encoding separating pairs.
Output: A set of paths, called candidate lists, encoding separating pairs. The output
representation is a linked list.

1. For every bridgeB of P inHP that does not contain rP , let u and v, respectively,
be the attachments of B with the minimum and maximum pos value.
(i) output the edge (u; v),
(ii) if v is not adjacent to rP in HP and if the furthest vertex to the left that

is reachable from v through a bridge is u, then perform this step. Let
w be the furthest vertex to the right that is reachable through a bridge
adjacent to v. Add a pointer from the output location of (u; v) to that of
(v; x) where x = w if w 6= v; otherwise, x is the successor of v on P . (See
Fig. 3.3.)

2. For every edge (a; b) of P , pos(a) < pos(b), that is not part of a triangular
region,
(i) output the edge (a; b),
(ii) if the furthest vertex to the left that is reachable from b through a bridge

is b, then perform this step. Let c be the furthest vertex to the right
that is reachable through a bridge adjacent to b. Add a pointer from the
output location of (a; b) to that of (b; d) where d = c if c 6= b; otherwise,
d is the successor of b on P . (See Fig. 3.3.)

In the rest of this subsection, we show how to take a non-planar HP and produce
a planar graph IP on the same set of vertices such that the set of separating pairs of
HP and that of IP are identical. We will denote the resulting planar collection by I.
The process of planarizing HP involves coalescing interlacing bridges. Call a pair of
bridges B1 and B2 of P as interlacing bridges if two of the attachments of B1 and B2

are at x; y and u; v, respectively, such that that pos(x) < pos(u) < pos(y) < pos(v).
The operation of coalescing is to discard the bridges B1 and B2 and to put in a new,
single bridge whose attachments are a union of the attachments of B1 and B2. A nice
property of the operation coalescing that follows from Theorem 2.3 is that it preserves
the set of separating pairs. Now, if bridges of HP are coalesced until no more bridges
are interlacing, then the resulting graph is planar; this fact can easily be proven by
constructing a canonical embedding of the resulting graph. Denote the resulting planar
graph by IP .

In the following, we give a fast parallel algorithm for �nding I. At a high level, the
algorithm reduces the problem of planarizing HP to that of �nding connected compo-
nents of a graph Gb. The vertices of Gb correspond to bridges of P . Two vertices b1 and
b2 of Gb are in the same connected components i� the bridges corresponding to the two
vertices B1 and B2 are interlacing. In constructing Gb, if we add edges between b1 and
all vertices whose corresponding bridges in HP interlace with B1, then there could be
far too many edges in Gb (as many as O(n2)). The trick is to add at most two edges per

18

vertex. Add (b1; b2) (resp. (b1; b3)) where B2 (resp. B3) interlaces B1 and furthermore
it is the bridge with an attachment that is furthest to the left (resp. right) with respect
to the leftmost (resp. rightmost) attachment of B1. It turns out that employing this
trick does not alter the connected components of Gb. (See Appendix A for a proof of
this fact.) We summarize the ideas below.
Algorithm Planarize H
Input: The collection H of graphs encoding separating pairs of G.
Output: A collection I of planar graphs encoding separating pairs of G succinctly.

1. For each HP , build a graph Gb based on the bridges of Pxy in HP that do not
contain rP . These bridges are all single edges (u; v).
(i) For each such (u; v), create a vertex in Gb denoted by the 2-tuple hu; vi.
(ii) Find the bridge (a; b) (resp. (c; d)) with one attachment on P (u; v) and

the other furthest to the left (resp. right) from u (resp. v) on P [x; u)
(resp. P (v; y]).

(iii) Add an edge between hu; vi and ha; bi, and between hu; vi and hc; di in Gb.
2. Find the connected components C1; C2; :::; Ck of Gb.
3. Build IP using the connected components of Gb.

(i) V (IP) = V (HP) [fci j Ci is a component of Gbg
(ii) E(IP) = E(P). Add the edges incident on rP to E(IP). In addition,

include the following edges. Add (ci; u) if there a vertex in Ci with u as
one of the 2-tuples in its label.

3.4. Complexity on a CRCW Pram. The results of the previous subsections
show that the following algorithm generates all separating pairs (as candidate lists) of
a given biconnected graph G.
Algorithm Separating Pairs

1. Find an open ear decomposition of G.
2. Construct the local replacement graph G0 by executing Build G0.

3. Succinctly encode separating pairs using Build H.
4. Use Planarize H and obtain the collection I.
5. Generate separating pairs as candidate lists by invoking Find Candidate Lists

with I as its input.

The most expensive step of the above algorithm from the deterministic complexity
point of view is providing the required input representations to some of the subroutines
we use, and building the adjacency lists of the auxiliary graphs. We show in Appendix
B how to construct the needed representation of graphs assuming that the input is a
list of edges. This construction runs in O(logn) time with ((m + n) log logn) work. In
the remainder of this subsection we will argue that the complexity of the rest of the
algorithm is identical to that of the best known parallel connected component algorithm.

Let G have n vertices and m edges. We say an algorithm has an `almost-optimal'
processor-time bound, if it runs in O(logn) parallel time with O((m+n)�(m;n)= logn)

19

processors on a CRCW PRAM, where � is the inverse Ackermann function. We �rst
note the following results on optimal and almost-optimal parallel algorithms.

A List ranking on n elements can be performed optimally inO(logn) on an EREW
PRAM [3].

B Connected components and spanning tree of an n-node, m-edge graph can be
found in time O(logn) with O((m + n)�(m;n)= logn) on an ARBITRARY
CRCW PRAM [3] provided the input is presented as an adjacency list.

C Least common ancestors of k pairs of vertices in an n-node tree can be found in
O(1) time with k processors after O(logn) time preprocessing using O(n= logn)
processors on an EREW PRAM using the algorithm in [24].

D The Euler-tour technique on trees of [25] can be implemented optimally in
O(logn) time with O(n= logn) processors on an EREW PRAM using A.

E Using the above mentioned results as subroutines, we obtain an almost-optimal
parallel algorithm for �nding an open ear decomposition from the algorithm in
[19], [17], for �nding biconnected components from the algorithm of [25], and
for �nding an st-numbering in a biconnected graph from the algorithm of [19].

We will refer to the above �ve results while describing the processor-time complexity
of Algorithm Separating Pairs.

Step 1 can be done almost optimally by E.

Consider Step 2. The digraphs
!

G,
!

T ,

G, and

T can be constructed almost optimally
using the st-numbering algorithm of E. Splitting and renaming can be achieved by
making the vertex labels a 2-tuple: the �rst component representing the vertex label,
and the second representing the ear label of the edge that is incident on that vertex.
We can implement this in constant time per split node. The processors assigned to the
end edges of each ear can be made responsible for adding the edge to attach that ear.
The lca values of non-tree edges can be computed optimally by C. Step 3a of Build
G0 identi�es the bundles of parallel ears. Let us analyze its complexity. For building
Gp, the processor assigned to the last edge (a; b) of each ear examines the ear labels of
the two edges incident on the lca(a; b) in the fundamental cycle created by including

(a; b) in
!

Tl. Let the ear labels be P and Q. Next, it checks to see if P and Q have
identical pair of end vertices. If so, an edge is added in Gp between p and q. Now using
the almost-optimal connected component algorithm of B we can implement Step 3b of
Build G0. This leads to an almost-optimal algorithm to implement Build G0.

Let us examine the complexity of Build H. The pos labeling can be computed
optimally in O(logn) time using the Euler-tour technique by D. The auxiliary multi-
graph Ge can be constructed as follows. The vertex set is easy to create. The processor
assigned to the �rst edge of an ear R does the following. (i) It �nds the end vertices u
and v of that ear. (ii) It also �nds the ears P and Q where P = ear(u) and Q = ear(v),
and the values pos(u; P) and pos(v;Q). Assume that the vertices corresponding to P;Q
and R in Ge are p; q and r respectively. Finally, (iii) it creates edges (p; r) and (r; q)

20

and labels these edge with a 2-tuple hpos(u; P); pos(v;Q)i.
The � labeling of the vertices of Ge consists of the following steps. Find the blocks

of Ge almost optimally as in E. Treat each block D separately and construct a spanning
tree Tb in each block almost optimally as in B. The articulation point q with the smallest
label in a block D can be found optimally by using the Euler-tour technique. That gives
us the �rst component of �, i.e. Q. The values a and b can be found by examining
the 2-tuple labels of the edges of D incident on q. These values are broadcast to all
the vertices in the block D using, again, the Euler-tour technique. Finally, building
HP involves computing the minimum and maximum of the labels of edges incident on
a vertex. This can be done optimally in O(logn) time using A.

In Planarize H, the only nontrivial step is implementing the algorithm of Appendix
A, i.e. the construction of the Gp. It involves the identi�cation of the arcs (a; b) and
(c; d) for each arc (x; y). An optimal algorithm for this problem is given in [1] (this
problem is also known as the range-minima problem). The building of IP can be done
almost-optimally by an easy reduction to the connected components.

Finally, Find Candidate Lists requires computing the minimum and the maximum
of the labels of edges incident on a vertex. This can be done optimally in O(logn) time
using A.

4. An Algorithm for Finding Triconnected Components. We start with
some de�nitions.

Let G = (V;E) be a biconnected graph, and let Q be a subgraph of G. We de�ne
the bridge graph of Q, S = (VS; PS) as follows (this is a little modi�ed from the usual
de�nition as in [5], [18], [22]). Let the bridges of Q in G be Bi; i = 1; :::; k. Then
VS = V (Q)[fB1; :::; Bkg and PS = E(Q)[fedge (v; Bi) for each edge (v; w) 2 Bi with
w 2 V (Q); 1 � i � kg. Note that S is a multigraph, i.e., a graph in which there can be
several edges between the same pair of vertices. Each Bi 2 VS together with the edges
incident on Bi is a bridge of Q in S.

A star is a connected graph with a vertex v such that every edge in the graph is
incident on v. A star graph G(P) is a graph G consisting of a simple path P , each of
whose bridges is a star. Thus if Q is a simple path in G, then S, the bridge graph of
Q, is a star graph. Let B be a star in a star graph G(P), where for convenience let

P = h0; :::; k � 1i. Let the attachments of B on P be v0; :::; vj, with v0 < v1 < ::: < vj.
Then the vertices v0 and vj are the end attachments of B and the remaining attachments
are its internal attachments. We will also refer to v0 as the left attachment of B and vj
as its right attachment. The closed interval [v0; vj] is the span of B and it contains all
of the vertices on P between v0 and vj (both vertices inclusive).

We now review some material from [26], [12], [18] relating to triconnected compo-
nents. This material deals with multigraphs. An edge e in a multigraph is denoted by
(a; b; i) to indicate that it is an edge between a and b; here i is the label that distin-
guishes e from the other edges between a and b. The third entry in the triplet may be

21

omitted for one of the edges between a and b.
A pair of vertices a; b in a multigraph G = (V;E) is a separating pair if and only

if there are two nontrivial bridges, or at least three bridges, one of which is nontrivial,
of fa; bg in G. If G has no separating pair, then G is triconnected. The pair a; b is a
nontrivial separating pair if there are two nontrivial bridges of fa; bg in G.

Let fa; bg be a separating pair for a biconnected multigraph G = (V;E). For any
bridge X of fa; bg, let �X be the induced subgraph on (V � V (X)) [fa; bg. Let B be
a bridge of G such that jE(B)j � 2; jE(�B)j � 2 and either B or �B is biconnected.
We can apply a Tutte split ([26], [12]) s(a; b; i) to G by forming G1 and G2 from G,
where G1 is B [f(a; b; i)g and G2 is �B [f(a; b; i)g. Note that we consider G1 and
G2 to be two separate graphs. Thus it should cause no confusion that there are two
edges (a; b; i) since one of these edges is in G1 and the other is in G2. The graphs G1

and G2 are called the split graphs of G with respect to fa; bg. The Tutte components
of G are obtained by successively applying a Tutte split to split graphs until no Tutte
split is possible. Every Tutte component is one of three types: i) a triconnected simple
graph; ii) a simple cycle (a polygon); or iii) a pair of vertices with at least three edges
between them (a bond); the Tutte components of a biconnected multigraph G are the
unique triconnected components of G. In this section we give an almost-optimalO(logn)
time parallel algorithm to �nd the triconnected components of G corresponding to
triconnected simple graphs and polygons. The bonds can be inferred, if necessary, by
counting the number of triconnected components with respect to each separating pair.

Let G = (V;E) be a biconnected graph with an open ear decomposition D =
[P0; :::; Pr�1]. When referring to vertices on a speci�ed ear Pi or on a path P , we will
assume for convenience that they are numbered in sequence from one end point of the
path (its left end point) to the other (its right end point). Let fa; bg be a pair separating
Pi. Let B1; :::; Bk be the bridges of Pi with no attachments outside the interval [a; b] on
Pi, and let Ti(a; b) = ([kj=1Bj)[Pi(a; b), where Pi(a; b) is the segment of Pi between and
including vertices a and b. Then the ear split e(a; b; i) consists of forming the upper split

graph G1 = Ti(a; b) [f(a; b; i)g and the lower split graph G2 = �Ti(a; b) [f(a; b; i)g. An
ear split e(a; b; i) is a Tutte split if either G1�f(a; b; i)g or G2�f(a; b; i)g is biconnected.

Let S be a nontrivial candidate list for ear Pi. Two vertices u; v in S are an adjacent
separating pair for Pi if u and v are not adjacent to each other on Pi and S contains
no vertex in the interval (u; v) on Pi. Two vertices a; b in S are an extremal separating
pair for Pi if jSj � 3 and S contains no vertex in the interval outside [a; b]. An ear split
on an adjacent or extremal separating pair is a Tutte split, and the Tutte components
of G are obtained by performing an ear split on each adjacent and extremal separating
pair [18].

With each ear split e(a; b; i) corresponding to an adjacent or extremal pair sepa-
rating Pi, we can associate a unique Tutte component of G as follows. Let e(a; b; i) be
such a split. Then by de�nition Ti(a; b) [f(a; b; i)g is the upper split graph associated

22

with the ear split e(a; b; i). The triconnected component of the ear split e(a; b; i) de-
noted by TC(a; b; i) is Ti(a; b) [f(a; b; i)g with the following modi�cations: Call a pair
fc; dg separating an ear Pj in Ti(a; b) a maximal pair for Ti(a; b) if there is no e; f in
Ti(a; b) such that fe; fg separates some ear Pk in Ti(a; b) and c and d are in Tk(e; f).
In Ti(a; b) [f(a; b; i)g replace Tj(c; d) together with all two-attachment bridges with
attachments at c and d, for each maximal pair fc; dg of Ti(a; b), by the edge (c; d; j), to
obtain TC(a; b; i). We denote by TC(0; 0; 0), the unique triconnected component that
contains a speci�ed edge on P0.

We note that TC(a; b; i) as de�ned above is a triconnected component of G since
each split of Ti(a; b) in the above de�nition is a valid Tutte split, and the �nal resulting
graph contains no unprocessed separating pair. Further, we also note that every tricon-
nected component of G appears as TC(a; b; i) for some adjacent or extremal separating
pair. This is seen as follows. Let T be a triconnected component of G. By the results
in [18] we know that T can be obtained by a sequence of ear splits at adjacent and
extremal pairs separating ears in the open ear decomposition D of G. Since the order
of processing these ear splits is arbitrary, let us consider a sequence in which these
splits are performed in nonincreasing order of ear number. In this case, every upper
split graph formed at the end of processing ear Pi must be a triconnected component
since it will contain no unprocessed separating pairs. Let Pi be the lowest numbered
ear that contains a separating pair whose copies are present in T and let e(a; b; i) be
the last ear split performed while generating T . Then clearly, T = TC(a; b; i).

In our parallel algorithm, we will make the collection of splits S1 corresponding
to adjacent separating pairs simultaneously, followed by the collection of splits S2 for
extremal separating pairs. We will call each component present after completion of
splits in S1 an adjacent triconnected component, and denote it by TCA(a; b; i). Since
the virtual edges corresponding to the splits will be inserted by concurrent writes, we
will have only one copy of each such edge between a given pair of vertices. Hence we
will not generate the triconnected components corresponding to bonds. These can be
inferred, if necessary, by counting the number of triconnected components of the other
two types that are present at each separating pair.

The rest of this section is devoted to describing an almost-optimal algorithm for
performing these operations. We �rst review some further material from [18] and [22].

Let G be a biconnected graph with an open ear decomposition D = [P0; :::; Pr�1].
Let B1; :::; Bl be the bridges of Pi that contain a non-attachment vertex on an ear
numbered lower than i; we call these the anchor bridges of Pi. The ear graph of Pi,
denoted by Gi(Pi) is the graph obtained from the bridge graph of Pi by

a) Replacing all of the anchor bridges by a new star whose attachments edges are
the union of the internal attachments edges of all anchor bridges, deleting the
attachments of anchor bridges to the end points of Pi, and replacing them by
one new edge to each end point. We will call this new star the anchoring star

23

of Gi(Pi).
b) Removing any multiple two-attachment bridges with the same two attachments,

and also removing any two-attachment bridge with the end points of Pi as
attachments.

Note that Gi(Pi) is a multigraph. (This de�nition of ear graph is slightly modi�ed
from that in [18], [22] to re
ect the change made in the de�nition of bridge graph.)
Gi(Pi) is also a star graph.

Two stars Sj and Sk in a star graph G(P) interlace (see also [5], page 149) if one
of following two hold:

1. There exist four distinct vertices a; b; c; d in increasing order in P such that a
and c belong to Sj(Sk) and b and d belong to Sk(Sj); or

2. There are three distinct vertices on P that belong to both Sj and Sk.
The operation of coalescing two stars Sj and Sk is the process of forming a single

new star Sl from Sj and Sk by combining the attachments of Sj and Sk, and deleting
Sj and Sk. Given a star graph G(P), the coalesced graph Gc(P) of G(P) is the graph
obtained from G by coalescing all pairs of stars that interlace. Note that Gc(P) is a
star graph with respect to P , and Gc(P) has a planar embedding with P on the outer
face, since no pair of stars interlace on P .

Let G(P) be a star graph in which no pair of stars interlace. If G(P) contains
no star that has attachments to the end points x and y of P , then add a virtual star
X to G(P) with attachments to x and y. The star embedding G�(P) of G(P) is the
planar embedding of (the possibly augmented) G(P) with P on the outer face. A star
B is the parent-star of star B0 and B0 a child-star of B if there is a face in the star
embedding G�(P) that contains the left and right attachments x and y of B0 as well as
an attachment edge of B in each of the intervals [l; x] and [y; r], where l and r are the
left and right end points of P .

The following lemma is shown in [18].
Lemma 4.1. A pair fa; bg separates Pi in the coalesced graph Gic(Pi) if and only

if fa; bg separates Pi in G.
We will use the following corollary to the lemma given above.
Corollary 4.2. An edge (x; y) incident on Pi is in TC(a; b; i) if and only if (x; y)

is in the triconnected component associated with pair fa; bg separating Pi in Gic(Pi).
Proof. Let Ci(Pi) be the bridge graph of Pi and let Cic(Pi) be its coalesced graph.

A straightforward extension of the proof of Lemma 4.1 given in [18] (Theorem 1 of that
paper) shows that an edge incident on Pi is in TC(a; b; i) if and only if it is in the
triconnected component associated with the pair fa; bg separating Pi in Cic(Pi). We
then observe that the edges of Ci(Pi) that are deleted in the ear graph Gi(Pi) cannot
appear in TC(x; y; i) for any pair x; y separating Pi.

For convenience of notation, we will denote Gic(Pi) by Gc(Pi). [22] give an almost-
optimal algorithm to form the coalesced graph of a star graphG(P) that runs in logarith-

24

mic time on a CRCW PRAM. This algorithm has the same processor-time complexity
as that of �nding connected components.

Lemma 4.3. In the coalesced graph Gc(Pi), for each adjacent pair fa; bg separating
Pi, there is at most one bridge of Pi with attachments on a; b and a vertex in (a; b), the
portion of Pi between a and b.

Proof. Suppose not, and let B1 and B2 be two bridges of Pi in Gc(Pi) that have
attachments on a, b and a vertex in (a; b). Then B1 and B2 must interlace, which
contradicts the fact that Gc(Pi) is the coalesced graph of the ear graph Gi(Pi).

Lemma 4.4. Let B be a two-attachment bridge of Pi in Gc(Pi) with attachments a
and b. Then

a) If the span [a; b] is degenerate (i.e., (a; b) is an edge in Pi) or if there is a
bridge B0 of Pi with attachments on a and b and at least one other vertex,
then Gc(Pi) � fBg de�nes the same set of polygons and simple triconnected
components TC(x; y; i), for i �xed, as Gc(Pi).

b) If part a does not hold, then fa; bg is an extremal pair separating Pi as well as
an adjacent pair separating Pi.

Proof. Let Pj be the lowest-numbered ear in B. Then, j > i and a and b are the
end points of Pj. Hence the ear split e(a; b; j) separates B from Pi, and thus B is not
part of TC(x; y; i) for any pair fx; yg separating Pi. So a 2-attachment bridge on Pi is
never a part of a triconnected component associated with a pair separating Pi, though
it may de�ne some adjacent and extremal separating pairs as in case b) of the lemma.

We now prove parts a) and b) of the lemma.
a) Suppose span [a; b] is degenerate. Then the triconnected component associated

with split e(a; b; i) is the single edge (a; b), which is a bond. Otherwise, if there
is a bridge B0 with attachments on a; b and at least one other vertex v, then
the triconnected component associated with split e(a; b; i) contains a portion
of Pi between a and b, together with B0 if v is in the interval (a; b) and is a
polygon if v is not in [a; b]. Both of these situations can be inferred without
the presence of B. Note that it is not possible for B0 to have an attachment v
in the interval (a; b) and another attachment w that is not in [a; b], since the
bridge B would interlace with B0 in such a case.

b) Let the span [a; b] be non-degenerate and let the portion of Pi between a and
b be ha = a1; a2; :::; ak = bi. Since there is no k-attachment bridge, k > 2,
with span [a; b], there must exist an ai; 1 < i < k, such that a; ai and b are in
the same candidate list C, and no vertex outside [a; b] is in C. Hence fa; bg is
an extremal separating pair. Also, since there is no bridge with attachments
on a; b and some other vertex c outside [a; b], there must be some vertex c on
Pi such that either c < a < b or a < b < c, and a; b and c are in the same
candidate list C 0. Further, no vertex in the interval (a; b) can belong to C 0.
Hence fa; bg is an adjacent pair in the candidate list C 0.

25

Let fa; bg be an adjacent separating pair for ear Pi. The pair a; b is a non-vacuous
adjacent separating pair for Pi if there is a bridge of Pi in Gc(Pi) with attachments
on a; b and one other vertex in the interval (a; b) on Pi; otherwise the pair fa; bg is a
vacuous adjacent separating pair. We leave it as an exercise to verify that if fa; bg is
a non-vacuous adjacent separating pair then TC(a; b; i) is a simple triconnected graph
and if fa; bg is a vacuous adjacent separating pair, then TC(a; b; i) is a bond; if fa; bg
is an extremal separating pair then TC(a; b; i) is a polygon.

Lemmas 4.3 and 4.4, in conjunction with Corollary 4.2 tell us that we can compute
the triconnected components of G by the following method. Make the splits correspond-
ing to the adjacent separating pairs by performing, for each star B in Gc(Pi), an ear
split e(a; b; i), where [a; b] is the span of B. Then, break o� chains of degree-2 vertices
on the paths in the resulting star graphs to perform the splits corresponding to the
extremal separating pairs.

There are two problems with using the above approach in an e�cient logarithmic
time algorithm for forming the triconnected components of a graph. One is that we
are working with the ear graphs of the ears and the total size of these graphs need not
be linear in the size of G. The second is that this approach will not work if a vertex
a appears in an ear split for two di�erent ears. In particular, two-attachment bridges
corresponding to adjacent separating pairs will be separated on two di�erent ears and
this would cause processor con
icts.

We now turn to G0, the local replacement graph of G which we de�ned in Section
3.1, in order to develop an e�cient method of identifying the associated triconnected
components.

Let G0 be the local replacement graph of G and let D0 = [P 00; :::; P
0

r�1] be the
corresponding open ear decomposition. By Corollary 3.16, a pair fa; bg separates Pi in
G if and only if the pair faPi; bPig separates P 0i in G0. Further, neither aPi nor bPi is an
end point of P 0i . The following lemma shows that in G0 we can e�ciently identify any
bridge B of an ear P 0i which has no attachment to an end point of P 0i .

Lemma 4.5. Let Ge be the graph obtained from G0 by collapsing all internal vertices
of each ear into a single vertex. Let vertex vi represent ear P

0

i in Ge. Then the edges
incident on vi in each block of Ge whose lowest-numbered vertex is vi correspond to the
attachment edges of a bridge of P 0i in G0 and conversely, each bridge of P 0i in G0 that
has no attachments to the end points of P 0i corresponds to a block of Ge.

Proof. Let e1 and e2 be any pair of edges incident on vi that lie in the same block
B of Ge whose lowest-numbered vertex is vi. Then there is a path between e1 and e2 in
B that avoids vi and hence in G0 there is a path between e1 and e2 that avoids internal
vertices of P 0i . But since the lowest-numbered vertex in B is vi, the path between e1
and e2 in B does not contain any vertex on an ear numbered lower than i, and hence
e1 and e2 must lie in a connected component in G0 � fP 0ig.

26

Conversely, let B be a bridge of P 0i in G
0 that has no attachments to the end points

of P 0i . Then, when the internal vertices of P 0i are collapsed into vi, all of the attachments
of B on P 0i become incident on vi. Thus B becomes a block in Ge with articulation
point vi. Further since B has no attachments to the end points of P 0i , B is not an anchor
bridge of P 0i and hence vi is the minimum-numbered vertex in B in Ge.

Recall that (Proposition 3.7) the copies of a vertex v in G0 are connected in the
form of a tree. For the following lemma, assume this local tree that replaces v is rooted
at vS where ear(v) = S.

Lemma 4.6. Let fx; yg be a separating pair that separates P in G. Let C be a
connected component in G� fx; yg that contains P (x; y). If Q is an ear label of one of
the edges of C and if x is one the end points of Q, then xP is an ancestor of xQ in the
local tree that replaces x.

Proof. If Q is parallel to P , then as fx; yg separates P it has the smallest ear label
among the labels of edges of C. Hence, P would have to be the representative of the
bundle containingQ and the lemma is clearly true. Otherwise, notice that V (C)�V (P)
consists of non-attachment vertices of a relevant bridge of P . If the lca of the end points
of Q is not x, then xQ is a child of xP by Step 2 of Build G0. Otherwise, by Lemma
3.12, xQ is a descendant of xP .

Lemma 4.7. Any bridge of P 0i in G
0 with an attachment to an end point of P 0i must

be either part of the anchoring star of G0i(P
0

i) or a bridge of P 0i with attachments only
to the end points of P 0i .

Proof. Let B be a bridge of P 0i in G0 with an attachment to one of its end points
xPj .

We �rst show that the internal vertices on P 0j are part of the anchoring star of P 0i .
If Pj is not parallel to Pi, then j < i and the result follows directly. If Pj is parallel to
Pi, then let C be the connected component constructed in Step 3 of Algorithm Build
G0 that contains Pi and Pj and let Pl be the root of the spanning tree of C constructed
in that step. Hence l � j and xPl is an ancestor of xPj in LTx where LTx the local tree
that replaces the vertex x in G0. Further, by the construction in Step 3 of Algorithm
Build G0 there is a path in G0 between an internal vertex of P 0j and an internal vertex of
P 0l that avoids all vertices on P 0i . Hence the vertices on P 0j belong to an anchor bridge
of P 0i .

Let e = (y; xPj) be an attachment edge of bridge B of P 0i . We will show that B is
an anchor bridge of P 0i . Let e belong to ear P 0k.

If y 6= xPk , then e is an edge on P 0j. Hence e, and thus B, is part of the anchoring
star of P 0i . If y = xPk then consider the fundamental cycle completed by the non-tree

edge (u; v) in P 0k in the tree
!

T in which (xPj ; xPk) is a tree edge. If Pk is not parallel to

Pi, then the presence of edge (xPk ; xPj) in G
0 implies that either this fundamental cycle

contains an edge on P 0j and no vertex on P 0i , or there is a path from v to the root s of
G0 that avoids all vertices in P 0i . In either case, e is part of a bridge of P 0i that contains

27

a non-attachment vertex on an ear numbered lower than i.
If Pk and Pi are parallel to each other, then if Pj is not parallel to Pi, each of Pi and

Pk correspond to the root of the spanning tree of a connected component constructed
in Step 3 of Algorithm Build G0. Hence by Lemma 4.6, B is a bridge of P 0i with no
internal attachment on P 0i . Finally, if Pi, Pj and Pk are all parallel to each other, then
since xPj is the parent of xPk in LTx, there is a path in G0 between an internal vertex
of P 0k and an internal vertex of P 0j that avoids all vertices in P

0

i . Hence e is part of the
bridge of P 0i that contains the internal vertices of P

0

j. This bridge was shown to be an
anchor bridge of P 0i .

Lemmas 4.5 and 4.7 tell us that the following algorithm generates the ear graph of
each ear in G0.

Algorithm Ear Graphs of G0

Input A local replacement graph G0 with its associated open ear decomposition D0 =
[P 00; :::; P

0

r�1].
1. Form Ge.
2. For each block B in G0 do

a) Let the minimum-numbered vertex in B be vi. Make the image e in G0

of each edge e0 in B incident on vi as an attachment edge of non-anchor
bridge B in the ear graph of P 0i .

b) for each vertex vj 6= vi in B make the image e in G0 of each edge e0 of
B incident on vj as an attachment edge of the anchoring star of the ear
graph of P 0j.

3. For each ear P 0i , add attachment edges to the end points of P 0i for the anchoring
star created in Step 2b.

Step 1 is the same as Step 1 of Algorithm Build H applied to G0 (Section 3.2).
Steps 2 and 3 can be implemented in constant time per edge using the �-values of each
vertex computed in Step 3 of Algorithm Build H. The total size of all of the ear graphs
is O(m), where m is the number of edges in G0, since each edge in G0 appears in at most
two ear graphs (corresponding to the ears containing the two end points of the edge).

Having obtained the ear graph G0i(P
0

i) of each ear in G0, we can obtain the coalesced
graph G0c(P

0

i) of each of the ear graphs using the algorithm of [22]. By Corollary 3.16
and Lemma 4.1, a pair fxPi; yPig is an adjacent (extremal) pair separating P 0i in G

0

c(P
0

i)
if and only if fx; yg is an adjacent (extremal) pair separating Pi in Gc(Pi). It turns out
that the relation between G and G0 extends beyond separating pairs to triconnected
components. The following two lemmas allow us to relate the bridges of ears in G0

with the bridges of ears in G, and hence develop an e�cient algorithm to �nd the
triconnected components of G.

Lemma 4.8. Let x be a vertex in Pi in G (possibly its end point) and let e1 =
(u1; x) 2 Pj and e2 = (u2; x) 2 Pk be two edges incident on x that belong to di�erent
bridges (B1 and B2 respectively) of Pi, each of which has an internal attachment on Pi.

28

Then the least common ancestor (lca) of xPj and xPk in LTx is xPp, where xPp is an
ancestor of xPi in LTx.

Proof. Suppose not and let xPl be lca(xPj ; xPk), where xPl is a proper descendant
of xPi .
Case 1: There are no parallel ears incident on x in G.
Let the vertices on the path from xPl to xPj in LTx be xPj1 = xPj ; xPj2 ; :::; xPjr = Pl.
Then by construction the fundamental cycle of Pjh contains an edge in Pjh+1; h =
1; :::; r � 1, and no edge in Pi in G. A similar situation holds for xPk . But then all of
these ears would lie in the same bridge of Pi.
Case 2: There are some parallel ears incident on x in G.
Again, by construction, a pair of parallel ears have an ancestor-descendant relationship
in LTv only if they are connected to each other by a path that avoids Pi and their two
end points. Hence again, by a combination of this observation and the argument in
case 1 we deduce that Pj and Pk must be in the same bridge of Pi.

Lemma 4.9. Let fa; bg be an adjacent or extremal pair separating Pi in G and let
B = fB1; :::; Brg be the bridges of Pi with an internal attachment in (a; b). Similarly,
let B0 = fB01; :::; B0r0g be the bridges of P 0i in G0 with an internal attachment in (aPi ; bPi).
Then, r = r0, and there is a one-to-one correspondence between the bridges in B and the
bridges in B0 (without loss of generality we assume that the correspondence is between
Bi and B

0

i for i = 1; :::; r) such that an edge e is in Bi if and only if the corresponding
edge e0 is in B0i.

Proof. We only need to verify that the connectivity at LTv in G
0�fP 0ig, for v 2 Pi,

since the connectedness in the rest of the graph remains unaltered when a vertex u in
G is replaced by the tree LTu in G0. But we note from Lemma 4.8 that if two edges
e1 = (u; v) 2 Pj and e2 = (u2; v) 2 Pk, v 2 Pi are in di�erent bridges of Pi, then e1 and
e2 are separated from each other in G0 � fvPig. The lemma follows.

From Lemma 4.9, we see that given an adjacent pair fa; bg separating Pi, the bridges
of P 0i with no attachments outside the interval [aPi; bPi] on Pi, together with the path
from aPi to bPi on P

0

i will correspond to the upper split graph of the ear split e(a; b; i) in
G. Now, we can further apply the Corollary 4.2 to G0, and work with G0c(P

0

i) to directly
identify the triconnected components of G. This is done in the following algorithm.
Algorithm Triconnected Components

Input A biconnected graph G with an open ear decomposition D = [P0; :::; Pr�1],
its local replacement graph G0, together with its associated open ear decomposition
D0 = [P 00; :::; P

0

r�1], and the coalesced graph Gc(P
0

i) of the ear graph of each ear in D0.

1. For each ear P 0i do
for each vertex v on P 0i , make a copy, vB, of v for each star B inGc(P

0

i) that
has an attachment on v. If there is no star with an internal attachment
on v, then make an additional copy vP of v to represent the lower split
graph formed when all adjacent pairs containing v have been processed.

29

2. Assign vertices to edges on P 0i
a) For j = 0; 1; :::; k � 1 do

If there is no bridge with its leftmost attachment on j, then replace
edge (j; j +1) on P 0i by an edge incident on jC , where C is B if there
is a bridge B with an internal attachment on j and is P otherwise.

b) For j = 1; :::; k do
If there is no bridge with its rightmost attachment on j, then replace
edge (j�1; j) on P 0i by an edge incident on jD, where D is B0 if there
is a bridge B0 with an internal attachment on j and is P otherwise.

3. Make the splits corresponding to adjacent separating pairs:
For each star B in Gc(P

0

i) do
Let the end attachments of B on P 0i be v and w, v < w.
a) Replace all edges in B incident on v by edges incident on vB. Similarly

replace all edges in B incident on w by edges incident on wB.
b) If B has no child-star with an attachment at v, then replace edge

(v; v+1) on P by an edge incident on vB. Similarly, if B has no child
star with an attachment at w, then replace edge (w�1; w) by an edge
incident on wB.

c) Place a virtual edge between vB and wB, and another virtual edge
between vC and wD, where C (resp. D) is the parent-star of B if the
parent star of B has an attachment at v (resp. w) and is P otherwise.

d) Replace each internal attachment edge of B on a vertex u in P 0i by an
edge incident on uP .

4. Process extremal pairs:
For each star B in Gc(P

0

i) do
Let the attachments of B on P 0i be v0 < v1 < ::: < vl.
For j = 0; :::; l� 1 do

if (vjB ; vj+1B) is not an edge in the current component containing B,
then
For convenience of notation let x denote vj and let y denote vj + 1.
a) Make a copy xBr of x and a copy yBl

of y.
b) Replace the edge on P 0i connecting xB to the next larger vertex

in the current graph by an edge incident on xBr .
c) Replace the edge on P 0i connecting yB to the next smaller vertex

in the current graph by an edge incident on yBl
.

d) Place a virtual edge between xB and yB and another virtual edge
between xBr and yBl

.
5. Convert the vertices in G0 into vertices in G.

In each of the components formed, collapse all vertices that correspond to
a given vertex v in G into a single copy of v to construct the triconnected

30

components of G.
Theorem 4.10. Algorithm Triconnected Components correctly �nds the simple

triconnected components and the polygons of G.
Proof. Consider a bridge B0 in Gc(P

0

i) with span [xPi ; yPi]. By Corollary 3.16 and
Lemma 4.9 we can map each edge e0 in B0 (that is not in any LTv) to an edge e in
a bridge B of Gc(Pi) with span [x; y]. A similar argument holds for the bridges of P 0i
in Gc(P

0

i) corresponding to the maximal pairs in Ti(x; y). Finally, any two-attachment
bridge B00 with attachments cPi and dPi on P

0

i is split o� in P 0j at cPj and dPj , where P
0

j is
the minimum-numbered ear in B00. Hence when we make the split corresponding to B0

in Step 3 of Algorithm Triconnected Components, the edges in the component formed
must correspond to the edges in the adjacent triconnected component TCA(x; y; i).
Finally, the polygons generated in Step 4 are clearly the polygons of the triconnected
components of G since all vertices on a polygon are local to a given ear.

Thus, when we implement Step 5 of the algorithm in a component to get back
original vertices of G, we get back a triconnected component of G.

For the processor-time complexity of Algorithm Triconnected Components, we note
that steps 1, 2 and 4 can be performed optimally in logarithmic time. So can all of
the steps in Step 3 except Step 3c, which requires identifying the parent-star of a star
in a star embedding. This step can be performed using the bucket-sort algorithm of
Hagerup [10]. It can also be performed optimally in logarithmic time using list ranking
and making use of the fact that Gc(P

0

i) is planar. The details of this implementation
are given in [8]. They are omitted here, since the overall complexity of the algorithm is
dominated by the need to perform bucket sort in order to obtain the adjacency lists of
the various graphs. Step 5 can be performed with the same bounds as that of �nding
the connected components of a graph.

Hence Algorithm Triconnected Components runs in O(logn) time deterministically
on a CRCW PRAM while performing O((m+ n) log logn) work.

5. Conclusion. We have presented an e�cient parallel algorithm for dividing a
graph into triconnected components. We conclude the paper by mentioning the follow-
ing remarks.

1. Our algorithm can be adapted to test 3-edge connectivity within the same

bounds. For this we use an ear decomposition instead of an open ear decompo-
sition and look for separating pairs of edges. It turns out that in this case it is
not necessary to construct the local replacement graph since each edge of the
graph is contained in exactly one ear. Hence the resulting algorithm is simpler
than the one we have presented for testing (vertex) triconnectivity.

2. Our parallel algorithm is slightly sub-optimal in the work it performs due to the
sub-optimality of the currently known parallel algorithms for �nding connected
components and performing bucket sort. It will be interesting to �nd improve-
ments in these parallel algorithms, which in turn will lead to improvements in

31

the bounds for our algorithm.

REFERENCES

[1] N. Alon and B. Schieber, \Optimal preprocessing for answering on-line product queries," tech.

report 71/87, Tel Aviv University, Israel, 1987.

[2] J. Cheriyan and R. Thurimella, \Algorithms for parallel k-vertex connectivity and sparse certi�-

cates," Proc. 23rd Ann. ACM Symp. on Theory of Computing, 1991, pp. 391-401.

[3] R. Cole and U. Vishkin, \Approximate and exact parallel scheduling with applications to list,

tree, and graph problems," Proc. 27th Symp. Found. Comp. Sci., 1986, pp. 478-491.

[4] S. Even, \An algorithm for determining whether the connectivity of a graph is at least k," SIAM

J. Computing, vol. 4, 1975, pp. 393-396.

[5] S. Even, Graph Algorithms, Computer Science Press, Rockville, MD, 1979.

[6] S. Even, and R. E. Tarjan, \Network
ow and testing graph connectivity," SIAM J. Computing,

vol. 4, 1975, pp. 507-518.

[7] D. Fussell and R. Thurimella, \Separation pair detection," VLSI Algorithms and Architectures,

Springer-Verlag LNCS, vol. 319, 1988, pp. 149-159.

[8] D. Fussell, V. Ramachandran and R. Thurimella, \Finding triconnected components by local

replacements," Proc. of ICALP 89, Springer-Verlag LNCS, vol. 372, 1989, pp. 379-393.

[9] H.N. Gabow, \A matroid approach to �nding edge connectivity and packing arborescences,"

Proc. 23rd Ann. ACM Symp. on Theory of Computing, 1991, pp. 112-122.

[10] T. Hagerup, \Towards optimal parallel bucket sorting," Information and Computation, vol. 75,

pp. 39-51.

[11] J. E. Hopcroft, and R. E. Tarjan, \Finding the triconnected components of a graph," TR 72-140,

Computer Science Department, Cornell University, Ithaca, NY, 1972.

[12] J. E. Hopcroft, and R. E. Tarjan, \Dividing a graph into triconnected components," SIAM J.

Computing, vol. 2, 1973, pp. 135-158.

[13] J. J�aJ�a, and J. Simon, \Parallel algorithms in Graph theory: Planarity Testing," SIAM J.

Computing, vol. 11, 1982, pp. 314-328.

[14] A. Kanevsky, V. Ramachandran, \Improved algorithms for graph four-connectivity," Journal of

Computer and System Sciences, 42 (1991), pp. 288{306.

[15] R. M. Karp, V. Ramachandran, \Parallel algorithms for shared-memory machines," Handbook of

Theoretical Computer Science, North-Holland, 1990, pp. 869-941.

[16] G.L. Miller, and J. Reif, \Parallel tree contraction and its applications," Proc. 26th Symp. Found.

Comp. Sci., October 1985, pp. 478-489.

[17] G.L. Miller, an V. Ramachandran, \E�cient parallel ear decomposition with applications,"

Manuscript, MSRI, Berkeley, CA, January 1986.

[18] G.L. Miller, and V. Ramachandran, \A new triconnectivity algorithm and its applications," Proc.

19th Ann. ACM Symp. on Theory of Computing, May 1987, pp. 335-344; also, Combinatorica,

vol. 12, 1992, to appear.

[19] Y. Maon, B. Schieber, and U. Vishkin, \Parallel ear decomposition search (EDS) and ST-

numbering in graphs," Theoretical Computer Science, vol. 47, 1986, pp. 277-298. vol. 227,

32

1986, pp. 34-45.

[20] H. Nagamochi and T. Ibaraki, \Linear time algorithms for �nding a sparse k-connected spanning

subgraph of a k-connected graph," Algorithmica, to appear.

[21] V. Ramachandran, \Parallel open ear decomposition and its application to graph biconnectivity

and triconnectivity," to appear as a chapter in Synthesis of Parallel Algorithms, J.H. Reif,

ed., Morgan-Kaufmann.

[22] V. Ramachandran, and U. Vishkin, \E�cient parallel triconnectivity in logarithmic time," VLSI

Algorithms and Architectures, Springer-Verlag LNCS, vol. 319, 1988, pp. 33-42.

[23] S. Rajasekaran and J. H. Reif, \Optimal and sublogarithmic time randomized parallel sorting

algorithms," SIAM J. Computing, vol. 18, 1989, pp. 594-607.

[24] B. Schieber, U. Vishkin, \On �nding lowest common ancestors: simpli�cation and paralleliza-

tion," VLSI Algorithms and Architectures, Springer-Verlag LNCS 319, 1988, pp. 111-123.

[25] R. E. Tarjan, and U. Vishkin, \An e�cient parallel biconnectivity algorithm," SIAM J. Comput-

ing, 14 (1984), pp. 862-874.

[26] W. T. Tutte, Connectivity in Graphs, University of Toronto Press, 1966.

[27] H. Whitney, \Non-separable and Planar Graphs," Trans. Amer. Math. Soc., 34 (1932), pp. 339-

362.

33

Appendix

A. Keeping Gb Sparse. Recall, from Section 3.3, the trick to keep Gb sparse
(Step 1 of Planarize H). We add at most two edges for each vertex b1. The edge (b1; b2)
(resp. (b1; b3)) is such that B2 (resp. B3) interlaces B1 and furthermore it is the bridge
with an attachment that is furthest to the left (resp. right) with respect to the leftmost
(resp. rightmost) attachment of B1.

We show that the connected components of the graph obtained by adding an edge
between b1 and b2 for every interlacing pair of bridges B1 and B2, and that of Gb are
identical. Consider a proof by contradiction. Let B1 = (s; t) be the rightmost bridge
(i.e. highest pos(t) value) with an interlacing bridge B2 = (u; v), pos(u) < pos(s) <
pos(v) < pos(t), such that (b1; b2) 62 E(Gb). Then, by our construction, there must
exist of (b2; r1) and (b1; l1) in Gb where the bridges R = (a; b) and L = (c; d) interlace
with B2 and B1, respectively. Further, R and L are such that pos(d) < pos(u) and
pos(b) > pos(t). Now, since R interlaces with B2, a 2 P (u; v). If a 2 P (s; v), then
R and B1 interlace. As we assumed that B1 is the rightmost bridge that belongs to a
\bad" interlacement pair, we can conclude that (r; b1) 2 E(Gb). On the other hand, if
a 2 P (u; s), R and L interlace and (r; l) 2 E(Gb). In either case, b1 and b2 belong to
the same connected component in Gb. A contradiction.

B. Building an Adjacency list using Bucket Sort. The complexity of the
procedure we are above to describe isO(logn) time usingO((m+n) log logn) processors.
The needed representation is a special kind of adjacency list. In this representation,
every edge (u; v) appears as two directed edges hu; vi and hv; ui, i.e., the vertices u and
v appear in each others adjacency lists. Given a list of edges, we can accomplish this
by (1) sorting the edges to make sure that no edge appears twice initially, (2) creating
hv; ui for every hu; vi, (3) evaluating the degree of each vertex v by using the di�erence
in the addresses in the sorted array of the �rst occurrence and last occurrence of v,
(4) allocating in memory one array of size degree(v) for each v, and �nally (5) making
the processor allocated to (u; v) responsible for creating the entry in the list of u. We
use the parallel bucket-sort algorithm of Hagerup [10] which runs in O(logn) time with
(n log logn) operations to sort n numbers to achieve the desired complexity.

34

