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AN EFFICIENT PARALLEL ALGORITHM FOR THE GENERAL

PLANAR MONOTONE CIRCUIT VALUE PROBLEM�

VIJAYA RAMACHANDRANy AND HONGHUA YANGy

Abstract. A planar monotone circuit (PMC) is a Boolean circuit that can be embedded in the
plane and that contains only AND and OR gates. Goldschlager, Cook & Dymond and others have
developedNC2 algorithms to evaluate a special layered form of a PMC. These algorithms require a
large number of processors (
(n6), where n is the size of the input circuit). Yang, and more recently,
Delcher & Kosaraju have given NC algorithms for the general planar monotone circuit value problem.
These algorithms use at least as many processors as the algorithms for the layered case.

This paper gives an e�cient parallel algorithm that evaluates a general PMC of size n in polylog
time using only a linear number of processors on an EREW PRAM. This parallel algorithm is the
best possible to within a polylog factor, and is a substantial improvement over the earlier algorithms
for the problem. The algorithm uses several novel techniques to perform the evaluation, including
the use of the dual of the plane embedding of the circuit to determine the propagation of values
within the circuit.
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algorithm, EREW PRAM
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1. Introduction. A Boolean circuit is a directed network of AND, OR and NOT
gates whose wires do not form directed cycles. The problem of evaluating a Boolean
circuit, given the values of its inputs, is called the circuit value problem (CVP). This
is a central problem in the area of algorithms and complexity. Ladner [16] has shown
that CVP is P -complete under log space reductions. Some special cases of CVP have
been studied, among which the monotone circuit value problem, where the Boolean
circuit has only AND and OR gates, and the planar circuit value problem, where
the Boolean circuit has a plane embedding, have been shown to be P -complete by
Goldschlager [10].

A planar monotone circuit (PMC) is a Boolean circuit that is both planar and
monotone. One interesting special case of CVP is the planar monotone circuit value
problem (PMCVP), which is the problem of evaluating a PMC. In this paper we give
an e�cient parallel algorithm for the PMCVP that runs in polylog time using a linear
number of processors. The parallel computation model we use here is the EREW
PRAM model [14].

Here is a summary of earlier results for the PMCVP. Goldschlager [7, 8], Dymond
& Cook [4], and Mayr [17] have shown that the problem of evaluating a special
layered form of PMC is in NC2. The �rst NC algorithm for the general PMCVP
was given in Yang [24]; this algorithm runs in O(log3 n) time on an EREW PRAM,
and uses the straight-line code parallel evaluation technique of Miller, Ramachandran
& Kaltofen [18]. Recently Delcher & Kosaraju [3] have given another NC algorithm
for the general PMCVP that runs in O(log4 n) time using a polynomial number of
processors on a CREW PRAM. All of the algorithms listed above use a large number
of processors (at least 
(n6), where n is the size of the input circuit).
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In earlier work (Ramachandran & Yang [20]) we gave an O(log2 n) time EREW
PRAM algorithm using a linear number of processors to evaluate a layered PMC. The
algorithm we present in this paper, when restricted to evaluate a layered PMC, works
with the same processor-time bounds as the one in [20]; however, it is substantially
di�erent in that it works on a plane embedding of the PMC and its dual graph instead
of exploiting a nice layered structure as in [20]. In one sense our algorithm can be
considered to be simpler than the one in [20] since our new approach allows us to
eliminate some tedious case analysis used in [20]. Our algorithm uses some ideas
from [20], as well as from [24] and [3]. In the highest level of our algorithm, we
use an approach similar to that used in [3] to transform a general PMC into `face f
induced subcircuits' (using the terminology of [24], { these circuits are called `focused
circuits' in [3]). These subcircuits are then evaluated using an algorithm to evaluate
a `one-input-face PMC'. The major contribution of our paper is our e�cient parallel
algorithm to evaluate a one-input-face PMC, which is a PMC, not necessarily layered,
all of whose input nodes are on the boundary of one face.

The rest of this paper is organized as follows. In Section 3, we present our algo-
rithm to evaluate a one-input-face PMC. The treatment in Section 3 is self-contained
and does not depend on any result in [20]. In Section 4 we give an algorithm that
runs in polylog time using n processors on an EREW PRAM for evaluating a face f
induced subcircuit given a special type of an input assignment. This algorithm works
by recursively applying the algorithm for evaluating a one-input-face PMC. Finally,
in Section 5 we give an algorithm that runs in polylog time using n processors on an
EREW PRAM for solving the general PMCVP by recursively applying the algorithm
for evaluating a face induced subcircuit.

Our results are of interest for several reasons. In designing our e�cient parallel
algorithm for the PMCVP we have developed a variety of e�cient parallel algorithms
for processing planar DAGs, especially the technique of working on the dual of a
planar DAG. (Other examples of algorithmic techniques based on the dual of a plane
embedding can be found in [22, 13].) These tools are likely to be of use in algorithms
for other problems on planar directed graphs. Our results are of interest in the context
of parallel complexity since all of the earlier algorithms for the PMCVP used indirect
methods such as the relationship between sequential space and parallel time [1] or
the parallel evaluation of straight-line code [18] to place the problem in NC. By using
direct techniques, not only are we able to place the problem in NC, but we are able to
obtain a very e�cient algorithm for its solution. Finally, the evaluation of circuits is a
basic and important problem in computer science. Planar circuits occur very naturally
in the design of integrated circuits, and the requirement that the circuit be monotone
is not a restriction if the inputs are available together with their complements. Thus
our e�cient parallel algorithm for the evaluation of planar monotone circuits could
be of practical importance.

2. Preliminaries.

Definition 2.1. A face of a plane graph C = (V;E) is a maximal portion of the
plane for which any two points may be joined by a curve such that each point of the
curve neither corresponds to a vertex of C nor lies on any curve corresponding to an
edge of C. The boundary of a face f in C consists of all those points x corresponding
to vertices and edges of C having the property that x can be joined to a point of f by
a curve, all of whose points di�erent from x belong to f . (By this de�nition, a single
edge in f belongs to the boundary of f .)
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Definition 2.2. An embedded planar monotone circuit (PMC) is a plane di-
rected acyclic graph (DAG) C = (V;E), where

(i) V is the set of gates (or vertices) in the PMC consisting of input nodes,
AND gates, and OR gates,

(ii) E is the set of directed wires (or edges) in the PMC,
(iii) the fan-in (or in-degree) of an input node is 0, of an AND or OR gate is

either 1 or 2, C may have input nodes that are in di�erent faces,
(iv) the fan-out (or out-degree) of an output gate is 0, of other gates is nonzero,

C may have more than one output gate, but all output gates of C are in the same
face.

In the rest of the paper, whenever we use the term PMC, we should assume that
the PMC is given with an embedding. In case an embedding is not given, we can use
the algorithm in Ramachandran & Reif [19] to obtain one. We assume that the plane
embedding of a PMC C is given by its combinatorial de�nition: a clockwise cyclic
ordering of edges incident to each vertex in C, and a counterclockwise cyclic ordered
sequence of vertices and edges g0; e0; g1; e1; : : : ; gk�1; ek�1 on the boundary of a face
in C such that for any i, 0 � i � k � 1, the edges ei�1 and ei are incident to vertex
gi and ei�1 appears immediately before ei in the cyclic ordering of the edges incident
to gi.

Definition 2.3. A complete input assignment to a PMC is an assignment of
values 0 or 1 to all input nodes in the PMC. A partial input assignment to a PMC is
an assignment of values 0 or 1 to a subset of the input nodes in the PMC. An input
node that is not assigned a value in a partial input assignment has an unknown value.
(A complete input assignment is a special case of a partial input assignment.)

Definition 2.4. The partial evaluation problem of a PMC is the problem of
evaluating the value of every gate in the PMC that can be evaluated, given a partial
input assignment to the PMC. The gates in a PMC that cannot be evaluated under a
partial input assignment have unknown values. A PMC is completely evaluated if the
value of every gate in it is either 0 or 1, it is partially evaluated otherwise. The planar
monotone circuit value problem (PMCVP) is the problem of completely evaluating a
PMC, given a complete input assignment to the PMC.

A one-input-face PMC we de�ne below is a PMC with the following di�erences:
i) It is a restriction of a PMC in that all of its input nodes are on the boundary of a
single face. ii) It is a generalization of a PMC in that it may contain pseudo wires,
which are wires that carry no value. Our algorithm may need to add pseudo wires in
a PMC during the computation in subsection 3.2.

Definition 2.5. A one-input-face PMC C is a variant of a PMC with the
following properties.

1. C is a plane DAG consisting of input nodes, AND gates, and OR gates.
2. All input nodes of C are on the boundary of a single face fI . The in-degree

of an input node is 0, of an AND or OR gate is either 1 or 2.
3. A gate in C with out-degree 0 is called an output gate. The out-degree of

other gates or input nodes is nonzero. C may have more than one output gate, but
all output gates of C are on the boundary of a single face fO.

4. If fI and fO are identical, then the input nodes and the output gates of C
may not interlace, i.e. there exists a part of the boundary of fI which contains all
input nodes but no output gates.

5. Some of the gates in C may contain a single output wire that does not carry
any value and that goes into a two-input gate (note that such a gate with a single
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output wire that does not carry any value is not an output gate). We call a wire that
does not carry any value a pseudo wire. Further, a two-input gate g may receive at
most one input from a pseudo wire, and the value of g only depends on its non-pseudo
input wire(s).

We will give a recursive algorithm in Section 3 that evaluates a one-input-face
PMC of size n in O(log2 n) time using n processors on an EREW PRAM, where
properties 4 and 5 in De�nition 2.5 are needed after the �rst level of recursion.

Definition 2.6. Reach(i1; : : : ; ik) for some input nodes i1; : : : ; ik in a PMC is
the part of the PMC that is reachable from i1; : : : ; ik. Given a subcircuit P of a PMC,
Reach(P ) is de�ned to be the part of the circuit reachable from the input nodes in
P . Induced(i1; : : : ; ik) for some input nodes i1; : : : ; ik that are on the boundary of
a single face f (where i1; : : : ; ik need not be all the input nodes of f) in a PMC C
is Reach(i1; : : : ; ik) augmented with a new input node set VIN and a wire set EIN

which are formed as follows: if a gate x 2 C nReach(i1; : : : ; ik) has some output wires
(x; y1); (x; y2); : : : ; (x; yl), (l � 1) pointing to gates y1; y2; : : : ; yl in Reach(i1; : : : ; ik),
then we add a new input node ix to VIN and wires (ix; y1); (ix; y2); : : : ; (ix; yl) to EIN .
We call such Induced(i1; : : : ; ik) a face f induced (sub)circuit.

It is easy to see that a face f induced circuit is still a PMC. A face f induced circuit
Cf is not necessarily a one-input-face PMC since the newly added input nodes can
appear in faces other than f in Cf . But Cf is still simpler than a general PMC in the
sense that all gates in Cf except the newly added input nodes are reachable from some
input nodes on the boundary of face f , and once the values of the new input nodes
are known, Cf can be transformed into a logically equivalent one-input-face PMC.
We give an algorithm in Section 4 that partially evaluates a face induced circuit of
size n given a special input assignment, in polylog(n) time using n processors on an
EREW PRAM, by recursively calling the algorithm for evaluating a one-input-face
PMC. In Section 5, we give an algorithm that completely evaluates a general PMC
of size n in polylog(n) time using n processors on an EREW PRAM, by recursively
calling the algorithm for partially evaluating a face induced circuit, given a special
input assignment.

3. The One-Input-Face PMC. We �rst consider the problem of completely
evaluating a one-input-face PMC C given a complete input assignment. This treat-
ment appears in subsections 3.1, 3.2, and 3.3. We then solve the problem of partially
evaluating a one-input-face PMC in subsection 3.4. Our approach is to �rst �nd a
set of gates in C that are guaranteed to have value 1, and then recursively evalu-
ate the remaining smaller unevaluated subcircuits of C. In an earlier paper [20] we
had considered a special case of a one-input-face PMC, namely, a layered PMC (as
mentioned in the introduction). In a layered PMC, a sequence of gates with value
1 at one layer guarantees that a sequence of gates at the next layer will have value
1; and the left and the right boundaries of the gates with value 1 are de�ned by the
starting gate and the ending gate of the sequence at each layer respectively. In a
one-input-face PMC C that does not have the layered property, we do not have such
a simple correspondence. In the treatment below, we work with the dual of a plane
embedding of C, and de�ne the left and right boundaries of the gates with value 1
in a manner that allows us to determine the propagation of the 1 values through the
circuit.

In subsection 3.1, we will give some de�nitions and lemmas. In subsection 3.2,
we will present our techniques for �nding the left and right boundaries of the gates
with value 1 and for simplifying the remaining circuit of C. In subsection 3.3, we will
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Fig. 1. Caug : a one-input-face PMC C augmented with a super source s and a super sink t.
Here fI = fO.

give the complete algorithm for evaluating a one-input-face PMC given a complete
input assignment and its complexity analysis. In subsection 3.4, we will extend the
algorithm to evaluate a one-input-face PMC given a partial input assignment.

Throughout Section 3, we use C to refer to a one-input-face PMC unless otherwise
stated.

3.1. De�nitions.

Definition 3.1. A gate is a source of a face f in C if it has two output wires
that are on the boundary of f . A gate is a sink of a face f in C if it has exactly
two input wires and both are on the boundary of f . Let fI be the face of C whose
boundary contains all the input nodes and let fO be the face of C whose boundary
contains all the output gates. Caug is a DAG obtained from C by adding a super
source s in fI and auxiliary wires connecting s to every input node in C, and a super
sink t in fO and auxiliary wires connecting every output gate to t (see Figure 1).

By De�nition 2.5, if fI and fO are identical then the input nodes and the output
gates may not interlace in C. Hence Caug is still a plane graph. In the rest of the
paper, we assume that C has at least two input nodes. If C has only one input node,
then by De�nition 2.2 all gates in C have the same value as the only input node,
which is a trivial case. The reason that we augment C to Caug is that there is a single
source and a single sink in every face of Caug as shown in the following lemma. This
property is crucial to many de�nitions given in this subsection.

Note that not every one-input-face PMC has a downward plane drawing [11] as
in Figure 1, if fI and fO are di�erent faces.

Lemma 3.1. Every face in Caug has exactly one source and one sink.

Proof. Every gate in Caug is reachable from s and reachable to t. Since Caug is
a DAG, there is at least one source and one sink on the boundary of a face in Caug.
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Suppose a face f has two sources s1 and s2 and therefore two sinks t1 and t2. Then
we consider the following four directed paths in Caug: the path P1 from s to s1, the
path P2 from s to s2, the path P3 from t1 to t, and the path P4 from t2 to t. The
path P consisting of P1 and P2 joins the face f

0 at s1 and s2. The path Q consisting
of P3 and P4 joins the face f 0 at t1 and t2. But s1 and s2 interlace with t1 and t2 on
the boundary of f . But the two paths P and Q have to be embedded in one side of
the boundary of f . A contradiction. Hence every face in Caug has exactly one source
and exactly one sink.

The following lemma is needed for De�nition 3.3.

Lemma 3.2. The output wires of a gate g in Caug are placed consecutively in the
cyclic ordering of the wires around g.

Proof. Let g be a gate in Caug with two input wires i1 and i2 and two output
wires o1 and o2, such that o1 and o2 interlaces with i1 and i2 in the cyclic ordering of
the wires around g. Since every gate in Caug is reachable to t, there are two directed
paths P1 and P2 in Caug from g to t, where P1 goes through o1 and P2 goes through
o2. Let x be the �rst gate (except g) on P1 that is also on P2. Since Caug is acyclic,
x must be the �rst gate (except g) on P2 that is also on P1. The subpath of P1 from
g to x and the subpath of P2 from g to x form an undirected cycle which divides the
plane into two parts Cinside and Coutside, where Cinside is the part of the plane that is
inside the cycle and Coutside is the part of the plane that is outside the cycle. Without
loss of generality, assume that the super source s and the input wire i2 are in Coutside.
Let i1 = (g1; g). Then g1 and i1 are in Cinside and g1 is not reachable from s since
otherwise there would be a directed cycle in Caug. Hence g1 is reachable from some
input nodes in Cinside that cannot be reached from s in Coutside. A contradiction.

Definition 3.2. The left (right) input wire of a two-input gate g is the input
wire of g that appears immediately after (before) an output wire of g in the clockwise
cyclic ordering of the wires around g.

Note that the source and the sink of a face f in Caug partition the boundary of
f into two disjoint (except at the source and the sink) directed paths.

Definition 3.3. The path from the source to the sink going through the left
input wire of the sink is the counterclockwise boundary of the face, and the path from
the source to the sink going through the right input wire of the sink is the clockwise
boundary of the face.

Definition 3.4. The dual digraph C�
aug =< V �; E� > of the plane directed

primal graph Caug =< V;E > is de�ned as follows.

(i) For each primal face f in Caug, de�ne a dual vertex f� in V �.
(ii) For each primal edge e in Caug such that e is on the clockwise boundary

of a primal face f1 and the counterclockwise boundary of another primal face f2,
de�ne a counterclockwise dual edge e�+ = (f�1 ; f

�
2 ) in E� and a clockwise dual edge

e�� = (f�2 ; f
�

1 ) in E�.

Note that in the dual graph C�
aug, we introduce dual edges of both directions,

clockwise and counterclockwise for each edge in the primal graph. The dual graph
C�
aug can also be viewed as the result of forming the undirected dual graph of Caug

and replacing the dual edges by dual arcs of both directions.

For convenience, for a primal face f , and a primal edge e, we will use f�; e�+; e��

to indicate the dual vertex of f , the counterclockwise dual edge of e, and the clockwise
dual edge of e respectively.

In the following de�nition, we de�ne an auxiliary graph (which can be viewed as
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Fig. 2. Caug and Aaug , the auxiliary dual graph. Caug consists of the solid edges. Aaug
consists of the dashed edges. The two graphs overlap at s and t.

a subgraph of C�
aug augmented with s and t) that contains some edges called left legs

and right legs. These edges aid us in de�ning regions of Caug where value 1 propagates
from input nodes. Thus, their de�nitions are dependent on whether a gate is an AND
gate or an OR gate and whether a wire is a pseudo wire, since an AND gate has value
1 if both of its inputs have value 1, an OR gate has value 1 if one of its inputs has
value 1, and a pseudo wire does not pass any value.

Definition 3.5. The auxiliary dual graph Aaug =< V �

1 ; E
�

1 > is de�ned as
follows (see Figure 2).

(i) V �
1 contains the dual vertices of all the primal faces in Caug, together with

the super source s and the super sink t.
(ii) E�

1 contains all the dual edges called the left legs and the right legs de�ned
as follows.
Let f be a primal face in Caug whose boundary does not contain t and let g be the
sink of f with left input wire wl and right input wire wr.

(i) If g is an OR gate with no pseudo input wire, then the left leg and the right leg
of f� are w��

l (i.e., the clockwise dual edge of wl) and w
�+
r (i.e., the counterclockwise

dual edge of wr) respectively.
(ii) If g is an AND gate with no pseudo input wire, then the left leg and the

right leg of f� are w�+
r and w��

l respectively.
(iii) If wl is a pseudo wire, then both the left leg and the right leg of f� are w��

l .
(iv) If wr is a pseudo wire, then both the left leg and the right leg of f� are w�+

r .
(v) Let f be a primal face whose boundary contains t or s in Caug. Then we

add an auxiliary edge (f�; t) or (s; f�) to E�

1 , respectively.
Aaug n fs; tg is a subgraph of C�

aug that contains some dual edges of the input
wires to the sinks of the faces in Caug. It is easy to see that after being augmented
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with s and t, Aaug is still a plane graph since the input nodes and the output gates
of C do not interlace.

Lemma 3.3. If there is an edge e� = (f�1 ; f
�

2 ) in Aaug which is either a left leg or
a right leg, then there is a directed path of length at least 1 from the sink s1 of f1 to
the sink s2 of f2 in Caug.

Proof. By De�nition 3.5, s1 must be on either the clockwise boundary or the
counterclockwise boundary of f2 in Caug. Since a gate (except t) has at most two
input wires and therefore can be the sink of at most one face, s1 cannot be the sink
of f2. Hence there is a directed path of length at least 1 from s1 to s2.

Corollary 3.3.1. Aaug is a plane DAG whose only vertex with out-degree 0 is
t.

Proof. By Lemma 3.3, Aaug is acyclic and hence a DAG. It is obvious that the
only vertex in Aaug with out-degree 0 is t.

Definition 3.6. Two input nodes i1 and i2 in Caug are adjacent if the wire
(s; i1) and the wire (s; i2) are adjacent in the cyclic ordering of the wires around s in
Caug. Given a complete input assignment to the input nodes of Caug, a valid base B
is a maximal sequence of adjacent input nodes with value 1. The left (right) bounding
face of a valid base B is the face in Caug whose clockwise (counterclockwise) boundary
contains an input node in B, but whose counterclockwise (clockwise) boundary does
not (see Figure 5).

If all input nodes in Caug have value 1, then the left bounding face and the right
bounding face are not de�ned. But this is a trivial case since we know that all gates
of Caug must have value 1.

Definition 3.7. For a valid base B in Caug, let fl and fr be the left and right
bounding faces of B respectively. The left boundary and the right boundary of B are
the two directed paths P �

l and P �

r respectively in Aaug, such that (1) P �

l and P �

r start
from s, (2) P �

l consists of left legs and auxiliary edges and goes through (s; f�l ), (3)
P �
r consists of right legs and auxiliary edges and goes through (s; f�r ), (4) Pl and Pr

end at their �rst common vertex g� (g� could be t) after s (see Figures 5 & 6).

Definition 3.8. Given a valid base B, the left boundary P �

l of B and the right
boundary P �

r of B divide the plane into two regions. The region whose counterclock-
wise boundary is P �

l and whose clockwise boundary is P �
r is called the internal region

of B, the other region is called the external region of B (see Figures 5 & 6).

Lemma 3.4. Given a complete input assignment to Caug where there is only one
valid base B (all other input nodes have value 0), a gate g in Caug evaluates to 1 i�
g is in the internal region of B.

Proof. Let us embed Aaug and Caug in the plane simultaneously with the same
super source s and the same super sink t (as in Figure 2) such that the only pri-
mal edges in Caug that cross the left and right boundaries P �

l and P �

r of B are the
input wires to the sinks of some of the primal faces in Caug. (This is provable by
De�nitions 3.5 and 3.7.) A sink in Caug with a pseudo input wire can have only its
pseudo input wire (but not the other input wire) crossing P �

l or P �
r . Further, a sink

of a primal face f in Caug cannot have its two input wires crossing an edge w�

l in P �

l

and an edge w�
r in P �

r respectively, since otherwise f� would be the common starting
vertex of both w�

l and w�

r and therefore would be a common vertex of P �

l and P �

r ,
but P �

l and P �
r do not end at f� since w�

l is in P �

l and w�
r is in P �

r , a contradiction.

Therefore, if we remove all wires that cross P �

l and P �
r from Caug and call the

resulting graph C0
aug, then every gate (except the input nodes) in C0

aug still has at
least one non-pseudo input wire (by the previous paragraph), and hence can still be
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reached from some input nodes without going through pseudo wires. Further, the
gates in the internal (external) region of B in C0

aug can be reached only by the input
nodes in the internal (external) region. Therefore, if we remove all wires crossing P �

l

and P �

r from Caug, the gates in the internal region of B will have value 1 and the gates
in the external region of B will have value 0. We now show that this is still the case
even if we do not remove the wires crossing P �

l and P �
r from Caug. By De�nition 3.5,

a wire in Caug outgoing from a gate in the external region of B and incoming to a
gate in the internal region of B is either an input wire to a two-input OR gate, or
a pseudo input wire to a two-input gate. Hence the gates in the internal region of
B in Caug will still have value 1. A primal edge in Caug outgoing from the internal
region of B to the external region of B is either an input wire to a two-input AND
gate that is in the external region of B, or a pseudo wire to a two-input gate that is
in the external region of B. Hence the gates in the external region of B in Caug will
still have value 0. Hence the lemma holds.

Corollary 3.4.1. Given a complete input assignment to Caug, if a gate g is in
the internal region of a valid base in Caug, then g evaluates to 1.

Proof. By Lemma 3.4 and the monotonicity of Caug.
Note that the reverse of Corollary 3.4.1 need not be true if there is more than one

valid base in Caug, i.e., some gates outside the internal regions of the valid bases of
Caug might also be evaluated to 1. Hence our approach to evaluate a one-input-face
PMC Caug is to �rst �nd some of the gates that evaluate to 1 based on the internal
regions of the valid bases of Caug, remove them from Caug, and repeatedly evaluate
the resulting Caug.

3.2. Complete Evaluation of a One-Input-Face PMC. In this subsection,
we give an e�cient method for computing the left and the right boundaries for all
valid bases in Caug simultaneously, given a complete input assignment to Caug. The
main idea is to identify for each dual vertex f� in Aaug whether it is on the left
(right) boundary of some valid base in Caug (i.e., whether BOUNl(f�) or BOUNr(f�)
de�ned in De�nition 3.10 below is nonempty). Based on this approach, we present a
technique to transform the part of Caug that has not been evaluated to 1 into several
subcircuits that are one-input-face PMCs with smaller sizes, and more importantly,
with geometrically decreasing number of valid bases.

We �rst de�ne two tree structures that consist of left legs and right legs.
Definition 3.9. Let Vl (Vr) be the set of vertices of Aaug (except s) that are

reachable through left (right) legs and auxiliary edges incoming to t from the dual
vertex of the left (right) bounding face of some valid base in C. We de�ne T �

l (T �
r )

to be the subgraph of Aaug induced by Vl (Vr).
For example, Figure 3 gives T �

l and T �
r for the circuit in Figure 1 with an input

assignment (0; 1; 0; 1) to the input nodes i1; i2; i3; i4.
Lemma 3.5. Both T �

l and T �
r are convergent trees.

Proof. By Corollary 3.3.1, Aaug is a DAG. By De�nition 3.5, there is exactly one
left leg and one right leg, or one auxiliary edge outgoing from each vertex (except s)
in Aaug . Hence the lemma holds.

In the following de�nitions and lemmas, we de�ne BOUNl(f
�) (BOUNr(f

�)) and
related concepts, and describe our approach to compute BOUNl(f

�) (BOUNr(f
�)).

Among the sets de�ned below are two related and similar concepts, BOUNl(f
�)

(BOUNr(f�)) and BASEl(f�) (BASEr(f�)); these sets are di�erent in that the
latter is a superset of the former and is de�ned to aid the computation of the former.

Definition 3.10. PREDl(f
�) (PREDr(f

�)) is the set of the proper predecessors
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Fig. 3. T �
l
and T �r for the circuit in Figure 1, given an input assignment (0;1; 0;1) to the input

nodes i1; i2; i3; i4. T �l consists of the light dashed edges. T �r consists of the dark dashed edges.

of f� in T �

l (T �

r ), i.e. the set of dual vertices that can reach f� through directed paths
of length at least 1 in T �

l (T �

r ).

We associate with each dual vertex f� in T �

l (T �
r ) the following sets of valid bases

of Caug:

(i) BASEl(f�) (BASEr (f�)) is the set of valid bases B such that the dual ver-
tex of the left (right) bounding face of B is either f� or in PREDl(f

�) (PREDr(f
�)).

(Informally,BASEl(f�) (BASEr (f�)) is the set of the valid bases in Caug whose left
(right) boundaries either contain f� or a predecessor of f� in T �

l (T �
r ).)

(ii) BOUNl(f�) (BOUNr(f�)) is the set of valid bases B whose left (right)
boundary contains f�.

(iii) JOIN (f�) = BASEl(f�) \BASEr (f�). (Informally, JOIN (f�) is the set
of valid bases whose left and right boundaries either terminate at f�, or terminate at
a predecessor of f� and the extension of the left and right boundaries rejoin at f�.)

(iv) TERM (f�) is the set of valid bases whose left and right boundaries termi-
nate exactly at f�.

For convenience, if a set for a dual vertex in Aaug cannot be de�ned through
De�nition 3.10 (e.g., if a dual vertex is not in T �

l ), we assume that it is empty.

Figure 4 illustrates the above de�nitions. For valid base B2 = fi4g with left
bounding face f3 and right bounding face f4 in Figure 1, the left boundary of B2 is
a subpath of the path from f�3 to t in T �

l , the right boundary of B2 is a subpath of
the path from f�4 to t in T �

r (in this case, the subpath is the single vertex f�4 ). Notice
the di�erence between BASEl(f�4 ) = fB1; B2g and BOUNl(f�4 ) = fB2g, between
BASEr (t) = fB1; B2g and BOUNr(t) = �, and between JOIN (t) = fB1; B2g and
TERM (t) = �.

The relations among these sets are summarized in the following lemma. For
convenience, we will focus on the sets with index l. The relations among the sets with
index r are symmetric.

Lemma 3.6. Let f� be a dual vertex in Aaug. Then

1. BASEl(f
�

p ) � BASEl(f
�), for any f�p 2 PREDl(f

�).
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Fig. 4. Illustrations for the sets BASEl, BASEr , BOUNl, BOUNr, JOIN , and TERM
on T �

l
and T �r . For each node f� in T �

l
, the contents of ()l denote BASEl(f

�), the contents
of []l denote BOUNl(f

�), the contents of ()j denote JOIN(f�), and the contents of ()t denote
TERM(f�). For each node f� in T �r , the contents of ()r denote BASEr(f�), and the contents of
[]r denote BOUNr(f�),

2. BOUNl(f�) \BOUNl(f�1 ) = � and BASEl(f�) \BASEl(f�1 ) = �, for any
f�1 that does not have predecessor-successor relation with f� in T �

l .
3. TERM (f�) \ TERM (f�1 ) = �, for any f�1 6= f�.
4. TERM (f�) = JOIN (f�) n [f�p2PREDl(f�)JOIN (f�p ).

5. BOUNl(f�) = BASEl(f�) n [f�p2PREDl (f�)TERM (f�p ); and

jBOUNl(f
�)j = jBASEl(f

�)j �
P

f�p2PREDl (f�)
jTERM (f�p )j.

Proof. The correctness of 1, 2, 3 follows directly from De�nition 3.10. The
correctness of 4 follows from De�nition 3.7, De�nition 3.10 and 1, 2. The correctness
of 5 follows from De�nition 3.10 and 1, 2, 3.

Our goal is to identify the gates that are on the left and right boundaries of some
valid base. Since a left leg (f�1 ; f

�

2 ) is on the left boundary of some valid base i�
jBOUNl(f

�
1 )j > 0 and jBOUNl(f

�
2 )j > 0, it su�ces to compute jBOUNl(f

�)j for
every f� in T �

l . BASEl(f�) (and hence jBASEl(f�)j) can be easily computed using
the Euler-tour technique [23] on T �

l (see Procedure 2 in subsection 3.3 for details).
Since BASEl(f

�) (BASEr (f
�)) contains valid bases with consecutive labels (modulo

the total number of bases) in the total order of the valid bases, it can be described
succinctly by a range [x, y] where x, y are the numbers of the �rst and the last valid
bases in BASEl(f

�) (BASEr(f
�)) respectively. If we can compute jTERM (f�)j for

every f� that is in both T �

l and T �
r , then we can compute jBOUNl(f

�)j using 5 in
Lemma 3.6 and the Euler-tour technique. It remains to compute jTERM (f�)j for
every f� that is in both T �

l and T �

r .



12 V. RAMACHANDRAN AND H. YANG

We can try to compute jTERM (f�)j directly from 4 in Lemma 3.6. However, note
that the sets JOIN (f�) = BASEl(f�) \ BASEr(f�) are not necessarily disjoint for
di�erent f� in T �

l if they have predecessor-successor relation. Instead, we show in the
following lemma that they satisfy some important properties, and then in Lemma 3.8
we give a formula to compute TERM (f�) with disjoint JOIN (f�) sets.

Lemma 3.7.

1. If f�p is a predecessor of f� in both T �

l and T �
r , then JOIN (f�p ) � JOIN (f�).

2. Otherwise, JOIN (f�) \ JOIN (f�p ) = �.

Proof.
1. By 1 in Lemma 3.6, we have both BASEl(f

�
p ) � BASEl(f

�) and BASEr (f
�
p ) �

BASEr (f
�). Therefore, JOIN (f�p ) � JOIN (f�).

2. Without lose of generality, assume f� and f�p do not have predecessor-successor
relation in T �

l . Then by 2 in Lemma 3.6, BASEl(f�) \BASEl(f�p ) = �. Therefore,
JOIN (f�p ) \ JOIN (f�) = �.

Based on Lemma 3.7, we give the following de�nition.

Definition 3.11. For a dual vertex f� and one of its predecessors f�p in T �

l

with JOIN (f�) 6= � and JOIN (f�p ) 6= �, JOIN (f�p ) is immediately enclosed by
JOIN (f�), denoted by JOIN (f�p ) �I JOIN (f�), i� JOIN (f�p ) � JOIN (f�) and
there is no dual vertex f�q on the directed path from f�p to f� in T �

l such that
JOIN (f�q ) � JOIN (f�).

Lemma 3.8. For a dual vertex f� that is in both T �

l and T �
r ,

1. TERM(f�) = JOIN(f�) n [f�p2PREDl(f
�)^JOIN(f�p )�IJOIN(f�)JOIN(f�p ),

2. jTERM(f�)j = jJOIN(f�)j �
P

f�p2PREDl(f�)^JOIN(f�p )�IJOIN(f�)
jJOIN(f�p )j.

Proof. By 4 in Lemma 3.6 and Lemma 3.7, 1 holds immediately. By De�ni-
tion 3.11, none of the f�p in the summation in 2 has predecessor-successor relation.
By Lemma 3.7, the sets JOIN (f�p ) in 2 are disjoint. Hence 2 holds.

The above lemmas give us the necessary tools to compute jBOUNl(f�)j e�ciently
in parallel. The algorithms that implement the computations in Lemmas 3.6 & 3.8 are
given in procedures 2 & 3 and in the proof of Lemma 3.16 in subsection 3.3. Having
computed the left and right boundaries of the valid bases of Caug, our next step is
to identify the regions of Caug that consist of gates with value 1. In the following
de�nition, we de�ne a separating graph Asep, which is a subgraph of Aaug that consists
of the left and right boundaries of all the valid bases of Caug, and which is used to
�nd the regions of Caug that consists of gates with value 1. It is formally de�ned as
follows:

Definition 3.12.

1. A separating graph Asep contains s and the vertices f� in Aaug for which ei-
ther BOUNl(f�) 6= � or BOUNr(f�) 6= �. Asep contains t if BOUNl(t) 6= � or
BOUNr(t) 6= �.
2. An edge (f�1 ; f

�

2 ) of Aaug is an edge in Asep if one of the following three con-
ditions holds: a) f�1 = s and f2 is the left or right bounding face of a valid base,
or b) BOUNl(f

�
1 ) 6= � and BOUNl(f

�
2 ) 6= � and BOUNl(f

�
1 ) 6= TERM (f�1 ), or c)

BOUNr(f
�
1 ) 6= � and BOUNr(f

�
2 ) 6= � and BOUNr(f

�
1 ) 6= TERM (f�1 ).

Asep is a subgraph of Aaug, which is a subgraph of C�
aug (the dual graph of Caug)

augmented with s and t. Hence Asep is a plane graph. Each face in Asep is called
a separating region of the primal graph Caug. Note that a separating region of Caug

either is in the internal region of a valid base, or in the external region of every valid
base, in which case we call it an external separating region.

In the example in Figure 5, Asep consists of the left and right boundaries of
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Fig. 5. Caug and Asep to show the left and right boundaries of B1 and B2. Caug consists
of the solid edges. The complete input assignment to the input nodes i1; i2; i3; i4 is (0, 1, 0, 1).
B1 = fi2g and B2 = fi4g are two valid bases. The left bounding face and the right bounding face
of B1 are f1 and f2 respectively. The left boundary of B1 is the directed path (s; f�1 ; f

�
5 ; f

�
10; f

�
8 ; f

�
9 )

and the right boundary of B1 is the directed path (s; f�2 ; f
�
6 ; f

�
9 ). The part of the plane inside the

two boundaries is the internal region of B1 and the part of the plane outside the two boundaries is
the external region of B1. The left bounding face and the right bounding face of B2 are f3 and f4
respectively. The left boundary of B2 is the directed path (s; f�3 ; f

�
6 ; f

�
7 ; f

�
4 ) and the right boundary

of B2 is the directed path (s; f�4 ). Asep consists of all dashed edges.

B1 and B2. The separating regions of Caug in Figure 5 are: the face in Asep

with boundary (s; f�1 ; f
�
5 ; f

�
10; f

�
8 ; f

�
9 ; f

�
6 ; f

�
2 ; s) (i.e., the internal region of B1), the

face in Asep with boundary (s; f�3 ; f
�
6 ; f

�
7 ; f

�
4 ; s) (i.e., the internal region of B2), the

face in Asep with boundary (s; f�2 ; f
�

6 ; f
�

3 ; s), and the face in Asep with boundary
(s; f�1 ; f

�

5 ; f
�

10; f
�

8 ; f
�

9 ; f
�

6 ; f
�

7 ; f
�

4 ; s).
Definition 3.13. A wire w is incoming to (outgoing from) a subcircuit C0 if the

head (tail) of w is a gate in C0 but the tail (head) of w is not.
Lemma 3.9. All incoming wires to an external separating region R in Caug are

either wires with value 1 or pseudo wires. (Any input node in R will have value 0.)
Proof. The wires incoming to R must come from the internal regions of some

valid bases, since a wire crosses a boundary of a valid base B either from the internal
region to the external region of B, or from the external region to the internal region
of B. Since R is not in the internal region of any valid base of Caug, all the wires
incoming to R are wires outgoing from the internal regions of some valid bases. By
Corollary 3.4.1, the gates in the internal region of any valid base of Caug have value
1. Hence all incoming wires to R are either wires with value 1 or pseudo wires.

Recall that Corollary 3.4.1 states that the gates in the internal region of every
valid base of Caug have value 1. Hence the gates in the separating regions that are
in the internal region of a valid base have value 1. In the following corollary we
will extend Corollary 3.4.1 to show that in fact the gates in any separating region
(including external separating region) that does not contain an input node with value
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Fig. 6. Caug and Asep to show the left and right boundaries of B1 and B2. Caug consists
of the solid edges. Asep consists of the dashed edges. The complete input assignment to the input
nodes i1; i2; i3; i4; i5 is (1, 0, 1, 0, 1). B1 = fi3g and B2 = fi5; i1g are two valid bases. The left
boundary of B1 is the directed path (s; f�1 ; f

�
5 ; f

�
6 ) and the right boundary of B1 is the directed path

(s; f�2 ; f
�
7 ; f

�
6 ). The left boundary of B2 is the directed path (s; f�3 ; f

�
8 ; f

�
9 ; f

�
10) and the right boundary

of B2 is the directed path (s; f�4 ; f
�
10).

0 will have value 1.
Corollary 3.9.1. If a separating region R of Caug does not contain an input

node with value 0, then all the gates of Caug in R have value 1.
Proof. If R is in the internal region of a valid base, then by Corollary 3.4.1, the

lemma holds. Now we consider an external separating region R that is not in the
internal region of any valid base of C. By Lemma 3.9, all incoming wires to R are
either wires with value 1 or pseudo wires. Since R does not contain an input node
with value 0, all the gates in R will have value 1.

By Corollary 3.9.1, the problem of evaluating the one-input-face PMC C is now
reduced to the problem of evaluating each subcircuit of Caug in an external separat-
ing region that contains input nodes with value 0, since the gates in other separating
regions are known to have value 1. Our next step is to transform these subcircuits
into one-input-face PMCs so that we can evaluate these subcircuits recursively. One
nontrivial problem with a subcircuit of Caug in a separating region is that the output
gates of the subcircuit may interlace with the input nodes of the subcircuit, which
makes it impossible to add a super sink to the subcircuit without violating the pla-
narity property. For example, in Figure 5, after removing the gates in the internal
region of B1 and the internal region of B2, g1 will be a new output gate and g2 will
be a new input gate, and the input nodes and the output gates i1; g1; g2; g3; g4 are
interlaced with each other in the resulting subcircuit. The following de�nition and
procedure give a method we will apply to solve this problem. This construction uses
pseudo wires (de�ned in part 5 of De�nition 2.5).
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Procedure 1: Subcircuit transformation

Input: CR, the subcircuit of Caug in an external separating region R containing at least
one input node with value 0.

Output: C0
R
, a one-input-face PMC logically equivalent to CR.

0. Initialize C0
R
to CR;

1. for each wire wi in Caug incoming to CR in parallel do

let g be the gate in CR receiving wi as an input;
ffnote that g must be a two-input AND gate and the sink of a facegg
(a) if the other input wire of g is in R then remove wi from C0

R
;

(b) else (i.e., the other input wire of g is a wire incoming to CR)
make g a new input node with value 1 in C0

R
;

end fifg;
end fforg;

2. for each wire wo in Caug outgoing from CR in parallel do

insert a one-input AND gate gwo in wo with gwo lying inside R,
and remove the part of wo outgoing from gwo;
let w�o = (f�1 ; f

�) be the dual edge on the boundary of R that crosses wo ;
assume wo is on the counterclockwise (clockwise) boundary of the face f in Caug;
let sf be the sink of f in Caug ;
let w� be the other edge connected to f� on the boundary of R in Asep;
(a) if w� is an outgoing edge of f�

then ffw� crosses either the left input wire wl or the right input wire wr of sf gg
attach an output wire to gwo in C0

R
by adding a pseudo wire as follows:

ffso that gwo would not be an output gate in C0
R
, and C0

R
is a plane graphgg

(i) if w� crosses wl (wr)
then ffsf must be a two-input AND gategg

connect gwo and sf through a pseudo wire to replace wl (wr) in C0
R
;

end fifg;
(ii) if w� crosses wr (wl)

then make gwr (i.e., the one-input AND gate inserted in wr at
at the beginning of step 2) a two-input AND gate,
and connect gwo to gwr through a pseudo wire in C0

R
;

end fifg;
end fifg;

(b) if w� is an incoming edge of f� fff� is called a bottom of R in this casegg
then make gwo a new output gate in C0

R
;

end fifg;
end fforg;

end.

Definition 3.14. A circuit C0 is logically equivalent to a circuit C, if from a
partially evaluated C we construct C0 (possibly with additional gates) such that for
each unevaluated gate g in C, there is a gate in C0 with the same value as g.

The algorithm given in Procedure 1 transforms a subcircuit of Caug in an external
separating region that contains at least one input node with value 0 into a logically
equivalent one-input-face PMC. Some examples of this transformation are given in
Figure 7. We now show that C 0

R constructed by Procedure 1 is a one-input-face PMC
that is logically equivalent to CR.

Lemma 3.10. C0

R is logically equivalent to CR.
Proof. We �rst show that step 1 in Procedure 1 does not change the value of the

gates in C0

R that were originally in CR. Since CR is in the external region of every
valid base, by De�nition 3.5, a wire outgoing from the internal region of some valid
base and incoming to R must be either a pseudo wire or an input wire to a two-
input AND gate whose other input wire is not a pseudo wire; by Lemma 3.9, all the
incoming wires to R are either wires with value 1 or pseudo wires. Hence removing a
pseudo input wire or an input wire with value 1 to a two-input AND gate g (whose
other input wire is not a pseudo wire) in step 1(a) will not change the value of g in
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Fig. 7. The circuit transformation of CR to C0
R
.

C 0

R; and the two-input AND gate g in step 1(b) indeed has value 1.

Step 2 in Procedure 1 reduces the number of new output gates in C0

R by adding
pseudo wires. Steps 2(a)(ii) and 2(b) do not change any input to the gates of C0

R that
were originally in CR. Step 2(a)(i) changes an input to sf by replacing wl (wr) with
a pseudo wire. However, since wl (wr) is an incoming wire to the external separating
region R, by the arguments given in the previous paragraph, wl (wr) is either a pseudo
input wire or an input wire with value 1, and sf is a two-input AND gate, and wr

(wl) is not a pseudo wire. Hence the value of sf depends only on the value of wr (wl),
and is the same in both CR and C0

R.

Lemma 3.11. C0

R is a plane DAG.

Proof. It is easy to see that C0

R is still a plane graph since the pseudo wires
introduced in Procedure 1 will not cross any existing wires in CR.

Suppose there is a directed cycle in C0

R. Then we map a gate g on the cycle to a
gate in Caug by the following function f : f(g) = g if g is a gate in Caug; f(g) = g2 if
g is not a gate in Caug and g is a new gate inserted in wire (g1; g2) of Caug in step 2
of Procedure 1. For each edge (g1; g2) on the cycle in C0

R, if (g1; g2) is not an edge in
Caug, then we add a new edge (f(g1); f(g2)) to Caug, and call the augmented graph
C 0

aug. Hence there is a cycle in C0

aug containing new edges. We now prove that for
each new edge (f(g1); f(g2)) in C0

aug, there is a directed path in Caug from f(g1) to
f(g2). We consider the following three cases:

(i) Case 1. Both g1 and g2 are gates in Caug. Then (f(g1); f(g2)) = (g1; g2),
which is a wire in Caug.

(ii) Case 2. g1 is a newly added gate in C0

R, but g2 is a gate in Caug. Suppose
g1 is inserted in the wire (g3; g4) of Caug. Then (g1; g2) is a pseudo wire added in
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wire input node OR gateAND gate output gate

Fig. 8. An example of a PMC with all input nodes in a single face but output gates in di�erent
faces. This PMC cannot be converted into a one-input-face PMC by adding pseudo wires to the
output gates, since any pseudo wire added to an output gate will create a directed cycle in this
example.

step 2(a)(i) of Procedure 1 and g2 is the sink of the face whose boundary contains g4.
Hence there is a directed path from f(g1) = g4 to f(g2) = g2 in Caug.

(iii) Case 3. g2 is a newly added gate in C0

R, but g1 is a gate in Caug. Then g2
is inserted in the wire (g1; f(g2)) of Caug in step 2 of Procedure 1. Hence there is a
directed path from f(g1) = g1 to f(g2) in Caug.

(iv) Case 4. Both g1 and g2 are newly added gates in C0

R. Then (g1; g2) is a
pseudo wire added in step 2(a)(ii) of Procedure 1. Suppose g1 is inserted in the wire
(g3; g4) of Caug, and g2 is inserted in the wire (g5; g6) of Caug. Then (g5; g6) is an
outgoing edge from CR, and g6 is the sink of the face whose boundary contains g4.
Hence there is a directed path from f(g1) = g4 to f(g2) = g6 in Caug.

Hence there is a directed cycle in Caug, which contradicts the fact that Caug is a
DAG. Hence C0

R is acyclic.
At this point, one might wonder if it is the case that any PMC whose input nodes

are on the boundary of a single face can be converted to a one-input-face PMC by
adding pseudo wires to the output gates. The example in Figure 8 shows that this is
not always possible when the output gates are on the boundaries of multiple faces; the
construction of C 0

R exploited some special properties of a one-input-face PMC and its
separating regions to guarantee that the result is a DAG, and this is not always the
case when the input circuit is not a one-input-face PMC.

We now show that a subcircuit C0

R output by Procedure 1 must have all inputs in
one face, and all outputs in one face, and no interlacing of inputs and outputs. This
will establish that C0

R is a one-input-face PMC.
A dual vertex f� is a bottom of a separating region R if it is the head of two edges

(which are dual edges of Caug) on the boundary of R. (See step 2(b) of Procedure 1
and case 2(b) in Figure 7.)

Lemma 3.12. A separating region R has at most one bottom, and if R has a
bottom then R does not contain the super sink t.

Proof. Let f� be a bottom of R and let w�

1 and w�

2 be the two edges incoming
to f�. We �nd two paths P �

1 and P �

2 in Asep such that (a) P �

1 goes to f� through
w�
1 and P �

2 goes to f� through w�
2 and (b) P �

1 and P �
2 intersect with each other

only at their starting vertices and their ending vertices. Let R0 be the region whose
counterclockwise boundary is P �

1 and whose clockwise boundary is P �
2 . Then R is

inside R0 since R is a face in Asep.
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Fig. 9. Figures for the proof of Lemma 3.12.

We �rst prove that t is not in R0, which implies that t is not in R (see (1) in
Figure 9). Let sf be the sink of the primal face f . If sf is t then we have proved that
t is not in R0. Otherwise, since the primal edges of w�

1 and w�
2 are outgoing from R0,

sf and its two input wires must be outside of R0 (note that the two input wires of sf
cannot be the primal edges of w�

1 and w�
2, since only the dual edges outgoing from f�

can cross the input wires of sf ). Hence any outgoing edges from f� in Aaug must be
outside of R0 since they cross the two input wires of sf . Hence if t were in R0 then
Aaug would have contained a directed cycle, since there is a directed path from f� to
t in Aaug. A contradiction.

We now prove that R has at most one bottom (see (2) in Figure 9). Suppose R has
another bottom f

0
�. Let w

0
�
1 and w

0
�
2 be the two edges incoming to f

0
�. We �nd two

paths P
0
�

1 and P
0
�

2 in Asep such that (a) P
0
�

1 goes to f
0
� through w

0
�

1 and P
0
�

2 goes to

f
0
� through w

0
�
2 and (b) P

0
�
1 and P

0
�
2 intersect with each other only at their starting

vertices and their ending vertices. Let R00 be the region whose counterclockwise
boundary is P

0
�

1 and whose clockwise boundary is P
0
�

2 . Then by the proof in the
previous paragraph, t is neither in R0 nor in R00. But at least one path from f� or f

0
�

to t will create a directed cycle in Aaug. A contradiction.
Corollary 3.12.1. If CR contains a bottom, then C0

R does not contain an
original output gate of Caug, and C

0

R contains at most two newly created output gates,
and the two output gates are adjacent to each other on the boundary of a face; if CR

does not contain a bottom, then C0

R does not contain any newly created output gates
(C0

R may contain some original output gates of Caug).
Proof. If CR contains a bottom, then t is not in C0

R and hence C0

R does not contain
an original output gate of Caug (since the auxiliary wires connecting output gates to
t do not cross the boundary of R). Further since C0

R has at most one bottom, at most
two new output gates are created in C0

R and they are adjacent to each other on the
boundary of a face (see case 2(b) in Figure 7). If CR does not contain a bottom, then
no new output gates are created in C0

R by the construction in Procedure 1.
Lemma 3.13. All newly created input nodes in C0

R are on the boundary of a single
face.

Proof. After removing all the gates not in R and the wires crossing the boundary
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of R, all the input nodes in C0

R are on the boundary of a single face, which is the
external face of C0

R. Further, the new faces created by the new pseudo wires added
in step 2 of Procedure 1 do not contain input nodes on their boundaries.

Lemma 3.14. Procedure 1 constructs a one-input face PMC C0

R that is logically
equivalent to CR, and it runs in O(1) time using a linear number of processors on an
EREW PRAM.

Proof. Lemma 3.13 and Corollary 3.12.1 ensure that the output gates and the
input nodes in C0

R do not interlace. By Lemmas 3.10, 3.11, 3.13 and Corollary 3.12.1,
C 0

R is a one-input-face PMC that is logically equivalent to CR.

It is straightforward to see that all steps in Procedure 1 can be implemented in
constant time using a linear number of processors.

We conclude this subsection by showing that a subcircuit C0

R output by Procedure
1 contains at most half the number of valid bases in Caug.

Definition 3.15. We say two valid bases B and B0 meet if the right boundary
of B and the left boundary of B0 have a common vertex. The transitive closure of the
meet relation partitions the set of the valid bases in Caug into equivalence classes.

Lemma 3.15. The number of the valid bases in C0

R is at most half of the number
of valid bases in Caug.

Proof. Let g be a newly created input node in C0

R. We say g is a descendant of
a valid base B of Caug if an original input of g is in the internal region of B. This
lemma follows from the following two claims.
Claim 1. Every newly created input node in C0

R is a descendant of at least two distinct
valid bases of Caug, and the two valid bases are in the same equivalence class of Caug.
Claim 2. The newly created input nodes in C0

R that are descendants of the valid bases
in the same equivalence class of Caug, are in the same valid base in C0

R.

By Claim 1, a singleton equivalence class of Caug does not generate a new input
node with value 1 in C0

R. By Claim 2, an equivalence class of Caug containing at least
two valid bases generates at most one valid base in C0

R. Hence the lemma holds.

We �rst prove Claim 1. Since only the sink of a face can have its input wires
crossed by the dual edges in Asep, a newly created input node g must be the sink of
a face f in Caug. The two original input wires w1 and w2 of g must cross a dual edge
w�

1 (which is a left leg) on the left boundary of a valid base and a dual edge w�

2 (which
is a right leg) on the right boundary of a valid base respectively. Since w�

1 and w�

2 are
outgoing from the same vertex f�, they cannot be on the left and right boundaries
of the same valid base (since the left and right boundaries end at their �rst common
vertex after s). Therefore, the input wires of g are outgoing from the internal regions
of at least two di�erent valid bases (the internal regions of several valid bases may
overlap). Further, the two valid bases are in the same equivalence class since f� is a
common vertex of the left boundary of one valid base and the right boundary of the
other valid base.

We now prove Claim 2. Since the external separating region R contains at least
one input node with value 0, the boundary of R must contain the super source s.
Further, s may appear on the boundary of R more than once (see Figure 6, s appears
twice on the boundary of the external separating region R which consists of the part
of the plane between the internal region of B1 and the internal region of B2). Since
multiple appearances of s is possible, if we remove s from the boundary of R, the
boundary will be divided into several connected portions, each enclosing a disjoint
part of Caug (in Figure 6, the two disjoint parts are the internal region of B1 and the
internal region of B2). The valid bases in one part cannot be in the same equivalence
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Algorithm 1: Complete evaluation of a one-input-face PMC

Input: An embedded one-input-face PMC C and a complete input assignment to C.
Output: Each gate in C is assigned a value 0 or 1.
1. if all input nodes in C have value 1
2. then assign value 1 to all gates in C; return;

else if all input nodes in C have value 0
3. then assign value 0 to all gates in C; return;

end fifg;
end fifg;

4. Augment C to Caug , and construct the auxiliary dual graph Aaug ;
5. Find the edges in Aaug that are on the boundaries of valid bases of Caug (see Procedure 2);
6. Construct the separating graph Asep;
7. Remove the wires in Caug that cross the boundary edges of Asep;
8. Find the (undirected) connected components in the remaining Caug;
9. for each connected component CR found in step 8 in parallel do

10. if CR does not contain input nodes with value 0
11. then assign value 1 to all gates in CR;
12. else transform CR to C0

R
using Procedure 1;

13. Recursively evaluate C0
R
;

end fifg;
end fforg;

end.

Procedure 2: Finding the edges in Aaug that are on the boundaries of valid bases

Input: Caug, Aaug, and a complete input assignment to Caug.
Output: The edges of Aaug that are on the boundaries of valid bases of Caug are marked.
2.1. Find all the valid bases in Caug , and label them in the order of the sequence in which

they appear on the boundary of the input face of Caug;
2.2. Construct T �

l
and T �r from Aaug ;

2.3. Compute BASEl(f
�) and BASEr(f�) for each dual vertex f� in Aaug ;

2.4. Compute JOIN(f�) = BASEl(f
�) \BASEr(f�) for each dual vertex f� in Aaug ;

2.5. Find the enclosure relation �I among the JOIN(f�) (see Procedure 3);
2.6. Compute jTERMl(f

�)j and jTERMr(f�)j for each dual vertex f� in Aaug using Lem. 3.8;
2.7. Compute jBOUNl(f

�)j and jBOUNr(f�)j for each dual vertex f� in Aaug using Lem. 3.6;
2.8. Mark all dual edges (f�; g�) in Aaug with jBOUNl(f

�)j > 0 and jBOUNl(f
�)j >

jTERM(f�)j, or with jBOUNr(f�)j > 0 and jBOUNr(f�)j > jTERM(f�)j;
end.

class as a valid base in a di�erent part. Let P be a connected portion of the boundary
of R after removing S. Let I be the set of all newly created input nodes that are
descendants of the valid bases in the equivalence classes enclosed in P . Then the
original input wires of the input nodes in I must cross the dual edges in P . Hence
the input nodes in I are adjacent on the boundary of a face in C0

R, and therefore are
in the same valid base in C0

R.

3.3. An E�cient Algorithm for the One-Input-Face PMCVP. Based on
the approach we presented in the previous subsection, we give an e�cient EREW
PRAM algorithm, called Algorithm 1, for evaluating a one-input-face PMC.

The correctness and complexity analysis of Algorithm 1 will be given in Theo-
rem 3.1. All steps in Algorithm 1 are quite straightforward to implement except step
5, which is implemented by Procedure 2. Step 2.5 in Procedure 2 is implemented by
Procedure 3, which is similar to a procedure used for the layered PMC in [20].

Lemma 3.16. Procedure 2 (i.e., step 5 in Algorithm 1) correctly �nds the edges
in Aaug that are on the boundaries of valid bases of Caug, and it runs in O(logn) time
using a linear number of processors on an EREW PRAM.

Proof. The correctness of all steps (except step 2.5) of Procedure 2 which imple-
ments step 5 of Algorithm 1, has been proved in Lemmas 3.6 and 3.8. We now show
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Procedure 3: Finding the enclosure relation �I for the JOIN(f�)
Input: T �

l
and JOIN(f�) for each dual vertex f� on T �

l
.

Output: The enclosure forest EF � such that a dual vertex f�p is the immediate predecessor of
a vertex f� in EF � i� JOIN(f�p ) �I JOIN(f�) .

3.1. for each vertex f� with nonempty JOIN(f�) and with the length of the longest path from
a leaf to f� in T �

l
being k in parallel do

3.2. Assign two triples (x, �k, f�), (y, k, f�) for each range [x; y] in JOIN(f�);
end fforg;

3.3. Sort all triples into nondecreasing order according to the �rst two elements in a triple;
3.4. for each triple (x, �k, f�), where k � 0 in parallel do

3.5. Find its previous triple (n0, k0, f 0�) in the sorted list;
3.6. if (k0 < 0) and (f� 6= f 0�) then f 0� is the parent of f� in EF �;
3.7. else if (k0 > 0) and (f� 6= f 0�) then f 0� is the left sibling of f� in EF �; end fifg;

end fifg;
end fforg;

3.8. Construct the EF � from the parent and sibling relations;
end.

the correctness of Procedure 3, which implements step 2.5 of Procedure 2. Let f�1 and
f�2 be two vertices in T �

l such that the longest paths from a leaf to f�1 and from a leaf
to f�2 are of length k1 and k2 respectively. By Lemma 3.7, f�1 is a successor of f�2 in
T �

l and JOIN (f�1 ) � JOIN (f�2 ) i� k1 > k2, and for each range [x2; y2] of JOIN (f�2 )
there exists a range [x1; y1] of JOIN (f�1 ), such that x1 � x2 � y2 � y1 in the cyclic
order; JOIN (f�1 ) \ JOIN (f�2 ) = � i� for each range [x2; y2] of JOIN (f�2 ) and each
range [x1; y1] of JOIN (f�1 ), x1 � y1 < x2 � y2 in the cyclic order. Therefore, if
(n0; k0; f 0�) and (x;�k; f�) are two consecutive triples in the sorted list, we have: (1)
if k0 < 0 and f� 6= f 0� then JOIN (f�) �I JOIN (f 0�) and f 0� must be the immediate
successor of f� in the EF �; (2) if k0 > 0 and f� 6= f 0� then f� and f 0� share the
common immediate successor in EF �.

Next, we analyze the time complexity of Procedure 2.

In step 2.2, T �

l (T �
r ) can be computed using Euler-tour technique as follows. We

�rst remove s and all right (left) legs from Aaug. Then the resulting graph A0

aug is a
tree rooted at t, by the uniqueness of left (right) legs. We then mark the leaf nodes
of A0

aug that are the dual vertices of the left (right) bounding faces of valid bases of
C. Finally we apply the Euler-tour technique to �nd all the successors of the marked
leaf nodes, and the resulting subtree of A0

aug is T
�

l (T �
r ).

In step 2.3, since BASEl(f
�) (BASEr (f

�)) contains valid bases with consecutive
labels (modulo the total number of bases) in the total order of the valid bases, it can
be described succinctly by a range [l, h] where l, h are the numbers of the �rst and the
last valid bases in BASEl(f�) (BASEr(f�)) respectively. BASEl(f�) (BASEr (f�))
can be computed using Euler-tour technique on T �

l (T �

r ) as follows. We �rst label
each leaf node of T �

l (T �

r ) with the label of its corresponding valid base. Then for
each vertex f� in T �

l (T �
r ), we apply the Euler-tour technique to �nd the smallest

label and the largest label among the leaf predecessors of f� in T �

l (T �
r ), and assign

them to l and h respectively.

In step 2.4, JOIN (f�) can be computed from BASEl(f
�) and BASEr(f

�) in
constant time and be represented by at most two ranges.

Based on the above analysis, we conclude that steps 2.2-2.4 can be implemented
in O(logn) time using a linear number of processors.

Procedure 3 (which implements step 2.5 in Procedure 2) can be implemented in
O(logn) time with a linear number of processors using the parallel merge sort of [2]
and Euler-tour technique.
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Algorithm 2: Partial evaluation of a one-input-face PMC

Input: A one-input-face PMC C and a partial input assignment to C.
Output: Each gate in C that can be evaluated is assigned a value 0 or 1.
1. Assign value 1 to all input nodes with unknown value in C and apply Algorithm 1;
2. Let A be the set of the gates assigned value 0 in this solution of step 1;
3. Assign value 0 to all input nodes with unknown value in C and apply Algorithm 1;
4. Let B be the set of the gates assigned value 1 in this solution of step 3;
5. Assign value 0 to all gates in A, assign value 1 to all gates in B, and assign unknown value

to the gates of C that are neither in A nor in B;
end.

It is easy to see that all other steps of Procedure 2 can be implemented in O(logn)
time using a linear number of processors by computing pre�x sums and applying
Euler-tour and tree evaluation techniques.

Theorem 3.1. Algorithm 1 correctly solves the complete evaluation problem of
a one-input-face PMC given a complete input assignment, and it runs in O(log2 n)
time using n processors on an EREW PRAM, where n is the size of the circuit.

Proof. Steps 1-4 are quite straightforward. The correctness of step 5 is proved
by Lemma 3.16. The correctness of steps 6-13 are proved by Corollary 3.9.1 and
Lemma 3.14.

It is straightforward to see that all steps except steps 5, 8, and 13 in Algorithm 1
can be implemented in O(logn) time using a linear number of processors. Lemma 3.16
shows that step 5 can be implemented in the same time complexity. Step 8 can be
implemented in O(logn) time optimally by applying the algorithm in [5] for �nding
connected components in a planar undirected graph.

By Lemma 3.15, the number of the recursive levels needed to complete the eval-
uation is O(logn). Therefore, the overall time needed by Algorithm 1 is bounded by
O(log2 n). Further, the total number of gates in all remaining subcircuits CR in step
12 in Algorithm 1 is less than the number of gates in the original Caug since for each
newly inserted gate in CR, there is a unique gate in the internal region of a valid base
being removed. Therefore, the processor bound holds.

3.4. Partial Evaluation of a One-Input-Face PMC. We extend Algorithm
1 to solve the partial evaluation problem of a one-input-face PMC in Algorithm 2.

Theorem 3.2. Algorithm 2 correctly solves the partial evaluation problem of a
one-input-face PMC given a partial input assignment, and it runs in O(log2 n) time
using n processors on an EREW PRAM, where n is the size of the circuit.

Proof. By the monotonicity of the circuit, A is a subset of the gates that should
be evaluated to 0 in the partial evaluation of C, and B is a subset of the gates that
should be evaluated to 1 in the partial evaluation of C. Further, we now show that a
gate g of C that is neither in A nor in B should have unknown values in the partial
evaluation of C. Suppose not. Let g be a gate that should be evaluated to 0 (1) in
the partial evaluation of C and let g be in neither A nor B. Then g evaluates to 0 (1)
under every possible input assignment to the input nodes with unknown values in C.
In particular, g has value 0 (1) when all input nodes with unknown values are assigned
value 1 (0), which means g is in A (B). A contradiction. Therefore, Algorithm 2 is
correct.

It is easy to see that the time complexity of Algorithm 2 is the same as that of
Algorithm 1 since it is dominated by the two calls on Algorithm 1.

4. The Face Induced PMC. In this section, we consider a face f induced
circuit Cf , which is de�ned in Section 2. For convenience, we assume that Cf is
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Algorithm 3: f-partial evaluation of a face f induced circuit Cf
Input: A face f induced circuit Cf with an f -partial input assignment.
Output: The solution of the f -partial evaluation problem of Cf .
1. if Cf contains only one gate then return the value of the gate end fifg;
2. Obtain a topological ordering of the gates in Cf ;
3. Let m be the total number of the non-input gates in Cf ;
4. Find g1 such that there are bm=2c non-input gates before g1 in the topological ordering;
5. Partition the gates in Cf into two parts Pl and Ph, such that Pl contains g1 and the gates

before g1 in the ordering, and Ph contains the gates after g1 in the ordering, and remove
the wires of Cf pointing from gates in Pl to gates in Ph ;

6. for each gate g in Ph in parallel do

if all input wire(s) of g are removed
then replace g by an input node with unknown value in Ph;
else if g is a two-input gate and only one input wire of g is removed

then add an input node i with unknown value and a wire from i to g in Ph;
end fifg;

end fifg;
end fforg;

7. Find the (undirected) connected subcircuits in Pl and Ph ;
8. f 0-partially evaluate every connected subcircuit in Pl and Ph recursively in parallel, where f 0

is the external input face of the subcircuit;
ffit will be shown below that each such subcircuit is a face f 0 induced circuit with an
f 0-partial assignmentgg

9. Remove all gates that are assigned 0 or 1 in step 8 in Ph;
10. Assign the output values of Pl to the input nodes of Ph;
11. Partially evaluate every connected subcircuit in Ph using Algorithm 2 in parallel;

ffit will be shown below that each such subcircuit is a one-input-face PMCsgg
end.

embedded with f being the external face. An f-partial input assignment to Cf is
a partial input assignment where only input nodes in f can have unknown values,
and the input nodes in faces other than f must have values 0 or 1. The problem
of partially evaluating Cf given an f-partial input assignment is called the f-partial
evaluation of Cf . Algorithm 3 gives our method to perform an f-partial evaluation
of Cf . Algorithm 3 is similar to an algorithm in [3] which �rst layers a face induced
circuit (which squares the size of the circuit) and then recursively partitions the
circuit at an appropriate layer. Our algorithm performs a more e�cient evaluation
by working on a face induced circuit directly and partitioning the circuit according to
its topological ordering. It then partially evaluates each subcircuit either recursively
or using Algorithm 2.

Recall that a topological ordering of a digraph is a linear ordering of its vertices
such that every edge in the graph points from a lower-numbered vertex to a higher-
numbered vertex. It is well known that a digraph has a topological ordering i� it is a
DAG. We now prove the correctness of Algorithm 3 and analyze its complexity.

Lemma 4.1. Immediately before step 8, every connected subcircuit in Pl and Ph
is a face f 0 induced circuit for some face f 0, with an f 0-partial input assignment.

Proof. Let us add to Cf a super source s in face f and a super sink t in the output
face of Cf for the purpose of the proof. We connect s to each input node in f with
an edge, and connect each output gate to t with an edge. The resulting Cf is still a
plane graph.

Only input nodes in f can have unknown values in each connected subcircuit in
Pl, since no new input nodes are created in Pl. We now show that the output gates in
Pl are in the same face. By step 5, every directed path from a gate in Ph to t consists
only of gates in Ph. Hence the gates in Ph can be coalesced to t and the resulting
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Cf is still a plane graph. The wires outgoing from gates in Pl to gates in Ph are now
incoming to t. Hence after we cut the wires outgoing from gates in Pl to t and remove
t, the output gates of the connected subcircuits in Pl are in a single face, which we
call f1. Hence every connected subcircuit in Pl is still a face f induced circuit with
an f-partial input assignment.

Ph is C nPl plus some new input nodes with unknown values generated in step 6.
The output gates in Ph are not changed and hence are still in the same face. The new
input nodes with unknown values are in the same face f1, since all gates in Pl can be
coalesced to s. If there are original input nodes in f remaining in Ph (which are the
only input nodes in Cf that possibly carry unknown value) then f1 must be identical
to f . Hence every connected subcircuit in Ph is still a face f1 induced circuit with an
f1-partial input assignment.

Lemma 4.2. Immediately before step 11, every connected subcircuit in Ph is a
one-input-face PMC.

Proof. We show that after removing all gates assigned 0 or 1 in Ph in step 9,
no new input nodes are generated, i.e., no gate with in-degree 1 or 2 in Ph becomes
a gate with in-degree 0. Let g be a gate with in-degree at least 1 in Ph just before
step 9. If all gate(s) that provide inputs to g have known values, then the value of g
should be evaluated in step 8 and g should be removed in step 9. If all gate(s) that
provide inputs to g have unknown values, then the in-degree of g is not changed. If
one input of a two-input gate g has unknown value and the other has known value,
then the in-degree of g is 1 after step 9. Hence no new input nodes are generated in
Ph in step 9. By Lemma 4.1, every connected subcircuit in Ph and Pl in step 8 is
a face f 0 induced circuit for some input face f 0 with an f 0 partial input assignment.
Therefore, immediately before step 11, the only input nodes left in each connected
subcircuit in Ph are the input nodes in f 0 that carry unknown value. Hence every
connected subcircuit in Ph is a one-input-face PMC.

Theorem 4.1. Algorithm 3 correctly solves the f-partial evaluation problem of
a face f induced circuit Cf , and it runs in O(log4 n) time using n processors on an
EREW PRAM, where n is the size of Cf .

Proof. The correctness of steps 8 & 11 are shown by Lemma 4.1 and Lemma 4.2.
It is straightforward to see that other steps in Algorithm 3 are correct.

Step 1 takes constant time. Step 2 can be implemented in O(log3 n) time using
n processors on an EREW by Theorem 4.1 in Kao & Klein [12]. The connectivity
of a plane undirected graph in steps 8 & 11 can be solved in O(logn) time using
n= logn processors on an EREW by the algorithm in Gazit [5]. Steps 3-6 & 9-10 can
be implemented in O(logn) time using n= logn processors. Step 11 takes O(log2 n)
time using n processors by Theorem 3.2. Let n0 be the number of non-input gates in
the original Cf . Since the in-degree of each gate in Cf is � 2, we have n0 < n � 3n0.
Each of Ph and Pl contains at most dn0=2e non-input gates, and therefore at most
3 dn0=2e total gates (including the new input nodes). Let T (n) be the time needed for
Algorithm 3 to partially evaluate a circuit with n gates. We have

T (3n0) � T (3 dn0=2e) + O(log3 n):

Solving the above recurrence equation, we have T (3n0) = O(log4 n). Hence T (n) �
T (3n0) = O(log4 n).

5. The General PMCVP. In this section, we give in Algorithm 4 our overall
algorithm for evaluating a general PMC. This algorithm evaluates a general PMC
recursively by decomposing it into smaller PMCs and disjoint face induced subcircuits.
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Algorithm 4: Complete evaluation of a general PMC

Input: A general PMC C with input nodes i1; : : : ; im, and a complete input assignment.
Output: Each gate in C is assigned a value 0 or 1.
0. if C contains only one gate then return the value of the gate end fifg;
1. Find the smallest k, 0 � k � m, such that every connected subcircuit in

C nReach(i1; i2; : : : ; i(k+1)) is of size � n=2 (see Figure 10);
Let P be a connected subcircuit of size > n=2 in C nReach(i1; i2; : : : ; ik) when k � 1;

2. if k � 1
3. then Recursively solve the complete evaluation problem for the connected subcircuits in

C nReach(P ) and in P nReach(i(k+1)) (whose sizes are all � n=2) in parallel
(see Figure 10 and Lemmas 5.1 & 5.2 for steps 3-8);
ffit will be shown that each such subcircuit is a general PMC with a complete input
assignmentgg

4. Completely evaluate Induced(i(k+1))\ P using Algorithm 3;
ffit will be shown that each such subcircuit is a face induced circuit with a complete
input assignmentgg
ffnow all gates in P and C nReach(P ) are completely evaluatedgg

5. Remove P from C, let o1; : : : ; om0 be the gates of P with wires outgoing to reach(P );
ffo1; : : : ; om0 are on the boundary of a single face in reach(P )gg

6. Completely evaluate Induced(o1; : : : ; om0) (i.e. Reach(P ) n P ) using Algorithm 3;
ffit will be shown that each such subcircuit is a face induced circuit with a complete
input assignmentgg

7. else Recursively solve the complete evaluation problem for the connected subcircuits in
C nReach(i1) (whose sizes are all � n=2) in parallel;

8. Evaluate Induced(i1) using Algorithm 3;
end fifg;

end.

P

C

P

C

reach(P)

i 2 i 3

i (k+1)

i 1 ki

i (k+1)

i 1 kireach( , ... )

i (k+1)reach( )

Fig. 10. A general PMC C of size n, where P is a connected subcircuit of size > n=2 in
C n reach(i1; i2; : : : ; ik), but C n reach(i1; i2; : : : ; i(k+1)) does not contain any connected subcircuit
of size > n=2.

The smaller PMCs are evaluated recursively while each face induced subcircuit is
evaluated by Algorithm 3. We then show the correctness and complexity of Algorithm
4 in Lemma 5.1 and Theorem 5.1. A sketch of an algorithm similar to Algorithm 4 is
given in [3].

Lemma 5.1. Each connected subcircuit in steps 3 & 7 is a general PMC with a
complete input assignment.
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Proof. Since the gates in Reach(P ) can be coalesced into a single gate, the
output gates in C n Reach(P ) are in the same face. Similarly the output gates in P
and P n Reach(i(k+1)) are in the same face. The input nodes in C n Reach(P ) are
original input nodes in C. Since there is no wire in C outgoing from a gate in C n P
to P , the input nodes in P nReach(i(k+1)) are also original input nodes in C. Hence
each connected subcircuit in C nReach(P ) and P nReach(i(k+1)) is a general PMC
with a complete input assignment, and can be completely evaluated recursively in
step 3. Similar proof holds for step 7.

Lemma 5.2. Each connected subcircuit in steps 4, 6 & 8 is a face induced circuit
with a complete input assignment.

Proof. The output gates in Induced(i(k+1))\P are in the same face since they are
a subset of the output gates in P . Induced(i(k+1))\P are reachable from the original
input i(k+1). The other new input nodes in Induced(i(k+1)) \ P get their value from
P nReach(i(k+1)), which is completely evaluated in step 3. Hence Induced(i(k+1))\P
is a face f (that contains i(k+1)) induced circuit with a complete input assignment,
and can be completely evaluated using Algorithm 3 in step 4.

The output gates in Induced(o1; : : : ; om0) (i.e. Reach(P )nP ) are the output gates
in Reach(P ), and the output gates in Reach(P ) are a subset of the output gates in
C and are in the same face. The input nodes o1; : : : ; om0 in Reach(P ) n P are the
output gates in P , and are in the same face, which we call f1, and are completely
evaluated in steps 3 & 4. All gates in Reach(P ) n P are reachable from the input
nodes o1; : : : ; om0 in f1. The other input gates in Reach(P ) nP get values from gates
in C nReach(P ), which is completely evaluated in step 3. Hence Induced(o1; : : : ; om0)
(i.e. Reach(P ) n P ) is a face f1 induced circuit with a complete input assignment,
and can be completely evaluated using Algorithm 3 in step 6.

Similar proof holds for step 8.
Theorem 5.1. Algorithm 4 correctly solves the PMCVP for a general PMC C,

and it runs in O(log6 n) time using n processors on an EREW PRAM, where n is the
size of the circuit.

Proof. The correctness of Algorithm 4 has been shown in Lemmas 5.1 & 5.2.
The reachability in steps 1, 3, and 7 can be implemented in O(log4 n) time using

n processors on an EREW by the multiple-source reachability algorithm for planar
digraphs in Guattery & Miller [10]. The k in step 1 can be found by a binary search.
Hence the total time needed in step 1 is O(log5 n). The connectivity of a plane
undirected graph in steps 1, 3, and 7 can be solved in O(logn) time using n processors
on an EREW by the algorithm in Gazit [5]. By Theorem 4.1, steps 4-6 & 8 can be
implemented in O(log4 n) time using n processors on an EREW. It is easy to see
that the connected subcircuits in steps 3 & 7 are of size � n=2, and the subcircuits
obtained in each step are disjoint. Let T (n) be the time needed for Algorithm 4 to
evaluate a PMC with n gates. We have

T (n) = T (n=2) +O(log5n):

Solving the above recurrence equation, we have T (n) = O(log6 n).
Note that the high power in the logarithm for the running time is mainly due

to the running time of the reachability algorithms in [10] and [12]. An improvement
in the running time of the parallel algorithms for reachability in a plane DAG would
imply an improvement in the running time of our algorithm.
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