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Abstract

There is a large class of path and cycle problems on graphs that currently have Õ(n3)1

time algorithms. Graphs encountered in practice are typically sparse, with the number of
edges m being close to linear in n, the number of vertices, or at least with m << n2. When
considering sparsity, the current time complexities of these problems split into two classes:
the Θ̃(mn) class, which includes APSP, Betweenness Centrality, and Minimum-Weight-Cycle,
among several other problems, and the Θ(m3/2) class, which includes all problems relating to
enumerating and detecting triangles. Here n and m are the number of vertices and edges in the
graph. We investigate the fine-grained complexity of these problems on sparse graphs, and our
main results are the following:

1. Reductions and Algorithms. We define the notion of a sparse reduction that preserves
graph sparsity, and we present several such reductions for graph problems in the Õ(mn) class.
This gives rise to a rich partial order on graph problems with Õ(mn) time algorithms, with
the Minimum-Weight-Cycle problem as a major source in this partial order, and APSP a major
sink. Surprisingly, very few of the known subcubic results are sparse reductions (outside of a few
reductions that place Centrality problems in the sub-cubic equivalence class [1]). We develop
new techniques in order to preserve sparsity in our reductions, many of which are nontrivial
and intricate. Some of our reductions also lead to improved algorithms for various problems on
finding simple cycles in undirected graphs.

2. Conditional Hardness. We establish a surprising conditional hardness result for sparse
graphs: We show that if the Strong Exponential Time Hypothesis (SETH) holds, then sev-
eral problems in the Õ(mn) class, including certain problems that are also in the sub-cubic
equivalence class such as Betweenness Centrality and Eccentricities, cannot have ‘sub-mn’ time
algorithms, i.e., algorithms that run in O(mα ·n2−α−ǫ) time, for constants α ≥ 0, ǫ > 0. In par-
ticular, this result means that under SETH, the sub-cubic equivalence class is split into at least
two classes when sparsity is taken into account, with triangle finding problems having faster
algorithms than Eccentricities or Betweenness Centrality. This hardness result for the Õ(mn)
class is also surprising because a similar hardness result for the sub-cubic class is considered
unlikely [5] since this would falsify NSETH (Nondeterministic SETH).
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vlr@cs.utexas.edu. This work was supported in part by NSF Grant CCF-1320675. The first author’s research
was also supported in part by a Calhoun Fellowship.

1Õ hides polylog factors. For APSP on dense graphs, we use it to also hide a larger, but sub-polynomial factor [26].
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1 Introduction

In recent years there has been considerable interest in determining the fine-grained complexity
of problems in P [26, 9, 4]. For instance, the 3SUM problem has been central to the fine-grained
complexity of several problems with quadratic time algorithms in computational geometry and other
areas [7]. The 3SUM problem has a quadratic time algorithm and no sub-quadratic (i.e., O(n2−ǫ)
for some constant ǫ > 0) time algorithm is known for it. It has been shown that a sub-quadratic
time algorithm for any of a large number of problems would imply a sub-quadratic time for 3SUM.
In a similar vein it has been shown that a sub-quadratic time algorithm for LCS or Edit Distance
would imply a sub-quadratic time algorithm for finding orthogonal vectors (OV) [4] and the latter
would falsify SETH (Strong Exponential Time Hypothesis) [24].

For several graph problems related to shortest paths that currently have Õ(n3) time algorithms,
equivalence under sub-cubic reductions2 has been shown: between all pairs shortest paths (APSP)
in either a directed or undirected weighted graph, finding the second simple shortest path from u to
v, for given vertices u and v (2-SiSP) in a weighted directed graph, finding a minimum weight cycle
(Min-Wt-Cycle) in a directed or undirected graph, finding a minimum weight triangle (Min-Wt-∆),
and a host of other problems (see, e.g., [26]). This gives compelling evidence that a large class of
graph problems is unlikely to have sub-cubic algorithms as a function of n, the number of vertices,
unless fundamentally new algorithmic techniques are developed.

A time bound of n3 is a full factor of n above the trivial lower bound of n2 for the time complexity
of some of the above graph problems such as APSP where the output has size n2; Ω(n2) also applies
to all of these problems on truly dense graphs, where the number of edges m is Θ(n2). However,
most graphs that arise in practice are sparse, with the number of edges m typically O(n1+δ), for
δ << 1. For APSP there is an O(mn + n2 log log n) time algorithm for directed graphs [15] and
a slightly faster O(mn logα(m,n)) time algorithm for undirected graphs [16] (where α is a certain
natural inverse of the Ackermann’s function). Both of these time bounds are very close to optimal
for truly sparse graphs with m = O(n). Thus the conditional hardness implied by the sub-cubic
equivalences is not very relevant for sparse graphs that arise in practice.

In this paper, we re-visit the fine-grained complexity of graph problems but we consider now the
dependence on both n and m. All of the graph problems mentioned above (and several others known
to be equivalent under sub-cubic reductions) have Õ(mn) time algorithms; in fact all problems
related to triangle detection and listing have an O(m3/2) time algorithm, which is even faster for
sparse graphs, though both mn and m3/2 converge to n3 for truly dense graphs.

For truly sparse graphs where m = O(n) some fine-grained reductions and sub-quadratic hardness
results with respect to m2 are given in [17], but m2 = Θ(n4) when the graph is truly dense, and
these results do not refine the sub-cubic hardness class. In this paper we derive results for arbitrary
graphs taking sparseness into consideration, and we present novel reductions and hardness results
that give a finer-grained insight into problems equivalent under sub-cubic reductions.

2Informally, a sub-cubic reduction from A to B implies that an algorithm running in O(n3−δ) for B would imply
an O(n3−ǫ) time algorithm for A, where δ, ǫ > 0 are constants.
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Figure 1: Here BC stands for Betweenness Centrality, Pos stands for Positive, Approx stands for Approximate
and RC stands for Reach Centrality. The bold edges represent sparse O(m+n) reductions, the bold, squiggly
edges represent tilde-sparse O(m+ n) reductions, the gray edges represent sparse O(n2) reductions and the
gray, squiggly edges represent tilde-sparse O(n2) reductions. The shaded region indicates problems hard for
sub-mn computations under SETH.

2 Our Contributions

Let G = (V,E,w) be a weighted graph with |V | = n, |E| = m and w the weight function w : E →
R+. Some of our results are for unweighted graphs where w(e) = 1 for all edges e. We let Wmax

and Wmin denote the largest and the smallest edge weight in G, and let ρ = Wmax/Wmin. We
assume that the vertices are numbered from 1 to n and each vertex is represented by ⌈log n⌉ bits.
We let dG(x, y) denote the length (or weight) of a shortest path from x to y in G, and for a cycle C
in G, let dC(x, y) denote the length of the shortest path from x to y in C. We will say that a graph
G = (V,E) is sparse if |E| = O(n1+δ) for some positive constant δ < 1. We deal with only simple
graphs in this paper. We now give an overview of our results.

1. Sparse Reductions and the mn Partial Order.

Definition 2.1. (Sparse Reduction) Given graph problems P and Q, there is an f(m,n) sparse
reduction from P to Q, denoted by P ≤sprssprssprs

f(m,n) Q, if given an algorithm for Q that runs in TQ(m,n)

time on graphs with n vertices and m edges, we can solve P in O(TQ(m,n) + f(m,n)) time on
graphs with n vertices and m edges.

2



Similarly, we will say that P tilde-f(m,n) sparse reduces to Q, denoted by P .sprssprssprs
f(m,n) Q, if, given an

algorithm for Q that runs in TQ(m,n) time, we can solve P in Õ(TQ(m,n) + f(m,n)) time, where
Õ hides polylog factors. We will also use ≡sprssprssprs

f(m,n) and ∼=sprssprssprs
f(m,n) in place of ≤sprssprssprs

f(m,n) and .sprssprssprs
f(m,n) when

there are reductions in both directions. In a weighted graph we allow the Õ term to have a log ρ
factor. (Recall that ρ = Wmax/Wmin.)

We present several sparse reductions for problems that currently have Õ(mn) time algorithms.
This gives rise to a rich partial order of problems that are known to be sub-cubic equivalent, and
currently have Õ(mn) time algorithms. Surprisingly, very few of the known sub-cubic reductions
carry over to the sparse case due to one or both of the following features. To start with, many of
the known sub-cubic reductions convert a sparse graph into a dense one, which is fine when the
complexity measure depends only on n as is the case for sub-cubic reductions, but this does not
preserve dependence on both m and n. Secondly, a central technique used in those reductions has
been to reduce from a suitable triangle finding problem. As noted above, triangle finding can be
computed in Õ(m3/2), which is a better bound than mn. In view of this, we present a suite of
new sparse reductions for the Õ(mn) time class. Many of our reductions are quite intricate, and
we introduce a new technique of ‘bit-fixing’ for some of our reductions. In this technique we place
an edge present in the input graph into a derived graph only if a certain bit pattern exists for the
vertex labels on its endpoints, or on its weight. This technique is different from a method in [1]
that uses 2 log n new vertices and edges based on their bit patterns in order to create a sparse graph
where the naive method would have given Θ(n2) edges. (We also use this method from [1] in some
of our reductions).

For the most part, our reductions take Õ(m + n) time (many are in fact O(m + n) time, though
a few are Õ(n2) when output size is n2), thus ensuring that any improvement in the time bound
for the target problem will give rise to the same improvement to the source problem, to within a
polylog factor.

Figure 1 gives a schematic of our partial order of sparse reductions for weighted directed and undi-
rected graphs. In Section 6 we give a related partial order for unweighted graphs. The full definitions
of these problems are deferred to Section 10 (since most of them are well-known). As noted there,
for most of these problems, the reductions that establish sub-cubic equivalences (excluding the Di-
ameter equivalence class under sparse reductions) either go through a triangle finding problem or
create a dense graph. We now summarize our results on sparse reductions.

(a) Undirected Graphs: APSP′ is the problem of finding both the weights of the shortest paths
as well as the last edge on each shortest path (see Section 10 for definitions of all problems we
consider). Most of the currently known APSP algorithms, including matrix multiplication based
methods for small integer weights [21, 22, 28], can compute APSP′ in the same bound as APSP.

Finding the weight of a minimum weight cycle (Min-Wt-Cycle) is another fundamental problem.
There is a simple sparse O(m + n) reduction to APSP for directed graphs, but it does not work
for undirected graphs. For the sub-cubic case, Roditty and Williams [18], in a follow-up paper
to [26], pointed out the challenges of finding such a sub-cubic reduction, and then followed up
with a sub-cubic reduction from undirected Min-Wt-Cycle to undirected Min-Wt-Triangle, using
a dense bipartite graph. But a reduction that increases the density of the graph is disallowed in
our sparse setting. Instead, in this paper we give a sparse Õ(n2) time reduction from undirected
Min-Wt-Cycle to APSP. This reduction uses the new bit-fixing technique mentioned above. Similar
techniques allow us to obtain a sparse Õ(n2) time reduction from ANSC (All Nodes Shortest Cycles),
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which asks for a shortest cycle through every vertex in an undirected graph to APSP′. Interestingly,
this reduction improves the running time for ANSC in dense graphs [27], since we can now solve it
in Õ(nω) time using the APSP′ algorithm [21, 3]. Our reduction and resulting improved algorithm
is only for unweighted graphs and extending it to weighted graphs appears to be challenging.

Min-Wt-Cycle is a major starting (source) problem in our partial order of sparse reductions. In
Section 3 we present a brief overview of the proof of the following theorem, which is our main
fine-grained result for undirected graphs. The full result is in Section 6.

Theorem 2.2. In weighted undirected graphs, Min-Wt-Cycle .sprssprssprs
n2 APSP

(b) Directed Graphs. We give several sparse reductions starting from Min-Wt-Cycle for directed
graphs. In contrast to the undirected case, many sparse reductions here are fairly trivial, but we
give several new nontrivial sparse reductions as noted in the following theorem.

Theorem 2.3. (Directed Graphs.) In weighted directed graphs:
(i) Min-Wt-Cyc ≤sprssprssprs

m+n 2-SiSP ≤sprssprssprs
m+n s-t replacement paths ≡sprssprssprs

m+n ANSC .sprssprssprs
m+n Eccentricities

(ii) 2-SiSP .sprssprssprs
m+n Radius ≤sprssprssprs

m+n Eccentricities
(iii) 2-SiSP .sprssprssprs

m+n Betweenness Centrality

In Section 4 we present a brief overview of our sparse reduction from 2-SiSP to Radius for directed
graphs. The remaining reductions are in Section 7.

Our results give evidence that Min-Wt-Cycle is a central problem for graph problems (undirected
and directed) that currently have Õ(mn) time algorithms, similar to 3SUM for quadratic time
algorithms: A sub-mn time algorithm for any problem in the large collection of problems for which
we have shown a chain of sparse sub-mn reductions starting from Min-Wt-Cycle would imply a
sub-mn time algorithm for Min-Wt-Cycle, which has been open for many decades. At the same
time, our results also offer APSP as a problem to which many problems have sparse reductions.
Thus we show chains of sparse reductions that refine the class of sub-cubic equivalent problems,
with Min-Wt-Cycle as an important problem at the source end (the ‘easier’ end) and APSP at the
sink end. We also have reductions starting from the Radius problem in undirected graphs, and there
are also known sparse reductions starting from the Diameter problem [1], which has an Õ(mn) time
algorithm but is not known to be sub-cubic equivalent to APSP.

2. Reductions and Algorithms. Through our sparse reductions we are able to obtain faster
algorithms for several problems related to finding cycles in undirected graphs as stated in the
following theorem. These results are presented in Section 8. Algorithms for the corresponding
problems on directed graphs were presented recently in [2]. Note that the k-SiSP and k-SiSC
problems have considerably faster algorithms for undirected graphs than for directed graphs, hence
the results for undirected graphs do not follow from the directed versions. Part (a) in the following
theorem resolves an open question in [27], and also gives the first sub-cubic reduction from ANSC
to APSP’.

Theorem 2.4. (Reductions and Algorithms.) In undirected graphs:
(a) For unweighted graphs, ANSC .sprssprssprs

n2 APSP′ and we can solve ANSC in Õ(nω) time.

(b) For weighted graphs, k-SiSC ∼=sprssprssprs
m+n k-SiSP, and we can compute k-SiSC in Õ(m + n) time,

k-ANSiSC in Õ(mn) time and k-All-SiSC in Õ(m · (n+ k)) time.

3. Conditional Hardness. The Strong Exponential Time Hypothesis (SETH) states that satisfi-
ability of CNF-SAT on n variables cannot be computed in O(2(1−ǫ)n) time for any constant ǫ > 0.
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The k Dominating Set Hypothesis (k-DSH) states that a dominating set of size k in an undirected
graph on n vertices cannot be found in O(nk−ǫ) for any constant ǫ > 0. It was shown in [14] that
falsifying the k Dominating Set Hypothesis would falsify SETH.

Both SETH and k-DSH have remained unrefuted for several years. We complement our sparse
reduction results with hardness results relative to SETH and k-DSH for improving the current time
bounds for certain problems on sparse graphs.

Definition 2.5. (Sub-mn) A function g(m,n) is sub-mn if g(m,n) = O(mα · nβ), where α, β are
constants such that α+ β < 2.

Theorem 2.6. (Conditional Hardness) Under either SETH or k-DSH, none of the following
problems have sub-mn algorithms in either undirected or directed graphs: Diameter, Eccentricities,
and all versions of weighted Centrality problems.

Our hardness results contrast with results known for dense graph problems that are sub-cubic
equivalent to APSP: There is evidence (under NSETH [5]) that it is not possible to establish
hardness under SETH for the sub-cubic equivalence class of problems, and yet we are able to
establish a natural hardness result under SETH for several problems in the sub-mn partial order.

4. Sparse Time Bounds and Their Separation Under SETH. We define the notion of a
sparse time bound and a relative ordering between certain pairs of these bounds.

Definition 2.7. (Sparse Time Bounds for Graph Problems) Let T (m,n) be a time bound for
a graph algorithm where m is the number of edges and n the number of vertices in the input graph,
and let m = Ω(n).
(a) T (m,n) is a sparse time bound if it is strictly increasing in m.
(b) T (m,n) is a truly sparse time bound if it is a sparse time bound and given values n,m,m′ with

m′ > m, T (m′,n)
T (m,n) = Ω

((

m′

m

)ǫ)

for some constant ǫ > 0.

The above definition of a sparse time bound is meant to capture our intuitive notion that we want
the time bound for a graph problem to decrease as the graph become more sparse. The goal of
defining a truly sparse time bound is to differentiate between a polynomial dependence on m and a
sub-polynomial dependence such as polylog. This is in the spirit of all previous results on conditional
hardness and equivalances for fine-grained complexity (e.g., for APSP, 3SUM, LCS and their related
problems). This definition requires a polynomial dependence on m but not on n since most graph
problems can assume that m = Ω(n) by computing on (weakly) connected components. A sub-mn
function (Definition 2.5) is a truly sparse time bound if α > 0.

Next we define the notion of a sparse time bound T (m,n) being smaller than another time bound
T ′(m,n).

Definition 2.8. Let T ′(m,n) be a time bound and let T (m,n) be a truly sparse time bound. Then,
(a) T (m,n) is a smaller sparse time bound than T ′(m,n) if there exist constants γ, ǫ > 0 such that
for all values of m = O(n1+γ), T (m,n) = O

(

1
mǫ · T ′(m,n)

)

.
(b) T (m,n) is a weakly smaller sparse time bound than T ′(m,n) if there exists a positive con-
stant γ such that for any constant δ with γ > δ > 0, there exists an ǫ > 0 such that T (m,n) =
O
(

1
mǫ · T ′(m,n)

)

for all values of m in the range m = O(n1+γ) and m = Ω(n1+δ).

Part (a) above definition requires a polynomially smaller (in m) bound for T (m,n) relative to

T ′(m,n) for sufficiently sparse graphs. For example, m3

n2 is a smaller sparse time bound than m3/2,
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which in turn is a smaller sparse time bound than mn; m2 is a smaller sparse time bound than n3

(note that n3 is not a sparse bound). A time bound of n
√
m is a weakly smaller sparse bound than

m
√
n by part (b) but not a smaller sparse bound since the two bounds coincide when m = O(n).

Definitions 2.7 and 2.8 can be generalized by allowing for restricting the range of edge densities,
e.g., m

√
n+ n2 is a truly sparse time bound when m = Ω(n3/2). We do not consider this here.

Theorem 2.9. (Conditional Split of Sparse Time Bounds.)
(a) Under either SETH or k-DSH, the triangle finding problems in the sub-cubic equivalence class
have a smaller truly sparse time bound than computing Eccentricities or computing Betweenness
Centrality for a single node in a graph with unique shortest paths.
(b) Under the 3SUM conjecture, the maximum matching problem has a weakly smaller sparse time
bound than triangle enumeration problems.

Part (a) of the above theorem is established in Section 5, where we show a more general result. Part
(b) follows from the conditional lower bound for triangle enumeration in [11] and the well-known
O(m

√
n) time bound for maximum matching.

Theorem 2.8 provides a second differentiation between dense sub-cubic equivalent problems and
their sparse counterparts. Weighted triangle finding problems are sub-cubic equivalent to Eccen-
tricities and Betweenness Centrality. However, the above theorem shows that under SETH these
latter problems cannot attain the time bound of O(m3/2) known for triangle finding algorithms.
Thus, by accounting for graph sparsity, we have truly refined the sub-cubic equivalence class.

Our hardness proofs are fairly straightforward, and adapt earlier hardness results to our framework;
the significance of our hardness results is in the new insights they give into our inability to make
improvements to some long-standing time bounds for important problems on sparse graphs. On the
other hand, some of our sparse reductions are highly intricate, and overall these reductions give a
rich partial order on the large class of graph problems that currently have Õ(mn) time algorithms.

Roadmap. The rest of the paper is organized as follows. The next three sections provide some
highlight of our results: In section 3 we present a sparse reduction from Min-Wt-Cycle to APSP in
undirected graphs, in Section 4 we describe a sparse reduction from 2-SiSP to Radius in directed
graphs, and in Section 5 we present our sub-mn hardness result for Diameter and other problems.
In the remaining sections we present the rest of our results: In Section 6 we present our other main
result for undirected graphs, a sparse reduction from ANSC to APSP′ in unweighted undirected
graphs, which also gives a faster algorithm for dense graphs. In Section 7 we give several sparse
reductions for directed graphs to complement the 2-SiSP to Radius reduction that we gave in
Section 4. We then present our algorithmic results for finding shortest cycles in undirected graphs
in Section 8. Section 9 contains the proofs of some Lemmas introduced in Section 5. Finally in
Section 10, we describe the formal definitions of the problems that we have covered in this paper.

3 Weighted Undirected Graphs: Min-Wt-Cycle .
sprssprssprs
n2 APSP

We now sketch a sparse reduction from Min-Wt-Cycle in a weighted undirected graph to APSP′.
Full details are in Section 6.1.

It is not difficult to see (see [18]) that in any cycle C = 〈v1, v2, . . . , vl〉 in a weighted undirected

graph G = (V,E,w) there exists an edge (vi, vi+1) on C such that ⌈w(C)
2 ⌉−w(vi, vi+1) ≤ dC(v1, vi) ≤

6



⌊w(C)
2 ⌋ and ⌈w(C)

2 ⌉ − w(vi, vi+1) ≤ dC(vi+1, v1) ≤ ⌊w(C)
2 ⌋. The edge (vi, vi+1) is called the critical

edge of C with respect to the start vertex v1. The following observation holds for any edge on a
minimum weight cycle but we will apply it specifically to its critical edge with respect to v1.

Observation 3.1. Let G = (V,E,w) be a weighted undirected graph. Let C = 〈v1, v2, . . . , vl〉 be a
minimum weight cycle in G, and let (vp, vp+1) be its critical edge with respect to v1. WLOG assume
that dG(v1, vp) ≥ dG(v1, vp+1). If G′ is obtained by removing edge (vp−1, vp) from G, then the path
P = 〈v1, vl, . . . , vp+1, vp〉 is a shortest path from v1 to vp in G′.

In our reduction we construct a collection of graphs Gi,j,k, each with 2n vertices (containing 2 copies
of V ) and O(m) edges with the guarantee that, for the minimum weight cycle C in Observation 3.1,
in at least one of the graphs the edge (vp−1, vp) will not connect across the two copies of V and
the path P will be present. Then, if a call to APSP′ computes P as a shortest path from v1 to vp
(across the two copies of V ), we can verify that edge (vp, vp+1) is not the last edge on the computed
shortest path from v1 to vp in G, and so we can form the concatenation of these two paths as a
possible candidate for a minimum weight cycle. The challenge is to construct a small collection of
graphs where we can ensure that the path we identify in one of the derived graphs is in fact the
simple path P in the input graph.

Each Gi,j,k has two copies of each vertex u ∈ V , u1 ∈ V1 and u2 ∈ V2. All edges in G are present
on the vertex set V1, but there is no edge that connects any pair of vertices within V2. It uses two
forms of our bit-fixing method: In Gi,j,k there is an edge from u1 ∈ V1 to v2 ∈ V2 iff there is an edge
from u to v in G and u’s i-th bit is j and Wmax

2k
< w(u, v) ≤ Wmax

2k−1 . The edges connecting vertices
in V1 retain the weights from G, while for each edge connecting between V1 and V2, we add a large
weight Q = nWmax to its weight in G. Here, 1 ≤ i ≤ ⌈log n⌉, j ∈ {0, 1} and k ∈ {1, 2, . . . , ⌈log ρ⌉},
so we have O(log n · log ρ) graphs. Figure 2 depicts the construction of graph Gi,j,k.

The first condition for an edge (u1, v2) to be present in Gi,j,k is that u’s i-th bit must be j. This
ensures that there exist a graph where the edge (v1p−1, v

2
p) is absent and the edge (v1p+1, v

2
p) is present

(as vp−1 and vp+1 differ on at least 1 bit). The second condition – that an edge (u1, v2) is present
only if Wmax

2k
< w(u, v) ≤ Wmax

2k−1 – ensures that there is a graph Gi,j,k in which, not only is edge
(v1p+1, v

2
p) is present and edge (v1p−1, v

2
p) is absent as noted by the first condition, but also the shortest

path from v11 to v2p is in fact the path P in Observation 3.1, and does not correspond to a false
path where an edge in G is duplicated. In particular, we show that this second condition allows
us to exclude a shortest path from v11 to v2p of the following form: take the shortest path from v1
to vp in G on vertices in V1, then take an edge (v1p, x

1), and then the edge (x1, v2p). Such a path,
which has weight dC(v1, vp) + 2w(x, vp), could be shorter than the desired path, which has weight
dC(v1, vp+1)+w(vp+1, vp). In our reduction we avoid selecting this ineligible path by requiring that
the weight of the selected path should not exceed dG(v1, vp) by more than Q + Wmax/2

k−1. We
show below that these conditions suffice to ensure that P is identified in one of the Gi,j,k, and no
spurious path of shorter length is identified.

It is not difficult to see that dGi,j,k
(u1, v2) ≥ dG(u, v) +Q for all graphs Gi,j,k (see Section 6.1). In

the following lemma we identify three key properties of a path π from y1 to z2 (y 6= z) in a Gi,j,k

that (a) will be satisfied by the path P in Observation 3.1 for x = v11 and y = v2p in some Gi,j,k,
and (b) will cause a simple cycle in G to be contained in the concatenation of π with the shortest
path from x to y computed by APSP′. This gives us a method to find a minimum weight cycle in
G by calling APSP′ on each Gi,j,k and then identifying all pairs y1, z2 in each graph that satisfy
these properties. Since the path P is guaranteed to be one of the pairs, and no spurious path will
be identified, the minimum weight cycle can be identified.
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V1 V2

all
edges
from
E

no edges
between
vertices in
V2

u1 v2

a1w(u, a)

c1

f1

g2
w(f, g) +Q

(u1, v2) present if (u, v) ∈ E
and u’s i-th bit is j
and Wmax

2k
< w(u, v) ≤ Wmax

2k−1

Figure 2: Construction of Gi,j,k. Here Q = nWmax.

Lemma 3.2. Let C = 〈v1, v2, . . . , vl〉 be a minimum weight cycle in G and let (vp, vp+1) be its
critical edge with respect to the start vertex v1. Assume dG(v1, vp) ≥ dG(v1, vp+1). Then there exist
i ∈ {1, . . . , ⌈log n⌉}, j ∈ {0, 1} and k ∈ {1, 2, . . . , ⌈log ρ⌉} such that the following conditions hold:

1. dGi,j,k
(v11 , v

2
p) + dG(v1, vp) = w(C) +Q

2. LastGi,j,k
(v11 , v

2
p) 6= LastG(v1, vp)

3. dGi,j,k
(v11 , v

2
p) ≤ dG(v1, vp) +Q+ Wmax

2k−1

Further the converse also holds: If there exist vertices y, z in G with the above three properties
satisfied for y = v1, z = vp for one of the graphs Gi,j,k using a weight wt in place of w(C) in part
1, then there exists a cycle in G that passes through y (z) of weight at most wt.

The proof of the above lemma is in Section 6.1 (Lemmas 6.5 and 6.6). Section 6.1 also shows how
to refine this reduction to APSP instead of APSP′, and in Section 6.2 we adapt it to obtain a sparse
reduction from unweighted undirected ANSC to APSP′. Lemma 3.2 establishes that the following
algorithm computes the weight of a minimum weight cycle by a sparse reduction to APSP′.

MWC-to-APSP′

1: wt← 0
2: for 1 ≤ i ≤ ⌈logn⌉, j ∈ {0, 1}, and 1 ≤ k ≤ ⌈log ρ⌉ do

3: Compute APSP′ on Gi,j,k

4: for y, z ∈ V do

5: if dGi,j,k
(y1, z2) ≤ dG(y, z) +Q+ Wmax

2k−1
then check if LastGi,j,k

(y1, z2) 6= LastG(y, z)

6: if both checks in Step 5 hold then wt← min(wt, dGi,j,k
(y1, z2) + dG(y, z)−Q)

7: return wt

4 Weighted Directed Graphs: 2-SiSP .
sprssprssprs
m+n Radius

Both 2-SiSP and Radius are known to be subcubic equivalent to APSP [26, 1]. However in the
absence of equivalence for sparse graphs, our aim is to refine the sub-mn partial order. A sparse
O(n2) reduction from 2-SiSP to APSP was given in [8] and this led to a slightly faster k-SiSP
algorithm using [15]. Our sparse reduction from 2-SiSP to Radius refines this result and the sub-
mn partial order by plugging the Radius problem in the sparse reduction chain from 2-SiSP to
APSP.

The input is G = (V,E,w), with source s and sink t in V , and a shortest path P (s = v0 → v1  
vl−1 → vl = t), and we need to compute a second simple shortest path from s to t.

In our reduction, we construct a graph G′′ where we first map every edge (vj , vj+1) lying on P to
the vertices zjo and zji such that the shortest path from zjo to zji corresponds to the shortest path
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v0(s)
v1 v2

v3(t)G

z0o

z1o z2o
z2i

z0i z1i
0

0

dG(v1, t)

0 0

dG(s, v1) dG(v2, t)

0

dG(s, v2) 0

0

y0o
y0i

y1o y1i y2o y2i

0 0 0

A B

C1,0 C1,1

C2,0 C2,1

Figure 3: G′′ for l = 3. The gray and the bold edges have weight 11

9
M ′ and 1

3
M ′ respectively. All the

outgoing (incoming) edges from (to) A have weight 0 and the outgoing edges from B have weight M ′.

from s to t avoiding the edge (vj , vj+1). We then add vertices yjo and yji in the graph and connect
them to vertices zjo and zji such that the longest shortest path from yjo is to the vertex yji, which
in turn corresponds to the shortest path from zjo to zji . We have a interconnection from each yjo
vertex to all yki vertices (except for k = j) with a sparse construction by using O(log n) additional
vertices Cr,s in a manner similar to a technique in [1], and we have two additional vertices A,B with
suitable edges to induce connectivity among the yjo vertices. In our construction, we ensure that
the center is among one of the vertices yjo and hence computing the Radius in the reduced graph
gives the minimum among all the shortest paths from zjo to zji . This corresponds to a shortest
replacement path from s to t, which by definition is the second simple shortest path from s to t.
Details of this reduction are in Section 7 and Figure 3 gives an example.

The following three claims are fairly straightforward and are proved in Section 7:

(i) For each 0 ≤ j ≤ l − 1, the longest shortest path in G′′ from yjo is to the vertex yji.

(ii) A shortest path from zjo to zji corresponds to a replacement path for the edge (vj , vj+1).

(iii) One of the vertices among yjo’s is a center of G′′.

Thus by computing the radius in G′′ using (i), (ii), and (iii), we can compute the weight of a
shortest replacement path from s to t, which is a second simple shortest path from s to t. The cost
of this reduction is O(m+ n log n).

The above result also gives us a sparse reduction from the s-t replacement paths problem to the
Eccentricities problem. Details are in Section 7.

5 Conditional Hardness Results

The following lemma shows that a sub-mn time algorithm for Diameter in an unweighted graph,
either undirected or directed, would falsify both k-DSH and SETH.

Lemma 5.1. Suppose for some constant α there is an O(mα · n2−α−ǫ) time algorithm, for some

9



ǫ > 0, for solving Diameter in an unweighted m-edge n-node graph, either undirected or directed.
Then there exists a k′ > 0 such that for all k ≥ k′, the k-Dominating Set problem can be solved in
O(nk−ǫ) time.

The proof of this lemma is similar to a result in [17]. Consider determining if undirected graph
G = (V,E) has a k-dominating set. We form the graph G′ = (V ′, E′), where V ′ = V1 ∪ V2, with
V1 containing a vertex for each subset of V of size k/2 and V2 = V . We add an edge from a vertex
v ∈ V1 to a vertex x ∈ V2 if the subset corresponding to v does not dominate x. We induce a clique
in the vertex partition V2. As shown in [17], G′ has diameter 3 if G has a dominating set of size k
and has diameter 2 otherwise, and this gives a reduction from k-Dominating Set to Diameter when
k is even.

If k is odd, so k = 2r + 1, we make n calls to graphs derived from G′ = (V ′, E′) as follows, where
now each vertex in V1 represents a subset of r vertices in V . For each x ∈ V let Vx be the set
{x} ∪ {neighbors of x in G}, and let Gx be the subgraph of G′ induced on V − Vx. If we compute
diameter in each Gx, x ∈ V it is readily seen that we will detect a graph with diameter greater than
2 if and only if G has a dominating set of size k (see Section 9 for details).

Each graph Gx has N = O(nr) vertices and M = O(nr+1) edges. If we now assume that Diameter
can be computed in time O(Mα ·N2−α−ǫ), then the above algorithm for k Dominating Set runs in
time O(n ·Mα ·N2−α−ǫ) = O(n2r+1−ǫr+α), which is O(nk−ǫ) time when k ≥ 3 + 2α

ǫ . The analysis
remains the same for k even. In the directed case, we get the same result by replacing every edge
in G′ with two directed edges in opposite directions. This establishes Lemma 5.1.

This lemma, along with the reduction from SETH to k-Dominating Set in [14] and our sparse
reductions in Section 3 and 4 gives us Theorem 2.6.

For Theorem 2.9, it suffices to show that m3/2 is a faster sparse time bound than mα · n2−α for
any 0 < α ≤ 2 since Lemma 5.1, together with our sparse reductions, has shown that under SETH
or k-DSH no O(mα · n2−α−ǫ) algorithm, for any ǫ > 0, exists for Eccentricities or BC. This result
follows from the following more general lemma.

Lemma 5.2. Let T1(m,n) = O(mα1nβ1) and T2(m,n) = O(mα2nβ2) be two truly sparse time
bounds, where α1, β1, α2, β2 are constants.
(a) T1(m,n) is a smaller sparse time bound than T2(m,n) if α2 + β2 > α1 + β1, or
(b) T1(m,n) is a weakly smaller sparse time bound than T2(m,n) if α2+β2 = α1+β1, and α2 > α1.

Proof Sketch: (a) If α2 + β2 > α1 + β1, then for α1 > α2 we show that T1(m,n) is a smaller sparse

time bound than T2(m,n) for any γ < (α2+β2)−(α1+β1)
(α1−α2)

and ǫ = (α2+β2)−(α1+β1)+(α2−α1)γ
1+γ , and if

α1 ≤ α2, then the result holds for any γ > 0 and ǫ = (α2+β2)−(α1+β1)
1+γ .

(b) If α2 + β2 = α1 + β1, and α2 > α1, then we show that for any γ > 0, any constant 0 < δ < γ

(so m = n1+δ), and ǫ = (α2−α1)δ
1+δ , T1(m,n) is a weakly smaller sparse time bound than T2(m,n).

The details of the derivations are in Section 9. �

Discussion.

Our results leave many avenues for further investigation. We list two here:

1. Can we extend our conditional hardness results under SETH for Eccentricities and Betweenness
Centrality to a conditional hardness for sparse APSP under SETH? A sub-mn time bound is not
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possible for APSP in truly sparse graphs since its output size is n2. But a time bound of O(g(m,n)+
n2) for APSP, with g(m,n) a sub-mn bound with α > 0, is a truly sparse time bound for APSP for
a suitable range of edge densities, and our SETH-based conditional hardness result does not rule
out a time bound of this form for APSP. More generally, can we obtain conditional hardness results
for other problems in the mn partial order?

2. Obtaining further refinements of the mn partial order would be of interest, especially finding
more equivalences within the mn partial order. In particular, can we place Min-Wt-Cycle and APSP
in the same equivalence class under a suitable sparse reduction?

6 Fine-Grained Reductions for Undirected Graphs

In Section 3, we gave an overview of our sparse reduction from Min-Wt-Cycle to APSP. Here in
Section 6.1, we provide full details of this reduction. We then describe a Õ(n2) sparse reduction
from ANSC to APSP′ in unweighted undirected graphs in Section 6.2.

We start with the following lemma from [18] that identifies the notion of a ‘critical edge’.

Lemma 6.1 ([18]). Let G = (V,E,w) be a weighted undirected graph, where w : E → R+, and

let C = 〈v1, v2, . . . , vl〉 be a cycle in G. There exists an edge (vi, vi+1) on C such that ⌈w(C)
2 ⌉ −

w(vi, vi+1) ≤ dC(v1, vi) ≤ ⌊w(C)
2 ⌋ and ⌈w(C)

2 ⌉ − w(vi, vi+1) ≤ dC(vi+1, v1) ≤ ⌊w(C)
2 ⌋.

The edge (vi, vi+1) is called the critical edge of C with respect to the start vertex v1.

6.1 Reducing Minimum Weight Cycle to APSP

Our sparse reduction from Min-Wt-Cycle in a weighted undirected graph initially will be to APSP′

(which also computes the Last matrix), but then we show how we can convert this to a reduction to
APSP. We first describe a useful property of a minimum weight cycle; our reduction will be based
on the property stated in the Corollary that follows.

Lemma 6.2. Let C be a minimum weight cycle in weighted undirected graph G. Let x and y be two
vertices lying on the cycle C and let π1

x,y and π2
x,y be the paths from x to y in C. WLOG assume

that w(π1
x,y) ≤ w(π2

x,y). Then π1
x,y is a shortest path from x to y and π2

x,y is a second simple shortest
path from x to y, i.e. a path from x to y that is shortest among all paths from x to y that are not
identical to π1

x,y.

Proof. Assume to the contrary that π3
x,y is a second simple shortest path from x to y of weight less

than w(π2
x,y). Let the path π3

x,y deviates from the path π1
x,y at some vertex u and then it merges

back at some vertex v. Then the subpaths from u to v in π1
x,y and π3

x,y together form a cycle of
weight strictly less than w(C), resulting in a contradiction as C is a minimum weight cycle in G.

The following corollary holds for any edge on a minimum weight cycle but we will apply it specifically
to its critical edge with respect to v1.

Corollary 6.3. Let G = (V,E,w) be a weighted undirected graph. Let C = 〈v1, v2, . . . , vl〉 be a
minimum weight cycle in G, and let (vp, vp+1) be its critical edge with respect to v1. WLOG assume
that dG(v1, vp) ≥ dG(v1, vp+1). If G′ is obtained by removing edge (vp−1, vp) from G, then the path
P = 〈v1, vl, . . . , vp+1, vp〉 is a shortest path from v1 to vp in G′.
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We now use the above Corollary in our sparse reduction, Min-Wt-Cycle .sprssprssprs
n2 APSP′. In this

reduction we construct a collection of graphs Gi,j,k, each with 2n vertices and O(m) edges. Each
Gi,j,k has two copies of each vertex u ∈ V , u1 ∈ V1 and u2 ∈ V2. All edges in G are present on
the vertex set V1, but there is no edge that connects any pair of vertices within V2. In Gi,j,k there
is an edge from u1 ∈ V1 to v2 ∈ V2 iff there is an edge from u to v in G and u’s i-th bit is j and
Wmax

2k
< w(u, v) ≤ Wmax

2k−1 . The edges connecting vertices in V1 retain the weights from G, while
for each edge connecting between V1 and V2, we add a large weight Q = nWmax to its weight in
G. Here, 1 ≤ i ≤ ⌈log n⌉, j ∈ {0, 1} and k ∈ {1, 2, . . . , ⌈log ρ⌉}, so we have O(log n · log ρ) graphs.
Figure 2 depicts the construction of graph Gi,j,k.

The first condition for an edge (u1, v2) to be present in Gi,j,k is that u’s i-th bit must be j. This
ensures that there exist a graph where the edge (v1p−1, v

2
p) is absent and the edge (v1p+1, v

2
p) is present

(as vp−1 and vp+1 differ on at least 1 bit). The second condition ensures that there is a graph Gi,j,k

in which edge (v1p+1, v
2
p) is present and edge (v1p−1, v

2
p) is absent, and the shortest path from v11

to v2p is in fact P , and does not correspond to a false path where an edge in G is duplicated. In
particular, as shown below, this second condition allows us to exclude a shortest path from v11 to v2p
of the following form: take the shortest path from v1 to vp in G on vertices in V1, then take an edge
(v1p, x

1), and then the edge (x1, v2p). Such a path, which has weight dC(v1, vp) + 2w(x, vp), could
be shorter than the desired path, which has weight dC(v1, vp+1) + w(vp+1, vp). In our reduction
we avoid selecting this ineligible path by requiring that the weight of the selected path should not
exceed dG(v1, vp) by more than Q + Wmax/2

k−1. We show below that these conditions suffice to
ensure that P is identified in one of the Gi,j,k, and no spurious path of shorter length is identified.

We now describe and analyze our reduction, starting with a reduction to APSP′.

Lemma 6.4. For every i ∈ {1, . . . , ⌈log n⌉}, j ∈ {0, 1} and k ∈ {1, 2, . . . , ⌈log ρ⌉} and u, v ∈ V ,
dGi,j,k

(u1, v2) ≥ dG(u, v) +Q

Proof. (Sketch) If dGi,j,k
(u1, v2) < dG(u, v)+Q then πu1,v2 , the shortest path from u1 to v2 in Gi,j,k,

must contain x1 and x2 for some x ∈ V . We can then remove the subpath from x1 to x2 to obtain
an even shorter path from u1 to v2.

In the following two lemmas we identify three key properties of a path π from y1 to z2 (y 6= z) in a
Gi,j,k that (a) will be satisfied by the path P in Corollary 6.3 for x = v11 and y = v2p in some Gi,j,k

(Lemma 6.5), and (b) will cause a simple cycle in G to be contained in the concatenation of π with
the shortest path from x to y computed by APSP′ (Lemma 6.6). Once we have these two Lemmas
in hand, it gives us a method to find a minimum weight cycle in G by calling APSP′ on each Gi,j,k

and then identifying all pairs y1, z2 in each graph that satisfy these properties. Since the path P
is guaranteed to be one of the pairs, and no spurious path will be identified, the minimum weight
cycle can be identified. We now fill in the details.

Lemma 6.5. Let C = 〈v1, v2, . . . , vl〉 be a minimum weight cycle in G and let (vp, vp+1) be its
critical edge with respect to the start vertex v1. WLOG assume that dG(v1, vp) ≥ dG(v1, vp+1). Then
there exists an i ∈ {1, . . . , ⌈log n⌉}, j ∈ {0, 1} and k ∈ {1, 2, . . . , ⌈log ρ⌉} such that the following
conditions hold:

1. dGi,j,k
(v11 , v

2
p) + dG(v1, vp) = w(C) +Q

2. LastGi,j,k
(v11 , v

2
p) 6= LastG(v1, vp)
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3. dGi,j,k
(v11 , v

2
p) ≤ dG(v1, vp) +Q+ Wmax

2k−1

Proof. Let i, j and k be such that: vp−1 and vp+1 differ on i-th bit and j be the i-th bit of vp+1

and k be such that Wmax

2k
< w(vp, vp+1) ≤ Wmax

2k−1 . Hence, edge (v1p−1, v
2
p) is not present and the

edge (v1p+1, v
2
p) is present in Gi,j,k and so LastGi,j,k

(v11 , v
2
p) 6= LastG(v1, vp), satisfying part 2 of the

lemma.

Let us map the path P in Corollary 6.3 to the path P ′ in Gi,j,k, such that all vertices except vp are
mapped to V1 and vp is mapped to V2. Then, if P ′ is a shortest path from v11 to v2p in Gi,j,k, both
parts 1 and 3 of the lemma will hold. So it remains to show that P ′ is a shortest path. But if not,
an actual shortest path from v11 to v2p in Gi,j,k would create a shorter cycle in G than C, and if that
cycle were not simple, one could extract from it an even shorter cycle, contradicting the fact that
C is a minimum weight cycle in G.

Lemma 6.6. If there exists an i ∈ {1, . . . , ⌈log n⌉}, j ∈ {0, 1} and k ∈ {1, 2, . . . , ⌈log ρ⌉} and
y, z ∈ V such that the following conditions hold:

1. dGi,j,k
(y1, z2) + dG(y, z) = wt+Q for some wt

2. LastGi,j,k
(y1, z2) 6= LastG(y, z)

3. dGi,j,k
(y1, z2) ≤ dG(y, z) +Q+ Wmax

2k−1

Then there exists a simple cycle C containing z of weight at most wt in G.

Proof. Let πy,z be a shortest path from y to z in G and let πy1,z2 be a shortest path from y1 to z2

in Gi,j,k. Let π
′

y,z be the path corresponding to πy1,z2 in G.

The path πy1,z2 does not have vertices from V2 except z2 as the vertices in V2 are not connected by
an edge and the edges connecting the vertices from V1 to V2 have weight at least Q = nWmax.

Now we need to show that the path π
′

y,z is simple. Assume that π
′

y,z is not simple. It implies
that the path πy1,z2 contains z1 as an internal vertex. Let πz1,z2 be the subpath of πy1,z2 from
vertex z1 to z2. If πz1,z2 contains at least 2 internal vertices then this would be a simple cycle
of weight less than wt, and we are done. Otherwise, the path πz1,z2 contains exactly one internal
vertex (say x1). Hence path πz1,z2 corresponds to the edge (z, x) traversed twice in graph G. But

the weight of the edge (x, z) must be greater than Wmax

2k
(as the edge (x1, z2) is present in Gi,j,k).

Hence w(πz1,z2) >
Wmax

2k−1 +Q and hence dGi,j,k
(y1, z2) ≥ dG(y, z)+w(πz1,z2) > dG(y, z)+Q+ Wmax

2k−1 ,
resulting in a contradiction as condition 3 states otherwise. (It is for this property that the index
k in Gi,j,k is used.) Thus path πy1,z2 does not contain z1 as an internal vertex and hence π

′

y,z is
simple.

If the paths πy,z and π
′

y,z do not have any internal vertices in common, then πy,z ◦π′

y,z corresponds
to a simple cycle C in G of weight wt that passes through y and z. Otherwise, we can extract from
πy,z ◦ π′

y,z a cycle of weight smaller than wt. This establishes the lemma.

Proof of Theorem 2.2: To compute the weight of a minimum weight cycle in G in Õ(n2 + TAPSP′),
we use the procedure MWC-to-APSP′ given below. By Lemmas 6.5 and 6.6, the value wt returned
by this algorithm is the weight of a minimum weight cycle in G.
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MWC-to-APSP′

1: wt← 0
2: for 1 ≤ i ≤ ⌈logn⌉, j ∈ {0, 1}, and 1 ≤ k ≤ ⌈log ρ⌉ do

3: Compute APSP′ on Gi,j,k

4: for y, z ∈ V do

5: if dGi,j,k
(y1, z2) ≤ dG(y, z) +Q+ Wmax

2k−1
then check if LastGi,j,k

(y1, z2) 6= LastG(y, z)

6: if both checks in Step 5 hold then wt← min(wt, dGi,j,k
(y1, z2) + dG(y, z)−Q)

7: return wt

Sparse Reduction to APSP: We now describe how to avoid using the Last matrix in the reduction.
A 2-approximation algorithm for finding a cycle of weight at most 2t, where t is such that the
minimum-weight cycle’s weight lies in the range (t, 2t] , as well as distances between pairs of vertices
within distance at most t, was given by Roditty and Williams [18] (see also [12]). This algorithm
runs in time Õ(n2 log(nρ)), and it can compute the last edge on each shortest path it computes.
For a minimum weight cycle C = 〈v1, v2, . . . , vl〉 where the edge (vp, vp+1) is a critical edge with
respect to the start vertex v1, the shortest path length from v1 to vp or to vp+1 is at most t. Thus
using this algorithm, we can compute the last edge on a shortest path for such pair of vertices in
Õ(n2 log(nρ)) time.

In our reduction to APSP, we first run the 2-approximation algorithm on the input graph G to
obtain the Last(y, z) for certain pairs of vertices. Then, in Step 5 we check if LastGi,j,k

(y1, z2) 6=
LastG(y, z) only if LastG(y, z) has been computed (otherwise the current path is not a candidate
for computing a minimum weight cycle). It appears from the algorithm that the Last values are
also needed in the Gi,j,k. However, instead of computing the Last values in each Gi,j,k, we check for
the shortest path from y to z only in those Gi,j,k graphs where the LastG(y, z) has been computed,
and the edge is not present in Gi,j,k. In other words, if LastG(y, z) = q, we will only consider the
shortest paths from y1 to z2 in those graphs Gi,j,k where q’s i-th bit is not equal to j. Thus our
reduction to APSP goes through without needing APSP′ to output the Last matrix. �

6.2 Reducing ANSC to APSP
′ in Unweighted Undirected Graphs

For our sparse Õ(n2) reduction from ANSC to APSP′ in unweighted undirected graphs, we use the
graphs from the previous section, but we do not use the index k, since the graph is unweighted. We
also do not add a large value Q to the weights of edges connecting V1 and V2, so our reduction is to
unweighted APSP′. Also the vertex v2p which was a key element in our reduction in Section 6.1 will
now be the vertex z for which we want to find the length of the shortest cycle passing through it.

Our reduction exploits the fact that in unweighted graphs, every edge in a cycle is a critical edge
with respect to some vertex. Thus we construct 2⌈log n⌉ graphs Gi,j , and in order to construct a
shortest cycle through vertex z in G, we will set z = v2p in the reduction in the previous section.
Then, by letting one of the two edges incident on z in the shortest cycle through z be the critical
edge for the cycle, the construction from the previous section will allow us to find the length of a
minimum length cycle through z, for each z ∈ V , with the following post-processing algorithm.
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ANSC-to-APSP′

1: for each vertex z ∈ V do

2: wt[z]←∞

3: for 1 ≤ i ≤ ⌈logn⌉, j ∈ {0, 1} do

4: Compute APSP′ on Gi,j,

5: for y, z ∈ V do

6: if dGi,j,
(y1, z2) ≤ dG(y, z) + 1 then check if LastGi,j,

(y1, z2) 6= LastG(y, z)

7: if both checks in Step 6 hold then wt[z]← min(wt[z], dGi,j,
(y1, z2) + dG(y, z))

8: return wt array

Correctness of the above sparse reduction follows from the following two lemmas, which are similar
to Lemmas 6.5 and 6.6, and their proofs are omitted for this extended abstract.

Lemma 6.7. Let C = 〈z, v2, v3, . . . , vq〉 be a minimum length cycle passing through vertex z ∈ V .
Let (vp, vp+1) be its critical edge such that p = ⌊ q2⌋ + 1. Then there exists an i ∈ {1, . . . , ⌈log n⌉}
and j ∈ {0, 1} such that the following conditions hold:

(i) dGi,j
(v1p, z

2) + dG(vp, z) = len(C)

(ii) LastGi,j
(v1p, z

2) 6= LastG(vp, z)

(iii) dGi,j
(v1p, z

2) ≤ dG(vp, z) + 1

Lemma 6.8. If there exists an i ∈ {1, . . . , ⌈log n⌉} and j ∈ {0, 1} and y, z ∈ V such that the
following conditions hold:

(i) dGi,j
(y1, z2) + dG(y, z) = q for some q where dG(y, z) = ⌊ q2⌋

(ii) LastGi,j
(y1, z2) 6= LastG(y, z)

(iii) dGi,j
(y1, z2) ≤ dG(y, z) + 1

Then there exists a simple cycle C passing through z of length at most q in G.

Proof of Theorem 2.4: We now show that the entries in the wt array returned by the above algorithm
correspond to the ANSC output for G. Let z ∈ V be an arbitrary vertex in G and let q = wt[z]. Let
y′ be the vertex in Step 5 for which we obtain this value of q. Hence by Lemma 6.8, there exists a
simple cycle C passing through z of length at most q in G. If there were a cycle through z of length
q′ < q then by Lemma 6.7, there exists a vertex y′′ such that conditions in Step 6 hold for q′, and
the algorithm would have returned a smaller value than wt[z], which is a contradiction. This is a
sparse Õ(n2) reduction since it makes O(log n) calls to APSP′, and spends Õ(n2) additional time.
�

Figure 4 gives an overview of the state of sparse reductions for unweighted directed graphs.

It would be interesting to see if we can obtain a reduction from weighted ANSC to APSP or APSP′.
The above reduction does not work for the weighted case since it exploits the fact that for any cycle
C through a vertex z, an edge in C that is incident on z is a critical edge for some vertex in C.
However, this property need not hold in the weighted case.
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Figure 4: Chain of Reductions for Unweighted Undirected Graphs. Here BC stands for Betweenness Central-
ity, Pos stands for Positive and Approx stands for Approximate. The bold edges represent sparse O(m+ n)
reductions, the bold, squiggly edges represent tilde-sparse O(m + n) reductions, the gray edges represent
sparse O(n2) reductions and the gray, squiggly edges represent tilde-sparse O(n2) reductions. The shaded
region indicates problems hard for sub-mn computations under SETH.

7 Fine-grained Reductions for Directed Graphs

In Section 4, we gave an overview of our tilde-sparse O(m+n logn) reduction from directed 2-SiSP
to the Radius problem. Here we give full details of this reduction along with the rest of our sparse
reductions for directed graphs.

Both 2-SiSP and Radius are known to be subcubic equivalent to APSP [26, 1]. However in the
absence of equivalence for sparse graphs, our aim is to refine the sub-mn partial order. A sparse
O(n2) reduction from 2-SiSP to APSP was given in [8] and this led to a slightly faster k-SiSP
algorithm using [15]. Our sparse reduction from 2-SiSP to Radius refines this result and the sub-
mn partial order by plugging the Radius problem in the sparse reduction chain from 2-SiSP to
APSP.

In our reduction, we construct a graph G′′ where we first map every edge (vj , vj+1) lying on P to
the vertices zjo and zji such that the shortest path from zjo to zji corresponds to the shortest path
from s to t avoiding the edge (vj , vj+1). We then add vertices yjo and yji in the graph and connect
them to vertices zjo and zji such that the longest shortest path from yjo is to the vertex yji , which in
turn corresponds to the shortest path from zjo to zji . In our construction, we ensure that the center
is among one of the vertices yjo and hence computing the Radius in the reduced graph gives the
minimum among all the shortest paths from zjo to zji . This corresponds to a shortest replacement
path from s to t, which by definition is the second simple shortest path from s to t.

Lemma 7.1. In weighted directed graphs, 2-SiSP .sprssprssprs
m+n Radius

Proof. We are given an input graph G = (V,E), a source vertex s and a sink/target vertex t and we
wish to compute the second simple shortest path from s to t. Let P (s = v0 → v1  vl−1 → vl = t)
be the shortest path from s to t in G.

(i) Constructing G′′: We first create the graph G′, which contain G and l additional vertices
z0,z1,. . .,zl−1. We remove the edges lying on P from G′. For each 0 ≤ i ≤ l − 1, we add an edge
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from zi to vi of weight dG(s, vi) and an edge from vi+1 to zi of weight dG(vi+1, t). Also for each
1 ≤ i ≤ l − 1, we add a zero weight edge from zi to zi−1.

Now form G′′ from G′. For each 0 ≤ j ≤ l − 1, we replace vertex zj by vertices zji and zjo and
we place a directed edge of weight 0 from zji to zjo , and we also replace each incoming edge to
(outgoing edge from) zj with an incoming edge to zji (outgoing edge from zjo) in G′.

Let M be the largest edge weight in G and let M ′ = 9nM . For each 0 ≤ j ≤ l−1, we add additional
vertices yji and yjo and we place a directed edge of weight 0 from yjo to zjo and an edge of weight
11
9 M

′ from zji to yji .

We add 2 additional vertices A and B, and we place a directed edge from A to B of weight 0. We
also add l incoming edges to A (outgoing edges from B) from (to) each of the y′jos of weight 0 (M ′).

We also add edges of weight 2M ′

3 from yjo to yki (for each k 6= j). But due to the addition of O(n2)
edges, graph G′ becomes dense. To solve this problem, we add a gadget in our construction that
ensures that ∀0 ≤ j ≤ l− 1, we have at least one path of length 2 and weight equal to 2M ′

3 from yjo
to yki (for each k 6= j) (similar to [1]). In this gadget, we add 2⌈log n⌉ vertices of the form Cr,s for
1 ≤ r ≤ ⌈log n⌉ and s ∈ {0, 1}. Now for each 0 ≤ j ≤ l − 1, 1 ≤ r ≤ ⌈log n⌉ and s ∈ {0, 1}, we add
an edge of weight M ′

3 from yjo to Cr,s if j′s r-th bit is equal to s. We also add an edge of weight
M ′

3 from Cr,s to yji if j’s r-th bit is not equal to s.

We can observe that for 0 ≤ j ≤ l− 1, there is at least one path of weight 2M ′

3 from yjo to yki (for
each k 6= j) and the gadget does not add any new paths from yjo to yji. The reason is that for
every distinct j, k, there is at least one bit (say r) where j and k differ and let s be the r-th bit of
j. Then there must be an edge from yjo to Cr,s and an edge from Cr,s to yki , resulting in a path of

weight 2M ′

3 from yjo to yki . And by the same argument we can also observe that this gadget does
not add any new paths from yjo to yki.

We call this graph as G′′. Figure 3 depicts the full construction of G′′ for l = 3.

(ii) We now show that for each 0 ≤ j ≤ l − 1, the longest shortest path in G′′ from yjo is to the
vertex yji. It is easy to see that the shortest path from yjo to any of the vertices in G or any of the
z’s has weight at most nM . And the shortest paths from yjo to the vertices A and B have weight 0.
For k 6= j, the shortest path from yjo to yko and yki has weight M ′ and 2

3M
′ respectively. Whereas

the shortest path from yjo to yji has weight at least 10nM as it includes the last edge (zji , yji) of
weight 11

9 M
′ = 11nM . It is easy to observe that the shortest path from yjo to yji corresponds to

the shortest path from zjo to zji .

(iii) We now show that the shortest path from zjo to zji corresponds to the replacement path for the
edge (vj , vj+1) lying on P . Suppose not and let Pj (s vh  vk  t) (where vh is the vertex where
Pj separates from P and vk is the vertex where it joins P ) be the replacement path from s to t for the
edge (vj , vj+1). But then the path πj (zjo → zj−1i  zho → vh ◦ Pj(vh, vk) ◦ vk → zki → zko  zji)
(where Pj(vh, vk) is the subpath of Pj from vj to vk) from zjo to zji has weight equal to wt(Pj),
resulting in a contradiction as the shortest path from zjo to zji has weight greater than that of Pj .

(iv) We now show that one of the vertices among yjo’s is a center of G′′. It is easy to see that none
of the vertices in G could be a center of the graph G′′ as there is no path from any v ∈ V to any of
the yjo’s in G′′. Using a similar argument, we can observe that none of the z’s, or the vertices yji’s
could be a potential candidate for the center of G′′. For vertices A and B, the shortest path to any
of the yji’s has weight exactly 5

3M
′ = 15nM , which is strictly greater than the weight of the largest

shortest path from any of the yjo’s. Thus one of the vertices among yjo’s is a center of G′′.
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Thus by computing the radius in G′′, from (ii), (iii) and (iv), we can compute the weight of the
shortest replacement path from s to t, which by definition of 2-SiSP, is the second simple shortest
path from s to t. This completes the proof.

The cost of this reduction is O(m+ n log n).

The above lemma also gives us a sparse reduction from the s-t replacement paths problem to the
Eccentricities problem. We describe the statement formally in Lemma 7.2.

Lemma 7.2. In weighted directed graphs, s-t replacement paths .sprssprssprs
m+n Eccentricities

There is a simple O(m) sparse reduction from ANSC to APSP that works as follows. After comput-
ing APSP in the input graph G, for each edge (x, y) outgoing from x we compute w(x, y)+dG(y, x),
and the minimum of these values gives the weight of a minimum weight cycle through x. We repeat
this process for each vertex x in G to compute ANSC in O(m) time after a single call to APSP.
The same reduction works for reducing Min-Wt-Cycle to APSP.

We now describe a sparse reduction from directed Min-Wt-Cycle to 2-SiSP (a sub-cubic non-sparse
reduction from Min-Wt-∆ to 2-SiSP is in [26].) Both Min-Wt-Cyc and 2-SiSP [8, 15] sparsely
reduces to APSP under sparse O(m + n) and sparse O(n2) reductions, respectively. However our
reduction from Min-Wt-Cyc to 2-SiSP further refines the partial sub-mn order.

In our reduction we first create a path of length n with vertices labeled from p0 to pn. We then
map every edge (pi, pi+1) to the vertex i in the original graph G such that the replacement path
from p0 to pn for the edge (pi, pi+1) corresponds to the shortest cycle passing through i in G. Thus
computing 2-SiSP (i.e., the shortest replacement path) from p0 to pn in the constructed graph
corresponds to the minimum weight cycle in the original graph.

Lemma 7.3. In weighted directed graphs, Min-Wt-Cycle ≤sprssprssprs
m+n 2-SiSP

Proof. To compute Min-Wt-Cycle in G, we first create the graph G′, where we replace every vertex
z by vertices zi and zo, and we place a directed edge of weight 0 from zi to zo, and we replace each
incoming edge to (outgoing edge from) z with an incoming edge to zi (outgoing edge from zo). We
also add a path P (p0 → p1  pn−1 → pn) of length n and weight 0.

Let Q = n ·Wmax, where Wmax is the maximum weight of any edge in G. For each 1 ≤ j ≤ n, we
add an edge of weight (n− j +1)Q from pj−1 to jo and an edge of weight jQ from ji to pj in G′ to
form G′′. Figure 5 depicts the full construction of G′′ for n = 3. This is an (m+ n) reduction, and
it can be seen that the second simple shortest path from p0 to pn in G′′ corresponds to a minimum
weight cycle in G.

The problems k-SiSP and k-SiSC are shown to be equivalent to each other in [2]. We describe the
statement formally in Lemma 7.4.

Lemma 7.4. In directed graphs, k-SiSP ≡sprssprssprs
m+n k-SiSC

We now establish the equivalence between ANSC and the s-t replacement paths problem under
(m+n)-reductions by first showing an (m+n)-sparse reduction from s-t replacement paths problem
to ANSC. We then describe a sparse reduction from ANSC to the s-t replacement paths problem,
which is similar to our reduction from Min-Wt-Cycle to 2-SiSP as described in Lemma 7.3.
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Figure 5: G′′ for n = 3 in the reduction: directed Min-Wt-Cycle ≤sprssprssprs
m+n 2-SiSP
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Figure 6: G′ for l = 3 in the reduction: directed s-t replacement paths problem ≤sprssprssprs
m+n ANSC

In the reduction from s-t replacement paths to ANSC, we map every edge (vj , vj+1) lying on the
shortest path from s to t to a new vertex zj such that the replacement path from s to t for the
edge (vj , vj+1) correspond to the shortest cycle passing through zj in the constructed graph. Thus
computing ANSC in the reduced graph gives us the replacement path for every edge on the shortest
path from s to t.

Our reduction from ANSC to s-t replacement paths is same as the one described in Lemma 7.3 and
we observe that the replacement path for an edge (pj , pj+1) in the constructed graph correspond to
the shortest cycle passing through j in the original graph. Hence computing s-t replacement paths
in the constructed graph gives us the ANSC output in the original graph. This is described below
in Lemma 7.5.

Lemma 7.5. In weighted directed graphs, s-t replacement paths ≡sprssprssprs
m+n ANSC

Proof. We are given an input graph G = (V,E), a source vertex s and a sink vertex t and we wish
to compute the replacement paths for all the edges lying on the shortest path from s to t. Let
P (s = v0 → v1  vl−1 → vl = t) be the shortest path from s to t in G.

(i) Constructing G′: We first create the graph G′, as described in the proof of Lemma 7.1. Figure 6
depicts the full construction of G′ for l = 3.

(ii) We now show that for each 0 ≤ i ≤ l−1, the replacement path from s to t for the edge (vi, vi+1)
lying on P has weight equal to the shortest cycle passing through zi. If not, assume that for some i
(0 ≤ i ≤ l − 1), the weight of the replacement path from s to t for the edge (vi, vi+1) is not equal
to the weight of the shortest cycle passing through zi.

Let Pi (s  vj  vk  t) (where vj is the vertex where Pi separates from P and vk is the
vertex where it joins P ) be the replacement path from s to t for the edge (vi, vi+1) and let Ci

(zi  zp → vp  vq → zq  zi) be the shortest cycle passing through zi in G′.

If wt(Pi) < wt(Ci), then the cycle C ′i (zi → zi−1  zj → vj ◦ Pi(vj , vk) ◦ vk → zk → zk−1  zi)
(where Pi(vj , vk) is the subpath of Pi from vj to vk) passing through zi has weight equal to wt(Pi) <
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wt(Ci), resulting in a contradiction as Ci is the shortest cycle passing through zi in G′.

Now if wt(Ci) < wt(Pi), then the path P ′i (s  vp ◦ Ci(vp, vq) ◦ vq  vl) where Ci(vp, vq) is the
subpath of Ci from vp to vq, is also a path from s to t avoiding the edge (vi, vi+1), and has weight
equal to wt(Ci) < wt(Pi), resulting in a contradiction as Pi is the shortest replacement path from
s to t for the edge (vi, vi+1).

We then compute ANSC in G′. And by (ii), the shortest cycles for each of the vertices z0, z1, . . . , zl−1
gives us the replacement paths from s to t. This leads to an (m + n) sparse reduction from s-t
replacement paths problem to ANSC.

Now for the other direction, we are given an input graph G = (V,E) and we wish to compute the
ANSC in G. We first create the graph G

′′

, as described in Lemma 7.3. We can see that the shortest
path from p0 to pn avoiding edge (pj−1, pj) corresponds to a shortest cycle passing through j in G.
This gives us an (m+ n)-sparse reduction from ANSC to s-t replacement paths problem.

We now give a sparse reduction from the 2-SiSP problem to Betweenness Centrality in Lemma 7.6.
Our reduction is similar to the reduction from 2-SiSP to Radius, as described in Lemma 7.1.

In our reduction, we first map every edge (vj , vj+1) to new vertices yjo and yji such that the shortest
path from yjo to yji corresponds to the replacement path from s to t for the edge (vj , vj+1). We
then add an additional vertex A and connect it to vertices yjo’s and yji’s. We also ensure that the
only shortest paths passing through A are from yjo to yji . We then do binary search on the edge
weights for the edges going from A to yji’s with oracle calls to the Betweenness Centrality problem,
to compute the weight of the shortest replacement path from s to t, which by definition of 2-SiSP,
is the second simple shortest path from s to t.

Lemma 7.6. In weighted directed graphs, 2-SiSP .sprssprssprs
m+n Betweenness Centrality

Proof. We are given an input graph G = (V,E), a source vertex s and a sink/target vertex t and we
wish to compute the second simple shortest path from s to t. Let P (s = v0 → v1  vl−1 → vl = t)
be the shortest path from s to t in G.

(i) Constructing G′′: We first construct the graph G′′, as described in the proof of Lemma 7.1,
without the vertices A and B. For each 0 ≤ j ≤ l− 1, we change the weight of the edge from zji to
yji to M ′ (where M ′ = 9nM and M is the largest edge weight in G).

We add an additional vertex A and for each 0 ≤ j ≤ l − 1, we add an incoming (outgoing) edge
from (to) yjo (yji). We assign the weight of the edges from yjo’s to A as 0 and from A to yji’s as
M ′ + q (for some q in the range 0 to nM).

Figure 7 depicts the full construction of G′′ for l = 3.

We observe that for each 0 ≤ j ≤ l − 1, a shortest path from yjo to yji with (zji , yji) as the last
edge has weight equal to M ′ + dG′′(zjo , zji).

(ii) We now show that the Betweenness Centrality of A, i.e. BC(A), is equal to l iff q < dG′′(zjo , zji)
for each 0 ≤ j ≤ l − 1. The only paths that passes through the vertex A are from vertices yjo’s to
vertices yji’s. For j 6= k, as noted in the proof of Lemma 7.1, there exists some r, s such that there
is a path from yjo to yki that goes through Cr,s and has weight equal to 2

3M
′. However a path from

yjo to yki has weight M ′ + q, which is strictly greater than 2
3M

′ and hence the pairs (yjo, yki) does
not contribute to the Betweenness Centrality of A.

20



v0(s)
v1 v2

v3(t)G

z0o

z1o z2o
z2i

z0i z1i
0

0

dG(v1, t)

0 0

dG(s, v1) dG(v2, t)

0

dG(s, v2) 0

0

y0o
y0i

y1o y1i y2o y2i

0 0 0

A

C1,0 C1,1

C2,0 C2,1

Figure 7: G′′ for l = 3 in the reduction: directed 2-SiSP .sprssprssprs
m+n Betweenness Centrality. The gray and the
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M ′ + q (0).

Now if BC(A), is equal to l, it implies that the shortest paths for all pairs (yjo, yji) passes through
A and there is exactly one shortest path for each such pair. Hence for each 0 ≤ j ≤ l − 1,
M ′ + q < M ′ + dG′′(zjo , zji). Thus q < dG′′(zjo , zji) for each 0 ≤ j ≤ l − 1.

On the other hand if q < dG′′(zjo , zji) for each 0 ≤ j ≤ l − 1, then the path from yjo to yji with
(zji , yji) as the last edge has weight M ′ + dG′′(zjo, zji). However the path from yjo to yji passing
through A has weight M ′ + q < M ′ + dG′′(zjo , zji). Hence every such pair contributes 1 to the
Betweenness Centrality of A and thus BC(A) = l.

Thus using (ii), we just need to find the minimum value of q such that BC(A) < l in order to
compute the value min0≤j≤l−1 dG′′(zjo , zji). We can find such q by performing a binary search in
the range 0 to nM and computing BC(A) at every layer. Thus we make O(log nM) calls to the
Betweenness Centrality algorithm.

As observed in the proof of Lemma 7.5, we know that the shortest path from zjo to zji corresponds
to the replacement path for the edge (vj , vj+1) lying on P . Thus by making O(log nM) calls to the
Betweenness Centrality algorithm, we can compute the second simple shortest path from s to t in
G. This completes the proof.

The cost of this reduction is O((m+ n log n) · log nM).

We now describe a tilde-sparse reduction from the ANSC problem to the All Nodes Positive Be-
tweenness Centrality problem. Our reduction is similar to the reduction from 2-SiSP to the Be-
tweenness Centrality problem, but instead of computing betweenness centrality through one vertex,
it requires the positive betweenness centrality values for n different nodes.

In our reduction we first split every vertex x into vertices xo and xi such that the shortest path
from xo to xi corresponds to the shortest cycle passing through x in the original graph. We then
add additional vertices zx for each vertex x in the original graph and connect it to the vertices xo
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Figure 8: G′ for n = 3 in the reduction: directed ANSC .sprssprssprs
m+n All Nodes Positive Betweenness Centrality.

and xi such that the only shortest path passing through zx is from xo to xi. We then perform
binary search on the edge weights for the edges going from zx to xi with oracle calls to the Positive
Betweenness Centrality problem, to compute the weight of the shortest cycle passing through x in
the original graph. Our reduction is described in Lemma 7.7.

Lemma 7.7. In weighted directed graphs, ANSC .sprssprssprs
m+n All Nodes Positive Betweenness Centrality

Proof. We are given an input graph G = (V,E) and we wish to compute the ANSC in G. Let M
be the largest edge weight in G.

(i) Constructing G′: Now we construct a graph G′ from G. For each vertex x ∈ V , we replace x
by vertices xi and xo and we place a directed edge of weight 0 from xi to xo, and we also replace
each incoming edge to (outgoing edge from) x with an incoming edge to xi (outgoing edge from xo)
in G′. We can observe that the shortest path from xo to xi in G′ corresponds to the shortest cycle
passing through x in G.

For each vertex x ∈ V , we add an additional vertex zx in G′ and we add an edge of weight 0 from
xo to zx and an edge of weight qx (where qx lies in the range from 0 to nM) from zx to xi.

Figure 8 depicts the full construction of G′ for n = 3.

We observe that the shortest path from xo to xi for some vertex x ∈ V passes through zx only if
the shortest cycle passing through x in G has weight greater than qx.

(ii) We now show that for each vertex x ∈ V , Positive Betweenness Centrality of zx, i.e., BC(zx) >
0 iff the shortest cycle passing through x has weight greater than qx. It is easy to see that the only
path that pass through vertex zx is from xo to xi (as the only outgoing edge from xi is to xo and
the only incoming edge to xo is from xi).

Now if BC(zx) > 0, it implies that the shortest path from xo to xi passes through zx and hence the
path from xo to xi corresponding to the shortest cycle passing through x has weight greater than
qx.

On the other hand, if the shortest cycle passing through x has weight greater than qx, then the
shortest path from xo to xi passes through zx. And hence BC(zx) > 0.

Then using (ii), we just need to find the maximum value of qx such that BC(zx) > 0 in order
to compute the weight of the shortest cycle passing through x in the original graph. We can find
such qx by performing a binary search in the range 0 to nM and computing Positive Betweenness
Centrality for all nodes at every layer. Thus we make O(log nM) calls to the All-Nodes Positive
Betweenness Centrality algorithm. This completes the proof.

The cost of this reduction is O((m+ n) · log nM).

We also have tilde-sparse O(m + n) equivalences between the Diameter problem, Betweenness
Centrality (Positive/Approximate) and Reach Centrality [1]. We state this formally in Lemma 7.8.

22



Min-Len-Cyc ANSC APSP

All
Nodes
BC

(Pos/
Approx)

All
Nodes
BC

Radius Eccentricities

BC

BC
(Pos/

Approx)

SETH Diameter

Figure 9: Chain of Reductions for Unweighted Directed Graphs. Here BC stands for Betweenness Centrality,
Pos stands for Positive and Approx stands for Approximate. The bold edges represent sparse O(m + n)
reductions and the gray edges represent sparse O(n2) reductions. The shaded region indicates problems
hard for sub-mn computations under SETH.

Lemma 7.8. ([1]) In weighted directed graphs, the following problems are tilde-sparse O(m + n)
equivalent: Diameter, Betweenness Centrality (Positive/Approximate) , and Reach Centrality.

Unweighted Directed Graphs.

Our sparse reduction from ANSC to APSP and the sparse equivalence between k-SiSP and k-SiSC
holds for the unweighted case as well. But our other sparse reductions from Min-Wt-Cycle to 2-
SiSP, from 2-SiSP to Radius and Betweenness Centrality and from ANSC to All-Nodes Positive
Betweenness Centrality does not work for unweighted graphs since they use very large weights on
certain edges. Here, in fact, there is a randomized Õ(k · m√

n) time algorithm for unweighted k-
SiSP [19], hence such a reduction from Min-Wt-Cycle to 2-SiSP would imply a significantly faster
algorithm for a shortest cycle in a graph, a long-standing open question. Figure 9 gives an overview
of the state of sparse reductions for unweighted directed graphs.

8 Algorithms for Shortest Cycles in Undirected Graphs

1. ANSC in Unweighted Undirected Graphs. In Section 6.2, we gave a tilde-sparse O(n2 log n)
reduction from ANSC to APSP′ in unweighted undirected graphs. To compute ANSC, our reduc-
tion constructs 2⌈log n⌉ graphs Gi,j and makes one call to APSP′ for each of these graphs, with an
additional O(n2 log n) post processing time. Using the O(nω log n) time algorithm for computing
APSP′ in unweighted undirected graphs [21, 3], we obtain an O(nω log2 n) time algorithm for com-
puting ANSC in unweighted undirected graphs, giving bound in Theorem 2.4(a). This improves on

the best previous bound in Yuster [27]. That algorithm is randomized and runs in Õ(n
ω+3
2 ) time.

Recently there has been some progress in the unweighted directed case as well [20]. Their algorithm
runs in Õ(nω) time and is faster than the previous best known algorithm given by Yuster [27].

2. k-SiSC in Undirected Graphs. We obtain an Õ(m+n) time algorithm for k-SiSC in weighted
undirected graphs by giving a tilde-sparse Õ(m + n) time reduction from k-SiSC to k-SiSP. This
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reduction uses our bit-fixing method with ⌈log n⌉ different graphs. The reverse reduction from k-
SiSP to k-SiSC is also sparse and is simpler, so we can show the tilde-equivalence of k-SiSP and
k-SiSC in undirected graphs. We did not include this result in our partial order because both
problems have near linear-time algorithms and are not in the mn partial order.

Lemma 8.1. In undirected graphs, k-SiSC .sprssprssprs
(m+n) k-SiSP and k-SiSP ≤sprssprssprs

(m+n) k-SiSC

Proof. Let the input be G = (V,E) and let x ∈ V be the vertex for which we need to compute
k-SiSC. We assume that the vertices are labeled from 1 to n. We first show that k-SiSC in G can
be computed with ⌈log n⌉ calls to k-SiSP. Let N (x) be the neighbor-set of x. We create ⌈log n⌉
graphs Gi = (Vi, Ei) such that ∀1 ≤ i ≤ ⌈log n⌉, Gi contains two additional vertices x0,i and x1,i
(instead of the vertex x) and ∀y ∈ N (x), the edge (y, x0,i) ∈ Ei if y’s i-th bit is 0, otherwise the
edge (y, x1,i) ∈ Ei. This takes O((m + n) · log n) time and we observe that every cycle through x
will appear as a path from x0,i to x1,i in at least one of the Gi. Hence, the k-th shortest path in
the collection of k-SiSPs from x0,i to x1,i in log n Gi, 1 ≤ i ≤ ⌈log n⌉ (after removing duplicates),
corresponds to the k-th SiSC passing through x.

To compute k-SiSP from x to y in G, we reduce to k-SiSC by forming G′, where we add a new
vertex z and place edges of weight 1 from z to x and y. Then the k-th simple shortest cycle through
z in G′ corresponds to the k-th simple shortest path from x to y in G.

Using the undirected k-SiSP algorithm in [10] that runs in O(k · (m + n log n)), we obtain an
O(k log n · (m+ n log n)) time algorithm for k-SiSC in undirected graphs.

3. k-ANSiSC in Undirected Graphs. We can compute k-SiSC for every vertex x ∈ V using the
above algorithm to obtain an O(kn log n·(m+n logn)) (i.e., Õ(kmn)) time algorithm for k-ANSiSC.

4. k-All-SiSC in Undirected Graphs.. Recently an algorithm for directed k-All-SiSC was given
in [2] that runs in Õ(kmn) time. Our k-All-SiSC algorithm for undirected graphs, which is adapted
from the directed version in [2], is faster and works as follows. During an initialization phase, we
find a shortest cycle passing through a vertex j, for each j ∈ V , in the graph Gj induced on the
vertex set {v ≥ j}. We store these cycles in an array sc[1 . . . n]. (We use the graphs Gj to avoid
generating duplicate cycles.) The shortest cycle among these cycles gives us a minimum weight
cycle in G. To find the second shortest cycle in G, we generate the second SiSC passing through
the vertex i in graph Gi, where i is the vertex with the minimum id in the previously generated
cycle. We store this cycle in the i-th entry of the array sc.

Now assume that we have already generated k − 1 shortest cycles in the graph and we want to
generate the k-th shortest cycle. Let p be the vertex with the minimum id on the (k − 1)-th cycle
and let kp be the number of cycles among these k−1 cycles that have p as the vertex with minimum
id. We then generate the (kp + 1)-th SiSC passing through p in Gp and we store it in the array sc
at index p. The k-th shortest cycle is then the shortest cycle in this array.

The initialization cost is O((m+n log n) · n) for n calls to Suurballe and Tarjan’s algorithm [23, 6]
for finding a shortest cycle passing through a specified vertex. Thereafter, we can generate each
successive cycle by using our k-SiSC algorithm that runs in O((m + n log n) · log n) time, if we
store the cycles that we have already generated in the array sc, and the data structures needed for
computing successive simple shortest cycles through each vertex. This results in an Õ(m · (n+ k))
time algorithm for k-All-SiSC in undirected graphs.
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9 Proofs for Section 5

We give details of the proofs of Lemma 5.1 and Lemma 5.2 in Section 5.

Proof of Lemma 5.1. Our reduction is similar to a result in [17]. Consider the undirected case first,
so we are given an input graph G = (V,E), and our goal is to determine if G has a k-dominating
set.

Consider first the case when k is odd, so k = 2r + 1. To find a k-dominating set in G, we make
n calls to graphs derived from the following instance G′ = (V ′, E′) of the Diameter problem (G′ is
used in [17] where k is assumed to be even).

In G′ the vertex set V ′ = V1 ∪ V2, where V1 contains a vertex for each subset of V of size r and
V2 = V . We add an edge from a vertex v ∈ V1 to a vertex x ∈ V2 if the subset corresponding to
v does not dominate x. We induce a clique in the vertex partition V2. As shown in [17] G′ has
diameter 3 if G has a dominating set of size 2r and has diameter 2 otherwise.

For each x ∈ V let Vx be the set {x} ∪ {neighbors of x in G}, and let Gx be the subgraph of G′

induced on V − Vx. If G has a dominating set D of size k that includes vertex x then consider
any partition of the remaining 2r vertices in D into two subsets of size r each, and let u and v be
the vertices corresponding to these two sets in V1. Since all paths from u to v in Gx pass through
V2 −Vx, there is no path of length 2 from u to v since every vertex in V2 −Vx is covered by either u
or v. Hence the diameter of Gx is greater than 2 in this case. But if there is no dominating set of
size k that includes x in G, then for any u, v ∈ V1, at least one vertex in V2 − Vx is not covered by
both u and v and hence there is a path of length 2 from u to v. If we now compute the diameter in
each of graphs Gx, x ∈ V , we will detect a graph with diameter greater than 2 if and only if G has
a dominating set of size k.

Each graph Gx has N = O(nr) vertices and M = O(nr+1) edges. If we now assume that Diameter
can be computed in time O(Mα · N2−α−ǫ), then the above algorithm for k Dominating Set runs
in time O(n · Mα · N2−α−ǫ) = O(n2r+1−ǫr+α). Then for r ≥ 1 + α

ǫ (i.e., k ≥ 3 + 2α
ǫ ) the above

algorithm runs in O(nk−ǫ) time. The case when k is even is simpler since we can work with just
one graph G′ (as in [17]). In the directed case, we get the same result by replacing every edge in G′

with two directed edges in opposite directions.

Proof of Lemma 5.2. (a) If α2 + β2 > α1 + β1, then we show that for any γ < (α2+β2)−(α1+β1)
(α1−α2)

(if

α1 > α2) and if α1 ≤ α2, then for any γ > 0, T1(m,n) is a smaller sparse time bound than T2(m,n).

Let m = n1+γ
′

(where γ
′ ≤ γ) and ǫ = (α2+β2)−(α1+β1)+(α2−α1)γ

1+γ . Then,

T1(m,n) = nα1+β1+α1γ
′

=
nα2+β2+α2γ

′

n(α2+β2)−(α1+β1)+(α2−α1)γ
′

=
T2(m,n)

n
((α2+β2)−(α1+β1)+(α2−α1)γ)(1+γ)

(1+γ) · n(α2−α1)(γ
′
−γ)

≤ T2(m,n)

nǫ(1+γ)
(Since (α2 − α1)(γ

′ − γ) > 0)
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≤ T2(m,n)

nǫ(1+γ
′
)

(Since γ
′

< γ)

= O

(

T2(m,n)

mǫ

)

And if α1 ≤ α2, then for any γ > 0 and ǫ = (α2+β2)−(α1+β1)
1+γ . Now it is easy to see that T1(m,n) =

O(T2(m,n)
mǫ ).

(b) If α2 + β2 = α1 + β1, and α2 > α1, then we show that for any γ > 0 and for any constant

0 < δ < γ and ǫ = (α2−α1)δ
1+δ (where m = n1+δ), T1(m,n) is a weakly smaller sparse time bound than

T2(m,n).

Now,

T1(m,n) = nα1+β1+α1δ

=
nα2+β2+α2δ

n(α2−α1)δ

=
T2(m,n)

mǫ

This establishes the proof.

10 Definitions of Graph Problems

All Pairs Shortest Paths (APSP). Given a graph G = (V,E), the APSP problem is to
compute the shortest path distances for every pair of vertices in G.

The problem can be solved in O(mn + n2 log log n) time for weighted directed graphs [15], and in
O(mn) time using breadth first search for unweighted directed and undirected graphs. A slightly
faster algorithm exists for weighted undirected graphs that runs in O(mn logα(m,n)) time [16].

APSP′. This is the problem of finding both the weights of the shortest paths as well as an n×n
matrix Last, where Last(x, y) contains the predecessor vertex of y on a shortest path from x to y.
For each x, we assume that these predecessors represent a shortest path tree for x. All currently
known APSP algorithms [21, 22, 28] can compute APSP′ as well.

Minimum Weight Cycle (Min-Wt-Cycle). Given a graph G = (V,E), the minimum weight
cycle problem is to find the weight of a minimum weight cycle in G.

Given the APSP output for the graph G, Min-Wt-Cycle can be computed in additional O(m) time
in a directed graph by computing, for each edge (x, y), the quantity w(x, y) + d(y, x), which gives
the weight of a minimum weight cycle through edge (x, y), and then choosing the minimum of the
weights computed. By Definition 2.1, this is a sparse O(m + n) reduction from Min-Wt-Cycle to
APSP for directed graphs, but it does not work for undirected graphs since an edge (x, y) may itself
be a shortest path from x to y. The challenges that arise in trying to reduce Min-Wt-Cycle to
APSP in undirected graphs are discussed at length in [18, 27]. For sparse graphs, the fastest known
algorithm for computing Min-Wt-Cycle in weighted undirected graphs uses n Dijkstra computations
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and runs in O((m+n log n) ·n) time, and the algorithm for unweighted graphs runs in O(mn) time
with n BFS computations.

Roditty and Williams [18] gave an Õ(M ·nω) time algorithm for computing Min-Wt-Cycle in directed
graphs with bounded integer weights up to M using fast matrix multiplication. For undirected
graphs with bounded positive integer weights up to M , they gave a Õ(n2) reduction from Min-
Wt-Cycle to Min-Wt-Triangle, and since the latter problem can be computed in Õ(M · nω), the
same bound as APSP, for graphs with bounded integer weights, they match the current fast matrix
multiplication bound for APSP on undirected graphs. However, this reduction from Min-Wt-Cycle
to APSP in [18] is not a sparse reduction. The graph in which Min-Wt-Triangle is computed has
O(n) vertices, but it has Θ(n2) edges, regardless of the sparsity of the original graph.

In Section 3, we give an Õ(n2) sparse reduction from Min-Wt-Cycle to APSP for undirected graphs.

All Nodes Shortest Cycles (ANSC). Given a graph G = (V,E), the ANSC problem is to find
the weight of a shortest cycle through each vertex in G.

In a directed graph the sparse O(m + n) reduction from Min-Wt-Cycle to APSP gives a sparse
reduction from ANSC to APSP, and ANSC can be solved in O(APSP ) time. For sparse directed
graphs, the ANSC problem can be solved in O((m+n log n) ·n) time by making n calls to Suurballe
and Tarjan’s algorithm [23, 6] for finding a shortest cycle passing through a specified vertex.

A randomized subcubic reduction from ANSC to APSP for undirected graphs can be obtained
through Yuster’s algorithm [27, 25]. In Section 6.2 we present a deterministic sparse Õ(n2) reduction
from the ANSC to APSP′ for undirected unweighted graphs (this is clearly a sub-cubic reduction
as well). This also leads to a faster algorithm for this problem for dense graphs. The previous best

algorithm of Yuster [27] is randomized. It uses fast matrix multiplication and runs in Õ(n
ω+3
2 ) time,

and it left the possibility of an Õ(nω) algorithm or even a deterministic Õ(n
ω+3
2 ) time algorithm as

an open question.

Replacement Paths. Given a graph G = (V,E) and a pair of vertices s, t, the replacement paths
problem is to find, for each edge e lying on the shortest path from s to t, a shortest path from s to
t avoiding the edge e.

For weighted directed graphs, the replacement paths problem can be solved in O(mn+n2 log log n)
time [8, 15]. A faster algorithm exists for unweighted directed graphs that takes Õ(m

√
n) time

[19]. This problem can be solved in Õ(m) time for undirected graphs [13].

A subcubic reduction from the Min-Wt-∆ problem is known for this problem [26] for weighted
directed graphs. For sparse weighted directed graphs, we present a sparse O(m+n) reduction from
the Min-Wt-Cycle problem in Section 7.

k-SiSP and k-SiSC. Given a graph G = (V,E) and a pair of vertices s, t, the k-SiSP problem is
to find, the k shortest simple paths from s to t, such that the i-th path generated is different from
all the previously generated (i− 1) paths and has weight greater than or equal to the weight of any
of these (i− 1) paths.

The k-SiSP problem can be solved in O(k · (mn+ n2 log log n)) time using the 2-SiSP algorithm in
[8, 15] for weighted directed graphs, and in Õ(km

√
n) time [19] for unweighted directed graphs.

The problem can be solved more efficiently in undirected graphs and runs in O(k(m+n)) time [10].
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In weighted directed graphs there is a sub-cubic reduction from Min-Wt-∆ to k-SiSP [26] but the
resulting graph is dense. In Section 7, we describe a sparse O(m+n) reduction from Min-Wt-Cycle
to this problem that preserves sparsity.

The corresponding cycle version of k-SiSP is known as k-SiSC, where the goal is to compute the k
shortest simple cycles through a given vertex x, such that the i-th cycle generated is different from
all previously generated (i− 1) cycles and has weight greater than or equal to the weight of any of
these (i− 1) cycles. For weighted directed graphs sparse equivalence between k-SiSP and k-SiSC is
shown in [2].

k-ANSiSC. Given a graph G = (V,E), the k-ANSiSC problem is to find the k shortest simple
cycles through each vertex in G.

In directed graphs, the k-ANSiSC problem can be solved in O(k · n · (mn+ n2 log log n)) time [2].

k-All-SiSC. Given a graph G = (V,E), the k-All-SiSC problem is to find the k shortest simple
cycles in G.

For directed graphs, the k-All-SiSC problem can be solved in O(k · (mn+ n2 log log n)) time with
an additional O(mn+ n2 log n) startup cost [2].

Radius. For a given graph G = (V,E), the Radius problem is to compute the value minx∈V maxy∈V
dG(x, y). The center of a graph is the vertex x which minimizes this value.

The only known algorithm for computing Radius involves computing APSP and then finding the
radius in additional O(n2) time. There is a subcubic reduction from Min-Wt-∆ problem to this
problem for both weighted directed and undirected graphs as shown in [1]. For weighted directed
graphs, we give a sparse O(m+ n log n) reduction from the 2-SiSP problem to Radius in Section 4.

Diameter. For a given graph G = (V,E), the Diameter problem is to compute the value maxx,y∈V
dG(x, y).

The current best algorithm for computing Diameter involves computing APSP and then computing
the diameter in additional O(n2) time. Diameter is not known to be sub-cubic equivalent to APSP.
In [17], it was shown that an O(m2−ǫ) (for any constant ǫ > 0) time algorithm for computing
Diameter will refute SETH. In Section 5, we further analyze that any sub-mn time algorithm for
computing Diameter will also refute SETH.

Eccentricities. For a given graph G = (V,E), the Eccentricities problem is to compute the value
maxy∈V dG(x, y) for each vertex x ∈ V . Thus the Radius problem is equivalent to finding minimum
of all the eccentricities and the Diameter is equivalent to finding maximum of all the eccentricities.

The problem can be solved by computing APSP with additional O(n2) post-processing time. A
subcubic reduction from Min-Wt-∆ problem for both weighted directed and undirected graphs
follows from the subcubic reduction from Min-Wt-∆ to Radius as shown in [1]. For weighted
directed graphs, we describe a tilde-sparse O(m+n) reduction from the ANSC problem in Section 4.
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Betweenness Centrality. Betweenness Centrality of a node is an indicator of its centrality in
the network. For a given graph G = (V,E) and a node v ∈ V , the Betweenness Centrality of v is

the value
∑

s,t∈V,s,t6=v
σs,t(v)
σs,t

, where σs,t is the number of shortest paths from s to t and σs,t(v) is the
number of shortest paths from s to t passing through v. In other words, Betweenness Centrality of
v is the fraction of shortest paths passing through v.

As in [1] we assume that the graph has unique shortest paths and hence the Betweenness Centrality
of a node is simply the number of s, t pairs such that the shortest path from s to t passes through
v. This can be solved by first computing APSP and then taking additional O(n2) post processing
time for checking al s, t pairs.

For both weighted directed and undirected graphs, a subcubic reduction from Min-Wt-∆ problem is
known for this version of the problem [1]. In Section 7 we however describe a tilde-sparse O(m+n)
reduction from 2-SiSP to Between Centrality in weighted directed graphs. In Section 5, we also
observe that any sub-mn time algorithm for computing Betweenness Centrality in both weighted
directed and undirected graphs will refute SETH.

The all-nodes version of this problem is called as All Nodes Betweenness Centrality. Positive Be-
tweenness Centrality of a node v is the problem of checking whether BC(v) > 0 and its corresponding
all-nodes version is known as All-Nodes Positive Betweenness Centrality. The problem of computing
an α-approximation of the Betweenness Centrality is called as α-Approximate Betweenness Central-
ity and All-Nodes α-Approximate Betweenness Centrality is its all-nodes version.

For weighted graphs, both directed and undirected, the Positive and Approximate Betweenness
Centrality problems are known to be tilde-sparse O(m+n) equivalent to Diameter [1]. For weighted
directed graphs, we give a tilde-sparse O(m + n) reduction from ANSC to All Nodes Positive
Betweenness Centrality problem (Section 7).

Reach Centrality. For a given graph G = (V,E) and a node v ∈ V , the Reach Centrality of v
is the value maxs,t∈V :dG(s,v)+dG(v,t)=dG(s,t)min(dG(s, b), dG(b, t)).

The current best known approach for solving Reach Centrality is via computing APSP with O(n2)
post-processing time. For both weighted directed and undirected graphs, the Reach Centrality
problem is tilde-sparse O(m+ n) equivalent to Diameter [1].

Acknowledgements. We thank Virginia Vassilevska Williams for helpful discussions.
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