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Abstract

We describe a general-purpose shared-memory model for parallel computation, called the
qsm [22], which provides a high-level shared-memory abstraction for parallel algorithm design,
as well as the ability to be emulated in an e�ective manner on the bsp, a lower-level, distributed-
memory model. We present new emulation results that show that very little generality is lost
by not having a `gap parameter' at memory.

1 Introduction

The design of general-purpose models of parallel computation has been a topic of much importance
and study. However, due to the diversity of architectures among parallel machines, this has also
proved to be a very challenging task. The challenge here has been to �nd a model that is general
enough to encompass the wide variety of parallel machines available, while retaining enough of the
essential features of these diverse machines in order to serve as a reasonably faithful model of them.

Until recently there have been two approaches taken towards modeling parallel machines for the
purpose of algorithm design. The more popular of the two approaches has been to design parallel
algorithms on the pram, which is a synchronous, shared-memory model in which each processor
can perform a local computation or access a shared memory location in a unit-time step, and there
is global synchronization after each step. As a simple model at a high level of abstraction, the pram
has served an important role, and most of the basic paradigms for parallel algorithm design as well
as the basic ideas underlying the parallel algorithms for many problems have been developed on
this model (see, e.g., [28, 24, 41]).

The other approach that has been used to design parallel algorithms has been to consider
distributed-memory models, and tailor the parallel algorithm to a speci�c interconnection network
that connects the processors and memory, e.g., mesh, hypercube, shu�e-exchange, cube-connected
cycles, etc. There are several results known on embedding one of these networks, the source network,
on to another, the target network(see, e.g., [31]), so that an e�cient algorithm on the source network
results in an e�cient algorithm on the target network.

Neither of the above approaches has been very satisfactory. On the one hand, the pram

is too high-level a model, and it ignores completely the latency and bandwidth limitations of
real parallel machines. On the other hand, algorithms developed for a speci�c interconnection
network are tailored to certain standard, regular networks, and hence are not truly general-purpose.
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Thus is not surprising that a variety of other models have been proposed in the literature, (e.g.,
[2, 5, 6, 7, 9, 13, 15, 18, 23, 29, 32, 34, 35, 38, 40, 45, 46]) to address speci�c drawbacks of the
pram although none of these are general-purpose models.

In recent years, distributed-memory models that characterize the interconnection network ab-
stractly by parameters that capture its performance have gained much attention. An early work
along these lines is the CTA [42]. More recently, the bsp model [43, 44] and the logp model [14]
have gained wide acceptance as general-purpose models of parallel computation. In these models
the parallel machine is abstracted as a collection of processors-memory units with no global shared
memory. The processors are interconnected by a network whose performance is characterized by
a latency parameter L and a gap parameter g. The latency of the network is the time needed to
transmit a message from one processor to another. The gap parameter g indicates that a proces-
sor can send no more than one message every g steps. This parameter reects the bandwidth of
the network { the higher the bandwidth, the lower is the value of g. The models may have some
additional parameters, such as the overhead in sending messages, and the time for synchronization
(in a model that is not asynchronous). In contrast to earlier �xed interconnection network models,
the bsp and logp models do not take into consideration the exact topology of the interconnection
network.

The bsp and logp models have become very popular in recent years, and many algorithms have
been designed and analyzed on these models and their extensions (see, e.g., [4, 8, 17, 25, 27, 36,
47]). However, algorithms designed for these models tend to have rather complicated performance
analyses, because of the number of parameters in the model as well as the need to keep track of
the exact memory partition across the processors at each step.

Very recently, in [22] the issue of whether there is merit in developing a general-purpose model of
parallel computation, starting with a shared-memory framework was explored. Certainly, shared-
memory has been a widely-supported abstraction in parallel programming [30]. Additionally, the
architectures of many parallel machines are either intrinsically shared-memory or support it using
suitable hardware. The main issues addressed in [22] are the enhancements to be made to a simple
shared-memory model such as the pram, and the e�ectiveness of the resulting model in capturing
the essential features of parallel machines along the lines of the bsp and the logp models.

The work reported in [22] builds on the results in [19] where a simple variant of the pram
model is described in which the read-write steps are required to be queuing; this model is called
the qrqw pram. Prior to this work there were a variety of pram models that di�ered depending
on whether read or writes (or both) were exclusive, i.e., concurrent accesses to the same memory
location in the same step are forbidden, or concurrent, i.e., such concurrent accesses are allowed.
Thus earlier pram models were classi�ed as erew, crew, and crcw (see, e.g., [28]); the ercw
pram was studied more recently [33]. The latter two models (crcw and ercw pram) have several
variants depending on how a concurrent write is resolved. In all models a step took unit time. In
the qrqw pram model, concurrent memory accesses were allowed, but a step no longer took unit
time. The cost of a step was the maximum number of requests to any single memory location. A
randomized work-preserving emulation of the qrqw pram on a special type of bsp is given in [19],
with slowdown only logarithmic in the number of processors1.

In [22], the qrqw model was extended to the qsm model, which incorporates a gap parameter
at processors to capture limitations in bandwidth. It is shown in [22] that the qsm has a random-

1An emulation is work-preserving if the processor-time bound on the emulated machine is the same as that on
the machine being emulated, to within a constant factor. Typically, the emulating machine has a smaller number
of processors and takes a proportionately larger amount of time to execute. The ratio of the running time on the
emulating machine to the running time on the emulated machine is the slowdown of the emulation.

2



ized work-preserving emulation on the bsp that works with high probability2 with only a modest
slowdown. This is a strong validating point for the qsm as a general-purpose parallel computation
model. Additionally, the qsm model has only two parameters { the number of processors p, and
the gap parameter g for shared-memory requests by processors. Thus, the qsm is a simpler model
than either the bsp or the logp models.

The qsm has a gap parameter at the processors to capture the limited bandwidth of parallel
machines, but it does not have a gap parameter at the memory. This fact is noted in [22], but
is not explored further. In this paper we explore this issue by de�ning a generalization of the
qsm that has (di�erent) gap parameters at the processors and at memory locations. We present
a work-preserving emulation of this generalized qsm on the bsp, and some related results. These
results establish that the gap parameter is not essential at memory locations, thus validating the
original qsm model.

The rest of this paper is organized as follows. Section 2 reviews the de�nition of the qsm model.
Section 3 summarizes algorithmic results for the qsm. Section 4 presents the work-preserving
emulation result on the qsm on the bsp using the gap parameter at memory locations. Section 5
concludes the paper with a discussion of some of the important features of the qsm.

Since we will make several comparisons of the qsm model to the bsp model, we conclude this
section by presenting the de�nition of the Bulk-Synchronous Parallel (bsp) model [43, 44]. The
bsp model consists of p processor/memory components that communicate by sending point-to-
point messages. The interconnection network supporting this communication is characterized by
a bandwidth parameter g and a latency parameter L. A bsp computation consists of a sequence
of \supersteps" separated by bulk synchronizations. In each superstep the processors can perform
local computations and send and receive a set of messages. Messages are sent in a pipelined fashion,
and messages sent in one superstep will arrive prior to the start of the next superstep. The time
charged for a superstep is calculated as follows. Let wi be the amount of local work performed by
processor i in a given superstep. Let si (ri) be the number of messages sent (received) by processor
i, and let w = maxpi=1wi. Let h = maxpi=1(max(si; ri)); h is the maximum number of message sent
or received by any processor, and the bsp is said to route an h-relation in this step. The cost, T ,
of a superstep is de�ned to be T = max(w; g � h; L). The time taken by a bsp algorithm is the
sum of the costs of the individual supersteps in the algorithm.

2 The Queuing Shared Memory Model (QSM)

In this section, we present the de�nition of the Queuing Shared Memory model.

De�nition 2.1 [22] The Queuing Shared Memory (qsm) model consists of a number of identical
processors, each with its own private memory, communicating by reading and writing locations in
a shared memory. Processors execute a sequence of synchronized phases, each consisting of an
arbitrary interleaving of the following operations:

1. Shared-memory reads: Each processor i copies the contents of ri shared-memory locations
into its private memory. The value returned by a shared-memory read can only be used in a
subsequent phase.

2A probabilistic event occurs with high probability (w.h.p.), if, for any prespeci�ed constant � > 0, it occurs with
probability 1 � 1=n� , where n is the size of the input. Thus, we say a randomized algorithm runs in O(f(n)) time
w.h.p. if for every prespeci�ed constant � > 0, there is a constant c such that for all n � 1, the algorithm runs in
c � f(n) steps or less with probability at least 1� 1=n�.
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2. Shared-memory writes: Each processor i writes to wi shared-memory locations.

3. Local computation: Each processor i performs ci ram operations involving only its private
state and private memory.

Concurrent reads or writes (but not both) to the same shared-memory location are permitted in a
phase. In the case of multiple writers to a location x, an arbitrary write to x succeeds in writing
the value present in x at the end of the phase.

The restrictions that (i) values returned by shared-memory reads cannot be used in the same
phase and that (ii) the same shared-memory location cannot be both read and written in the same
phase reect the intended emulation of the qsm model on a bsp. In this emulation, the shared
memory reads and writes at a processor are issued in a pipelined manner, to amortize against the
delay (latency) in accessing the shared memory, and are not guaranteed to complete until the end
of the phase. On the other hand, each of the local compute operations are assumed to take unit
time in the intended emulation, and hence the values they compute can be used within the same
phase.

Each shared-memory location can be read or written by any number of processors in a phase,
as in a concurrent-read concurrent-write pram model; however, in the qsm model, there is a cost
for such contention. In particular, the cost for a phase will depend on the maximum contention to
a location in the phase, de�ned as follows.

De�nition 2.2 The maximum contention of a qsm phase is the maximum, over all locations x,
of the number of processors reading x or the number of processors writing x. A phase with no reads
or writes is de�ned to have maximum contention one.

One can view the shared memory of the qsm model as a collection of queues, one per shared-
memory location; requests to read or write a location queue up and are serviced one at a time.
The maximum contention is the maximum delay encountered in a queue. The cost for a phase
depends on the maximum contention, the maximum number of local operations by a processor,
and the maximum number of shared-memory reads or writes by a processor. To reect the limited
communication bandwidth on most parallel machines, the qsm model provides a parameter, g � 1,
that reects the gap between the local instruction rate and the communication rate.

De�nition 2.3 Consider a qsm phase with maximum contention �. Let mop = maxifcig for the
phase, i.e. the maximum over all processors i of its number of local operations, and let mrw =
maxf1;maxifri; wigg for the phase. Then the time cost for the phase is max(mop; g �mrw; �).
(Alternatively, the time cost could be mop+ g �mrw + �; this a�ects the bounds by at most a factor
of 3, and we choose to use the former de�nition.) The time of a qsm algorithm is the sum of the
time costs for its phases. The work of a qsm algorithm is its processor-time product.

The particular instance of the Queuing Shared Memory model in which the gap parameter, g,
equals 1 is essentially the Queue-Read Queue-Write (qrqw) pram model de�ned in [19].

We note a couple of special features about the qsm model.

� There is an asymmetry in the use of the gap parameter: The model charges g per shared-
memory request at a given processor (the g �mrw term in the cost metric), but it only charges
1 per shared-memory request at a given memory location (the � term in the cost metric). This

4



Summary of Algorithmic Results

problem (n = size of input) qsm result3 source

pre�x sums, list ranking, etc.4 O(g lg n) time, �(gn)5 work erew

linear compaction O(
p
g lgn + g lg lgn) time, qrqw [19]
O(gn) work w.h.p.

random permutation O(g lgn) time, �(gn) work w.h.p. qrqw [20]

multiple compaction O(g lgn) time, �(gn) work w.h.p. qrqw [20]

parallel hashing O(g lgn) time, �(gn) work w.h.p. qrqw [20]

load balancing, max. load L O(g
p
lgn lg lgL+ lgL) time, qrqw [20]
�(gn) work w.h.p.

broadcast to n mem. locations �(g lgn=(lg g)) time, �(gn) work qsm [1]

sorting O(g lgn) time, O(gn lgn) work erew [3, 12]

simple fast sorting O(g lgn + lg2 n=(lg lgn)) time, qsm [22]
(sample sort) O(gn lgn) work w.h.p.

work-optimal sorting O(n� � (g + lgn)) time, � > 0, bsp [17]
(sample sort) �(gn+ n lg n) work w.h.p.

Table 1: E�cient qsm algorithms for several fundamental problems.

appears to make the qsm model more powerful than real parallel machines, since bandwidth
limitations would normally dictate that there should be a gap parameter at memory as well
as at processor (the two gap parameters need not necessarily be the same).

� The model considers contention only at individual memory locations, not at memory modules.
In most machines, memory locations are organized in memory banks and access to each bank
is queuing. Here again it appears that there is a mis-match between the qsm model and real
machines.

Both of the features of the qsm highlighted above give more power to the qsm than would
appear to be warranted by current technology. However, in Section 4 we show that we can obtain
a work-preserving emulation of the qsm on the bsp with only a modest slowdown. Since the bsp
is considered to be a fairly good model of current parallel machines, this is a validation of the qsm
as a general-purpose parallel computation model. It is also established in Section 4 that there is
not much loss in generality in having the gap parameter only at processors, and not at memory
locations.

3 Algorithmic Results

Table 1 summarizes the time and work bounds for qsm algorithms for several basic problems. Most
of these results are the consequence of the following four Observations, all of which are from [22].

3The time bound stated is the fastest for the given work bound; by Observation 3.1, any slower time is possible
within the same work bound.

4By Observation 3.2 any erew result maps on to the qsm with the work and time both increasing by a factor of
g. The two problems cited in this line are representatives of the large class of problems for which logarithmic time,
linear work erew pram algorithms are known (see, e.g., [28, 24, 41]).

5The use of � in the work or time bound implies that the result is the best possible, to within a constant factor.
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Observation 3.1 (Self-simulation) Given a qsm algorithm that runs in time t using p processors,
the same algorithm can be made to run on a p0-processor qsm, where p0 < p, in time O(t � p=p0),
i.e., while performing the same amount of work.

In view of Observation 3.1 we will state the performance of a qsm algorithm as running in time
t and work w (i.e., with �(w=t) processors); by the above Observation the same algorithm will run
on any smaller number of processors in proportionately larger time so that the work remains the
same, to within a constant factor.

Observation 3.2 (erew and qrqw algorithms on qsm) Consider a qsm with gap parameter g.

1. An erew or qrqw pram algorithm that runs in time t with p processors is a qsm algorithm
that runs in time at most t � g with p processors.

2. An erew or qrqw pram algorithm in the work-time framework that runs in time t while
performing work w implies a qsm algorithm that runs in time at most t�g with w=t processors.

Observation 3.3 (Simple lower bounds for qsm) Consider a qsm with gap parameter g.

1. Any algorithm in which n distinct items need to be read from or written into global memory
must perform work 
(n � g).

2. Any algorithm that needs to perform a read or write on n distinct global memory locations
must perform work 
(n � g).

There is a large collection of logarithmic time, linear work erew and qrqw pram algorithms
available in the literature. By Observation 3.2 these algorithms map on to the qsm with the time
and work both increased by a factor of g. By Observation 3.3 the resulting qsm algorithms are
work-optimal (to within a constant factor).

Observation 3.4 (bsp algorithms on qsm) Let A be an oblivious bsp algorithm, i.e., an algorithm
in which the pattern of memory locations accessed by the algorithm is determined by the length of
the input, and does not depend on the actual value(s) of the input. Then algorithm A can be mapped
on to a qsm with the same gap parameter to run in the time and work bound corresponding to the
case when the latency L = 1 on the bsp.

Since the bsp is a more low-level model than the qsm, it may seem surprising that not all bsp
algorithms are amenable to being adapted on the qsm with the performance stated in Observa-
tion 3.4. However, it turns out that the bsp model has some additional power over the qsm which
is seen as follows. A bsp processor � could write a value into the local memory of another processor
�0 without �0 having explicitly requested that value. Then, at a later step, �0 could access this
value as a local unit-time computation. On a qsm the corresponding qsm processor �0

Q would need
to perform a read on global memory at the later step to access the value, thereby incurring a time
cost of g. In [22] an explicit computation is given that runs faster on the bsp than on the qsm.

One point to note regarding the fact that the bsp is in some ways more powerful than the qsm,
is that it is not clear that we want a general-purpose bridging model to incorporate these features of
the bsp. For instance, current designers of parallel processors often hide the memory partitioning
information from the processors since this can be changed dynamically at runtime. As a result an
algorithm that is designed using this additional power of the bsp over the qsm may not be that
widely applicable.
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The paper [22] also presents a randomized work-preserving emulation of the bsp on the qsm
that incurs a slow-down that is only logarithmic in the number of processors. Thus, if a modest
slow-down is acceptable, then in fact, any bsp algorithm can be mapped on to the qsm in a work-
preserving manner. For completeness, we state here the result regarding the emulation of the bsp
on the qsm. The emulation algorithm and the proof of the following theorem can be found in full
version of [22].

Theorem 3.5 An algorithm that runs in time t(n) on an n-component bsp with gap parameter
g and latency parameter L, where t(n) is bounded by a polynomial in n, can be emulated with
high probability on a qsm with the same gap parameter g to run in time O(t(n) � lg n) with n= lgn
processors.

In summary, by Theorem 3.5, any bsp algorithm can be mapped on to the qsm in a work-
preserving manner (w.h.p.) with only a modest slowdown. Additionally, by Observation 3.4, for
oblivious bsp algorithms there is a very simple optimal step-by-step mapping of the oblivious bsp
algorithm on to the qsm.

4 QSM Emulation Results

Recall that we de�ned the Bulk Synchronous Parallel (bsp) model of [43, 44] in Section 1. In this
section we present a work-preserving emulation of the qsm on the bsp.

One unusual feature of the qsm model that we pointed out in Section 2 is the absence of
a gap parameter at the memory: Recall that the qsm model has a gap parameter g at each
processor attempting to access global memory, but accesses at individual global memory locations
are processed in unit time per access. In the following, we assume a more general model for the qsm,
namely the qsm(g; d), where g is the gap parameter at the processors and d is the gap parameter
at memory locations. We present a work-preserving emulation of the qsm(g; d) on the bsp, and
then demonstrate work-preserving emulations between qsm(g; d) and qsm(g; d0), for any d; d0 > 0.
Thus, one can move freely between models of the qsm with di�erent gap parameters at the memory
locations. In particular this means that one can transform an algorithm for the qsm(g; 1), which
is the standard qsm, into an algorithm for qsm(g; d) in a work-preserving manner (and with only
a small increase in slowdown). Given this exibility, it is only appropriate that the standard qsm
is de�ned as the `minimal' model with respect to the gap parameter at memory locations, i.e., the
model that sets the gap parameter at memory locations to 1.

We compare the cost metrics of the bsp and the qsm(g; d) as follows. We can equate the g
parameters in the two models, and the local computation wi on the ith bsp processor with the
local computation ci on the ith qsm processor (and hence w with mop). Let hs = maxpi=1 si, the
maximum number of read/write requests by any one bsp processor, and let hr = maxpi=1 ri, the
maximum number of read/write requests to any one bsp processor. The bsp charges the maximum
of w, g � hs, g � hr, and L. The qsm(g; d), on the other hand, charges the maximum of w, g � hs,
and d � �, where � 2 [1::hr] is the maximum number of read/write requests to any one memory
location. Despite the apparent mis-match between some of the parameters, we present below, a
work-preserving emulation of the qsm(g; d) on the bsp.

The proof of the emulation result requires the following result by Raghavan and Spencer.
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Theorem 4.1 [39] Let a1; : : : ; ar be reals in (0; 1]. Let x1; : : : ; xr be independent Bernoulli trials
with E (xj) = �j. Let S =

Pr
j=1 ajxj. If E (S) > 0, then for any � > 0

Prob (S > (1 + �)E (S)) <

�
e�

(1 + �)(1+�)

�E(S)
:

We now state and prove the work-preserving emulation result. A similar theorem is proved in
[22], which presents an emulation of the qsm on a (d;x)-bsp. The (d;x)-bsp is a variant of the
bsp that has di�erent gap parameters for requesting messages and for sending out the responses
to the requests (this models the situation where the distributed memory is in a separate cluster of
memory banks, rather than within the processors). In the emulation below, the bsp is the standard
model, but the qsm has been generalized as a qsm(g; d), with a gap parameter d at the memory
locations.

The emulation algorithm in the following theorem assumes that the shared memory of the
qsm(g; d) is distributed across the bsp components in such a way that each shared memory location
of the qsm(g; d) is equally likely to be assigned to any of the bsp components, independent of
the other memory locations, and independent of the qsm(g; d) algorithm. In practice one would
distribute the shared memory across the bsp processors using a random hash function from a class
of universal hash functions that can be evaluated quickly (see, e.g., [11, 37, 26]).

Theorem 4.2 A p0-processor qsm(g; d) algorithm that runs in time t0 can be emulated on a p-

processor bsp in time t = t0 � p0
p
w.h.p. provided

p � p0

(L=g) + (g=d) lgp

and t0 is bounded by a polynomial in p.

Proof. The emulation algorithm is quite simple. The shared memory of the qsm(g; d) is hashed
onto the p processors of the bsp so that any given memory location is equally likely to be mapped
onto any one of the bsp processors. The p0 qsm processors are mapped on to the p bsp processors
in some arbitrary way so that each bsp processor has at most dp0=pe qsm processors mapped on
to it. In each step, each bsp processor emulates the computation of the qsm processors that are
mapped on to it.

In the following we show that the above algorithm provides a work-preserving emulation of the
qsm(g; d) on the bsp with the performance bounds stated in the theorem. In particular, if the ith
step of the qsm(g; d) algorithm has time cost ti, we show that this step can be emulated on the
bsp in time O((p0=p)ti) w.h.p.

Note that by the qsm cost metric, ti � g, and the maximum number of local operations at a
processor in this step is ti. The local computation of the qsm processors can be performed on the
p-processor bsp in time (p0=p) � ti, since each bsp processor emulates p0=p qsm processors.

By the qsm(g; d) cost metric, we have that �, the maximum number of requests to the same
location, is at most ti=d, and h, the maximum number of requests by any one qsm processor, is
at most ti=g. For the sake of simplicity in the analysis, we add dummy memory requests to each
qsm processor as needed so that it sends exactly ti=g memory requests this step. The dummy
requests for a processor are to dummy memory locations, with each dummy location receiving up
to � requests. In this way, the maximum number of requests to the same location remains �, and
the total number of requests is Z = p0ti=g.
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Let i1; i2; : : : ; ir be the di�erent memory locations accessed in this step (including dummy
locations), and let �j be the number of accesses to location ij , 1 � j � r. Note that

Pr
j=1 �j = Z.

Consider a bsp processor �. For j = 1; : : : ; r, let xj be an indicator binary random variable which
is 1 if memory location ij is mapped onto processor �, and is 0 otherwise. Thus, Prob (xj = 1) is
1=p.

Let aj = �jd=ti; we view aj as the normalized contention to memory location ij . Since �j �d � ti,
we have that aj 2 (0; 1].

Let S� =
Pr

j=1 ajxj ; S
�, the normalized request load to processor �, is the weighted sum of

Bernoulli trials. The expected value of S� is

E (S�) =
rX

j=1

aj
p
=

d

p � ti
rX

j=1

�j =
d

p � ti �Z =
d

p
� p

0

g
=

d

g
� p

0

p
:

We now use Theorem 4.1 to show that it is highly unlikely that S� > 2e �E (S�).
We apply Theorem 4.1 with � = 2e� 1. Then,

(1 + �)E (S�) = 2e � d
g
� p

0

p
: (1)

Therefore,

Prob

�
S� > 2e � d

g
� p

0

p

�
<

�
e

2e

�2e�E(S�)
=

�
1

2

�2e� d
g
�
p0

p

<

�
1

2

�2e lgp
= p�2e

since p0=p > (g=d) lgp.
Let h� be the number of requests to memory locations mapped to processor �. Then,

h� =
rX

j=1

�jxj =
ti
d

rX
j=1

ajxj =
ti
d
� S� :

Thus Prob (h� > 2e � (ti=g) � (p0=p)) is O(1=p2e). Hence the probability that, at any one of
the processors, the number of requests to memory locations mapped to that processor exceeds
2e � (ti=g) � (p0=p) is O(1=p2e�1). Hence w.h.p. the number of memory requests to any processor is
O((ti=g) � (p0=p)).

By de�nition, the time taken by the bsp to complete the emulation of the ith step is Ti =
max(w; g � h; L), where w is the maximum number of local computation steps at each processor,
and h is the maximum number of messages sent or received by any processor. As discussed at
the beginning of this proof, w � ti � (p0=p). Since the maximum number of messages sent by
any processor is no more than (ti=g) � (p0=p) and the maximum number of requests to memory
locations mapped on to any given processor is no more than 2e � (ti=g) � (p0=p) w.h.p, it follows that
g � h = O(ti � (p0=p)) w.h.p. Finally, since ti � g and p0=p � L=g, it follows that ti � (p0=p) � L.

Thus, w.h.p., the time taken by the bsp to execute step i is

Ti = O(ti � (p0=p))

This completes the proof of the theorem.

Note that the emulation given above is work-preserving since p�t = p0 �t0. Informally the proof of
the theorem shows that an algorithm running in time t0 on a p0-processor qsm(g; d) can be executed
in time t = (p0=p) � t0 on a p-processor bsp (where p has to be smaller than p0 by a factor of at least
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((L=g)+(g=d) lgp)) by assigning the memory locations and the qsm(g; d) processors randomly and
equally among the p bsp processors, and then having each bsp processor execute the code for the
qsm(g; d) processors assigned to it. (Actually the assignment of the qsm processors on the bsp
need not be random { any �xed assignment that distributes the qsm processors equally among the
bsp processors will do. The memory locations, however, should be distributed randomly.) The
fastest running time achievable on the bsp is somewhat smaller than the fastest time achievable on
the qsm(g; d) { smaller by the factor ((L=g)+(g=d) lgp). The L=g term in the factor arises because
the bsp has to spend at least L units of time per superstep to send the �rst message, and in order
to execute this step in a work-preserving manner, it should send at least the number of messages it
can send in L units of time, namely L=g messages. The (g=d) lgp term comes from the probabilistic
analysis on the distribution of requested messages across the processors; the probabilistic analysis
in the proof shows that the number of memory requests per processor (taking contention into
consideration) is within a factor of 2 � e times the expected number of requests w.h.p. when the
memory locations are distributed randomly across the p bsp processors, and p is smaller than p0

by a factor of (g=d) � lg p.
We now give a deterministic work-preserving emulation of qsm(g; d0) on qsm(g; d), for any

d; d0 > 0.

Observation 4.3 There is a deterministic work-preserving emulation of qsm(g; d0) on qsm(g; d)
with slowdown O(d d

d0
e).

Proof. If d � d0 then clearly, each step on qsm(g; d0) will map on to qsm(g; d) without any
increase in time (there could be a decrease in the running time through this mapping, but that
does not concern us here).

If d > d0, let r = d d
d0
e. Given a p0-processor algorithm on qsm(g; d0) we map it on to a p = p0

r

processor qsm(g; d) by mapping the p0 processors of qsm(g; d0) uniformly on to the p processors
of qsm(g; d). Now consider the ith step of the qsm(g; d0) algorithm. Let it have time cost t0i. On
qsm(g; d) the increase in time cost of this step arising from local computations and requests from
processors is no more than r � t0i since each processor in qsm(g; d) will have to emulate at most r
processors of qsm(g; d0). The delay at the memory locations in qsm(g; d) is increased by a factor of
exactly r over the delay in qsm(g; d0), since the memory map is identical in both machines. Thus
the increase in time cost on the qsm(g; d) is no more than r � t0i, and hence this is a work-preserving
emulation of qsm(g; d0) on qsm(g; d) with a slowdown of p0

p
= d

d0
.

Observation 4.3 validates the choice made in the qsm model not to have a gap parameter at the
memory. Since the proof of this observation gives a simple method of moving between qsm(g; d)
models with di�erent gap parameters at memory, it is only appropriate to choose the `minimal' one
as the canonical model, namely, the one with no gap parameter at memory locations.

Note that there could be a slight increase in slowdown when one designs an algorithm on
qsm(g; d0) which does not use the d parameter that most accurately models the machine under
consideration. In situations where this is an important consideration, one should tailor one's
algorithm to the correct d parameter.

5 Discussion

In this paper, we have described the qsm model of [22], reviewed algorithmic results for the model,
and presented a randomized work-preserving emulation for a generalization of the qsm on the bsp.
The emulation results validate the qsm as a general-purpose model of parallel computation, and
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they also validate the choice made in the de�nition of the qsm not to have a gap parameter at
memory locations.

We conclude this paper by highlighting some important features of the qsm model.

� The qsm model is very simple { it has only two parameters, p, the number of processors, and
g, the gap parameter at processors.

� Section 3 summarizes algorithmic results for the qsm derived from a variety of sources { erew
pram, qrqw pram, bsp { as well as algorithms tailored for the qsm. This is an indication
that the qsm model is quite versatile, and that tools developed for other important parallel
models map on to the qsm in an e�ective way.

� The randomized work-preserving emulation of the qsm on the bsp presented in Section 4
validates it as a general-purpose parallel computation model.

� The qsm is a shared-memory model. Given the wide-spread use and popularity of the
shared-memory abstraction, this makes the qsm a more attractive model than the distributed-
memory bsp and logp models.

� It can be argued that the qsm models a wider variety of parallel architectures than the bsp
or logp models. The distributed-memory feature of the latter two models causes a mis-match
to machines that have the shared-memory organized in a separate cluster of memory banks
(e.g., the Cray C90 and J90, the SGI Power Challenge and the Tera MTA). In such cases
there would be no reason for the number of memory banks to equal the number of processors,
which is the situation modeled by the bsp and logp models. This point is elaborated in some
detail in [22].

� The queuing rule for concurrent memory accesses in the qsm is crucial in matching it to real
machines. In addition to the work-preserving emulation of the qsm on bsp given in Section 4,
in Section 3 we stated a theorem that gives a randomized work-preserving emulation of
the bsp on the qsm. Thus, there is a tight correspondence between the power of the qsm
and the power of the bsp. Such a correspondence is not available for any of the other
memory access rules for shared-memory (e.g., for exclusive memory access or for unit-cost
concurrent memory access). Further, on a qsm with memory accesses required to be exclusive
rather than queuing, no linear-work, polylog-time algorithm is known for generating a random
permutation or for performing multiple compaction; in contrast, randomized logarithmic time,
linear-work algorithms that work correctly with high probability are known for the qsm. Thus
the queuing rule appears to allows one to design more e�cient algorithms than those known
for exclusive memory access. On the other hand, if the qsm is enhanced to have unit-cost
concurrent memory accesses, this appears to give the model more power than is warranted
by the performance of currently available machines. For more detailed discussions on the
appropriateness of the queue metric, see [19, 22].

� The qsm is a bulk-synchronous model, i.e., a step consists of a sequence of pipe-lined requests
to memory, together with a sequence of local operations, and there is global synchronization
between successive steps. For a completely asynchronous general-purpose shared-memory
model, a promising candidate is the qrqw asynchronous pram [21], augmented with the
gap parameter.
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