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Abstract— We present new results and numerical studies of
very fast schedulers for SMS (Switch-Memory-Switch) routers,
which emulate output-queuing by buffering packets in a parti-
tioned shared-memory located between input and output ports.
The architecture of Juniper’s core routers and Brocade’s storage
switches is based on SMS.

Our numerical results demonstrate that RiPSS, a randomized
highly parallel SMS scheduler that we had developed recently,
runs in just 3 rounds on switches with up to 4,096 inputs, and
has a very low drop probability. We also show that RiPSS makes
effective use of the shared-memory, with packets being uniformly
distributed across the memory banks for both Bernoulli and
bursty arrivals. We describe a new and improved randomized
pipelined scheduler, PRiPSS, and analyze its performance. Both
our analysis and our simulation results for PRiPSS show that it
has better throughput than RiPSS with a slightly higher latency
in terms of rounds of communication in the underlying hardware.
Our analysis also shows that PRiPSS is self-stabilizing, i.e., if
occasional lapses occur due to the probabilistic nature of the
algorithm, it resumes normal behavior without the need for
external intervention.

While the choice of RiPSS or PRiPSS would depend on
whether throughput or latency is the primary concern, our
results indicate that both schedulers are much faster than other
schedulers for output-queuing, whether implemented directly or
through emulation on SMS.

I. INTRODUCTION

Routers play a critical role in modern computing of all

forms [12], [15], [7], [4], [6], [9], [19][10, Chapters 7.12,

8.12]. A router used to be nothing more than a general

purpose computer connected via a standard bus to hardware

for transmitting and receiving packets over links. This was

because the link bandwidth was low enough for a general

purpose processor to implement the entire router functionality.

With the advent of high-speed fiber optic technology [17],

[18], the situation has reversed, and in many networks today

routers are the bottleneck in moving data.

A router needs to be able to buffer packets because of

contentions for output links. This buffering can be at the input

port, at the output port, in the switching fabric, or in shared

memories. The first and second cases are referred to as input

queuing and output queuing, respectively [12].

1The work of the third author was supported in part by NSF Grant CCR-
9988160.

Output-queued routers are appealing because they have bet-

ter latency and throughput than input queued routers. However,

a direct implementation of an output queued router needs to

run the switching fabric and the buffer memory at N times

the line speed for an N -input, N -output router (since at the

start of a cycle, all packets at an input port may be destined

to the same output port). Thus input queuing is preferred

for implementation reasons, and considerable effort has been

devoted to overcoming its limitations, e.g., the development of

virtual output queuing to overcome head-of-line blocking [13].

It is natural to ask if it is possible to build a router whose

external behavior is identical to an idealized output-queued

router using slower components. Chuang et al. [5] define a

router S to emulate output queuing, if, given identical input

arrival patterns, the departure time of every packet from S is

the same as that from the output queued router. They showed

that a router with queues at both the inputs and the outputs

that can support 2 reads and 2 writes per cycle can in principle

be scheduled to emulate output queuing. However, computing

the schedule itself involves solving an instance of the marriage

problem. The standard “proposal algorithm” for finding a

stable marriage takes O(N2) worst-case and O(N log N)
expected time. The best parallel algorithm presently known

for computing stable marriages [8] has complexity O(
√

N ·
log3 N) and uses N4 processors. It is extremely complicated,

based on interior point methods for linear programming.

Thus it is neither theoretically efficient (i.e., does not have

O(polylog(N)) complexity), nor of practical significance.

Prakash, Sharif, and Aziz [16] proposed the Switch-

Memory-Switch (SMS) architecture as an abstraction of the

M-series Internet core routers from Juniper Networks. The set

of input ports is connected via an N × M interconnect to M
packet memories; these M memories are connected to the set

of output ports through another interconnect. In every cycle

one packet can be read from and written to each memory. It

is shown that when M ≥ 2N −1, the SMS architecture could

emulate an output-queued switch. Specifically a scheduler

based on computing perfect matchings in bipartite graphs is

presented, whose time complexity is O(log2 N) on a parallel

random access machine. However, this algorithm requires

M = 3N . The number of processing elements and memory

cells used by the PRAM are a small multiple of the size of



the idealized router. The most significant technical contribution

in [16] was the O(log2 N) parallel algorithm for computing a

schedule under which the SMS architecture emulated output-

queuing.

Subsequent to the results in Prakash et al. [16], Iyer et

al. [11] reproved that an SMS router2 with 2N − 1 packet

memories running at the line rate could emulate an N input, N
output output-queued switch applying the pigeonhole principle

(as in [16]). Iyer et al. did not consider the implementation of

the scheduler, and the scheduler arising from their proof has

time complexity Ω(N).
Although the results in Prakash et al. [16] represent the

first implementation of output queuing that runs in polylog

time using a polynomial number of processors, the scheduler

requires building and manipulating complex data structures,

and its practical utility remains unclear.

The SMS router architecture has benefits beyond just the

ability to emulate output queuing. High performance packet

switches use SRAM rather than DRAM for packet buffers

because the access time of an SRAM is less than that of

DRAM by a factor of up to 40. SRAM is considerably more

expensive than DRAM, and the cost (measured in terms of

power, footprint, as well as price) of memory is a significant

factor in the design of routers. The SMS architecture is

therefore appealing because of its ability to “pool” available

memory, and thereby achieve better memory utilization. In-

deed, Juniper’s core routers and Brocade’s storage switches

are based on the SMS architecture precisely because it reduces

memory cost.

With the above motivation, we began work on developing

practical schedulers for routers based on the SMS architecture.

We developed RiPSS [3]—a very simple randomized parallel

scheduler for SMS routers—which we review in detail in

Section II. In essence we proved that RiPSS computes a com-

plete assignment of packets to memories in O(log∗ N) basic

matching rounds with high probability (w.h.p.), independent of

the input traffic pattern. The intuitive idea is that when there

are (2 + ǫ) · N memories, the ratio of unmatched memories

to unmatched inputs increases by an amount exponential in N
(rather than a constant, which would yield a O(log N) bound

on the number of iterations).

The formal proof of O(log∗ N) result for RiPSS uses the

machinery of Martingale analysis and Azuma’s inequality.

Further, although the RiPSS intuitively is very simple and

fast, the constants derived in the proof are quite large, and

we suspected them to be loose.

In this paper we make two contributions toward the goal of

developing practical schedulers for SMS routers:

1) We use a numerical bounding technique to compute

much sharper bounds for the constants in the analysis

of RiPSS’ runtime for specific values of N . We also use

simulation to demonstrate that RiPSS rapidly converges

to a complete assignment on stochastic traffic, and that

2The architecture in [11] is isomorphic to SMS, although it is called Parallel
Shared Memory Router in that paper.

I

I

I1

2

N

O

O

O

1

2

N

Input Ports Memories Output portsInterconnectInterconnect

Mem

Mem

Mem

1

2

M

Fig. 1. The Switch-Memory-Switch (SMS) architecture.

it balances packets across the memories more effectively

than output queuing.

2) In [3] we presented a pipelined scheduling algorithm that

uses an O(log∗ N) deep pipeline of packets at the input

to further reduce scheduler complexity compared to

RiPSS. It requires only a constant number of rounds per

cycle—independent of N and the input traffic pattern—

in contrast to RiPSS, which requires O(log∗ N) rounds

per cycle. However this algorithm requires both memo-

ries and inputs to send and process multiple messages.

In this paper we present PRiPSS, an improved version of

the pipelined scheduler in [3] that requires less commu-

nication and hardware. PRiPSS also uses an O(log∗ N)
deep pipeline of packets at the input and requires only

constant number of rounds per cycle. The advantage of

PRiPSS over the earlier algorithm is that it requires

each memory to send just one request message and

process just one grant messages per round. We also show

that PRiPSS is self-stabilizing, i.e., it resumes normal

behavior if occasional lapses occur due to the proba-

bilistic nature of the underlying algorithm. We provide

simulation studies that demonstrate the effectiveness of

pipelining over RiPSS in improving throughput.

II. BACKGROUND

In this section we review germane results on SMS routers

from our prior work [16], [3]. The SMS architecture is

depicted in Figure 1. Input ports are connected via an N ×M
interconnect to M packet memories; these M memories are

connected to the output ports through another interconnect. In

every cycle one packet can be read from and written to each

memory. (The generalization of our results to faster or slower

memories is straightforward.)

A. Emulating output queuing with the SMS architecture

Since output-queuing is highly desirable, ideally, SMS

scheduling should result in the SMS router emulating an

output-queued router. By emulation, we mean that for any

arrival sequence (1) a packet is dropped by the SMS router

iff it will be dropped by the output-queued router, and (2) if

a packet is not dropped then the cycle in which it departs the

SMS router must be same as the cycle in which it would have

departed the output-queued router.
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The cycle in which a packet would have departed an output-

queued router is referred to as its time-stamp. In each cycle,

packets at the inputs are written to a subset of memories

through the first interconnect, and packets whose time-stamp

is equal to the current time are read from the memories and

transferred to the outputs through the second interconnect.

1) The existence of a suitable schedule: In the SMS archi-

tecture packets cannot be arbitrarily placed in the memories

due to two kinds of conflicts. No more than one packet that

arrives at a given time can be written to a given memory; this is

referred to as an arrival conflict. Since there are N input ports,

the maximum number of arrival conflicts a packet can have is

(N − 1). Departure conflicts occur if multiple packets in the

same memory need to depart simultaneously through different

outputs. Since there are N outputs, a packet can have departure

conflicts with at most (N −1) memories. Hence if the number

of memories M ≥ 2N − 1 by the pigeonhole principle there

will always be a conflict-free memory for each packet. A

conflict-free memory for an input is said to be compatible

with that input.

2) Computing a schedule efficiently: In order to construct

a conflict-free schedule for transfer of packets there are three

tasks to be performed in each cycle.

Task 1: Compute the time-stamp of all the newly arrived

packets.

Task 2: Match the newly arrived packets to memories such

that there are no departure and arrival conflicts.

Task 3: Read packets whose time-stamp is equal to the

current time and transfer them to the output.

Since the time-stamp of a packet is known when it is written to

a memory, Task 3 is simple. Task 1 can also be performed ef-

ficiently using a parallel prefix sum computation, as described

in [16].

Task 2 is the most complex step and is the main focus of

this paper. For routers that are relatively small and support

slow links, the SMS architecture can emulate output-queuing

by using a straightforward greedy sequential algorithm to

compute an assignment of incoming packets to compatible

memories. However for routers with many ports operating

at high speeds, the sequential algorithm is not fast enough

to compute the assignment. Prakash et al. [16] presented the

first parallel algorithm for computing the assignment; however,

the algorithm requires building and manipulating complex

data structures. Subsequently, we developed RiPPS—a simple,

highly-parallel randomized scheduler [3], which we describe

in the next section.

B. A Randomized Parallel Scheduler for SMS

1) Computational Model for SMS Scheduler: We describe

here the main features of the abstract model of the interface

between the input ports and the memory banks in the SMS

architecture.

• There are N input ports, each with a buffer that can

hold I packets. At each input port, the current packet

is the packet at the head of that input buffer. In the basic

algorithm of [3] I is 1; in the pipelined algorithm we

present in Section IV of this paper, I = O(log∗ N). There

are N output ports, which need to buffer only one packet

each. There are M ≥ N memory banks, and each can

hold up to K packets; we assume K ≫ N .

• There is a dedicated wire connecting every (input port,

memory bank) pair. This investment in hardware is not

considered excessive if the wire needs to support transfer

of only a few bits per cycle (see, e.g., [2, page 6], [14]).

With this hardware support, each input port can send a

short message to each memory bank (and vice versa) in

one communication step. At the receiving end the identity

of the transmitting node can be determined by examining

the wire along which the message arrives.

2) RiPSS: We describe here RiPSS—the randomized

parallel scheduler for SMS introduced in [3]. RiPSS works

in rounds of the Basic Matching Process given below.

At the start of each cycle, all memory banks are unmatched,

each input port broadcasts the time-stamp of its packet to each

memory, using which each memory bank constructs a list of

the inputs that are compatible with it.

• A Round of the Basic Matching Process:

In parallel do

1) Each unmatched memory sends a grant message

to a randomly selected compatible input port.

2) Each input port i accepts a granting memory bank

at random; it broadcasts a bit to all other memory

banks to inform them that it is no longer available

to be matched.

3) Each memory bank that receives an accept de-

clares itself matched.

We analyzed the above process in detail [3], and proved the

following result:

Theorem 2.1: If M = (2+ ǫ) ·N , O(log∗ N) rounds of the

basic matching process suffice to match all inputs to memories,

with high probability in N .

The key to establishing the above theorem is the following

observation:

Lemma 2.2: Let M = (2 + ǫ)N , for any ǫ > 0. If k of the

N inputs remain unmatched at the start of a round then

• each input is compatible with at least ǫN + k memories,

• the expected number of unmatched inputs at the end of

the round is at most ke−(1+ǫN/k), and

• the probability that the number of unmatched inputs at

the end of the round exceeds the expected number by

more than
√

2M log M is at most 1/M .

3) Pipelined Scheduler for SMS: In addition to RiPSS,

a pipelined scheduler is presented in [3]. This pipelined

scheduler uses multiple cycles to construct a matching for

each set of packets that arrive together. However matchings

are constructed for multiple sets of packets simultaneously in

a pipelined fashion. Consequently, the amount of computation

per cycle reduces but packets wait for D cycles at the inputs

before they are transferred to the memories. This scheduler

requires both input ports and memories to communicate mul-

tiple messages in each round, but with this scheme, it is shown
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in [3] that D = O(log∗ N) suffices to match all packets while

using only a constant number of rounds per cycle. Since we

will describe describe an improved pipelined scheduler that in

the next section, we do not describe this algorithm further.

C. Memory Considerations

1) Load Balance: One useful feature of RiPSS is that

it distributes packets evenly across the memory banks. This

enables us to achieve the effect of a pure shared memory,

independent of the packet arrival process. The following

theorem and corollary are established in [3].

Theorem 2.3: Consider an SMS switch with N input and

output ports, M memory banks, each of size K. Let Q be

given as an upper bound on the total number of packets in the

memories in any cycle. If K ≥ Q/M +
√

2cZ log M , with

c > 1, then w.h.p. in M RiPSS will buffer packets for up to

Z cycles without dropping any packets.

Corollary 2.4: Consider an SMS switch that emulates an

output-queued switch with N input and output ports, and

output buffer size L with M memory banks, each of size K.

If K ≥ LN/M +
√

2cL log M , where c > 1 is a constant,

then with high probability, RiPSS will not drop a packet that

will not be dropped by that output-queued switch.

2) Number of Memory Banks : Even though the cumulative

size of memories in an SMS architecture can be close to

that of an output-queued router, having a large number of

small memories is slightly more expensive than having a small

number of large memories. In this context the following results

were established in [3].

Lemma 2.5: If an adversary places packets in the memory

then at least 2N − 1 memory banks are needed in order to

satisfy arrival and departure constraints in SMS.

Since a well-designed algorithm can control the placement

of packets in the memory it is possible that such an algorithm

can make do with a smaller number of memory banks than the

bound in Lemma 2.5. However, the following result is shown

in [3].

Theorem 2.6: There is no deterministic algorithm that can

match any sequence of packet arrivals to memories while

satisfying arrival and departure constraints if the number of

memories is M = N + ∆ and ∆ < N/8. Furthermore, for

any randomized algorithm there exists an arrival sequence for

which it will fail with probability at least 1/2 if ∆ < N/8.

III. RIPSS—A NUMERICAL STUDY

A. Worst case bounds on performance

The theorems presented in Section II tell us only the

asymptotic behavior of RiPSS. In particular they do not tell

us what the hidden constants are and for what value of N
(the number of input ports) and M (the number of memory

banks in the SMS architecture) we obtain acceptably small

probability of failure. Since we do not have simple closed

form expressions for the exact probability of failure and for the

number of rounds, in this section we present concrete upper

bounds on the probability of failure and number of rounds

needed to limit probability of failure to a certain value.

In a given cycle, we know that each input can be incompat-

ible with at most N −1 memories. Thus each input must have

at least M − N + 1 compatible memories. We consider the

worst case scenario, where each input has exactly M −N +1
compatible memories and all inputs contend for the same set of

M−N+1 memories. Thus the compatibility graph would be a

complete N × (M −N +1) bipartite graph. Let Pm(i, j, k) be

the probability of the event that if k balls are thrown uniformly

at random into j bins then there are exactly i non-empty bins.

Thus probability of i packets being matched in such a scenario

would be Pm(i,N,M −N +1). For this to happen, if the first

k − 1 balls fall into exactly i bins then the last ball must also

fall in one of these i bins. Alternately if they fall in i−1 bins

then the last one must fall in a new bin. This gives us the

following recurrence relation,

Pm(i, j, k) = Pm(i, j, k − 1) · i

j
+ Pm(i − 1, j, k − 1) · j − i + 1

j

Now let the probability Pr(n,m, r) be the probability of

matching n packets to a subset of m memories in r rounds

when each input of the n inputs are compatible with each of

the m memories. Thus,

Pr(n,m, r) =
n

∑

i=1

Pm(i, n,m) · Pr(n − i,m − i, r − 1)

A similar approach can be used to computing the expected

number of rounds. We emphasize that the solution to the

recurrence relations provides only an upper bound, since the

relations assume a very pessimistic scenario.

Table I shows the minimum number of rounds needed to

ensure that the probability of all packets being matched is at

least 0.999. The numbers in table show that, if ǫ ≥ 0.5 we

never need more than 3 rounds.

Figure 2 depicts the expected number of rounds for various

values of N and M . It can be seen from the figure that even

for the case where M = ⌊2.1N⌋ (i.e., ǫ = .1) we need less

than 4.01 rounds for a 4096 port switch on average. With

N = 3N the expected number of rounds remains below 2.02.

In Figure 3 we plot the probability of matching all inputs at

the end of a fixed number of rounds. With M = ⌊2.1N⌋ and

4 rounds, the probability of matching all inputs is very close

to one for a switch with up to 4096 ports. In Figure 4 we

look at the effect of increasing the number of memory banks

on the expected number of rounds. We use M = ⌊(2 + ǫ)N⌋
and plot the expected number of rounds for different values

of N and ǫ. Obviously, as ǫ increases the expected number of

rounds decreases. However there does not seem to be much

gain after ǫ = 0.5.

B. Simulation studies on stochastic traffic

The failure probabilities and expected number of rounds

computed in the previous section provide upper bounds on

worst case traffic. However, we do not know of any explicit

arrival sequence that would achieve those bounds and it may

be the case that no such sequence exists. Similarly, we do not

know whether the bound on M provided in Theorem 2.6 is

4



TABLE I

UPPER BOUND ON NUMBER OF ROUNDS NEEDED TO MATCH ALL THE

PACKETS WITH PROBABILITY ≥ 0.999 IN A SWITCH WITH N INPUTS AND

(2 + ǫ)N MEMORIES (COMPUTED FROM THE RECURRENCE RELATION for

worst case traffic).

�
�

�
�

ǫ

N
16 32 64 128 256 512 1024 2048 4096

0.1 4 4 4 5 5 5 5 5 5

0.5 3 3 3 3 3 3 3 3 3

1.0 3 3 3 3 3 3 3 3 3
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Fig. 2. Bound on the expected number of rounds needed to match all the
packets as a function of N (obtained from the recurrence relation for worst

case traffics)
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Fig. 3. Lower bound on probability of matching all inputs in R rounds
(obtained from the recurrence relations for worst case traffic)
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Fig. 4. Upper bound on average number of rounds needed to match all
the packets as a function of ǫ, where M = ⌊(2 + ǫ)N⌋ (obtained from the
recurrence relations for worst case traffic)

tight or not. In this section we present results of simulation of

SMS switch for different values of N and M and packet arrival

patterns. Even though Lemma 2.5 guarantees the existence of

a perfect match only when M ≥ 2N − 1, in our simulations

we observed that RiPSS never failed to match all the inputs if

M ≥ 1.6N (with M = 1.5N we saw failures in 0.1% of the

cycles).

Figure 5, Figure 6, and Table II refer to results obtained by

simulating uniform Bernoulli arrival, in contrast to the worst

case arrivals assumed in the previous section. Figure 5 plots

the average number of rounds needed to match all inputs with

uniform Bernoulli traffic; as might be expected, the average

number of rounds needed here is less than the worst-case upper

bound in the previous section. Even when only 1.6N memories

are used, the packets are matched in less than 3.1 rounds on

average for N up to 4096. Figure 6 shows the number of

rounds needed for different values of M/N .

Table II shows the number of rounds needed to bound the

probability of failing to match all inputs to at most 0.1%,

for different values of N and M , as observed by simulating

the system for 100,000 cycles. Even with 1.6N memories,

all packets are matched 99.9% of the time if only 3 rounds

are used. Further, in a cycle in which the scheduler does not

construct a perfect match, only a small number of packets

remain unmatched, hence only a small number of packets are

dropped.

In [3] we claim that one of the advantages of SMS over

output queuing is that SMS creates the effect of a shared

memory by pooling all memory banks together (see also

Theorem 2.3). Specifically, in output-queuing it may happen

that one of the output buffers is full, resulting in packet drops

while the other buffers are empty, but in SMS, with RiPSS and

the analysis in [3], the packets are evenly distributed across

all memory banks and hence packets are dropped only if all
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Fig. 5. The average number of rounds needed to match all packets as function
of number of ports (as observed in simulations with uniform Bernoulli
traffic, simulated for 100,000 cycles)
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Fig. 6. The average number of rounds needed to match all the inputs, plotted
against ratio of number of memories to that of input ports (as observed in the
simulations with uniform Bernoulli traffic, simulated for 100,000 cycles)

buffers are almost full. Further, according to the analysis in [3],

this is independent of the arrival pattern and works even with

bursty traffic. To study this theoretical prediction, we simulated

both SMS and output queued routers with 64 input and output

ports and bursty traffic (geometrically distributed bursts for

randomly chosen outputs). For each cycle we measured the

ratio of number of packets in a buffer to that of average number

of packets in each buffer. Ideally, if all buffers are equally

full, all measurements should be close to one. A spread in

these numbers indicates that buffers are not evenly occupied.

Figure 7(a) shows distribution of this measurement for both

SMS and OQ for bursty traffic. Here, the plot for SMS buffers

is concentrated around one, indicating that packets are evenly

balanced across all buffers, while for OQ, a buffer can have as

much as 15 times the average number of packets. Figure 7(b)

TABLE II

NUMBER OF ROUNDS NEEDED TO MATCH ALL THE PACKETS MORE THAN

0.999 OF THE TIMES, IN A SWITCH SIMULATED FOR 100,000 CYCLES

WITH N -INPUTS AND c · N MEMORIES FOR uniform Bernoulli traffic)

�
�

�
�

c

N
16 32 64 128 256 512 1024 2048 4096

1.6 3 3 3 3 3 3 3 3 3

2.0 3 3 3 3 3 3 3 3 3

2.5 2 2 2 2 2 2 2 2 2

shows similar results for uniform Bernoulli arrivals. Since

traffic arrives uniformly at all outputs, in this case the output

queues also remain balanced and small, but even here, the

distribution of packets across buffers is more balanced in the

SMS router than in the OQ router.

IV. PIPELINING

When multiple rounds of the basic matching procedure are

used, the memories and inputs that are matched in earlier

rounds will remain idle till the end of the cycle. In this section

we present a simple pipelined scheduling algorithms, PRiPSS

(Pipelined RiPSS) that makes fuller use of the interconnect

in each round, thereby executing only a constant number of

rounds of communication per cycle. PRiPSS is an improve-

ment over an earlier pipelined scheduler in [3].

PRiPSS uses multiple cycles to construct a matching for

each set of packets that arrive together. However matchings

are constructed for multiple sets of packets simultaneously in

a pipelined fashion. Consequently, the number of rounds per

cycle reduces relative to RiPSS, but packets wait for D =
O(log∗ N) cycles at the inputs before they are transferred to

the memories. The value D is the latency of the pipelined

scheduler. The input buffer size I equals D, and packets are

stored FIFO.

Let P o
1 through P o

co be the packets destined for output port o
that arrived during cycle T and let them be ordered according

to the id of the input port they arrived. We maintain an array

earliest[1 · · ·N ] to keep track of earliest time-stamp available

for any output, after taking latency into account. The time-

stamp of packet P o
i is then set to earliest[o] + i + D and

earliest[o] is updated to max(earliest[o] + co, T ).

In cycle T the packets that arrived between cycles T−D and

T are in the input buffers and at the end of cycle T the packets

that arrived at cycle T − D that are matched are transferred

to the memories. Each input port will have an initial sequence

of packets in its buffer that have been matched to some

memory by the scheduling algorithm in earlier iterations, and

the remaining packets are not yet matched by the scheduling

algorithm. At any point in the scheduling algorithm, the first

unmatched packet in each buffer is the active packet for the

step, and the basic matching process will be applied to the set

of active packets.

Let the current cycle be T . A stage of the pipeline executes

the three steps in the following pipelined matching procedure
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(b) Uniform Bernoulli traffic

Fig. 7. Distribution of the ratio of number of packets in a buffer to the average
number of packets across all the buffers in that cycle (from simulations of 64
port SMS and OQ routers with (a) bursty traffic and (b) uniform Bernoulli
traffic). Both systems were simulated for 100,000 cycles. A spread in the
curve around one indicates that the packets are not evenly distributed across
different memory banks. In both simulations we used N = 64 and M = 128.
The average number of packets in the buffer for bursty arrivals was 4218 while
in uniform arrivals it was 610.

ω times, where ω is an integer constant to be defined later in

the analysis.

Pipelined Matching Procedure

(a) The input ports perform a transmit step in which each

input port broadcasts to all the memories the time-stamp

of its active packet (as in RiPSS) together with its arrival

time mod D.

(b) In parallel, each memory bank picks an index i between

0 and D, and matches itself to a random compatible input

with exactly i unmatched inputs. The index i is chosen

with probability pi, where pi = 1/2i+1 if i < D and

pD = 1/2D.

(c) Each matched active packet is replaced by the first

unmatched packet in its buffer.

Finally, all matched packets that arrived in cycle T − D are

transferred to the memory banks, and this concludes the stage.

Any unmatched packet that arrived in cycle T −D is dropped.

We show below that w.h.p. every packet that arrived in cycle

T −D will be matched at the end of this stage. Note that the

pipelined scheduling algorithm performs a constant number of

rounds per stage.
Analysis: Our analysis assumes that M = (2 + ǫ)N ,

where ǫ is an arbitrarily small positive constant. For ease of

explanation, here we present a simplified analysis for the case

when ǫ = 1. The complete analysis is given in the Appendix I.

We start by analyzing a variant of the basic matching

process in which only a random sample of the memory banks

attempt to match themselves to the inputs. The rounds start

with round i = 0 to facilitate relating this process to the

rounds in the pipelined matching process. In the ith round of

this ‘sampled matching process’ each memory bank attempts

to match itself with probability 1/2i+1, for i ≥ 0. We now

describe this algorithm and we establish that it computes a

perfect matching in O(log∗ N) rounds. The base used for the

logarithm for the log∗ N analysis is not 2, but a value b, which

is less than 2 but greater than e1/e. The more detailed analysis

is given in the Appendix I (which works for any ǫ > 0)

establishes the result using the traditional base 2.

Sampled Matching Process:

for i = 0, 1, · · ·
1) in parallel each unmatched memory sends a message to

a random compatible input port with probability 1/2i+1

and does nothing with probability 1 − 1/2i+1.

2) in parallel each input port i picks a memory bank j that

sent it a message and assigns its current packet to that

memory bank. It then broadcasts a bit to all memory

banks to inform them that it is no longer available to be

matched (the bit sent to memory bank j is a 1 and the

bit sent to all other processors is 0).

3) in parallel each memory bank that receives a 1-bit from

its matched input decrements a counter initially set to s.

If the counter goes down to zero, the processor declares

itself matched.

Define x ↑↑ y to be a y-high tower of x. Let b = e(1/2−δ)

where 0 < δ < 1/2 − 1/e, and let zi = N
2i+1·b↑↑i .

Lemma 4.1: After the ith iteration of the Sampled Matching

Process, the number of unmatched inputs is ≤ max{
√

N, zi}
w.h.p. in N , where zi = N

2i+1·b↑↑i .

Proof: We observe that in iteration i for any given

unmatched input port p, the expected number of processors

compatible with p that send a message to some compatible

input is ≥ (N + Nǫ)/2i+1 = N/2i. Using a Chernoff

bound [1] we can show that with high probability, for any

constant c > 0, at least (1 − c) · N/2i of the processors that

are compatible with a given unmatched input port do actually

send a message in that round.

For i ≥ 0, let xi denote the number of unmatched inputs

that remain after the ith iteration of the sampled matching
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process. For the base case of the lemma we note that E[x0] ≤
N · (1−1/N)(N+Nǫ)·(1−δ)/2 ≤ N/e(1−δ). Hence by applying

Azuma’s inequality [1] we have that x0 ≤ N/b w.h.p. in N .

Assume inductively that the result holds for xi−1 for some

i > 0, and consider xi. We have

E[xi] ≤ xi−1

e
(xi−1+Nǫ)·(1−δ)

xi−1·2i+1

≤ N

2i · 2 ↑↑ (i − 1) · e
N·(1−δ)·2i·b↑↑(i−1)

2i+1·N

≤ N

2i+1 · e(1/2−δ/2)·b↑↑(i−1)

≤ N

2i+1 · b ↑↑ i

If E[xi] ≥
√

N by Azuma’s inequality we have that xi ≤
N

2i+1b↑↑i w.h.p. in N .

Let us now return to the analysis of the pipelined matching

process, and let D = log∗b N .

Let Qi(T ) be the set of input ports that have i unmatched

packets at the start of cycle T , and let qi(T ) = |Qi(T )|. Let

si(T ) =
∑D

k=i qk(T ). We define a predicate Λ0(T ) to be true

iff for all i ≤ D, si(T ) ≤ zi.

Theorem 4.2: If Λ0(T −1) is true then w.h.p. in N , Λ0(T )
is true.

Proof: Consider the start of cycle T . Note that for any

input port with i unmatched packets, the number of packets

that can be matched at that port during cycle T − 1 is 0, 1, or

2 (since we have assumed that ω = 2). Let ri(T − 1) be the

number of inputs that had i or i− 1 unmatched packets at the

start of cycle T −1 and have at least i−1 unmatched packets

at the end of cycle T − 1. Since one new packet arrives at

each input port at the start of cycle T , we have

si(T ) =
D

∑

k=i

qk(T ) ≤
D

∑

k=i+1

qk(T − 1) + ri(T − 1)

≤ si+1(T − 1) + 3zi+1

The last equation above uses the inequality ri(T − 1) ≤
3zi+1. We can establish this as follows:

Let n1 be the number of active inputs in Qi(T − 1) that

are unmatched after the first iteration of stage T − 1, let X
be the set of inputs that have i − 1 unmatched packets after

the first iteration of stage T − 1, and let n2 be the number of

inputs in X that are unmatched after the second iteration of

stage T − 1. Then ri(T − 1) = n1 + n2.

Since qi(T − 1) ≤ si(T − 1) ≤ zi (by the induction

assumption), we have n1 ≤ zi+1 by Lemma 4.1.

For n2 we note that |X| = x1 +x2, where x1 is the number

of inputs that had i unmatched packets at the start of cycle

T−1, and have i−1 unmatched packets after the first iteration,

and x2 is the number of inputs that had i−1 unmatched packets

at the start of cycle T−1 and continue to have i−1 unmatched

packets after the first iteration. Clearly, x1 ≤ qi(T − 1), and

x2 ≤ zi by the behavior of the sampled matching process on

inputs that had i − 1 unmatched packets at the start of cycle

T − 1. Hence, |X| ≤ qi(T − 1) + zi ≤ zi + zi ≤ 2zi. In

the second iteration of stage T − 1 of the pipelined matching

procedure each compatible processor chooses an active packet

in X with probability 1/2i since each input in X has exactly

(i − 1) unmatched packets. Hence

n2 ≤ 2zi

e
(2zi+N)·(1−δ)

2zi·2
i

≤ 2 · zi+1

Hence ri ≤ 3zi+1. So we have

si(T ) ≤ si+1(T − 1) + 3zi+1 ≤ 4zi+1 ≤ zi

Corollary 4.3: W.h.p. in N , all packets that arrived in cycle

T − D have been matched by end of cycle T .

Proof: From the theorem, qD(T − 1) = sD(T − 1) ≤
max(pD,

√
N) =

√
N . During the first iteration of cycle T ,

the basic matching procedure is applied to these
√

N inputs.

Hence w.h.p. in N all packets that arrived in cycle T −D are

matched after this step, and certainly by the end of cycle T .

Since Λ0(0) is trivially true, by Theorem 4.2 we can argue

inductively that λ0(T ) is true when T = O(N). However as

T grows large, the probability that λ0(T ) will continue to be

true becomes small and then we can no longer guarantee that

all the packets that arrived in cycle T − D will be matched

at the end of cycle T . However our algorithm has a “self-

stabilizing” property, i.e., if Λ0(T ) becomes false for some T ,

within O(log N) cycles the input queues get back to a state

where the predicate Λ0 is true.

Define a series of predicates Λj(T ) such that Λj(T ) is true

iff for all i, si(T ) ≤ (φ)jpi for some constant φ > 1. Note

that Λj(T ) implies Λk(T ) if k ≥ j.

Theorem 4.4: If j > 0 and Λj(T − 1) is true then, w.h.p,

Λj−1(T ).
Proof: (Sketch.) Recall that in the proof of Theorem 4.2

we proved that si(T ) ≤ 3zi. Using a similar argument here we

can prove if that Λj(T − 1) is true then si(T ) ≤ 3φjzi. Now

for c > 3φ we get si(T ) ≤ cφj−1zi. If j > 0 then s0 ≤ p0

trivially. Hence Λj−1(T ).
Now since Λlogφ N (T ) is always true, in logφ N steps we

get back to a state where Λ0(T ) is true. This establishes the

self-stabilizing feature of PRiPSS. We summarize the result in

the following theorem.

Theorem 4.5: The pipelined scheduler PRiPSS uses a con-

stant number of rounds per cycle and w.h.p. in N , matches

all packets that arrived D cycles earlier, for D = O(log∗ N).
Further, when the low-probability event of failure in matching

all packets occurs, PRiPSS resumes its normal behaviour of

matching all packets within logφ N cycles, for a suitable

constant φ > 1.

A. Simulation of PRiPSS

We ran simulations of PRiPSS for 100,000 cycles with

Bernoulli arrival sequences, for number of ports N varying
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between 16 and 4096, and number of memories M varying

from 1.6 · N to 2.5 · N .

PRiPSS ran without any packet being dropped in any of the

runs even when the number of rounds in each cycle was held

to ω = 2. For N ≤ 2048 we needed D = 2. For N = 4096,

we needed D = 3.

We compared PRiPSS with two other pipelined scheduling

strategies that we developed, PRiPSS-1 and PRiPSS-2. We

describe both algorithms below and we prove that both work

with D = I = O(log log N). The time-stamp computation

and notion of active packet remains the same in both PRiPSS-

1 and PRiPSS-2. They differ from PRiPSS in the pipelined

matching procedure. Below we describe the corresponding

matching procedures.

PRiPSS-1: Procedure for Cycle T

(a) Execute the following three phases:

Phase 1:

(i) In parallel each new active input broadcasts to all

memory banks the time-stamp of its active packet to-

gether with its arrival time mod D.

(ii) In parallel each memory sends a message to a random

compatible input port.

(ii) In parallel each input port picks a memory bank that

sent it a message and assigns its active packet to that

memory bank. It then replaces its matched active packet

by the first unmatched packet in its buffer.

Phase 2: Repeat phase 1 on the current active packets.

Phase 3: Repeat phase 1 only on current active packets

that arrived in cycle T − D.

(b) Transfer all matched packets that arrived in cycle T −D
to the memory banks.

PRiPSS-2: Procedure for Cycle T

In the following, δ is a suitably small constant.

(a) Phase 1:

(i) In parallel each new active input broadcasts to all

memory banks the time-stamp of its active packet to-

gether with its arrival time mod D.

(ii) In parallel each memory bank m sends a message

to an input port chosen as follows: Let Am be the set of

inputs compatible with m that have an active packet that

arrived in cycle T − D. If Am is non-empty then with

probability δ one of the inputs in Am is chosen and with

probability 1− δ some other compatible input is chosen;

otherwise the input is chosen uniformly at random from

all compatible inputs.

(ii) In parallel each input port picks a memory bank that

sent it a message and assigns its active packet to that

memory bank. It then replaces its matched active packet

by the first unmatched packet in its buffer.

Phase 2: Repeat phase 1 on the current active packets.

(b) Transfer all matched packets that arrived in cycle T −D
to the memory banks.

A sketch of the proofs that both PRiPSS-1 and PRiPSS-2

TABLE III

NUMBER OF STAGES NEEDED FOR DIFFERENT VALUES OF M AND N IN

PRIPSS, PRIPSS-1, AND PRIPSS-2, δ = 0.5. THESE VALUES WERE

OBTAINED BY SIMULATION FOR 100,000 CYCLES WITH UNIFORM

BERNOULLI TRAFFIC.

M/N = 1.6 2.0 2.5 1.6 2.0 2.5 1.6 2.0 2.5

N PRiPSS PRiPSS-1 PRiPSS-2

16 2 2 2 2 2 2 2 2 2
32 2 2 2 2 2 2 2 2 2
64 2 2 2 2 2 2 2 2 2
128 2 2 2 2 2 2 2 2 2
256 2 2 2 2 2 2 2 2 2
512 2 2 2 2 2 2 2 2 2
1024 2 2 2 3 3 2 3 3 2
2048 2 2 2 3 3 2 3 3 2
4096 3 3 2 3 3 2 3 3 2

are able to match all packets that arrived T − D cycles, for

D = log log N , w.h.p. in N is given in Appendix II and III.

We simulated PRiPSS, PRiPSS-1, and PRiPSS-2 for

100,000 cycles with uniform Bernoulli arrivals and varied

D. For PRiPSS-2 we found δ = 0.5 gave the best results.

Table III shows the minimum value of D needed such that

all the packets are matched in the simulations. Note that the

algorithm for PRiPSS-1 requires 3 rounds of communication

between memories and inputs while PRiPSS-2 and PRiPSS use

only 2 rounds in our simulations. It appears that PRiPSS is

an attractive alternative to the basic non-pipelined RiPSS and

performs better than PRiPSS-1 and PRiPSS-2. It placed every

packet in memory using just 2 rounds per cycle while keeping

the latency to only two cycles for N ≤ 2048, and using only

M = 1.6N memory banks. While PRiPSS-2 also requires only

2 rounds per cycle, for it needs 3 stages for N ∈ [1024, 2048]
and 1.6N ≤ M ≤ 2N in contrast to PRiPSS that requires

only 2 stages.

V. DISCUSSION

In this paper we have presented several results on prac-

tical routers for output-queued switches based on the SMS

architecture. We have presented extensive numerical results for

RiPSS, a randomized, parallel scheduler for SMS described

in our earlier work [3]. We have presented a new and im-

proved pipelined randomized parallel scheduler, PRiPSS, and

analyzed its performance, and we have presented numerical

results evaluating the performance of PRiPSS and two other

pipelined heuristics.

Our results for RiPSS and PRiPSS are very encouraging.

For switches with up to N= 4,096 input ports, RiPSS placed

all incoming packets in compatible memory banks using just

3 rounds in 99.9% of the cycles even when the number

of memory banks M was only 1.6N. Earlier results in [3]

have shown that under adversarial conditions, no placement is

possible unless M ≥ 2N−1, and there exist arrival sequences

for which no randomized scheduler can place packets more

than half the time unless M ≥ 9N/8. The fact that RiPSS
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places all packets under Bernoulli arrivals in just 3 rounds in

99.9% of the cycles when M ≥ 1.6N is encouraging.

The effective use of available memory by RiPSS relative to

the output-queued switch it simulated is impressive. For both

Bernoulli arrival and bursty traffic, most of the memory banks

in the SMS switch using RiPSS had load very close to the

average load in most cycles. In practical terms, this means that

if one uses RiPSS in an SMS architecture, the total amount

of buffer space required needs to be only slightly larger than

the total number of packets that need to be buffered. This had

been proved analytically in [3] and our simulations support

this result convincingly.

The pipelined scheduler PRiPSS that we presented and

analyzed in this paper is superior to the pipelined scheduling

algorithm in [3] since it uses less communication. In the

pipelined algorithm in [3] each memory needs to send D
request messages and can receive upto D grants, where D =
O(log∗ N) is the depth of the pipeline. This requires extra

control communication bandwidth as well as processing. In

contrast, in PRiPSS, each memory bank needs to send only

one request per round. As with the pipelined scheduler in [3],

our analysis shows that PRiPSS is self-stabiling.

In our simulations with the pipelined scheduler PRiPSS

using Bernoulli arrivals, for switches with N up to 2,048

and M = 1.6N , a two-stage pipeline with two rounds of

communication per stage sufficed to place all packets in

memory in every cycle, without exception. When N = 4, 096
we needed 3 stages in the pipeline, with each stage continuing

to have 2 rounds. In view of the extremely small growth rate

of the log∗ function, we expect that PRiPSS will continue to

need only 3 stages for much larger values of N .

We compared PRiPSS with two other pipelined strategies,

PRiPSS-1 and PRiPSS-2, that appeared to be natural heuris-

tics, but for which we could prove only an O(log log N)-stage

bound on the delay, rather than the O(log∗ N) bound that we

proved for PRiPSS.

Our simulations reinforced our analytical results: Though

all three pipelined strategies needed at most D = 3 stages for

the range of values we considered, PRiPSS-1 and PRiPSS-2

needed to switch to 3 stages at smaller values of the parameters

than PRiPSS.

PRiPSS is superior to RiPSS in terms of throughput. The

cycle time of PRiPSS has to be only long enough to accom-

modate 2 rounds of communication, hence the cycle time can

be short, thereby increasing the number of packets processed

per second. However PRiPSS does have the extra overhead

of buffering D packets at each input and of computing active

packets. If latency is more important, and a small drop rate is

tolerable, then RiPSS is better than PRiPPS since for uniform

Bernoulli traffic it placed all packets in just 3 rounds in

99.9% of the cycles over the entire range of parameters we

considered; in contrast PRiPSS needed 2 stages of 2 rounds

each for N up to 2,048, and needed 3 stages of 2 rounds each

for N = 4, 096.

While the choice of RiPSS and PRiPSS may differ with the

primary consideration for efficiency, our results indicate that

both schedulers perform far better than any other scheduler

proposed in the literature for output-queuing, whether imple-

mented directly, or emulated through SMS. In our experiments

we also saw that memory utilization in RiPSS is excellent.

Even though we did not explicitly measure memory balance

for PRiPSS, we expect it to be similar, since the placement

method in both RiPSS and PRiPSS is the same.
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APPENDIX I

DETAILED ANALYSIS OF PRIPSS

We now give a detailed analysis of the pipelined random-

ized scheduler based on the pipelined matching procedure in

Section IV, for the case when ǫ > 0 is an arbitrarily small

constant.

It is interesting to note that log∗b N is not defined for all

values of N , if b ≤ e1/e. In fact, if b ≤ e1/e then (b ↑↑ i) ≤ e
for any value of i. Thus we cannot simply repeat the analysis

in Section 4.2 with b = e
(1−δ)ǫ

2 .

Recall that zi = N
2i+1(b↑↑i) . We will set b = 2 for this

analysis. Let D be the smallest integer such that zD ≤
√

N .

Clearly D = O(log∗ N). Let Qi(T, t) be the set of input ports

that have i unmatched packets at the start of t-th iteration of
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the pipelined matching procedure in cycle T , and let qi(T, t) =
|Qi(T, t)|. Let si(T, t) =

∑D
k=i qi(T, t).

We define a series of predicates Λ0(T ), . . . ,ΛD(T ). Predi-

cate Λj(T ) is defined to be true iff for all i ≤ D, si(T, 0) ≤
zi−j , where zi = N if i ≤ 0. Note that this is a refinement of

the predicates Λj defined in Section IV (as are si, qi and Qi).

Theorem 1.1: There exist a suitable constant ω such that

if each stage executes ω iterations of pipelined matching

procedure then Λ0(T ) implies Λ0(T + 1) w.h.p. in N .

In order to prove the above theorem we will first need the

following lemma.

Lemma 1.2: The number of unmatched inputs in

the set Qi(T, t) after a execution of single iteration

of pipelined matching procedure is no more than,

qi(T, t)eǫN/2i+1qi(T,t))/α, w.h.p. in N, where α > 0 is

a constant independent of N .

Proof: First we bound the expectation. Let j be an input

in Qi(T, t). Let η(j) be the set of unmatched memories that

can be matched to input j. Clearly |η(j)| ≥ ǫN + qi(T, t).

Let Cm be the index of the input to which memory m
sends a request. Thus if m ∈ |η(j)|, then Pr[Cm = j] =
1/(2i+1 · qi(T, t)). Let C = (C1, C2 . . . , CM ) and define

the random variable Xj(C) to be 1 if ∀m. (Cm 
= j) and 0

otherwise. Informally Xj(C) indicates that input j did not

get a request from any of the memories. Since an input is

matched if and only if it gets a request from at least one of

the memories, Xj(C) = 1 implies input j did not get a match

in that round. Let X(C) =
∑

j∈Qi(T,t) Xi(C) be the total

number of unmatched inputs in Qi(T, t) at the end of the

round. Then,

E(X(C)) = qi(T, t)(1 − 1/2i+1qi(T, t))(ǫN+qi(T,t))

≤ qi(T, t)e−(1+ǫN/2i+1qi(T,t)).

Thus defining a martingale and using Azuma’s inequality we

can say that w.h.p. in N , number of unmatched inputs in the set

qi(T, t) would be no more than qi(T, t)e−(ǫN/2i+1qi(T,t))/α,

where α is a suitable constant.

Lemma 1.3: If si+1(T, t) ≤ a and si(T, t) ≤ a + b then

w.h.p. in N we must have si(T, t+1) ≤ a+be−Nǫ/(2i+1b)/α.

Proof: Let qi(T, t) = x and si+1(T, t) = y. If

x ≤
√

N then at the end of that iteration w.h.p. in N
all the inputs in Qi(T, t) will be matched. Otherwise, we

will have at most xe−Nǫ/(x2i+1)/α inputs with i unmatched

inputs that were also in Qi(T, t) (from Lemma 1.2). Let δ
be the number of inputs that got matched in Qi+1(T, t) thus

qi(T, t+1) ≤ xe−Nǫ/(2i+1x)/α+δ and si+1(T, t+1) ≤ y−δ.

Therefore, si(T, t + 1) = si+1(T, t + 1) + qi(T, t + 1) ≤
y + xe−Nǫ/(2i+1x)/α. Thus,

si(T, t + 1) ≤ max
y≤a, x+y≤a+b

(y +
xe−Nǫ/(2i+1x)

α
).

It is straightforward to show that the function on the R.H.S.

achieves its maxima at y = a and x = b. Substituting that we

get the desired result.

Substituting a = zi+1, b = zi−zi+1 and t = 0 in the above

lemma we get si(T, 1) ≤ zi+1 + zi−zi+1

α . Since zi+1 ≤ zi/2
we get si(T, 1) ≤ βzi, where β = 1/2 + 1/2α < 1.

Similarly si+1(T, 1) ≤ βzi+1. Thus applying this argument

repeatedly we get si(T, f) ≤ βfzi. Let g be a constant

such that βg ≤ min(1/2, ǫ/ ln 2). Thus si(T, g) ≤ ziβ
g and

si+1(T, g) ≤ zi+1β
g .

Substituting a = zi+1β
g and b = ziβ

g and t = g in

Lemma 1.3 for the next iteration it is not difficult to show

that

si(T, g + 1) ≤ βg
(

zi+1 + zie
− ǫN

βg2izi

)

≤ zi+1.

Thus if we set ω ≥ g + 1, We have si−1(T, ω) ≤ zi. Since at

most one packet arrives in a cycle, si(T+1, 0) ≤ si−1(T, ω) ≤
zi. Hence Λ0(T + 1) holds with high probability in N .

Lemma 1.4: If Λ0(T ) is true, w.h.p. in N , all packets that

arrived in cycle T −D have been matched at the end of cycle

T .

Proof: From the definition of Λ0(T ) we get qD(T, 0) =
sD(T, 0) ≤

√
N . Thus w.h.p. in N all the inputs in QD(T, 0)

are matched in the first iteration of pipelined matching pro-

cedure. Thus qD(T, 1) = 0, i.e., no input has D unmatched

packets. Thus all the packets that arrived T −D cycles earlier

are matched.

Since Λ0(0) is trivially true, by Theorem 1.1 we can argue

inductively that Λ0(T ) is true for T = O(N). However as

T grows large, the probability that Λ0(T ) will continue to be

true becomes small and then we can no longer guaranty that

all the packets that arrived in cycle T − D will be matched

at the end of cycle T . However if we set ω ≥ 2(g + 1) our

algorithm becomes “self-stabilizing” , i.e., if Λ0(T ) becomes

false for some T , then within D cycles the input queues get

back to a state where the predicate Λ0 is true.

Note that Λj(T ) implies Λk(T ) if k ≥ j.

Theorem 1.5: If j > 0 and Λj(T ) is true then, w.h.p,

Λj−1(T + 1) is true.

Proof: Recall that in the proof of Theorem 1.1 we proved

that if si(T, 0) ≤ zi then si(T, g +1) ≤ zi+1. Using a similar

argument if si(T, 0) ≤ zi−j then si(T, (g + 1)) ≤ zi−j+1. If

we apply another g + 1 iterations we get si(T, 2(g + 1)) ≤
zi−j+2. Thus setting ω = 2(g + 1), we get si(T + 1, 0) ≤
si−1(T, 2(g + 1)) ≤ zi−j+1. Hence Λj−1(T + 1) holds.

Since ΛD(T ) is trivially true, in D steps we get back to a

state where Λ0(T ) is true. This establishes the self-stabilizing

feature of PRiPSS.

APPENDIX II

ANALYSIS OF PRIPSS-1

Here we show that w.h.p. in N , every packet that arrived in

cycle T − D will be matched by PRiPSS-1 at the end of this

cycle, and that it has the ‘self-stabilizing’ property.

At any cycle T , let Q0
i (T ) be the set of inputs that have

exactly i unmatched packets at the beginning of the cycle

after arrivals and Qj
i (T ) be the set of inputs with exactly i

unmatched packets after phase j. Let φ = 50/49
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Definition 1: We say predicate Pj holds for a cycle T iff
∑D

k=i+1 |Q0
k(T )| ≤ φj · N/2i for all 0 < i < D.

We will now argue that P0 holds for almost all cycles and if

it does not hold for a particular cycle, within a small number

of cycles it will continue to hold again.

Theorem 2.1: Let the number of memory banks M = (2+
ǫ)N , for some ǫ > 0. If P0 holds for cycle T then P0 holds

for cycle T + 1 w.h.p. in N . Furthermore, if for j > 0 Pj

holds for cycle T then, Pj−1 must hold for the cycle T + 1
w.h.p. in N .

This will be proved through a sequence of lemmas.

Lemma 2.2: In Phase 3, if the number of current active

packets that arrived in cycle T −D is O(N/ log N) then with

high probability in N all of these packets are matched after

Phase 3 is executed.

Proof: The result follows by viewing the set-up as an

instance of the ‘coupon collector problem’.

Lemma 2.3: For any set S of inputs that are participating

in the basic matching procedure if |S| ≥ N0.6 then at most

0.4|S| inputs remain unmatched from the set S, w.h.p. in N .

Proof: By using a similar argument to that in [3] to

prove Lemma 2.2, we can show that w.h.p. in N the number

of unmatched inputs from the set S is at most κ|S|/e, where

κ > 1 is a constant. Choosing κ = 0.4e, we get the result.

Let Pj hold for the cycle T . Now the set of inputs that will

be in Q1
i (T ) will correspond the inputs in Q0

i (T ) that were

not matched and the inputs from Q0
i+1(T ) that were matched.

Thus if |Q0
i (T )| ≥ N0.6 we get,

D
∑

k=i

|Q1
k(T )| ≤

D
∑

k=i+1

|Q1
k(T )| + 0.4|Q1

k(T )|

= 0.4

D
∑

k=i

|Q1
k(T )| + 0.6

D
∑

k=i+1

|Q1
k(T )|

= φj0.7N/2i

If |Q0
i (T )| < N0.6 then also for sufficiently large N we

can show,
∑D

k=i |Q1
k(T )| ≤ φj0.7N/2i. By using a similar

argument, we get

D
∑

k=i

|Q2
k(T )| = φj0.49N/2i = φj−1N/2i+1.

In the third phase only elements from Q2
D(T ) be matched.

Thus Q3
D(T ) ⊆ Q2

D(T ), Q3
D(T ) ∪ Q3

D−1(T ) ⊆ Q2
D(T ) ∪

Q2
D−1(T ) and Q2

i (T ) = Q3
i (T ) for all i < D − 1. Hence for

i < D − 1 we get,

|Q3
D(T )| ≤ |Q2

D(T )| ≤ φj−1N/2D+1

|Q3
D(T )| + |Q3

D−1(T )| = |Q2
D(T )| + |Q2

D−1(T )|
≤ φj−1N/2D

Thus we get,

D
∑

k=i

|Q3
k(T )| =

D
∑

k=i

|Q2
k(T )| ≤ φj−1N/2i+1

Now at the cycle T+1 at most one packet arrives for each input

the for each input the number of unmatched packets increases

by 1. Therefore the ∪D
k=iQ

0
k(T + 1) ⊆ ∪D

k=i−1Q
0
k(T ). Hence

for i ≥ 1 we get
∑D

k=i |Q0
k(T + 1)| ≤ ∑D

k=i−1 |Q3
k(T )| ≤

φj−1N/2i.

For j > 0 and i = 0 we trivially get
∑D

k=i |Q0
k(T + 1)| ≥

φj−1N/2i.

Thus if j = 0 then P0 holds for cycle T + 1 and if j > 0
then Pj−1 holds for cycle T + 1 with high probability.

Theorem 2.4: If P0 holds for a particular cycle T then our

algorithm does not drop any packets that arrived on cycle T −
D in the current cycle.

Proof: When P0 holds, |Q2
D(T )| ≤ N/2D = N/ log N .

Thus by Lemma 2.2 with high probability all the inputs in

Q2
D(T ) will be matched in phase 3. Since each input other

than Q2
D(T ) had at least one packet matched now, all the

packets that arrived at cycle T − D must be matched.

Similar to the proof of PRiPSS, we now argue that our

algorithm has a self-stabilizing property in the sense that if

goes to a bad state, in a small number of cycles it will recover

from the bad state to a state where P0 is again true and no

drops occur.

Since φjN/2D = N if j = logφ log N , it follows that

Plogφ log N is trivially true for any cycle. Thus, by the second

assertion in Theorem 2.1, any time P0 is not true for a

cycle, within logφ log N cycles it must hold true with high

probability. Thus P0 will hold in almost all cycles during the

execution of PRiPSS-1, and no packets will be dropped.

APPENDIX III

ANALYSIS OF PRIPSS-2

We now sketch a proof that PRiPSS-2 places all packets

with high probability in N with D = c · log log N stages

of pipeline, for a suitable constant c. For this we observe

that the constant 0.4 used in the statement of Lemma 2.3

could be replaced by a somewhat smaller constant, call it c′,
while maintaining the validity of the claim. Thus if we use

a sufficiently small constant δ in PRiPSS-2, Lemma 2.3 can

be proved for the case when the basic matching procedure is

executed by each memory only with probability (1− δ). Thus

P0 will hold w.h.p. in N for PRiPSS-2. Now, if P0 is true, then

the number of unmatched packets that arrived D cycles earlier

must be less than N/ logc N . Thus an input that has such a

packet must receive a request from any compatible memory

with probability at least δ·logc N
N . Since there are at least ǫ ·N

compatible memories, the probability of such an input not

receiving a grant would be at most (1− (δ · logc N)/N)ǫ·N <
e−(ǫδ·logc N). Thus with high probability in N all such inputs

must be matched in a single round.
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