
Competitive Cache Replacement Strategies for Shared Cache Environments

Anil Kumar Katti
Department of Computer Science

University of Texas at Austin
Austin, TX 78712, USA

Email: akatti@cs.utexas.edu

Vijaya Ramachandran
Department of Computer Science

University of Texas at Austin
Austin, TX 78712, USA
Email: vlr@cs.utexas.edu

Abstract—We investigate cache replacement algorithms
(CRAs) at a cache shared by several processes under different
multicore environments. For a single shared cache, our main
result is the first CRA, GLOBAL-MAXIMA, for fixed interleaving
under shared full knowledge [1], where any data can be
accessed by any process, and each process has full knowledge
about its future request sequence. We establish that GLOBAL-
MAXIMA has competitive ratio within a constant factor of
optimal. This answers the major open question in [1]. We also
present RR-PROC-MARK, a CRA for the disjoint full knowledge
case, which is very simple and efficient, and achieves a better
competitive ratio than the algorithms in [2], [1]; it is in fact
optimal except when the number of processes sharing the cache
is small.

We then consider a cache hierarchy, both for a single process
and when shared by several processes. We present CRAs for
three types of caching models commonly used at a higher-
level cache: inclusive, exclusive, and partially-inclusive, and we
establish that several of our CRAs have optimal competitive
ratio. Our results for a cache hierarchy are new even in the
traditional no knowledge case and even for a single process.

Keywords-caching; cache replacement; shared cache; cache
hierarchy; multicore; interleaved request sequence; full knowl-
edge; inclusion property;

I. INTRODUCTION

Caching and paging are among the earliest problems
addressed through competitive analysis [3], and they have
been widely studied in this context since then. In this paper
we study cache replacement algorithms (CRAs) under com-
petitive analysis in a parallel setting when several processes
(or cores) share a cache, or a cache hierarchy. This type of
caching environment is widely used in multicores.

In the parallel setting, an optimal offline strategy (OPT)
can have an advantage over an online strategy through two
mechanisms: knowledge of the future (as in the sequential
setting) and knowledge of the interleaving of cache requests
from the different cores. Two types of interleaving of re-
quests have been studied in the literature. Barve et al. [1]
and Cao et al. [2] considered fixed interleaving of requests
from the individual request sequences at the shared cache.
The main assumption in this case is that the interleaving of
requests reaching the shared cache is same for all CRAs, and

This work was supported in part by NSF grant CCF-0830737.

adversarial in nature for the competitive analysis. Hassidim
[6] and Lopez-Ortiz and Salinger [7] considered a different
type of interleaving, which we call free interleaving at the
shared cache. Here, the interleaving of requests reaching the
shared cache is assumed to depend on the cache replacement
decisions taken by the CRA, and different CRAs could see
different interleaving of requests at the shared cache.

Orthogonal to fixed and free interleaving, we consider
CRAs in two ‘knowledge’ models — no knowledge (NK)
and full knowledge (FK). The NK model is the standard clas-
sical caching model, where processes are assumed to have
no knowledge about future requests in the online setting.
In the FK model [1], [2], processes have full knowledge
about their individual request sequences in the online case,
and the optimal offline algorithm (OPT) has full knowledge
about both the future request sequences and the interleaving
of these request sequences.

We now summarize the known results for these models.

No knowledge (NK) model: This is the standard caching
model, and is well understood in both fixed and free inter-
leaving.

• Fixed interleaving: Caching at a single shared cache in
the NK model reduces to the sequential caching model
[1], with LRU being an optimal online deterministic
CRA [3] and PARTITION being an optimal online
randomized CRA [4], [5].

• Free interleaving: Two variants of this model were
considered in [6], [7]. In the model in [6], the CRA
could determine the schedule of requests reaching the
shared cache, and it was shown that even with resource
augmentation (where the online CRA has a bigger
cache than OPT), many of the well known CRAs such as
LRU and FIFO have competitive ratio Ω(b/p) (in terms
of makespan), where b is the ratio of cache miss time
to cache hit time and p is the number of processes.
Since any CRA can achieve a competitive ratio of b
even if it misses on every request, these CRAs perform
poorly when the number of processes is a constant. The
model considered in [7] forces the CRA at a shared
cache to serve requests as soon as they arrive. Using a
slight modification of the lower bound sequence used

Table I

Overview of results for CRAs in no knowledge and full knowledge models

Model Interleaving Single Shared Cache Shared Cache Hierarchy

p = 1 p > 1 p = 1 p > 1

No Fixed [3], [4], [5] [3], [4], [5] This paper (Table III∗)

Knowledge Free [6], [7] Extension from [6] (Section III-C)

Full
Fixed

Online same
[1], [2], This paper (Table II∗)

Online same
This paper (Table II∗)

Knowledge Free as OPT Online same as OPT as OPT Online same as OPT
(Section II-D) (Section II-D)

*Refer to the table for more details.

in [6], it can be seen that the competitive ratio of online
algorithms is Ω(b/p) (in terms of makespan) even in
this model. Also, [7] studies the performance of CRAs
under different partitioning strategies for the cache.

Full knowledge (FK) model: This model was first consid-
ered in the application-controlled caching context by [2] and
[1]. We discuss the practical relevance of this model in the
multicore caching context later in this section.

• Fixed interleaving: This was studied in [1], [2]. In
this setting, each individual process has full knowledge
of its future request sequence (the FK model), and the
power of the offline algorithm arises from its knowledge
of the interleaving, which is fixed for all the CRAs and
assumed to be adversarial for the sake of competitive
analysis. We further classify the FK model into the
disjoint memory full knowledge (DFK) model studied
in [1], where processes request disjoint sets of memory
blocks, and the shared memory full knowledge (SFK)
model, left as an open problem in [1], where different
processes may access the same memory block. Our
main results are for the SFK model. We also present a
new and improved CRA in the DFK model.

• Free interleaving: The FK model has not been con-
sidered before under free interleaving, and we study it
in this paper. We use the free interleaving model in [6]
mentioned earlier since the lower bounds in that paper
can be readily adapted to the model in [7] by slightly
changing the lower bound sequences; further both the
lower bound sequences and the analysis are simpler
with the former model. Online CRAs are as powerful
as offline CRAs since both of them have full knowledge
about the individual request sequences and can control
the interleaving of requests reaching the shared cache
by controlling the schedule of each core. Hassidim [6]
proved that the optimal offline CRA in this model is NP
complete under the assumption that k = p/3 (where k
is the size of the shared cache and p is the number of
cores). We generalize this result to arbitrary k and p.

A. Relevance to current practice
The models that we consider in this paper are related to

current practice in several ways.
Shared memory full knowledge: In a number of parallel

shared memory applications, cores work together to solve a
given problem and hence share memory blocks. In many
of these computations (e.g., matrix multiplication, FFT, I-
GEP [8], [9]), each process has full knowledge about the
future request sequence of its current task. Another scenario
in which the SFK model relates well to the real world
is in modern multicore processor systems equipped with
prefetchers [10], [11]. These units predict the future request
sequence in an online fashion for most computations. Both
of these examples motivate us to consider the SFK model.

Fixed and free interleaving: Under fixed interleaving we
assume that the interleaving of requests reaching the shared
cache is the same for all CRAs and adversarial in nature
for competitive analysis. However, in modern multicore
systems, requests from different cores reach the shared cache
in parallel. When a cache miss is incurred, only the core with
the cache miss gets delayed. All other cores can continue
requesting memory blocks. Thus, the interleaving of request
sequences as seen at the shared cache depends on the
eviction decisions taken by the CRA. This observation was
modeled as free interleaving in [6]. On the other hand, even
though the interleaving depends on the eviction decisions
taken by the CRA , it does not necessarily depend on just
the delays due to cache misses. This is because modern
operating systems interrupt processes for a number of other
reasons (e.g., serving system calls, scheduling, etc.) and the
interleaving of requests is significantly affected by these
interrupts. Thus, it can be argued that adversarial fixed
interleaving is a suitable way to model these interrupts for
competitive analysis. This was also stated as the motivation
behind fixed and adversarial interleaving in [2].

B. Related work
We measure the performance of online CRAs using

classical competitive analysis [3]. Let cost(ALG, σ) denote
the number of cache misses incurred by a CRA ALG on

Table II

Competitive ratio of CRAs at a single shared cache under (k, k)-paging (our results are in bold font and in boxes) (Section II)

Model
Deterministic Algorithms Randomized Algorithms

Lower Bound Upper Bound CRA Lower Bound Upper Bound CRA

NK k [3] k [3] LRU Hk [5] Hk [4] PARTITION

DFK p+ 1 [1]

2(p+ 1) [1] [2]

Hp−1 [1] 2(Hp−1 + 1) [1] [1]max(10, p + 1)
[Thm II.14] RR-PROC-MARK

SFK
p
2

log 4
3

k+1
p

[Thm II.1]
2(p ln(ek/p) + 1)

[Thm II.3] GLOBAL-MAXIMA
1
2

log(k + 1)
[Thm II.2]

Hk [4] PARTITION

Table III

Multi level shared cache hierarchy with l levels of same-type cache (all results are new) (Section III)

Table A: Equivalent cache size for the top level cache Ll Table B: Competitive ratio of CRAs at top level cache Ll

CRA INCL EXCL PRT-INCL Model h = c · k & c < 1∗ (Table IIIA has the h and k values)

Lower Bound Upper Bound

ONLINE kl

∑l

i=1
ki

∑l

i=1
ki − l + 1 NK

k
k−h+1

k
k−h+1

size = k

OPT
∑l

i=1
hi DFK Ω(1) O(1)-optimal

size = h SFK

ki and hi are size of Li for ONLINE and OPT resp., 1 ≤ i ≤ l. *See Table II for c = 1.

a sequence σ. Recall that the competitive ratio of ALG is
bounded byR(ALG) if there exists a constant c′ such that for
all sequences σ, cost(ALG, σ) ≤ R(ALG)·cost(OPT, σ)+c′.

ALG is c-optimal ifR(ALG) is at most c times the smallest
competitive ratio that any online algorithm can achieve.

The competitive ratio is measured in terms of makespan
in [6] since makespan is a more suitable cost measure in the
free interleaving model.

Caching at a single shared cache in the DFK model
was formalized as ‘application-controlled caching’ in [2],
who proposed a CRA which picks the process that owns
the least recently used (LRU) page and asks it to make
a suitable eviction. An upper bound of 2(p + 1) on the
competitive ratio of this algorithm was established by [1],
who also gave a lower bound of p + 1 on the competitive
ratio of deterministic CRAs in this model. In the randomized
setting, [1] presented a simple randomized algorithm with
competitive ratio 2(Hp−1 + 1) in the DFK model, and
established a lower bound of Hp−1 on the competitive ratio.
The case when processes share memory blocks (SFK) was
left as an open problem in [1]. We are not aware of any
prior work on CRAs for a cache hierarchy.

C. Our results
Our main results are for fixed interleaving, and we have

two classes of results, one for a single shared cache, and the

other for a hierarchy of shared caches.

1. Single Shared Cache (Section II.) For the SFK model,
we give a lower bound of p2 log 4(k+1)

3p on the competitive ra-
tio, and we present GLOBAL-MAXIMA, a deterministic CRA
which is O(1)-optimal in this model. We also give a lower
bound on the competitive ratio of randomized algorithms in
the SFK model, which establishes that PARTITION is O(1)-
optimal for this model. These are the first nontrivial results
for the SFK model. In the DFK model, we introduce the
notion of a process marking algorithms, and we present RR-
PROC-MARK, a deterministic algorithm with a competitive
ratio of at most max(10, p+1). Along with being 1-optimal
for p ≥ 9, RR-PROC-MARK is also computationally more
efficient than the algorithm in [2], [1], and it is a fair
algorithm in the sense that every process is asked to make
almost the same number of evictions. It also has a good
competitive ratio under the ‘full access cost model’. Table II
gives the known and new results for a single shared cache.

2. Shared Cache Hierarchy (Section III.) We formal-
ize the definitions of inclusive (INCL), exclusive (EXCL)
and partially-inclusive (PRT-INCL) caches based on their
descriptions in the literature. We obtain upper bounds on
the competitive ratio of deterministic CRAs for the top level
cache Ll for all three types of caches using the notion of
cache equivalence, where we establish that each type is

equivalent to a standard single-level cache whose size is
a certain function of the sizes of Li for 1 ≤ i ≤ l (see
Table IIIA). For OPT we define L-FITF, which is an extension
of FITF, the well-known greedy OPT [12] used for the single-
level cache in the sequential setting. These results are new
even for a single process in the NK setting.

Road map. In Section II, we investigate CRAs for the FK
model under fixed interleaving. We also extend results from
[6] for FK model under free interleaving. In Section III, we
consider CRAs for a hierarchy of caches. We first define
3 types of caches commonly used in practice – INCL,
EXCL and PRT-INCL and compare CRAs using competitive
analysis under fixed interleaving.

II. CACHE REPLACEMENT ALGORITHMS FOR A
SINGLE SHARED CACHE

We consider a single cache shared by p processes. In
this section we mainly investigate CRAs for the FK model
under fixed interleaving. In subsection II-A, we consider
the SFK model which was left as an open question in [1]
and present deterministic and randomized CRAs which are
O(1)-optimal. In subsection II-B, we present a new and
improved deterministic CRA for the DFK model, which
has several features that might make it good choice in
practice. In subsection II-D, we consider FK model under
free interleaving and generalize the NP-completeness result
in [6].

A. Caching in the SFK model
In the SFK model, any block can be accessed by any

of the p processes. Each process has full knowledge about
its individual request sequence. Further, the interleaving of
these requests is assumed to be fixed and adversarial for the
sake of competitive analysis. In this subsection, we consider
CRAs in the (k, k)-paging setting.

For deterministic algorithms, we establish a lower bound
of p

2 log 4(k+1)
3p on the competitive ratio, and we present

GLOBAL-MAXIMA, a CRA which is 11-optimal. For ran-
domized algorithms, we establish a lower bound of 1

2 log(k+
1) on the competitive ratio; this proves that PARTITION [4]
is O(1)-optimal.

GLOBAL-MAXIMA is a global algorithm that pools the
individual future knowledge of the p processes in order to
determine which block to evict. If we confine ourselves to
local algorithms where future knowledge cannot be shared
between processes, we can show that the competitive ratio
must be at least k.

1) Lower bounds on the competitive ratio in the SFK
model: To establish our lower bounds we fix the individual
request sequences for all of the p processes and then build
different adversarial interleaving for the deterministic and
randomized lower bounds.

Individual request sequence: We group the p processes
into p/2 pairs such that the ith pair consists of process

P2i−1 and P2i. We use k+1 distinct memory block requests
which are evenly distributed among p/2 pairs. Hence, every
pair requests 2(k+1)

p distinct memory blocks. Process P2i−1
requests the blocks requested by P2i in the reverse order.
The blocks requested by Pj and Pj+1 where j = 2i− 1:
Pj : (j − 1)k+1

p + 1, (j − 1)k+1
p + 2, · · · , (j + 1)k+1

p .
Pj+1 : (j + 1)k+1

p , (j + 1)k+1
p − 1, · · · , (j − 1)k+1

p + 1.
We establish lower bounds on the competitive ratio of mark-
ing CRAs. We can invoke the notion of repeated requests
to already requested blocks [13] to generalize these bounds
to non-marking CRAs.

Adversarial interleaving: Assume the shared cache of both
the online CRA and OPT initially contain blocks 1, 2, · · · , k.
Then, the interleaving is defined as follows:

1. Deterministic: The first phase starts with process Pp
requesting k + 1 (resulting in a cache miss). Let the deter-
ministic marking CRA ALG evict q from the cache. Observe
that q can be requested by two processes, say P2i−1 and P2i.
The adversary makes one of these two processes request q
such that minimum number of blocks are marked before q
is requested again. This results in another cache miss and
the pattern repeats. Theorem II.1 establishes a lower bound
of p

2 log 4(k+1)
3p on the competitive ratio.

We establish a stronger lower bound (of k) on the
competitive ratio of deterministic local CRAs (where future
knowledge cannot be shared between processes). The first
phase of the interleaving in this case starts with process
Pp requesting k + 1 (resulting in a cache miss). Let the
deterministic local marking CRA ALG make an eviction
decision based on the local knowledge of a process, say
P2i−1. We assume that the unmarked block that is requested
farthest in the future request sequence of P2i−1, say q, is
chosen for eviction. If not, the request sequence can be
modified correspondingly. The adversary makes P2i request
the block q. This results in another cache miss and the
pattern repeats. Observe that ALG incurs cache miss on every
request and OPT on the other hand incurs one cache miss for
every k cache misses incurred by ALG by evicting the block
that is requested farthest in the interleaving. This results in
a lower bound of k on the competitive ratio of deterministic
local algorithms.

2. Randomized: We use the fact that a lower bound on the
expected cost of a deterministic CRA ALG on a probabilistic
interleaving of the individual request sequences is also a
lower bound on the expected cost of a randomized marking
CRA on any deterministic interleaving (von Neumann mini-
max principle as described by Yao [14]). Each phase consists
of a number of stages. Initially all blocks are unmarked.
During a given stage, for each pair of processes, one of the 2
processes is picked with equal probability (1/2) and asked to
request half of the unmarked blocks in its request sequence.
At the end of the stage, all blocks requested during the

current stage are marked. Theorem II.2 proves the claimed
lower bound.
The above defined pattern continues till all the blocks in
the cache are marked. At that point, the adversary makes all
the p processes request the remaining blocks in their request
sequences in order to start a new phase.

Theorem II.1. The competitive ratio of any deterministic
CRA under (k, k)-paging in the SFK model is at least
p
2 log 4(k+1)

3p .

Proof: Let U be the set of unmarked blocks in the
request sequences of P2i−1 and P2i at the start of the current
phase. Let uj be the number of unmarked blocks left in U
just before the jth block in U is evicted by the deterministic
CRA ALG. In order to bound the number of cache misses
incurred by ALG on the blocks in U before all the blocks
in U are marked, we bound uj in terms of uj−1 for an
arbitrary j. Let q be the j − 1st block in U that is evicted
by ALG. Let the number of unmarked blocks requested
before the first request to q at the moment q was evicted
in the request sequence of P2i−1 and P2i be d2i−1(q) and
d2i(q), respectively. Adversary requests q such that at most
min(d2i−1(q), d2i(q)) + 1 unmarked blocks (including q) in
U are marked by the time the request to q is served. After
the request to q is served, the adversary does not request any
other block belonging to the request sequences of P2i−1 and
P2i till the jth element in U is evicted. Hence uj is equal
to the number of elements left unmarked in the the request
sequences of P2i−1 and P2i after the request to q is served.
Hence, uj = uj−1−min(d2i−1(q), d2i(q))+1. Observe that
the sequence of unmarked blocks in the request sequence
of P2i−1 always remains an exact reverse of the sequence
of unmarked blocks in the request sequence of P2i. Hence
at the point q was evicted, for each unmarked block x in
U : min(d2i−1(x), d2i(x)) ≤ duj−1/2e− 1. Which implies,
min(d2i−1(q), d2i(q)) ≤ duj−1/2e − 1. Hence,

uj = uj−1 −min(d2i−1(q), d2i(q)) + 1

≥ uj−1 − duj−1/2e ≥ buj−1/2c

Further, observe that u1 = 2(k + 1)/p. Using the above
equation and the bound on u1, we can prove by induction
on j that uj ≥ k+1

2j−2p −
∑j−2
l=0

1
2l

. The phase ends for the
ith pair of processes when there is just one unmarked block
left. Solving for j in k+1

2j−2p −
∑j−2
l=0

1
2l
≤ 1, ALG incurs

at least log 4(k+1)
3p cache misses on blocks in U before all

blocks in U get marked. Since there are p/2 such pairs, ALG

incurs at least p2 log 4(k+1)
3p cache misses in the entire phase.

On the other hand, OPT incurs just 1 cache miss by evicting
the block that is requested farthest in the interleaved request
sequence when it incurs a cache miss during this phase.
Since every phase proceeds in a similar fashion, the lower
bound on the competitive ratio of deterministic marking
CRAs is p

2 log 4(k+1)
3p . Using the notion of repeated requests

to already requested blocks, we obtain the desired lower
bound of p

2 log 4(k+1)
3p for all deterministic CRAs.

Theorem II.2. The competitive ratio of any randomized
CRA in the (k, k)-paging SFK model is at least 1

2 log(k+1).

Proof: In each stage, an unmarked block is requested
with probability 1/2. Since one of these unmarked blocks
does not exist in the cache, the expected number of cache
misses incurred by a deterministic CRA ALG is 1/2 during
any given stage. Since the number of stages is at least
log(k + 1), the expected total number of cache misses
incurred by ALG in the entire phase is at least 1

2 log(k+ 1).
Recall that OPT incurs exactly one cache miss on any
deterministic interleaving consisting of k+1 distinct blocks.
Hence, the competitive ratio of any randomized CRA is at
least 1

2 log(k + 1) in the SFK model.

2) Deterministic global cache replacement algorithm:
GLOBAL-MAXIMA: We present a deterministic global
marking CRA called GLOBAL-MAXIMA which makes an
eviction based on the global distance of unmarked blocks
in the cache, defined as follows.

Local and global distance functions: Let U be the set of all
unmarked blocks in the cache at any point in time. The local
distance of an unmarked block x with respect to the process
Pi is given by di(x) = number of distinct blocks belonging
to U in the request sequence of process Pi before the first
request to x. If x never occurs in the request sequence of
process Pi, di(x) = |U | − 1. The global distance of an
unmarked block x is given by d(x) = minpi=1 di(x).

GLOBAL-MAXIMA. GLOBAL-MAXIMA is an SFK mark-
ing algorithm which, upon a cache miss, evicts an unmarked
block q with the maximum global distance from the cache.
By evicting a block with the maximum global distance,
GLOBAL-MAXIMA ensures that maximum number of un-
marked blocks get marked before q gets requested again.

3) Analysis of GLOBAL-MAXIMA: We obtain an upper
bound on the number of cache misses incurred by GLOBAL-
MAXIMA in a given marking phase as a function of the
number of distinct requests to clean blocks l during the
phase, and the number of processes p. Recall that a clean
block for a phase is a block that did not reside in the
cache at the beginning of the phase. We will make use
of the following 2 bounds while establishing the upper
bound on the cost of GLOBAL-MAXIMA. The first bound
directly follow from the definitions of local and global
distance functions. The second bound can be proved using
the pigeonhole principle.
• Bound 1: For all x ∈ U : 0 ≤ di(x) ≤ k − 1 (for all

1 ≤ i ≤ p) and 0 ≤ d(x) ≤ k − 1.
• Bound 2: For every eviction candidate q in our algo-

rithm, |U |p − 1 ≤ d(q) ≤ k − 1.
Before presenting the analysis, we also review a few terms

from [1].

• Clean and non-clean blocks: A block q is said to be a
clean block if it did not reside in the cache at the start
of the phase. All the blocks that reside in the cache at
the start of a phase are called non-clean blocks.

• Hole and hole movement: A hole is said to be created
at a non-clean block q if it gets evicted during the
current phase. If the missing block q is requested again
during this phase, another unmarked block q′ is evicted.
We say that the hole h moves from q to q′.

Theorem II.3. The competitive ratio of GLOBAL-MAXIMA
in the (k, k)-paging SFK model is at most 2(p ln(ek/p)+1).

Proof: Requests to l clean blocks result in l cache
misses and hence creation of l holes. We now bound the
number of cache misses due to repeated requests to one such
hole, h, during the current phase. Let u0 be the number of
unmarked blocks in the cache when h is created (due to a
request to a clean block). Note that, u0 ≤ k. Let uj represent
the number of unmarked blocks in the cache when the non-
clean block associated with h is requested for the jth time.

Using Bound 2, it is easy to see that at least uj−1

p blocks
are marked between two consecutive requests to the non-
clean blocks associated with h. Hence, uj−1 − uj ≥ uj−1

p .
This implies that uj ≤ u0 ·(1−1/p)j ≤ k · 1

e
j
p

. With at most

p ln(k/p) requests to h, the number of unmarked blocks in
the cache reduces to at most p. The total number of cache
misses due to h during this phase is at most p ln(k/p)+p =
p ln(ek/p). Since every cache miss (hole) is treated in a
similar fashion, the total number of cache misses due to l
holes is bounded by l + lp ln(ek/p) cache misses. Recall
that OPT incurs at least l/2 cache misses on this phase in an
amortized sense. Hence, the competitive ratio of GLOBAL-
MAXIMA in the SFK model is at most 2(p ln(ek/p)+1).

B. Caching in the DFK model
In the DFK model, studied in [1], p processes share a

cache and access disjoint sets of memory blocks. Thus each
memory block belongs to a unique process. Each process
has full knowledge about its individual request sequence.

We present RR-PROC-MARK, a simple deterministic CRA
which attains a competitive ratio of at most max(10, p+ 1),
which is optimal when p ≥ 9 [1]. RR-PROC-MARK is an
example of a process marking algorithm, a class of CRA
that we next define.

Definition II.4. A process marking algorithm proceeds in
marking phases. A phase starts with all blocks and processes
unmarked. A block is marked when a request to it is served.
A process gets marked when all of the blocks in cache that
belong to it are marked. Upon a cache miss, an unmarked
process, if available, is asked to make an eviction. This
process evicts one of the unmarked blocks that belongs to it
from the cache. If no unmarked process is available, a new
phase is started with all processes and blocks unmarked. An

eviction decision taken by a process is considered good if
the process gets marked before the evicted block is requested
again during the current phase.

The randomized DFK algorithm in [1] is an example
of a process marking algorithm (with processes always
making good evictions). The LRU based deterministic CRA
presented in [2] is an example of a implicit process marking
algorithm (the marking scheme is implicitly followed by
LRU). We have formalized this notion into a general frame-
work for DFK in this paper. The proofs of the following two
lemmas are in the first author’s Masters Thesis [15].

Lemma II.5. (Proof in [15]) Once a process gets marked
during the phase of a process marking algorithm, it remains
marked till the end of the phase.

Lemma II.6. (Proof in [15]) If the processes picked by a
process marking algorithm always make good evictions, the
number of holes associated with every unmarked process
is non-decreasing and the number of holes associated with
every marked process is non-increasing.

The following lemma follows from the proof of the lower
bound on the cost of OPT in [5].

Lemma II.7. [5] Consider a marking phase of a process
marking algorithm with l clean block requests. The cost of
an optimal offline algorithm (OPT) for this phase is at least
l
2 in an amortized sense.

1) Deterministic process marking algorithm: RR-PROC-
MARK: Upon a cache miss, RR-PROC-MARK picks an
unmarked process (also referred to as a victim process) using
the round robin scheme and asks it to make an eviction;
this process evicts an unmarked block from the cache that
belongs to it and is requested farthest in its future request
sequence (we refer to this choice as MARK-FITF). Observe
that MARK-FITF always ensures good evictions.
Analysis of RR-PROC-MARK.

Our analysis obtains an upper bound on the number of
cache misses that occur under RR-PROC-MARK in a given
marking phase as a function of l, the number of distinct
requests to clean blocks during the phase, and p, the number
of processes. For the upper bound we consider the two cases
l < p and l ≥ p separately.

Upper bound on the cost of RR-PROC-MARK when l < p:
In order to bound the cost of RR-PROC-MARK during the
phase when l < p, we divide the current phase into stages,
where the jth stage starts with the request that results in
an unmarked process being associated with j holes for the
first time. Each hole is attributed to a distinct clean block
request, hence there are at most l holes present at any point.
Using Lemma II.6 we can conclude that there are at most l
stages.

Observe that Lemma II.5 together with the fact that RR-
PROC-MARK always makes good evictions gives an upper

bound of l · p on the number of caches misses incurred. We
will establish a stronger bound in Lemma II.10, which uses
the following lemma in its proof.

Lemma II.8. [15] The number of holes associated with an
unmarked process is j − 1 just before the start of stage j.

The following is a corollary for Lemma II.8. This corol-
lary continues to hold for the case when l ≥ p because both
the definition of the stage and proof for the lemma does not
depend on the l < p inequality.

Corollary II.9. The difference between the maximum num-
ber of holes associated with an unmarked process and the
minimum number of holes associated with an unmarked
process is at most 1 at any point during the phase.

Lemma II.10. The number of cache misses in stage 1 is at
most p and the number of cache misses in stage j (mj for
j ≥ 2) is at most min(bλj−1

j−1 c, d
l

j−1 − 1e), where λj is the
number of clean blocks requested in stages 1 through j.

Proof: (Sketch, full proof is in [15].) From Lemma II.8,
it is not difficult to see that there are at most bλj−1

j−1 c
unmarked processes at the start of the jth stage (for j ≥ 2),
since each such process must hold at least j − 1 holes.
Further, when λj−1 = l (i.e., we have a total of l holes
in the system just before the start of stage j), we establish a
slightly tighter bound. If none of the l holes are associated
with marked processes, an unmarked process should start
this stage by requesting an associated hole. At that point,
it gets marked and the number of holes associated with
at most l

j−1 − 1 unmarked processes can increase by 1.
Hence the number of cache misses in this case is at most
l

j−1 − 1(≤ d l
j−1 − 1e). If some (say x ≥ 1) of these

holes are associated with marked processes, the number of
unmarked processes is at most l−x

j−1 (≤ d l
j−1 − 1e). Hence,

the number of cache misses during stage j (mj) is at most
min(bλj−1

j−1 c, d
l

j−1 − 1e).

Lemma II.11. Consider a phase of RR-PROC-MARK with
l clean block requests. The cost of RR-PROC-MARK is at
most l

2 ·max(5, p+ 1) for this phase when l < p.

Proof: The number of cache misses incurred by RR-
PROC-MARK (cost(RR-PROC-MARK)) during this phase is
at most p+

∑l
j=2 min(bλj−1

j−1 c, d
l

j−1 − 1e) ≤ p+ l ·Hl−1

For l ≥ 6, cost(RR-PROC-MARK) ≤ l
2 (p + 1)

and a case-by-case analysis for l < 6 shows that
cost(RR-PROC-MARK) ≤ l

2 ·max(5, p+ 1).

Upper bound on the cost of RR-PROC-MARK when l ≥ p:
In order to bound the cost of RR-PROC-MARK during the
phase when l ≥ p, we again divide the phase into stages,
but now stage j starts with the request that results in j−1st
process getting marked and ends just before the request that
results the in jth process getting marked (or the last request
in the current phase). We will have at most p + 1 stages.

Without loss of generality, we assume that Pj gets marked
due to the first request in j + 1st stage.

Lemma II.12. The number of holes associated with Pi just
before it gets marked is at most λi−1

ui
+ 1, where λi is the

number of clean blocks requested in stages 1 through i and
ui is the number of unmarked processes just before the start
of stage i.

Proof: Using Corollary II.9, it is not difficult to see
that the maximum number of holes associated with any
unmarked processes at the start of stage j is at most
bλi−1

ui
c ≤ λi−1

ui
+ 1.

Lemma II.13. Consider a phase of RR-PROC-MARK with
l clean block requests. The cost of RR-PROC-MARK is at
most l · (Hp + 2) ≤ l

2 ·max(10, p+ 1) for this phase when
l ≥ p.

Proof: Similar to the case when l < p we have,
cost(RR-PROC-MARK) ≤

∑p
j=0 lj +

∑p
i=1 ni, where, ni

is the number of cache misses due to requests to holes by
process Pi. From Lemma II.12, cost(RR-PROC-MARK) ≤∑p
j=0 lj +

∑p
i=1

λi−1

ui
+ 1. Further, ui = p − i + 1 since

exactly one process gets marked in every stage. Hence,
cost(RR-PROC-MARK) ≤

∑p
j=0 lj +

∑p
i=1

l
p−i+1 + 1 ≤

l · (1 + p/l+Hp). Given l ≥ p, the cost of RR-PROC-MARK
is at most l · (Hp + 2) ≤ l

2 ·max(10, p+ 1).
Since OPT incurs at least l/2 cache misses per phase with

l clean page requests in an amortized sense [5], [16], we
have the following theorem:

Theorem II.14. With p processes, the competitive ratio of
RR-PROC-MARK is at most max(10, p + 1) under (k, k)
paging.

2) Additional features of RR-PROC-MARK: In the pre-
vious subsection, we proved that RR-PROC-MARK is optimal
in the disjoint memory full knowledge model under fixed
interleaving except when the number of processes is very
small. We now discuss some of its additional features.

Efficient implementation: Apart from being optimal in
most cases, RR-PROC-MARK is also an extremely simple
algorithm to implement when compared to the LRU based
algorithm proposed in [2] and analyzed in [1]. Keeping track
of the process which owns the least recently used (LRU)
block requires more bits and more computation than the
corresponding resources in RR-PROC-MARK.

Fairness: RR-PROC-MARK is a fair algorithm in the sense
that all the processes are asked to make an almost equal
number of evictions. On certain adversarial sequences, the
LRU based algorithm proposed in [2] could ask a subset
of processes to make a large number of evictions, and this
could have an adverse effect on their performance.

Performance under full access cost: The full access
cost model was proposed in [17] as a more realistic cost
model for sequential caching. In contrast to the classical

competitive analysis, in which we measure the ratio of
the total number of cache misses incurred by the online
algorithm to the total number of cache misses incurred by the
offline algorithm, in the full access cost model, we measure
the ratio of the total access cost incurred by the online
algorithm to the total access cost incurred by the offline
algorithm to serve the entire request sequence. The access
cost of a block request is the time taken to serve the request.

In this cost model, we show that RR-PROC-MARK has an
exponentially better competitive ratio in comparison to the
LRU based algorithm presented in [2]. We let thit and tmiss
represent the time needed to serve a request that results in a
cache hit and a cache miss, respectively. Let n be the total
number of requests in the given request sequence σ and m
be the total number of cache misses incurred by ALG on
this sequence. The access cost of ALG on σ represented by
acost(ALG) is given by:

acost(ALG) = (n−m) · thit +m · tmiss
= n · thit +m · (tmiss − thit)

In order to keep the equations simple, we let tmiss = b
and thit = 1. It was shown in [17] that the competitive ratio
of any marking algorithm in the full access cost model is at
most 1 + (k−1)b

k+b in sequential NK setting (recall that k is
the cache size and b is the delay caused by a cache miss).
We show that the competitive ratio of RR-PROC-MARK in
the full access cost model is at most 2(Hp + 1).

Theorem II.15. The competitive ratio of RR-PROC-MARK
in the full access cost model is at most 2(Hp + 2).

Proof: Consider an arbitrary phase of RR-PROC-MARK
with l clean block requests and p processes. From Lem-
mas II.11 and II.13, we have the following for the number
of cache misses incurred by RR-PROC-MARK:

cost(RR-PROC-MARK) ≤
{

p+ lHl−1 if l < p
l + p+ lHp if l ≥ p

Let n be the total number of requests during the current
phase and let s = b− 1. We have the following for the full
access cost of RR-PROC-MARK:

acost(RR-PROC-MARK) ≤
{

n+ (p+ lHl−1)s if l < p
n+ (l + p+ lHp)s if l ≥ p

On the other hand, OPT incurs at least l/2 cache misses
during this phase in an amortized sense. The cost of OPT in
the full access cost model is at least n + (l/2)s per phase
in an amortized sense. The competitive ratio of RR-PROC-
MARK in the full access cost model is:

acost(RR-PROC-MARK)

acost(OPT)
≤


n+(p+lHl−1)s
n+(l/2)s if l < p

n+(l+p+lHp)s
n+(l/2)s if l ≥ p

Note that the total number of requests (n) in the consid-
ered phase of RR-PROC-MARK is at least k (since the phase
ends only after all of the k blocks in the cache are marked).

acost(RR-PROC-MARK)

acost(OPT)
≤ 1+


(p+l(Hl−1−1/2))s

k+(ls/2) if l < p

(Hp+3/2)ls
k+(ls/2) if l ≥ p

Observe that the above expression monotonically in-
creases with l and achieve maximum value at the maximum
value of l. Recall that the number of clean block requests
during a marking phase is at most k. Hence, the maximum
value of l in the above two cases is p−1 and k, respectively.
Also, usually k is orders of magnitude greater than p.

Simplifying the above equations we obtain the desired
result that the competitive ratio of RR-PROC-MARK in the
full access cost model is at most 2(Hp + 1).

In contrast, it can be shown that the competitive ratio of
the LRU based CRA presented in [2] is Ω(p). The reason for
the exponentially better performance of RR-PROC-MARK in
the full access cost model is that it performs much better
when the number of clean block requests per phase is large.
When the number of clean block requests per phase is small,
the total cost is small, and hence the total time needed for
computation remains relatively small for RR-PROC-MARK.

C. (h, k)-paging in DFK and SFK models

In (h, k)-paging, the online CRA is given a cache of size
k and the offline CRA is given cache of size h < k. LRU
is known to be 1-optimal in the NK model under (h, k)-
paging with competitive ratio k

k−h+1 [3]. When h = c · k,
for a constant c < 1, LRU also has constant competitive ratio.
Since LRU can be used under the DFK and SFK by ignoring
the future knowledge, this gives an O(1)-competitive CRA
for both DFK and SFK under (h, k)-paging, for h = c · k
and c < 1.

D. Caching in the FK model under free interleaving

An online CRA in this model is as powerful as the offline
CRA. It was shown in Section 3.2 of [6] that the optimal
offline algorithm at a single shared cache is NP complete
in this model by reducing a slightly modified 3-partition
problem to the multicore caching problem when k = p/3,
where k is the size of the cache and p is the number of
processes (cores). In the real world, k is at least as large as
p and usually orders of magnitude larger than p. This NPC
result can be extended to general k and p by making core
i repeatedly request yi rounds of requests with each round
consisting of a series of 3k/p distinct block requests instead
of just one distinct block (as in [6]). In order to minimize
the total makespan, each core now requires 3k/p locations.
It is easy to see that the rest of the NPC proof follows in
this case as well.

III. CACHE REPLACEMENT ALGORITHMS FOR A
HIERARCHY OF CACHES

Multiple levels of caches are the norm in multicores,
and the types of higher-level caches that are widely used
in practice are inclusive, exclusive and partially-inclusive.
For instance, the L2 cache is partially-inclusive in the Intel-
Nehalem and exclusive in the AMD-Shanghai processor; the
L3 is inclusive in the former and partially-inclusive in the
latter [18], [19], [20]. We aim to compare these caches using
competitive analysis. Our competitive analysis is focussed
on the cache misses at the highest level in the shared cache
hierarchy since the cache miss delay is maximum at this
level.

For concreteness we initially consider a 2-level shared
cache hierarchy. We are not aware of competitive analysis
of CRAs in this setting even in the sequential (uni-processor)
case under NK, the classical no-knowledge case. We then
generalize these results to CRAs for multicore in the NK
and FK models under fixed interleaving at a 2 level shared
cache, and also generalize these results to multiple levels.
For free interleaving, we show in Section III-C that the
negative results in [6] continue to hold for the NK model at
a 2-level shared cache.

Road map. In Section III-A, we define the 3 types of
caches for a 2-level cache. In Section III-B, we introduce the
notion of cache equivalence, which relates the performance
of a CRA at a single-level cache with CRAs at each of
the three types of 2-level caches; this allows us to establish
that suitable variants of LRU have optimal competitive ra-
tio for INCL, EXCL and PRT-INCL L2 caches with the
corresponding cache equivalence sizes. These results are
obtained for single core with a 2-level cache hierarchy. We
then generalize these results to a shared cache hierarchy, and
to multiple levels of shared caches in section III-C.

A. Inclusive, exclusive and partially-inclusive caches
We now define the three commonly used types of 2 level

caches based on their descriptions in [21], [22], [19], [20].
Here, for a block β in cache Li, we use the term evicted to
denote that β is moved from Li to main memory, and we
use the term removed to denote that β is moved out of Li
either to a higher cache or to main memory, the decision
being left to the CRA. A block β in cache Li is swapped
with a block β′ in the other cache if β′ is moved into Li
and β is moved into the other cache.

1. Inclusive cache (INCL): The L2 cache is forced to
include the contents of the L1 cache. When the requested
block is in L2 but not in L1, the block is read into L1

after the CRA is asked to evict a block from L1. When the
requested block is not in L1 and L2, the block is read into
both L1 and L2. In order to accommodate the requested
block, the CRA is asked to evict a block from L2. It is then
asked to evict a block from L1, such that L2 still includes
all the blocks in L1.

2. Exclusive cache (EXCL): The L2 cache is forced to
exclude the contents of the L1 cache. When the requested
block is in L2 but not in L1, the block is read into L1 after
the CRA is asked to swap the requested block with a block
in L1. When the requested block is not in L1 and L2, the
block is directly read into L1 after the CRA is asked to
remove a block from L1. The CRA either stores the block
removed from L1 in L2 after evicting another block from
L2 or evicts the block removed from L1 (in which case L2

remains unchanged).

3. Partially-Inclusive cache (PRT-INCL): The L2 cache
is not forced to either include or exclude the contents of
the L1 cache. When the requested block is in L2 but not in
L1, the block is read into L1 after the CRA evicts a block
from L1. When the requested block is not in L1 and L2, the
block is read into both L1 and L2. In order to accommodate
the requested block, the CRA is asked to evict a block each
from L1 and L2.

B. 2-level cache hierarchy for a single core
We present the key concept of cache equivalence, which

allows us to equate the performance of a CRA at a 2 level
cache with a corresponding CRA at a single-level cache
of suitable size. This, together with our results on 2-FITF
in the next section allows us to establish upper and lower
bounds on the competitive ratio of CRAs at a 2 level cache
with INCL, EXCL and PRT-INCL L2 caches. ALG-TYPE is
said to incur a cache miss at L2 if the requested block data
item does not exist in both L1 and L2.
Cache equivalence: A CRA ALG-TYPE at a 2 level cache
(L1 of size k1 and L2 of size k2) is said to be equivalent to
a CRA ALG at a single level cache L of size k = f(k1, k2),
if the number of cache misses incurred by ALG-TYPE at L2

is same as the number of cache misses incurred by ALG at L
on any request sequence provided the 2-level cache initially
contains the initial contents of the single level cache.

Lemma III.1. (cache equivalence) Consider a 2 level cache
with L1 and L2 of size k1 and k2, respectively. Let ALG be
a deterministic CRA at a single level cache. There exists a
CRA,

1. ALG-INCL at the 2 level cache with INCL L2 which is
equivalent to ALG at a single level cache of size k2.

2. ALG-EXCL at the 2 level cache with EXCL L2 which
is equivalent to ALG at a single level cache of size k1 + k2.

3. ALG-PRT-INCL at the 2 level cache with PRT-INCL L2

which is equivalent to ALG at a single level cache of size
k1 + k2 − 1.

Proof: We construct ALG-INCL, ALG-EXCL and ALG-
PRT-INCL for a 2 level cache with INCL, EXCL and PRT-
INCL L2 based on the definition of ALG at a single level
cache of size k2, k1+k2 and k1+k2−1, respectively. Further,
we shall prove the cache equivalence based on the definition
of ALG-INCL, ALG-EXCL and ALG-PRT-INCL CRAs.

Definition of ALG-INCL:
• When the requested block β is in L1: ALG-INCL serves

the request.
• When β is in L2 but not in L1: it is read into L1 after

evicting a block from L1 that ALG would have evicted
from a cache of size k1 and the same contents as L1.

• When β is not in L1 and L2: a block from L2 that
ALG would have evicted from a cache of size k2 and
the same contents as L2 is located and evicted. Let this
block be γ. If γ is in L1, it is evicted from L1 as well.
If γ is not in L1, the block in L1 that ALG would have
evicted from a cache of size k1 and the same contents
as L1 is evicted. β is read into both L2 and L1.

Definition of ALG-EXCL:
• When the requested block β is in L1: ALG-EXCL serves

the request.
• When β is in L2 but not in L1: β is swapped with

a block from L1 that ALG would have evicted from a
cache of size k1 and the same contents as L1.

• When β is not in L1 and L2: a block from L1 and L2

together that ALG would have evicted from a cache of
size k1+k2 and same contents as L1 and L2 is located.
Let this block be γ. If γ is in L1, it is evicted from L1.
If γ is not in L1, it is evicted from L2 and a block in
L1 that ALG would have evicted from a cache of size
k1 and the same contents as L1 is moved to L2. β is
directly read into L1.

Definition of ALG-PRT-INCL:
• When the requested block β is in L1: ALG-PRT-INCL

serves the request.
• Let η be a block that exists in both L1 and L2 (observe

that there is at least one such block since the most
recently read block is read into both L2 and L1).

• When β is in L2 but not in L1: it is read into L1 after
evicting η from L1.

• When β is not in L1 and L2: a block from L1 and L2

together that ALG would have evicted from a cache of
size k1 + k2 − 1 and same contents as L1 and L2 is
located. Let this block be γ. If γ is in L1, it is evicted
from L1 and η is evicted from L2. If γ is not in L1, it
is evicted from L2 and η is evicted from L1. β is read
into both L2 and L1.

We prove by induction on the number of requests that
ALG-INCL, ALG-EXCL for ALG-PRT-INCL take the same
decision as ALG at a single level cache of size k2, k1 + k2
and k1 + k2 − 1, respectively on each block request. We
assume that the initial contents of the single level cache is
same as that of the 2 level cache in each of the three cases.
Consider the first request. It could either be a cache hit or
a cache miss for ALG at L.

Cache hit: If the first request results in a cache hit for
ALG, it results in a cache hit at either L1 or L2 for ALG-

INCL, ALG-EXCL for ALG-PRT-INCL. Hence the content of
the 2 level cache remains unchanged.

Cache miss: If the first request results in a cache miss
for ALG, it results in a cache miss at both L1 and L2 for
ALG-INCL, ALG-EXCL for ALG-PRT-INCL. By the definition
of these algorithms, the block that gets evicted from the 2
level cache is same as the block that is evicted by ALG
from L. Hence, the contents of single level cache is same
as that of the 2 level cache after serving the first request.
By induction the result holds for each request in the request
sequence, and the lemma follows.

1) Optimal offline CRA at a 2 level cache hierarchy:
An optimal offline CRA (OPT) is assumed to have full
knowledge about the request sequence reaching all levels of
caches and for fair comparison of different types of caches,
we assume that OPT has no constraint imposed by the cache
type. Denote by hi the size of Li cache for OPT. Our optimal
offline CRA for this model is an extension of FITF (referred
to as 2-FITF). We shall show that 2-FITF is optimal in
terms of the number of cache misses at the L2 cache. The
algorithm is defined as follows:

2-FITF: When the requested block is in L2 but not in L1:
the block is swapped with a block in L1 that is requested
farthest in the future request sequence. When the requested
block is not in L1 and L2: the block is directly read into L1

after removing a block (γ) from L1 that is requested farthest
in the future request sequence. Let δ be a block in L2 that
is requested farthest in the future request sequence. If δ is
requested after γ, δ is evicted and γ occupies its position in
L2. If γ is requested after δ, γ is evicted.

The following theorem is proved by establishing that on
every cache miss, 2-FITF at the L2 cache takes the same
decision as FITF at a single shared cache of size h1 + h2.

Theorem III.2. [15] 2-FITF at a 2 level cache, where the L1

cache has size h1 and the L2 cache has size h2, is equivalent
to FITF at a single level cache of size h1 + h2.

Theorem III.3. Let L1 and L2 have sizes k1 and k2,
respectively. Let ρ be the optimal competitive ratio at the
L2 cache. Then, ρ is same as that of a single level cache of
size k2 for an INCL cache, size k1 +k2 for an EXCL cache,
and size k1 + k2 − 1 for a PRT-INCL cache.

Proof: For any sequential deterministic CRA, at most
k2, k1+k2 and k1+k2−1 distinct cache blocks exists in L1

and L2 when the L2 cache is INCL, EXCL and PRT-INCL,
respectively. Hence, using adversarial sequences consisting
of k2 + 1, k1 + k2 + 1 and k1 + k2 distinct cache block
requests, lower bound on the competitive ratio of sequential
deterministic CRA at the 2 level cache can be shown to be
no less than that of sequential deterministic CRA at a single
level cache of size k2, k1 +k2 and k1 +k2−1, respectively.

Further, the upper bound on the competitive ratio of ALG-
INCL, ALG-EXCL and ALG-PRT-INCL at a 2 level cache with

INCL, EXCL and PRT-INCL L2 caches can be shown to
be equal to that of ALG at a single level cache of size
k2, k1 + k2 and k1 + k2 − 1, respectively, using cache
equivalence of ALG-INCL, ALG-EXCL, ALG-PRT-INCL and
OPT (Lemma III.1 and Theorem III.2).

Theorems III.2 and III.3 lead to the following corollary.
Similar results hold in the FK model.

Corollary III.4. LRU-INCL, LRU-EXCL and LRU-PRT-INCL
(as defined in the Lemma III.1) are 1-optimal at a 2
level cache hierarchy with INCL, EXCL and PRT-INCL L2

caches, respectively.

C. CRAs for a shared cache hierarchy
We extend results for sequential cache hierarchy to shared

cache hierarchy. In the following discussion, we use TYPE
to represent the type of the L2 cache — INCL, EXCL and
PRT-INCL. First we extend our results to a simple 2 level
shared cache hierarchy.

CRAs at a 2 level shared cache hierarchy under fixed
interleaving: Our results for sequential cache hierarchy can
be easily generalized to parallel deterministic CRAs in NK
and FK models under fixed interleaving at a 2 level shared
cache hierarchy. The main observation is that Lemma III.1
continues to hold for parallel deterministic CRAs in the
NK and FK models under fixed interleaving. In section II,
we proved that RR-PROC-MARK and GLOBAL-MAXIMA are
optimal (up to a constant factor) in DFK and SFK under
fixed interleaving (when considered under (k, k)-paging).
Modified versions of these algorithms (RR-PROC-MARK-
TYPE and GLOBAL-MAXIMA-TYPE) continue to be optimal
(up to a constant factor) at a 2 level cache for suitable values
of k1, k2, h1 and h2.

CRAs at a 2 level shared cache hierarchy under free
interleaving: We extend results from [6] to a 2 level shared
cache hierarchy. Let the cost of serving a block request be
1 for L1, b1 for L2, and b2 for the main memory. We let
ki, the size of Li for online CRAs be larger than hi, that of
the optimal offline CRA (resource augmentation). For our
lower bound we use a sequence that is similar to the one
in the lower bound proof in [6]. Our sequence, however,
depends on the effective cache size. Consider a 2 level cache
hierarchy with an INCL L2 cache and let LRU-INCL be the
CRA at this 2 level cache. Our adversarial sequence has each
core requesting h1+h2 distinct cache blocks in parallel b2+1
times. If k2 < p(h1 + h2), each of these requests results in
a cache miss at L2 for LRU-INCL and hence the total time
taken to serve these requests is (b2 + 1)b2(h1 +h2). On the
other hand, OPT serves one core after another. Each core
takes b2(h1+h2)+((h1−1)+(h2−h1+1)b1)b2 time to serve
all its requests. Hence the total time is (b2(h1+h2)+((h1−
1) + (h2 − h1 + 1)b1)b2)p. The total time taken by OPT to
serve requests from all p cores is O((h1+h1)b1b2p). Hence,
the competitive ratio of LRU-INCL in terms of make span is

Ω(b2/b1p) when h2 < k2 < p(h1 + h2). For a constant
number of cores, the lower bound on the competitive ratio
of LRU-INCL is Ω(b2/b1).

CRAs at a multi level shared cache hierarchy: Consider
an l-level shared cache hierarchy, where the ith level cache
Li has size ki. Typically, k1 < k2 < · · · < kl, with L1

closest to the core and Ll closest to the main memory.
Practical caching systems often use different types of caches
at different levels. However, the number of different config-
urations increases exponentially with l, and hence we focus
on multiple levels of same-type cache in this paper.

Definition III.5. The Li cache is said to be an inclusive
cache if the contents of the Li cache includes the contents
all the lower level caches (L1, L2, . . Li−1) and each of the
lower level cache is inclusive as well. Similarly, the Li cache
is said to be an exclusive cache if the contents of the Li
cache excludes all the lower level caches and each of the
lower level cache is exclusive as well. The Li cache is non
inclusive if neither of these constraints are enforced but,
when a block request incurs a cache miss at Li, it is read into
Li and all the lower level caches as well (L1, L2, . . . Li−1).

Theorem III.6. Consider a l level same-type cache hierar-
chy. Let the size of Li be ki for the online CRAs and hi for
the optimal offline CRA for 1 ≤ i ≤ l. Let s(xl) =

∑l
i=1 xi.

In the NK model under fixed interleaving, LRU-TYPE is 1-
optimal with competitive ratio:

1. kl
kl−s(hl)+1 for INCL Ll.

2. s(kl)
s(kl)−s(hl)+1 for EXCL Ll.

3. s(kl)−l+1
s(kl)−s(hl)−l+2 for PRT-INCL Ll.

Proof: The effective size of Ll for LRU-TYPE can be
obtained by extending the proof for effective size of L2

(Lemma III.1) using induction on the number of levels. The
effective size of Ll for LRU-TYPE is kl, s(kl) and s(kl)−l+1
for INCL, EXCL and PRT-INCL Ll, respectively. Also, note
that the optimal offline algorithm for l levels of shared
caches is an extension of 2-FITF, denoted by L-FITF. L-FITF
tries to maintain exclusive set of cache blocks in each level
of cache and retain the blocks which will be requested in the
recent future at the lowest level caches. Using induction on
the number of levels, one can easily extend Theorem III.2
to prove that L-FITF is optimal for l levels of caches and
the effective cache size for L-FITF is s(hl). The upper
bound competitive ratio of LRU-TYPE follows from these
observations. Further, using sequences similar to the ones
defined in Theorem III.3, we can prove that LRU-TYPE is in
fact optimal.

IV. DISCUSSION

For a single level shared cache, our main contributions
were for the FK model under fixed interleaving. In the shared
memory FK model under fixed interleaving, we gave new
lower bounds on the competitive ratio of deterministic and

randomized CRAs. We also presented a deterministic CRA
(GLOBAL-MAXIMA) which is O(1)-optimal in this model,
and we established that PARTITION [4], [5] is O(1)-optimal
for randomized CRAs. As discussed in Section I, the SFK
model relates well to a number of parallel shared memory
applications. Obtaining a strongly competitive (1-optimal)
CRA is a topic for further research.

In the disjoint memory FK model, we presented a de-
terministic CRA (RR-PROC-MARK) with max(10, p + 1)
competitive ratio. A lower bound of p+1 was established on
the competitive ratio of deterministic CRAs in the disjoint
memory FK model in [1]. We also noted that RR-PROC-
MARK is fairer and more efficient to implement than the
LRU based algorithm presented in [2].

For a multi-level cache hierarchy, our results have es-
tablished that LRU-EXCL has the best competitive ratio at
the highest-level cache Lk, followed by LRU-PRT-INCL, and
that LRU-INCL, which is optimal for INCL, is the worst
with respect to competitive ratio for CRAs. This validates
experimental findings on the superiority of EXCL [23], [24].

PRT-INCL is considered to be simpler and more efficient
to implement than EXCL caches in part because the swap
operation in EXCL can be more expensive than eviction or
removal. It also appears that PRT-INCL caches are common
in practical systems: both Intel Nehalem and AMD Shanghai
have a PRT-INCL cache. It is noteworthy that our results
have established that the competitive ratio of CRAs at PRT-
INCL caches is very close to that for EXCL caches.

We have confined our attention to the highest-level cache
Lk, since the cache miss cost is largest at that level.
However, it is not difficult to see that LRU-INCL and LRU-
EXCL have the desirable property that they support the
optimal LRU at the lower level caches. However, LRU-PRT-
INCL does not share this property. Obtaining tight bounds
for a CRA at all cache levels for PRT-INCL is a topic for
further investigation, as is the topic of extending these results
to a hierarchy of private and shared caches (a tree-like cache
hierarchy).

REFERENCES

[1] R. D. Barve, E. F. Grove, and J. S. Vitter, “Application-
controlled paging for a shared cache,” SICOMP, vol. 29(4),
1995.

[2] P. Cao, E. W. Felten, and K. Lee, “Application-controlled file
caching policies,” USENIX, pp. 171–182, 1994.

[3] D. D. Sleator and R. E. Tarjan, “Amortized efficiency of list
update and paging rules,” CACM, vol. 28(2), pp. 202–208,
1985.

[4] L. A. McGeoch and D. D. Sleator, “A strongly competitive
randomized paging algorithm,” Algorithmica, vol. 6, pp. 816–
825, 1991.

[5] A. Fiat, R. Karp, M. Luby, L. McGeoch, D. Sleator, and
N. Young, “On competitive algorithms for paging problems,”
Journal of Algorithms, vol. 12, pp. 685–699, 1991.

[6] A. Hassidim, “Cache replacement policies for multicore pro-
cessors,” ICS, 2010.

[7] A. Lopez-Ortiz and A. Salinger, “Brief announcement: Paging
for multicore processors,” SPAA, pp. 137–138, 2011.

[8] R. Chowdhury and V. Ramachandran, “The cache-oblivious
Gaussian elimination paradigm: Theoretical framework, par-
allelization and experimental evaluation.” Theory of Comput-
ing Systems, vol. 47(1), pp. 878 – 919, 2010.

[9] R. Chowdhury, F. Silvestri, B. Blakeley, and V. Ramachan-
dran, “Oblivious algorithms for multicores and network of
processors,” IEEE IPDPS, 2010.

[10] D. Callahan, K. Kennedy, and A. Porterfield, “Software
prefetching,” ASPLOS IV, pp. 40–52, 1991.

[11] T. C. Mowry, M. S. Lam, and A. Gupta, “Design and
evaluation of a compiler algorithm for prefetching,” ASPLOS
V, pp. 62–73, 1992.

[12] A. L. Belady, “A study of replacement algorithms for virtual
storage computers,” IBM Sys Jour, vol. 5, pp. 78–101, 1966.

[13] A. Borodin, S. Irani, P. Raghavan, and B. Schieber, “Com-
petitive paging with locality of reference,” JCSS, vol. 50, pp.
244–258, 1995.

[14] A. C.-C. Yao., “Probabilistic computations: Towards a unified
measure of complexity,” FOCS, pp. 222–227, 1977.

[15] A. Katti, “Competitive cache replacement strategies for a
shared cache,” Masters thesis, UT Austin, 2011.

[16] N. Young, “Competitive paging and dual-guided on-line
weighted caching and matching algorithms,” Dissertation,
Princeton University, 1991.

[17] A. Borodin and R. El-Yaniv, Online Computation and Com-
petitive Analysis. Cambridge University Press, 1998.

[18] D. Hackenberg, D. Molka, and W. E. Nagel, “Comparing
cache architectures and coherency protocols on x86-64 mul-
ticore smp systems.” MICRO, pp. 413–422, 2009.

[19] INTEL, “White paper intel xeon processor 3500 and 5500
series intel microarchitecture.” 2009.

[20] AMD, “http://blogs.amd.com/developer/2008/11/13/larger-l3-
cache-in-shanghai-part-i,” 2009.

[21] J. L. Baer and W. H. Wang, “On the inclusion properties for
multi-level cache hierarchies,” ISCA, pp. 73–80, 1988.

[22] N. P. Jouppi and S. J. E. Wilton, “Tradeoffs in two-level on-
chip caching,” ISCA, pp. 34–45, 1994.

[23] M. Zahran, K. Albayraktaroglu, and M. Franklin, “Non-
inclusion property in multi-level caches revisited,” Intl Jour
of Computers and Their Applications 2007, June 2007.

[24] J. L. Baer and W. H. Wang, “Retrospective: On the inclusion
properties for multi-level cache hierarchies,” ISCA, pp. 59–60,
1998.

