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Abstract—We present new results for the distributed compu-
tation of all pairs shortest paths (APSP) in the CONGEST model
in an n-node graph with moderate non-negative integer weights.
Our methods can handle zero-weight edges which are known to
present difficulties for distributed APSP algorithms. The current
best deterministic distributed algorithm in the CONGEST model
that handles zero weight edges is the Õ(n3/2)-round algorithm
of Agarwal et al. [3] that works for arbitrary edge weights.

Our new deterministic algorithms run in Õ(W 1/4 · n5/4)
rounds in graphs with non-negative integer edge-weight at most
W , and in Õ(n ·�1/3) rounds for shortest path distances at most
�. These algorithms are built on top of a new pipelined algorithm
we present for this problem that runs in at most 2n

√� + 2n
rounds. Additionally, we show that the techniques in our results
simplify some of the procedures in the earlier APSP algorithms
for non-negative edge weights in [3], [13]. We also present new
results for computing h-hop shortest paths from k given sources,
including the notion of consistent h-hop shortest path trees, and
we present an Õ(n/ε2)-round deterministic (1+ε) approximation
algorithm for graphs with non-negative poly(n) integer weights,
improving results in [16], [18] that hold only for positive integer
weights.

I. INTRODUCTION

Designing distributed algorithms for various network and

graph problems related to shortest paths [3], [12], [13], [15],

[17] is a extensively studied area of research. The CONGEST

model (described in Sec I-B) is a widely-used model for these

algorithms, see [3], [8], [13], [17]. In this paper we consider

distributed algorithms in the CONGEST mode for computing

all pairs shortest paths (APSP) and related problems in a graph

with non-negative edge weights. In this model, we need to

develop a distributed algorithm where each node in the graph

computes the shortest path distance to it from each source as

well as the last edge on such a shortest path.

In sequential computation, shortest paths can be computed

much faster in graphs with non-negative edge-weights (includ-

ing zero weights) using the classic Dijkstra’s algorithm [7]

than in graphs with negative edge weights. Additionally,

negative edge-weights raise the possibility of negative weight

cycles in the graph, which usually do not occur in practice, and

hence are not modeled by real-world weighted graphs. Thus,

in the distributed setting, it is of importance to design fast

shortest path algorithms that can handle non-negative edge-

weights, including edges of weight zero.

This work was supported in part by NSF Grant CCF-1320675. The first
author’s research was also partially supported by a UT Austin Graduate School
Summer Fellowship.

The presence of zero weight edges creates challenges in

the design of distributed algorithms as observed in [13]. (We

review related work in Section I-C.) One approach used for

positive integer edge weights is to replace an edge of weight

d with d unweighted edges and then run an unweighted APSP

algorithm such as [12], [17] on this modified graph. This

approach is used in approximate APSP algorithms [16], [18].

However such an approach fails when zero weight edges may

be present. There are a few known algorithms that can handle

zero weights, such as the Õ(n3/2)-round deterministic APSP

algorithm of Agarwal et al. [3] for graphs with arbitrary edge

weights, and the randomized weighted APSP algorithms of

Huang et al. [13] (for polynomially bounded non-negative

integer edge weights), and of Elkin [8] (and very recently

of Bernstein and Nanongkai [5]) for arbitrary edge weights.

However no previous sub-n3/2-round deterministic algorithm

was known for weighted APSP that can handle zero weights.

A. Our Results
All of our results hold for both directed and undirected

graphs and we will assume w.l.o.g. that G is directed. Here is

a summary of our results.

1. A Pipelined APSP Algorithm for Weighted Graphs. An

h-hop shortest path from u to v in G is a path from u to v
of minimum weight among all paths with at most h edges (or

hops). The central algorithm we present is for computing h-

hop APSP, or more generally, (h, k)-SSP, the h-hop shortest

path problem for k given sources (this problem is called the

k-source short-range problem in [13]). We sometimes add an

additional constraint that the shortest paths have distance at

most � in G.

Our pipelined Algorithm 1 in Sec. II is compact and easy

to implement, and has no large hidden constant factors in its

bound on the number of rounds. It can be viewed as a (sub-

stantial) generalization of the pipelined method for unweighted

APSP given in [12], which is a refinement of [17]. Our

algorithm uses key values that depend on both the weighted

distance and the hop length of a path, and it can store multiple

distance values for a source at a given node, with the guarantee

that the shortest path distance will be identified. This algorithm

(Alg. 1) achieves the bounds in the following theorem.

Theorem I.1. Let G = (V,E) be a directed or undirected
edge-weighted graph, where all edge weights are non-negative
integers (with zero-weight edges allowed). The following de-
terministic bounds can be obtained in the CONGEST model
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for shortest path distances at most �.
(i) (h, k)-SSP in 2

√�kh+ k + h rounds.
(ii) APSP in 2n

√�+ 2n rounds.
(iii) k-SSP in 2

√�kn+ n+ k rounds.

2. Faster Deterministic APSP for Non-negative, Moderate
Integer Weights. We improve on the bounds given in (ii) and

(iii) of Theorem I.1 by combining our pipelined Algorithm 1

with a modified version of the deterministic APSP algorithm

in [3]. This gives our improved Algorithm 3, with the bounds

stated in the following Theorems I.2 and I.3. To obtain these

improved bounds we also present an improved deterministic

distributed algorithm to find a blocker set [3].

In our improved blocker set method we define the notion of

a consistent collection of h-hop trees, CSSSP (Definition III.3

in Section III-A), and a simple method to compute such a

collection. This result may be of independent interest.

Theorem I.2. Let G = (V,E) be a directed or undirected
edge-weighted graph, where all edge weights are non-negative
integers bounded by W (with zero-weight edges allowed).
The following deterministic bounds can be obtained in the
CONGEST model.
(i) APSP in O(W 1/4 · n5/4 log1/2 n) rounds.
(ii) k-SSP in O(W 1/4 · nk1/4 log1/2 n) rounds.

Theorem I.3. Let G = (V,E) be a directed or undirected
edge-weighted graph, where all edge weights are non-negative
integers (with zero edge-weights allowed), and the shortest
path distances are bounded by �. The following deterministic
bounds can be obtained in the CONGEST model.
(i) APSP in O(n(� log2 n)1/3) rounds.
(ii) k-SSP in O((�kn2 log2 n)1/3) rounds.

The range of values for W and Δ for which our results

in Theorem I.2 and I.3 improve on the Õ(n3/2) deterministic

APSP bound of Agarwal et al. [3] are stated in the following

Corollary.

Corollary I.4. Let G = (V,E) be a directed or undi-
rected edge-weighted graph with non-negative edge weights
(and zero-weight edges allowed). The following deterministic
bounds hold for the CONGEST model for 1 ≥ ε ≥ 0.
(i) If the edge weights are bounded by W = n1−ε, then APSP
can be computed in O(n3/2−ε/4 log1/2 n) rounds.
(ii) For shortest path distances bounded by Δ = n3/2−ε, APSP
can be computed in O(n3/2−ε/3 log2/3 n) rounds.

The corresponding bounds for the weighted k-SSP prob-

lem are: O(n5/4−ε/4k1/4 log1/2 n) (when W = n1−ε) and

O(n7/6−ε/3k1/3 log2/3 n) (when Δ = n3/2−ε). Note that the

result in (i) is independent of the value of Δ (it depends only

on W ) and the result in (ii) is independent of the value of W
(it depends only on Δ).

3. Simplifications to Earlier Algorithms. Our techniques

give simpler methods for some of procedures in two previ-

ous distributed weighted APSP algorithms that handle zero

weight edges. In Section II-C we present simple deterministic

algorithms that match the congest and dilation bounds in [13]

for two of the three procedures used there: the short-range and

short-range-extension algorithms. Our simplified algorithms

are both obtained using a streamlined single-source version

of our pipelined APSP algorithm (Algorithm 1).

A key contribution in the deterministic APSP algorithm

in [3] is a fast deterministic distributed algorithm for comput-

ing a blocker set. The performance of the blocker set algorithm

in [3] does not suffice for our faster APSP algorithms (The-

orems I.2 and I.3). In Section III we present a faster blocker

set algorithm, which is also a simplification of the blocker set

algorithm in [3]. The improved bound that we obtain here for

computing a blocker set will not improve the overall bound

in [3], but our method could be used there to achieve the same

bound with a more streamlined algorithm.

4. Approximate APSP for Non-negative Edge Weights.

In Section IV we present an algorithm that matches the

earlier bound for computing approximate APSP in graphs with

positive integer edge weights [16], [18] by obtaining the same

bound for non-negative edge weights.

Theorem I.5. Let G = (V,E) be a directed or undirected
edge-weighted graph, where all edge weights are non-negative
integers polynomially bounded in n, and where zero-weight
edges are allowed. Then, for any ε > 0 we can compute
(1 + ε)-approximate APSP in O((n/ε2) · log n) rounds de-
terministically in the CONGEST model.

5. Randomized APSP for Arbitrary Edge-Weights. We

present a randomized APSP algorithm for directed graphs with

arbitrary edge-weights that runs in Õ(n4/3) rounds, w.h.p. in

n. No nontrivial sub-n3/2 round algorithm was known prior

to this result.

Theorem I.6. Let G = (V,E) be a directed or undirected
edge-weighted graph with arbitrary edge weights. Then, we
can compute weighted APSP in G in the CONGEST model in
Õ(n4/3) rounds, w.h.p. in n.

The corresponding bound for k-SSP is Õ(n + n2/3k2/3).
This result improves the prior Õ(n3/2)-round (deterministic)

bound in [3] but it has been subsumed by a very recent result

in [5] that gives an Õ(n) rounds randomized algorithm for

weighted APSP, so we do not describe our algorithm here. See

the full paper [2] for a description of this algorithm.

B. Congest Model

In the CONGEST model, there are n independent processors

interconnected in a network by bounded-bandwidth links. We

refer to these processors as nodes and the links as edges. This

network is modeled by graph G = (V,E) where V refers to

the set of processors and E refers to the set of links between

the processors. Here |V | = n and |E| = m.

Each node is assigned a unique ID between 1 and poly(n)
and has infinite computational power. Each node has limited

topological knowledge and only knows about its incident

edges. For the weighted APSP problem we consider, each edge

has a positive or zero integer weight that can be represented

with B = O(log n) bits. Also if the edges are directed, the

24



TABLE I: Table comparing our new results for non-negative edge-weighted graphs (including zero edge weights) with previous known results.
Here W is the maximum edge weight and Δ is the maximum weight of a shortest path in G.

PROBLEM: EXACT WEIGHTED APSP

Author Arbitrary/ Integer handle zero Randomized/ Undirected/ Round

weights weights Deterministic (Directed & Undirected) Complexity

Huang et al. [13] Integer Yes Randomized Directed & Undirected Õ(n5/4)

Elkin [8] Arbitrary Yes Randomized Undirected Õ(n5/3)

Bernstein & Nanongkai [5] Arbitrary Yes Randomized Directed & Undirected Õ(n) (very recent)

Agarwal et al. [3] Arbitrary Yes Deterministic Directed & Undirected Õ(n3/2)

This paper
Integer Yes Deterministic Directed & Undirected

Õ(n3/2−ε/4) (when W ≤ n1−ε)

Õ(n3/2−ε/3) (when Δ ≤ n3/2−ε)

Arbitrary Yes Randomized Directed & Undirected Õ(n4/3)

PROBLEM: (1 + ε)-APPROXIMATION WEIGHTED APSP

Nanongkai [18] Integer No Randomized Directed & Undirected Õ(n/ε2)

Lenzen & Patt-Shamir [16] Integer No Deterministic Directed & Undirected Õ(n/ε2)

This paper Integer Yes Deterministic Directed & Undirected Õ(n/ε2)

corresponding communication channels are bidirectional and

hence the communication network can be represented by the

underlying undirected graph UG of G (as in [11]–[13]). It

turns out that our basic pipelined algorithm does not need this

feature though our faster algorithm does.

The computation proceeds in rounds. In each round each

processor can send a message of size O(log n) along edges

incident to it, and it receives the messages sent to it in the

previous round. The model allows a node to send different

message along different edges though we do not need this

feature in our algorithm. The performance of an algorithm in

the CONGEST model is measured by its round complexity,

which is the worst-case number of rounds of distributed

communication. As noted earlier, for shortest path problems,

each node in the network needs to compute its shortest path

distance from each source as well as the last edge on such a

shortest path.

C. Related Work

Weighted APSP. The current best bound for the weighted

APSP problem is in the randomized algorithm of Huang et

al. [13] that runs in Õ(n5/4) rounds. This algorithm works

for graphs with polynomially bounded integer edge weights

(including zero-weight edges), and the result holds with w.h.p.

in n. For graphs with arbitrary edge weights, the recent result

of Agarwal et al. [3] gives a deterministic APSP algorithm that

runs in Õ(n3/2) rounds. This is the current best bound (both

deterministic and randomized) for graphs with arbitrary edge

weights as well as the best deterministic bound for graphs

with integer edge weights. Note that in a very recent result

the randomized complexity of the weighted APSP problem

with arbitrary edge weights has been improved to Õ(n). This

is very close to the Ω(n) lower bound, which holds even for

unweighted APSP [6], but it is not deterministic.

In this paper we present a deterministic algorithm for non-

negative integer edge-weights (including zero-weighted edges)

that runs in Õ(n�1/3) rounds when the shortest path distances

are at most � and in Õ(n5/4W 1/4) rounds when the edge

weights are bounded by W . This result improves on the

Õ(n3/2) deterministic APSP bound of Agarwal et al. [3] when

either edge weights are at most n1−ε or shortest path distances

are at most n3/2−ε, for any ε > 0. We also give a simple

randomized algorithm for APSP in graphs with arbitrary edge

weights that runs in Õ(n4/3) rounds, w.h.p. in n.

Weighted k-SSP. The current best bound for the weighted

k-SSP problem is due to the Huang et al’s [13] randomized

algorithm that runs in Õ(n3/4·k1/2+n) rounds. This algorithm

is also randomized and only works for graphs with integer

edge weights. The recent deterministic APSP algorithm in [3]

can be shown to give an O(n · √k log n) round deterministic

algorithm for k-SSP. In this paper, we present a deterministic

algorithm for positive including zero integer edge-weighted

graphs that runs in Õ((�·n2 ·k)1/3) rounds where the shortest

path distances are at most � and in Õ((Wk)1/4n) rounds

when the edge weights are bounded by W .

(1+ ε)-Approximation Algorithms. For graphs with positive

integer edge weights, deterministic Õ(n/ε2)-round algorithms

for a (1+ε)-approximation to APSP are known [16], [18]. But

these algorithms do not handle zero weight edges. In this paper

we present a deterministic algorithm that handles zero-weight

edges and matches the Õ(n/ε2)-round bound for approximate

APSP known before for positive edge weights.

Roadmap. Section II describes our pipelined algorithm for the

(h, k)-SSP problem, and also gives simplifed short-range [13]

algorithms based on it in Section II-C. In Section III we

present our faster k-SSP algorithm which builds on our

pipelined algorithm in Section II and an improved algorithm

for computing a blocker set. In Section IV we present our algo-

rithm for approximate APSP and we end with the conclusion

in Section V.

II. THE PIPELINED APSP ALGORITHM

We present a pipelined distributed algorithm to compute

weighted APSP for shortest path distances at most Δ. The

starting point for our algorithm is the distributed algorithm
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for unweighted APSP in [12], which is a streamlined variant

of an earlier APSP algorithm [17]. This unweighted APSP

algorithm is very simple: each source initiates its distributed

BFS in round 1. Each node v retains the best (i.e., shortest)

distance estimate it has received for each source, and stores

these estimates in sorted order (breaking ties by source id).

Let d(s) (or dv(s)) denote the shortest distance estimate for

source s at v and let pos(s) be its position in sorted order

(pos(s) ≥ 1). In a general round r, node v sends out a shortest

distance estimate d(s) if r = d(s) + pos(s). Since d(s) is

nondecreasing and pos(s) is increasing, there will be at most

one d(s) at v that can satisfy this condition. It is shown in [12]

that shortest distances for all sources arrive at v in at most 2n
rounds under this schedule and only one message is sent out

by v for each source. The key to the 2n-round bound is that if

the current best distance estimate d(s) for a source s reaches

v in round r then r < d(s) + pos(s). Since d(s) < n for any

source s and pos(s) is at most n, shortest path values for all

sources arrive at any given node v in less than 2n rounds.

For our weighted case, since d(s) is at most � for all s, v,

it appears plausible that the above pipelining method would

apply here as well. Unfortunately, this does not hold since we

allow zero weight edges in the graph. The key to the guarantee

that a d(s) value arrives at v before round d(s) + pos(s) in

the unweighted case in [12] is that the predecessor y that sent

its dy(s) value to v must have had dy(s) = dv(s)−1. (Recall

that in the unweighted case, dy(s) is simply the hop-length of

the path taken from s to y.) If we have zero-weight edges this

guarantee no longer holds for the weighted path length, and

it appears that the key property of the unweighted pipelining

methodogy no longer applies. Since edge weights larger than 1

are also possible (as long as no shortest path distance exceeds

�), the hop length of a path can be either greater than or less

than its weighted distance.

A. Our (h, k)-SSP algorithm

Algorithm 1 is our pipelined algorithm for a directed graph

G = (V,E) with non-negative edge-weights. The input is G,

together with the subset S of k vertices for which we need to

compute h-hop SSPs. An innovative feature of this algorithm

is that the key κ it uses for a path is not its weighted distance,

but a function of both its hop length l and its weighted distance

d. More specifically, κ = d · γ + l, where γ =
√
kh/Δ.

This allows the key to inherit some of the properties from the

algorithm in [12] through the fact that the hop length is part

of κ’s value, while also retaining the weighted distance which

is the actual value that needs to be computed.

The new key κ by itself is not sufficient to adapt the

algorithm for unweighted APSP in [12] to the weighted case.

In fact, the use of κ can complicate the computation since

one can have two paths from s to v, with weighted distances

d1 < d2, and yet for the associated keys one could have

κ1 > κ2 (because the path with the smaller weight can

have a larger hop-length). Our algorithm handles this with

another unusual feature: it may maintain several (though not

all) of the key values it receives, and may also send out

several key values, even some that it knows cannot correspond

to a shortest distance. These features are incorporated into

a carefully tailored algorithm that terminates in O(
√�kh)

rounds with all h-hop shortest path distances from the k
sources computed.

It is not difficult to show that eventually every shortest path

distance key arrives at v for each source from which v is

reachable when Algorithm 1 is executed. In order to establish

the bound on the number of rounds, we show that our pipelined

algorithm maintains two important invariants:

Invariant 1: If an entry Z is added to listv in round r,

then r < �Z.κ+ pos(Z)�, where Z.κ is Z ′s key value.

Invariant 2: The number of entries for a given source

s at listv is at most
√�h/k + 1.

Invariant 1 is the natural generalization of the unweighted

algorithms [12], [17] for the key κ that we use. On the other

hand, to the best of our knowledge, Invariant 2 has not been

used before, nor has the notion of storing multiple paths or

entries for the same source at a given node. By Invariant 2,

the number of entries in any list is at most
√�kh + k, so

pos(Z) ≤ √�kh+ k for every list at every round. Since the

value of any κ is at most �·γ+h, by Invariant 1 every entry

is received by round 2
√�kh+ k + h.

We now give the details of Algorithm 1 starting with a step-

by-step description followed by its analysis. Recall that the key

value we use for a path π is κ = d ·γ+ l, where γ =
√

kh/Δ,

d is the weighted path length, and l is the hop-length of π.

At each node v our algorithm maintains a list, listv , of the

entries and associated data it has retained. Each element Z on

listv is of the form Z = (κ, d, l, x), where x is the source

vertex for the path corresponding to κ, d, and l. The elements

on listv are ordered by key value κ, with ties first resolved

by the value of d, and then by the label of the source vertex.

We use Z.ν to denote the number of keys for source x stored

on listv at or below Z. The position of an element Z in listv
is given by pos(Z), which gives the number of elements at or

below Z on listv . If the vertex v and the round r are relevant

to the discussion we will use the notation posrv(Z), but we will

remove either the subscript or the superscript (or both) if they

are clear from the context. We also have a flag Z.flag-d∗which

is set if Z has the smallest (d, κ) value among all entries for

source x (so d is the shortest weighted distance from s to v
among all keys for x on listv). A summary of our notation is

in Table II.
Initially, when round r = 0, listv is empty unless v is in

the source set S. Each source vertex x ∈ S places an element

(0, 0, 0, x) on its listx to indicate a path of weight 0 and hop

length 0 from x to x, and Z.flag-d∗is set to true. In Step 1 of

the Initialization round 0, node v initializes the distance from

every source to ∞. In Step 2 every source vertex initializes

the distance from itself to 0 and adds the corresponding entry

in its list. There are no Sends in round 0.
In a general round r, in Step 1 of Algorithm 1, v checks if

listv contains an entry Z with �Z.κ+ posv(Z)� = r. If there

is such an entry Z then v sends Z to its neighbors, along with

Z.ν and Z.flag-d∗ in Step 2. Steps 3-13 describe the steps
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TABLE II: Notations
GLOBAL PARAMETERS:

S set of sources

k number of sources, or |S|
h maximum number of hops in a shortest path

� maximum weighted distance of a shortest path

n number of nodes

γ parameter equal to
√

hk/Δ

Local Variables at node v:

d∗x current shortest path distance from x to v; same as d∗x,v

listv list at v for storing the SP and non-SP entries

Variables/Parameters for entry Z = (κ, d, l, x) in listv :

κ key for Z; κ = d · γ + h
d weight (distance) of the path associated with this entry

l hop-length of the path associated with this entry

x start node (i.e. source) of the path associated with this entry

p parent node of v on the path associated with this entry

ν number of entries for source x at or below Z in listv (not stored explicitly)

flag-d∗ flag to indicate if Z is the current SP entry for source x
pos position of Z in listv in a round r; same as posr , posrv
SP shortest path

taken at v after receiving a set of incoming messages I from

its neighbors. In Step 7 an entry Z is created from an incoming

message M , updated to reflect the d and l values at v. Step 9

checks if Z has a shorter distance than the current shortest

path entry, Z∗, at v, or a shorter hop-length (if the distance is

the same), or a parent with smaller ID (if both distance and

hop-length are same). And if so, then Z is marked as SP in

Step 10 and is then inserted in listv in Step 11. Otherwise,

if Z is a non-SP it is inserted into listv in Step 13 only if

the number of entries on listv for source x with key < Z.κ
in listv is less than Z−.ν. This is the rule that decides if a

received entry that is not the SP entry is inserted into listv .

INITIALIZATION: Initialization procedure for Algorithm 1 at node v

Input: set of sources S

1: for each x ∈ S do d∗x ←∞
2: if v ∈ S then d∗v ← 0; add an entry Z = (0, 0, 0, v) to listv ; Z.flag-d∗← true

Algorithm 1 Pipelined (h, k)-SSP algorithm at node v for round r

Input: A set of sources S

1: send [Steps 1-2]: if there is an entry Z with �Z.κ + posrv(Z)	 = r
2: then compute Z.ν and form the message M = 〈Z, Z.flag-d∗, Z.ν〉 and send

M to all neighbors

3: receive [Steps 3-13]: let I be the set of incoming messages
4: for each M ∈ I do
5: let M = (Z− = (κ−, d−, l−, x), Z−.flag-d∗, Z−.ν) and let the sender

be y.
6: κ← κ− + w(y, v) · γ + 1; d← d− + w(y, v); l← l− + 1
7: Z ← (κ, d, l, x); Z.flag-d∗← false; Z.p ← y (Z may be added to

listv in Step 11 or 13)
8: let Z∗ be the entry for x in listv such that Z∗.flag-d∗= true, if such an

entry exists (otherwise d∗x =∞)

9: if Z−.flag-d∗= true and l ≤ h and ((d < d∗x) or (d = d∗x and Z.κ <
Z∗.κ) or (d = d∗x and Z.κ = Z∗.κ and Z.p < Z∗.p)) then

10: d∗x ← d; Z.flag-d∗← true; Z∗.flag-d∗← false (if Z∗ exists)
11: INSERT(Z)
12: else
13: if there are less than Z−.ν entries for x with key ≤ Z.κ then INSERT(Z)

INSERT(Z): Procedure for adding Z to listv

1: insert Z in listv in sorted order of (κ, d, x)

2: if ∃ an entry Z
′

for x in listv such that Z
′
.flag-d∗= false and pos(Z

′
) >

pos(Z) then
3: find Z

′
with smallest pos(Z

′
) such that pos(Z

′
) > pos(Z) and Z

′
.flag-

d∗= false

4: remove Z
′

from listv

Steps 1-4 of procedure INSERT perform the addition of a

new entry Z to listv . In Step 1 Z is inserted in listv in

the sorted order of (κ, d, x). The algorithm then moves on to

remove an existing entry for source x on listv if the condition

in Step 2 holds. This condition checks if there is a non-SP

entry above Z in listv . If so then the closest non-SP entry

above Z is removed in Steps 3-4.

Algorithm 1 performs these steps in successive rounds.

We next analyze it for correctness and we also show that it

terminates with all shortest distances computed before round

r = �2√�kh+ k + h�.
B. Correctness of Algorithm 1

We now provide a sketch for correctness of Alg. 1. The

complete proofs are in the full paper [1]. The initial Obser-

vations and Lemmas given below establish useful properties

of an entry Z in a listv and of posrv(Z) and its relation to

posry(Z
−). We then present the key lemmas. In Lemma II.9,

we show that the collection of entries for a given source x
in listv can be mapped into (d, l) pairs with non-negative l
values such that d = d∗ for the shortest path entry, and the

d values for all other entries are distinct and larger than d∗.
(It turns out that we cannot simply use the d values already

present in Z’s entries for this mapping since we could have

two different entries for source x on listv , Z1 and Z2, that

have the same d value. ) Once we have Lemma II.9 we are able

to bound the number of entries for a given source at listv by
h
γ +1 in Lemma II.11, and this establishes Invariant 2 (which

is stated in Sec II-A). Lemma II.12 establishes Invariant 1. In

Lemma II.13 we establish that all shortest path values reach

node v. With these results in hand, the final Lemma II.14 for

the round bound for computing (h, k)-SSP with shortest path

distances at most � is readily established, which then gives

Theorem I.1.

Observation II.1. Let Z be an entry for a source x ∈ S
added to listv in round r. Then if Z is removed from listv in
a round r′ ≥ r, it was replaced by another entry for x, Z ′,
such that posr

′
v (Z) > posr

′
v (Z ′) and Z.κ ≥ Z ′.κ.

Lemma II.2. Let Z be an entry in listv . Then posr
′

v (Z) ≥
posrv(Z) for all rounds r′ > r, for which Z exists in v’s list.

Observation II.3. Let Z be an entry for source x that was
added to listv . If there exists a non-SP entry for x above Z in
listv , then the closest non-SP entry above Z will be removed.

Observation II.4. Let Z− be an entry for source x sent from
y to v in round r, and let Z be the corresponding entry created
for possible addition to listv in Step 7 of Algorithm 1. If Z is
not added to listv , then there is an entry Z ′ 
= Z for source
x in listv with Z ′.flag-d∗= true, and there are at least Z−.ν
entries for x with key ≤ Z.κ at the end of round r.

Lemma II.5. Let Z be an entry for source x that is present
on listv in round r. Let r′ > r, and let c and c′ be the number
of entries for source x on listv that have key value less than
Z’s key value in rounds r and r′ respectively. Then c′ ≥ c.

27



Lemma II.5 holds for every round greater than r, even if Z
is removed from listv .

Lemma II.6. Let Z− be an entry for source x sent from y to v
and suppose the corresponding entry Z (Step 7 of Algorithm 1)
is added to listv in round r. Then there are at least Z−.ν
entries at or below Z in listv for source x.
Proof. Assume inductively that this result holds for all entries

on listv and listy with key value at most Z.κ at all previous

rounds and at y in round r as well. (It trivially holds initially.)

Let Z−1 be the (Z−.ν − 1)-th entry for source x in listy .

Since Z−1 has a key value smaller than Z− it was sent to v
in an earlier round r′. If the corresponding entry Z1 created

for possible addition to listv in Step 7 of Algorithm 1, was

inserted in listv then by inductive assumption there were at

least Z−1 .ν = Z−.ν − 1 entries for x at or below Z1 in listv .

And by Lemma II.5 this holds for round r as well and hence

the result follows since Z is present above Z1 in listv .

And if Z1 was not added to listv in round r′, then by

Observation II.4 there were already Z−.ν−1 entries for x with

key ≤ Z1.κ and by Lemma II.5 there are at least Z−.ν − 1
entries for x with key ≤ Z1.κ ≤ Z.κ on listv at round r and

hence the result follows.

Lemma II.7. Let Z− be an entry sent from y to v in round
r and let Z be the corresponding entry created for possible
addition to listv in Step 7 of Algorithm 1. For each source
xi ∈ S, let there be exactly ci entries for xi at or below Z−

in listy . If Z is added to listv , then for each xi ∈ S, there
are at least ci entries for xi at or below Z in listv .

Corollary II.8. Let Z− be an entry sent from y to v in round
r and let Z be the corresponding entry created for possible
addition to listv in Step 7 of Algorithm 1. If Z is added to
listv , then posry(Z

−) ≤ posrv(Z).

Lemma II.9. Let C be the entries for a source x ∈ S in listv
in round r. Then the entries in C can be mapped to (d, l) pairs
such that each l ≥ 0 and each Z ∈ C is mapped to a distinct
d value with Z.κ = d · γ + l. Also d = d∗x if Z is a current
shortest path entry, otherwise d > d∗x.
Proof. (Sketch.) By induction on j, the number of entries in

C. When j = 1, we can map d and l to the pair in the single

entry Z. Assume true till j− 1, and consider the first time |C|
becomes j at listv , and let this occur when node y sends Z−

to v and this is updated and inserted as Z in listv in round r.

If Z is inserted as a new shortest path entry with distance

value d∗, then we can again map d and l to the pair in Z,

since d∗ is smaller than all other d values for x at v.

If Z is inserted as a non-SP entry and its d value has already

been assigned to one of the j−1 entries for source x on listv ,

consider the entries for source x with key value at most Z−.κ
in listy . Step 13 of Algorithm 1 ensures that there are j such

values. Inductively these j entries have j distinct d− values

assigned to them, and we transform these into j distinct values

for listv by adding w(y, v) · γ + 1 to each of them. At least

one of these j values, say d′, differs from the j − 1 mapped

d values at v, and it is also readily seen that the associated

l value for d′ must be greater than 0. So we can map Z to

(d′, l) (for more details, see [1]).

The general case when the number of entries remains at j
both before and after the insert can be handled similarly.

Lemma II.10. Let Z be the current shortest path distance
entry for a source x ∈ S in v’s list. Then the number of
entries for x below Z in listv is at most h/γ.
Proof. By Lemma II.9, we know that the keys of all the entries

for x can be mapped to (d, l) pairs such that each entry is

mapped to a distinct d value and l > 0.

We have Z.κ = d∗x · γ + l∗x, where l∗x is the hop-length of

the shortest path from x to v. Let Z
′′

be an entry for x below

Z in v’s list. Then, Z
′′
.κ ≤ Z.κ. It implies that d

′′ · γ ≤
d∗x · γ + (l∗x − l

′′
) < d∗x · γ + h which gives d

′′
< d∗x + h/γ.

Since d
′′ ≥ d∗x, there can be at most h/γ entries for x below

Z in listv .

Lemma II.11. For each source x ∈ S, v’s list has at most
h/γ + 1 entries for x.

In Lemmas II.12-II.13 we establish an upper bound on the

round r by which v receives a shortest path entry Z∗.

Lemma II.12. If an entry Z is added to listv in round r then
r < �Z.κ+ posrv(Z)�.
Proof. The lemma holds in the first round since all entries have

non-negative κ, any received entry has hop length at least 1,

and the lowest position is 1 so for any entry Z received by v
in round 1, �Z.κ+ pos1v(Z)� ≥ 1 + 1 > 1.

Let r be the first round (if any) in which the lemma is

violated, and let it occur when entry Z is added to listv . So

r ≥ �Z.κ+ posrv(Z)�. Let r1 = �Z.κ+ posrv(Z)� (so r1 ≤ r
by assumption).

Since Z was added to listv in round r, Z− was sent to v by

a node y in round r. So by Step 1 r = �Z−.κ+ posry(Z
−)�.

But Z.κ > Z−.κ and posrv(Z) ≥ posry(Z
−), hence r must be

less than �Z.κ+ posrv(Z)�.
Lemma II.13. Let π∗x,v be a shortest path from source x to
v with the minimum number of hops among h-hop shortest
paths from x to v. Let π∗x,v have l∗ hops and shortest path
distance d∗x,v . Then v receives an entry Z∗ = (κ, d∗x,v, l

∗, x)
by round r < �Z∗.κ+ posrv(Z

∗)�.
Proof. If an entry Z∗ = (κ, d∗x,v, l

∗, x) is placed on listv by

v then by Lemma II.12 it is received before round �Z∗.κ +
posrv(Z

∗)� and hence it will be sent in round r = �Z∗.κ +
posrv(Z

∗)� in Step 2. It remains to show that an entry for path

π∗x,v is received by v. We establish this for all pairs x, v by

induction on key value κ. (See [1] for the full proof.)

In Lemma II.14 we establish an upper bound on the round

r by which Algorithm 1 terminates.

Lemma II.14. Let Δ be the maximum shortest path distance
in the h-hop paths. Algorithm 1 correctly computes the h-hop
shortest path distances from each source x ∈ S to each node
v ∈ V by round ��γ + h+� · γ + k�.
Proof. An h-hop shortest path has weight at most �, hence

a key corresponding to a shortest path entry will have value
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at most �γ + h. Thus by Lemma II.13, for every source x ∈
S every node v ∈ V should have received the shortest path

distance entry, Z∗, for source x by round r = ��γ + h +
posrv(Z

∗)�.
Now we need to bound the value of posrv(Z

∗). By

Lemma II.11, we know that there are at most h/γ +1 entries

for each source x ∈ S in a node v’s list. Now as there are k
sources, v’s list has at most (h/γ+1)·k ≤ γ·�+k entries, thus

posrv(Z
∗) ≤ γ ·�+k and hence r ≤ �Δγ+h+γ ·Δ+k�.

Since γ =
√

hk/Δ, Lemma II.14 establishes Theorem I.1.

C. Simplified Versions of Short-Range Algorithms in [13]

We describe here simplified versions of the short-range
and short-range-extension algorithms used in the randomized

Õ(n5/4) round APSP algorithm in Huang et al. [13]. Our

short-range Algorithm 2 is implicit in our pipelined APSP

algorithm (Algorithm 1) and is much simpler than it since it

is for a single source.

Given a hop-length h and a source vertex x, the short-range

algorithm in [13] computes the h-hop shortest path distances

from source x in a graph G′ (obtained through ‘scaling’) where

Δ ≤ n − 1. The scaled graph has different edge weights

for different sources, and hence h-hop APSP is computed

through n h-hop SSSP (or short-range) computations, each

of which runs with dilation (i.e., number of rounds) Õ(n
√
h)

and congestion (i.e., maximum number of messages along an

edge) O(
√
h). By running this algorithm using each vertex as

source, h-hop APSP is computed in G′ in O(n
√
h) rounds

w.h.p. in n using a scheduling result in Ghaffari’s frame-

work [10], which gives a randomized method to execute this

collection of different short-range executions simultaneously

in Õ(dilation + n · congestion) = Õ(n
√
h) rounds.

The short-range algorithm in [13] for a given source runs

in two stages:. Initially every zero edge-weight is increased

to a positive value α = 1/
√
h and then h-hop SSSP is

computed using a BFS variant in Õ(n/α) = Õ(n
√
h) rounds.

This gives an approximation to the h-hop SSSP where the

additive error is at most hα =
√
h. This error is then fixed

by running the Bellman-Ford algorithm [4] for h rounds. The

total round complexity of this SSSP algorithm is Õ(n
√
h) and

the congestion is O(
√
h).

Algorithm 2 Round r of short-range algorithm for source x
(initially d∗ ← 0; l∗ ← 0 at source x)

(at each node v ∈ V )
1: send: if �d∗ · √h + l∗	 = r then send (d∗, l∗) to all the neighbors

2: receive [Steps 2-6]: let I be the set of incoming messages
3: for each M ∈ I do
4: let M = (d−, l−) and let the sender be y.
5: d← d− + w(y, v); l← l− + 1
6: if d < d∗ or (d = d∗ and l < l∗) then set d∗ ← d; l∗ ← l

We now present a simplified short-range algorithm (Al-

gorithm 2) with the same dilation O(n
√
h) and congestion

O(
√
h). Here d∗ is the current best estimate for the shortest

path distance from x at node v and l∗ is the hop-length of

the corresponding path. Source node x initializes d∗ and l∗

values to zero and sends these values to its neighbors in round

0 (Step 1). At the start of a round r, each node v checks

if its current d∗ and l∗ values satisfy �d∗ · √h + l∗� = r,

and if so, it sends this estimate to each of its neighbors. To

bound the number of such messages v sends throughout the

entire execution, we note that v will send another message

in a future round only if it receives a smaller d∗ value with

higher �d∗ · √h + l∗� value. But since l∗ ≤ h and d∗ values

are non-negative integers, v can send at most
√
h messages to

its neighbors throughout the entire execution. A proof similar

to [12] (a simplified version of Lemma II.12) shows that as

long as edge-weights are non-negative, v will always receive

the message that creates the pair d∗, l∗ at v before round

�d∗ · √h+ l∗�.
If shortest path distances are bounded by Δ, Algorithm 2

runs in �Δ ·√h+h� rounds with congestion at most
√
h. And

if Δ ≤ n− 1 (as in [13]), then we can compute shortest path

distances from x to every node v in O(n
√
h) rounds.

We can similarly simplify the short-range-extension algo-

rithm in [13], where some nodes already know their distance

from source x and the goal is to compute shortest paths from

x by extending these already computed shortest paths to u by

another h hops. To implement this, we only need to modify

the initialization in Algorithm 2 so that each such node u
initializes d∗ with this already computed distance. The round

complexity is again O(Δ
√
h) and the congestion per source

is O(
√
h). This gives us the following result.

Lemma II.15. Let G = (V,E) be a directed or undirected
graph, where all edge weights are non-negative distances
(and zero-weight edges are allowed), and where shortest path
distances are bounded by Δ. Then by using Algorithm 2, we
can compute h-hop SSSP and h-hop extension in O(Δ

√
h)

rounds with congestion bounded by
√
h.

As in [13] we can now combine our Algorithm 2 with Ghaf-

fari’s randomized framework [10] to compute h-hop APSP and

h-hop extensions (for all source nodes) in Õ(Δ
√
h + n

√
h)

rounds w.h.p. in n. The result can be readily modified to

include the number of sources, k, by sending the current

estimates (d∗, l∗) in round �d∗ · γ + l∗� , where γ =
√
hk/Δ

as in Algorithm 1 (instead of �d∗ ·√h+ l∗�), and the resulting

algorithm runs in O(
√
Δhk) rounds with congestion bounded

by
√

Δh/k. Then we can compute h-hop k-SSP and h-hop

extensions for all k sources in Õ(
√
Δhk) rounds.

III. FASTER k-SSP ALGORITHM USING BLOCKER SET

In this section we give faster APSP and k-SSP algorithms.

The overall Alg. 3 has the same structure as the recent de-

terministic O(n3/2 · √log n) round weighted APSP algorithm

in [3] but we use a variant of Alg. 1 in place of Bellman-Ford,

and we also present new methods within two of the steps.

In our improved Alg. 3, Steps 3-5 are unchanged from the

algorithm in [3]. However we give an alternate method for

Step 1, which computes h-hop CSSSP (see Sec. III-A), since

the method in [3] takes Θ(n · h) rounds, which is too large

for our purposes. Our new method is very simple and uses

Alg. 1 and runs in O(
√�hk) rounds. (An implementation
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(i) Example graph G.
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(ii) Edges on 2-hop shortest
paths from source node b.

a

b
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(iii) 2-hop SSSP for source node b
constructed by Alg. 1.

b

d c

(iv) 2-hop CSSSP for source
node b.

Fig. 1: This figure gives an example graph G where the union of the edges on the 2-hop shortest paths from source node b differs from the
2-hop SSSP constructed by both Bellman-Ford and Alg. 1, and both are different from the 2-hop CSSSP generated for source node b.

using Bellman-Ford [4] would give an O(n · h)-round bound,

which could be used in [3] to simplify a step in that algorithm.)

Step 2 computes a blocker set, defined as follows.

Definition III.1 (Blocker Set [3], [14]). Let H be a collection
of rooted h-hop trees in a graph G = (V,E). A set Q ⊆ V is
a blocker set for H if every root to leaf path of length h in
every tree in H contains a vertex in Q. Each vertex in Q is
called a blocker vertex for H .

For Step 2 we use the overall blocker set algorithm from [3],

which runs in O(n · h + (n2 log n)/h) rounds and computes

a blocker set of size q = O((n log n)/h) for the h-hop trees

constructed in Step 1 of algorithm 3. But this gives only an

Õ(n3/2) bound for Step 2 (by setting h = Õ(
√
n)), so it will

not help us to improve the bound on the number of rounds for

APSP beyond Algorithm 1. Instead we modify and improve a

key step where that earlier blocker set algorithm has a Θ(n·h)
round preprocessing step. (Our improved method here will not

help to improve the bound in [3] but does help to obtain a

better bound here in conjunction with Algorithm 1.) We give

the details of our method for Step 2 in Section III-B.

Algorithm 3 Overall k-SSP algorithm (adapted from [3])

Input: set of sources S, number of hops h

1: Compute h-hop CSSSP rooted at each source x ∈ S (described in Section III-A).
2: Compute a blocker set Q of size Θ(n log n

h ) for the h-hop CSSSP computed in
Step 1 (described in Section III-B).

3: for each c ∈ Q in sequence: compute SSSP tree rooted at c.
4: for each c ∈ Q in sequence: broadcast ID(c) and the shortest path distance values

δh(x, c) for each x ∈ S.
5: Local Step at node v ∈ V : for each x ∈ S compute the shortest path distance

δ(x, v) using the received values.

Lemma III.2. Algorithm 3 computes k-SSP in O(n
2 logn
h +√�hk) rounds.

Proof. The correctness of Algorithm 3 is established in [3].

Step 1 runs in O(
√�hk) rounds by Lemma III.5 in Sec-

tion III-A. In Section III-B we will give an O(n · q+√�hk)
rounds algorithm to find a blocker set of size q = O(n logn

h ).
Simple O(n · q) round algorithms for Steps 3 and 4 are

given in [3]. Step 5 has no communication. Hence the overall

bound for Algorithm 3 is O(n · q +
√�hk) rounds. Since

q = O(n logn
h ) this gives the desired bound.

Proofs of Theorem I.3 and I.2:. Using h = n4/3·log2/3 n
(2k·�)1/3

in

Lemma III.2 we obtain the bounds in Theorem I.3.

If edge weights are bounded by W , the weight of any h-

hop path is at most hW . Hence by Lemma III.2, the k-SSP

algorithm (Alg. 3) runs in O(n
2 logn
h +h

√
Wk) rounds. Setting

h = n log1/2 n/(W 1/4k1/4) we obtain the bounds stated in

Theorem I.2.

A. Computing Consistent h-hop trees

Recall that an h-hop shortest path from a source s to a vertex

v in G is a path of minimum weight from s to v among all

paths with at most h hops. If we consider the graph consisting

of an h-hop shortest path from a source s to every vertex in

G reachable from s within h hops, it need not form a tree

since the prefix of an h-hop shortest path may not itself be an

h-hop shortest path. The parent pointers for the h-hop shortest

paths computed by our pipelined (h, k)-SSP algorithm (Alg. 1)

as well as by using Bellman-Ford [4] suffer from a similar

problem: the tree constructed by the parent pointers could have

height greater than h (see Fig 1).

Within the algorithm for computing blocker set in Step 2

in Algorithm 3 (see Section III-B for details), there are algo-

rithms for updating the ‘scores’ of the ancestor and descendant

nodes of a newly chosen blocker node in the collection of trees

that contain h-hop shortest paths. The efficient methods used

in these algorithms are based on having a consistent set of

paths across all trees in the collection. In order to create a

consistent collection of paths across all sources, we introduce

the following definition of an h-hop Consistent SSSP (CSSSP)
collection. This notion is implicit in [3] but is not explicitly

defined there.

Definition III.3 (CSSSP). Let H be a collection of rooted
trees of height h in a graph G = (V,E). Then H is an h-hop

CSSSP collection (or simply an h-hop CSSSP) if for every
u, v ∈ V the path from u to v is the same in each of the trees
in H (in which such a path exists), and is the h-hop shortest
path from u to v in the h-hop tree Tu rooted at u. Further,
each Tu contains every vertex v that has a path with at most
h hops from u in G that has distance δ(u, v).

Neither Algorithm 1 nor running h iterations of Bellman-

Ford is guaranteed to construct a CSSP collection. At the same

time, we observe that the trees in an h-hop CSSSP collection

may not contain all h-hop shortest paths: In particular, if every

shortest path from source s to a vertex x has more than h hops,

then the h-hop tree for source s in the CSSSP collection is

not required to have x in it. See Fig. 1.

Our method to construct an h-hop CSSSP collection is very

simple: We execute Algorithm 1 to construct 2h-hop SSSPs

instead of h-hop SSSPs. Our CSSSP collection will retain the

initial h hops of each of these 2h-hop SSSPs. In other words,

each vertex v willl set the parent pointer p(v) to NIL for a

source s if the hop-length of the corresponding path is greater

than h. We now show that this simple construction results in

an h-hop CSSSP collection. Thus we are able to construct h-
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hop CSSSPs by incurring just a constant factor overhead in

the number of rounds over the bound for Algorithm 1.

Lemma III.4. Consider running Algorithm 1 using the hop-
length bound 2h. Let C be the collection of h-hop trees formed
by retaining the initial h hops in each of these 2h-hop SSSPs.
Then the collection C forms an h-hop CSSSP collection.
Proof. If not, then there exist vertices u, v and trees Tx, Ty

such that the paths from u to v in Tx and Ty are different. Let

πx
u,v and πy

u,v be the corresponding paths in these trees.

There are three possible cases: (1) when wt(πx
u,v) 
=

wt(πy
u,v) (2) when paths πx

u,v and πy
u,v have same weight but

different hop-lengths (3) when both πx
u,v and πy

u,v have same

weight and hop-length.

(1) wt(πx
u,v) 
= wt(πy

u,v): w.l.o.g. assume that wt(πx
u,v) <

wt(πy
u,v). Now if we replace πy

u,v in Ty with πx
u,v , we get a

path of smaller weight from y to v of hop-length at most 2h.

But then node v should have picked this lighter path in Step 9

of Algorithm 1 (Step 1 of Algorithm 3 for computing 2h-hop

SSSPs), resulting in a contradiction.

(2) paths πx
u,v and πy

u,v have same weight but different hop-
lengths. W.l.o.g. assume that path πx

u,v has smaller hop-length

than πy
u,v . Then κ(πx

u,v) < κ(πy
u,v) and hence κ(πy

y,u◦πx
u,v) <

κ(πy
y,u ◦πy

u,v). And again v would have picked the path πy
y,u ◦

πx
u,v as the shortest path from y in Step 9 of Algorithm 1

where we prefer paths with smaller key even if they have

same weighted distance.

(3) both πx
u,v and πy

u,v have same weight and hop-length.
W.l.o.g. assume that these two paths have the smallest hop-

length for which the paths differ. Let (a, v) be the last edge on

the path πx
u,v and let (b, v) be the last edge on the path πy

u,v .

W.l.o.g. assume that ID(a) < ID(b) (a cannot equal b since

the resulting smaller hops subpaths πx
u,a and πy

u,a would be

different, which is not possible). Then in Step 9 of Algorithm 1

v would have chosen the path πy
y,u ◦ πx

u,v as the shortest path

from y instead of πy
y,v , where we prefer paths with smaller

parent ID even if they have same κ value.

It is readily seen that a similar construction can be used

with the Bellman-Ford a algorithm.

Lemma III.5. h-hop CSSSPs can be computed in O(
√
Δhk)

rounds using Algorithm 1 and in O(nh) rounds using the
Bellman-Ford algorithm.

We now show two properties of an h-hop CSSSP collection

that we will use in our blocker set algorithm in the next

section. (Lemma III.7 is established in [3]). In the following,

we call a tree T rooted at a vertex c an out-tree if all the

edges incident to c are outgoing edges from c and we call T
an in-tree if all the edges incident to c are incoming edges.

Lemma III.6. Let C be an h-hop CSSSP collection. Let c
be a vertex in G and let T be the union of the edges in the
collection of subtrees rooted at c in the trees in C. Then T
forms an out-tree rooted at c.
Proof. If not, there exist nodes u and v and trees Tx and Ty

such that the path from c to u in Tx and path from c to v
in Ty first diverge from each other after starting from c and

then coincide again at some vertex z. But since C is an h-hop

CSSSP collection, by Lemma III.4 the path from c to z in the

collection C is unique.

Lemma III.7 ( [3]). Let C be an h-hop CSSSP collection. Let
c be a vertex in G and let T be the union of the edges on the
tree-path from the root of each tree in C to c (for the trees
that contain c). Then T forms an in-tree rooted at c.

B. Computing a Blocker Set

Our overall blocker set algorithm runs in O(n
2 logn
h +√�hk) rounds. It differs from the blocker set algorithm in [3]

by developing faster algorithms for two steps that take O(nh)
rounds in [3].

The first step in [3] that takes O(nh) rounds is the step that

computes the initial ‘scores’ at all nodes for all h-hop trees in

the CSSSP collection. The score of node v in an h-hop tree is

the number of v’s descendants in that tree. Here we compute

scores for all trees at all nodes in O(
√�hk) rounds with a

timestamp pipelining technique introduced in [12] for prop-

agating values from descendants to ancestors in the shortest

path trees within the same bound as the APSP algorithm.

To explain the second O(nh)-round step in [3], we first give

a brief recap of the blocker set algorithm in [3]. This algorithm

picks nodes to be added to the blocker set greedily. The next

node that is added to the blocker set is one that lies in the

maximum number of paths in the h-hop trees that have not

yet been covered by the already selected blocker nodes. To

identify such a node, the algorithm maintains at each node v
a count (or score) of the number of descendant leaves in each

tree, since the sum of these counts is precisely the number

of root-to-leaf paths in which v lies. Once all vertices have

their overall score, the new blocker node c can be identified

as one with the maximum score. It now remains for each node

v to update its scores to reflect the fact that paths through c
no longer exist in any of the trees. This update computation is

divided into two steps in [3]. In both steps, the main challenge

is for a given node to determine, in each tree Tx, whether it

is an ancestor of c, a descendant of c, or unrelated to c.

1. Updates at Ancestors. For each v, in each tree Tx where v
is an ancestor of c, v needs to reduce its score for Tx by c’s
score for Tx since all of those descendant leaves have been

eliminated. In [3] an O(n)-round pipelined algorithm (using

the in-tree property for CSSSP in Lemma III.7) is given for

this update at all nodes in all trees, and this suffices for our

purposes.

2. Updates at Descendants. For each v, in each tree Tx where

v is a descendant of c, v needs to reduce its score for Tx

to zero, since all descendant leaves are eliminated once c is

removed. In [3] this computation is performed by an O(nh)-
round precomputation in which each vertex identifies all of its

ancestors in all of the h-hop trees and thereafter can readily

identify the trees in which it is a descendant of a newly chosen

blocker node c once c broadcasts its identity to all nodes. But

this is too expensive for our purposes.

Here, we perform no precomputation but instead in Algo-

rithm 4 we use the property in Lemma III.6 for CSSSP to
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develop a method similar to the one for updates at ancestors.

Initially c creates a list, listc, where it adds the IDs of all

the source nodes x such that c lies in tree Tx. In round i, c
sends the i-th entry 〈x〉 in listc to all its children in Tx. Since

T (in Lemma III.6) is a tree, every node v receives at most

one message in a given round r. If v receives the message for

source x in round r, it forwards this message to all its children

in Tx in the next round, r+1, and also sets its score for source

x to 0. Similar to the algorithm for updating ancestors of c [3],

it is readily seen that every descendant of c in every tree Tx

receives a message for x by round k + h− 1.

Algorithm 4 Pipelined Algorithm for updating scores at v in trees Tx in which
v is a descendant of newly chosen blocker node c

Input: Q: blocker set, c: newly chosen blocker node, S: set of sources

(only for c)
1: Local Step at c: create listc to store the ID of each source x ∈ S such that

scorex(c) �= 0; for each x ∈ S do set scorex(c)← 0; set score(c)← 0
2: Send: Round i: let 〈x〉 be the i-th entry in listc; send 〈x〉 to c’s children in Tx.

(round r > 0 : for vertices v ∈ V −Q− {c})
3: send[lines 3-4]: if v received a message 〈x〉 in round r − 1 then
4: if v �= x then send 〈x〉 to v’s children in Tx

5: receive[lines 5-6]: if v receives a message 〈x〉 then
6: score(v)← score(v)− scorex(v); scorex(v)← 0

Lemma III.8. Algorithm 4 correctly updates the scores of all
nodes v in every tree Tx in which v is a descendant of c in
k + h− 1 rounds.

IV. ADDITIONAL RESULTS

We consider the problem of finding a (1 + ε)-approximate

solution to the weighted APSP problem. If edge-weights are

strictly positive, the following result is known.

Theorem IV.1 ( [16], [18]). There is a deterministic algo-
rithm that computes (1 + ε)-approximate APSP on graphs
with positive polynomially bounded integer edge weights in
O((n/ε2) · log n) rounds.

The above result does not hold when zero weight edges are

present. Here we match the deterministic O((n/ε2) · log n)-
round bound for this problem with an algorithm that also

handles zero edge-weights.

We first compute reachability between all pairs of vertices

connected by zero-weight paths. This is readily computed in

O(n) rounds, e.g., using [12], [17] while only considering only

the zero weight edges (and ignoring the other edges).

We then consider shortest path distances between pairs of

vertices that have no zero-weight path connecting them. The

weight of any such path is at least 1. To approximate these

paths we increase the zero edge-weights to 1 and transform

every non-zero edge weight w(e) to n2·w(e). Let this modified

graph be G′ = (V,E,w′) . Thus the weight of an l-hop path p
in G′, w′(p), satisfies w′(p) ≤ w(p)·n2+l. Since the modified

graph G′ has polynomially bounded positive edge weights,

we can use the result in Theorem IV.1 to compute (1 + ε/3)-
approximate APSP on this graph in Õ(9n/ε2) rounds.

Fix a pair of vertices u, v. Let p be a shortest path from u
to v in G with hop-length l. Then w′(p) ≤ n2 ·w(p) + l. Let

p′ be a (1+ ε/3)-approximate shortest path from u to v. Then

w′(p′) ≤ (1+ε/3) ·w′(p) ≤ (1+ε/3)(n2 ·w(p)+ l). Dividing

w′(p′) by n2 gives us w′(p′)/n2 < (1+ε/3)(w(p)+(l/n2)) <
w(p) + w(p)ε/3 + 2/n ≤ w(p)(1 + ε) (as long as ε > 3/n
and since w(p) ≥ 1), and this establishes Theorem I.5.

V. CONCLUSION

We have presented new deterministic distributed algorithms

for weighted shortest paths (both APSP, and for k sources)

in graphs with moderate non-negative integer weights. Our

work leaves a couple of major open problems. We could

obtain a deterministic Õ(n4/3)-round APSP algorithm with

non-negative polynomially bounded integer weights if our

pipelined strategy can be made to works with Gabow’s scaling

technique [9]. Our current algorithm assumes that all sources

see the same weight on each edge, while in the scaling

algorithm each source sees a different edge weight on a

given edge. While this can be handled with n different SSSP

computations in conjunction with the randomized scheduling

result of Ghaffari [10], it will be very interesting to see if a

deterministic pipelined strategy could achieve the same result.

The other major open problem left by our work and the

result in [3] is to is to investigate further improvements to the

deterministic distributed computation of a blocker set.
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