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Abstract. We present fully dynamic algorithms for maintaining be-
tweenness centrality (BC) of vertices in a directed graph G = (V,E)
with positive edge weights. BC is a widely used parameter in the anal-
ysis of large complex networks. We achieve an amortized O(ν∗2 · log3 n)
time per update with our basic algorithm, and O(ν∗2 · log2 n) time with
a more complex algorithm, where n = |V |, and ν∗ bounds the number
of distinct edges that lie on shortest paths through any single vertex.
For graphs with ν∗ = O(n), our algorithms match the fully dynamic
all pairs shortest paths (APSP) bounds of Demetrescu and Italiano [8]
and Thorup [28] for unique shortest paths, where ν∗ = n − 1. Our first
algorithm also contains within it, a method and analysis for obtaining
fully dynamic APSP from a decremental algorithm, that differs from the
one in [8].

1 Introduction

Betweenness centrality (BC) is a widely-used measure in the analysis of large
complex networks, and is defined as follows. Given a directed graph G = (V,E)
with |V | = n, |E| = m and positive edge weights, let σxy denote the number of
shortest paths (SPs) from x to y in G, and σxy(v) the number of SPs from x to y

in G that pass through v, for each pair x, y ∈ V . Then, BC(v) =
∑
s6=v,t6=v

σst(v)
σst

.
The measure BC(v) is often used as an index that determines the relative

importance of v in G, and is computed for all v ∈ V . Some applications of
BC include analyzing social interaction networks [13], identifying lethality in
biological networks [20], and identifying key actors in terrorist networks [6, 15]. In
the static case, the widely used algorithm by Brandes [5] runs in O(mn+n2 log n)
on weighted graphs. Several approximation algorithms are available: [1, 24] for
static computation and, recently, [4, 3] for dynamic computation. Heuristics for
dynamic betweenness centrality with good experimental performance are given
in [10, 16, 26], but none provably improve on Brandes. The only earlier exact
dynamic BC algorithms that provably improve on Brandes on some classes of
graphs are the recent separate incremental and decremental1 algorithms in [18,
19]. Table 1 contains a summary of these results.

? Computer Science Department, University of Texas, Austin, TX 78712. This work
was supported in part by NSF grants CCF-0830737 and CCF-1320675.

1 Incremental/decremental refer to the insertion/deletion of a vertex or edge; the cor-
responding weight changes that apply are weight decreases/increases, respectively.



In this paper, we present two results for fully dynamic exact betweenness
centrality: a basic algorithm that provably improves over Brandes for dense
graphs (where m is close to n2) with succinct single-source SP dags, and a faster
algorithm that is considerably more complicated.

Our techniques recompute the BC scores using certain data structures related
to shortest paths extensions (see Section 2), which are generalizations of similar
ones introduced by Demetrescu and Italiano in [8] for fully dynamic all pairs
shortest paths (APSP) (the DI method), where only one SP is maintained for
each pair of vertices. To compute BC, however, we need all the SPs for each pair
of vertices (all pairs all shortest paths – APASP). Our fully dynamic algorithms
build on our recent work (with Nasre) [19] on decremental APASP (the NPRdec

method), which generalizes the DI data structures to represent all of the multiple
SPs for every pair of vertices using a tuple-system (see Section 3.1.1).

Paper Year Time Weights Update Type DR/UN Result

Brandes [5] 2001 O(mn) NO Static Alg. Both Exact
Brandes [5] 2001 O(mn+ n2 logn) YES Static Alg. Both Exact

Geisberger et al. [9] 2007 Heuristic YES Static Alg. Both Approx.
Riondato et al. [24] 2014 depends on ε YES Static Alg. Both ε-Approx.

Semi Dynamic
Green et al. [10] 2012 O(mn) NO Edge Inc. Both Exact
Kas et al. [12] 2013 Heuristic YES Edge Inc. Both Exact

NPR [18] 2014 O(ν∗ · n) YES Vertex Inc. Both Exact
NPRdec [19] 2014 O(ν∗2 · logn) YES Vertex Dec. Both Exact

Bergamini et al. [4] 2015 depends on ε YES Batch (edges) Inc. Both ε-Approx.
Fully Dynamic

Lee et al. [16] 2012 Heuristic NO Edge Update UN Exact
Singh et al. [26] 2013 Heuristic NO Vertex Update UN Exact
Kourtellis+ [14] 2014 O(mn) NO Edge Update Both Exact

Bergamini et al. [3] 2015 depends on ε YES Batch (edges) UN ε-Approx.
This paper (Basic) 2015 O(ν∗2 · log3 n) YES Vertex Update Both Exact
This paper (ffd) 2015 O(ν∗2 · log2 n) YES Vertex Update Both Exact

Table 1. Related results (DR stands for Directed and UN for Undirected)

Our Results. Let ν∗ be the maximum number of distinct edges that lie on short-
est paths through any given vertex in G; we assume ν∗ = Ω(n). Both of our BC
algorithms are obtained through fully dynamic all pairs all shortest paths. The
first APASP algorithm fully-dynamic matches the DI APSP bound (which
computes unique SPs) for graphs with ν∗ = O(n); fully-dynamic generalizes
DI, though it is somewhat different from DI even for unique SPs, and its analysis
is quite different from DI. The second APASP algorithm ffd is a generalization of
Thorup [28] (the Thorup method) for APASP and matches its bound for APSP
when ν∗ = O(n); the main challenge here is to generalize the ‘level graphs’ of
Thorup to the case when SPs for a given vertex pair can be distributed across
multiple levels. Both APASP algorithms lead to fully dynamic BC algorithms as
follows:

Theorem 1. Let Σ be a sequence of Ω(n) fully dynamic vertex updates on a
directed n-node graph G = (V,E) with positive edge weights. Let ν∗ bound the
number of distinct edges that lie on shortest paths through any single vertex in
any of the updated graphs or their vertex induced subgraphs. Then, all BC scores
(and APASP) can be maintained in amortized time:
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(1) O(ν∗2 · log3 n) per update with algorithm fully-dynamic,
(2) O(ν∗2 · log2 n) per update with algorithm ffd.

Discussion of the parameters m∗ and ν∗. Let m∗ be the number of distinct
edges in G that lie on shortest paths; ν∗, defined above, is the maximum number
of distinct edges on shortest paths through a single vertex. Clearly, ν∗ ≤ m∗ ≤ m.
- m∗ vs m: In many cases, m∗ � m: as noted in [11], in a complete graph
(m = Θ(n2)) where edge weights are chosen from a large class of probability
distributions, m∗ = O(n log n) with high probability.

- ν∗ vs m∗: Clearly, ν∗ = O(n) in any graph with only a constant number of SPs
between every pair of vertices. These graphs are called k-geodetic [23] (when at
most k SPs exists between two nodes), and are well studied in graph theory [27,
2, 17]. In fact ν∗ = O(n) even in some graphs that have an exponential number
of SPs between some pairs of vertices. In contrast, m∗ can be Θ(n2) even in
some graphs with unique SPs, for example the complete unweighted graph Kn.

Another type of graph with ν∗ � m∗ is one with large clusters of nodes (e.g.,
as described by the planted `-partition model [7, 25]). Consider a graph H with
k clusters of size n/k (for some constant k ≥ 1) with δ < w(e) ≤ 2δ, for some
constant δ > 0, for each edge e in a cluster; between the clusters is a sparse
interconnect. Then m∗ = Ω(n2) but ν∗ = O(n).

For the above classes of graphs, both of our BC algorithms will run in amor-
tized Õ(n2) time per update (Õ hides polylog factors). More generally we have:

Theorem 2. Let Σ be a sequence of Ω(n) updates on graphs with O(n) distinct
edges on shortest paths through any single vertex in any vertex-induced subgraph.
Then, all BC scores (and APASP) can be maintained in amortized time O(n2 ·
log2 n) per update.

In this extended abstract, we present the key features of our results; details
and full proofs are on arXiv [21, 22]. Our algorithms use Õ(m · ν∗) space, ex-

tending the Õ(mn) result in DI for APSP. Brandes uses only linear space, but
all known dynamic algorithms require at least Ω(n2) space.

Overview of the Paper. In Section 2 we describe our fully dynamic BC al-
gorithm that uses the data structures maintained by our APASP algorithms. In
Section 3 we review the NPRdec and DI algorithms. In Section 4 we describe our
fully dynamic approach, and in Section 5 we present our first algorithm fully-
dynamic and establish its amortized time bound of O(ν∗2 · log3 n). In Section 6
we briefly describe our faster algorithm ffd, and we conclude with Section 7.

2 The Fully Dynamic Betweenness Centrality Algorithm

The static Brandes algorithm [5] computes BC scores in a two phase process.
The first phase (implicitly) computes the SP out-dag for every source through
n applications of Dijkstra’s algorithm. The second phase uses an ‘accumulation’
technique that computes all BC scores using these SP dags in O(n · ν∗) time.
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In our fully dynamic algorithm, we will leave the second phase unchanged.
For the first phase, we will use the approach in the incremental BC algorithm
in [18], which maintains the SP dags using a very simple and efficient incremen-
tal algorithm. For decremental and fully dynamic updates, the corresponding
dynamic APASP algorithms to maintain the SP dags are more involved. Neither
the decremental nor our new fully dynamic APASP algorithms maintain the SP
dags explicitly, instead they maintain data structures to update a collection of
tuples (see Section 3.1.1). We now describe a very simple method to construct the
SP dags from these data structures (this step is not addressed in the decremental
APASP algorithm in [19]).

For every vertex pair x, y, the following sets R∗(x, y), L∗(x, y) are maintained
in NPRdec, and in both of our fully dynamic algorithms (a restricted version of
these sets was introduced for APSP in DI) :

- R∗(x, y) contains all nodes y′ such that every shortest path x y in G can be
extended with the edge (y, y′) to generate another shortest path x y → y′.
- L∗(x, y) contains all nodes x′ such that every shortest path x y in G can be
extended with the edge (x′, x) to generate another shortest path x′ → x y.

These sets allow us to construct the SP dag for each source s using the
following algorithm build-dag. In our fully dynamic algorithms R∗ and L∗ will
be supersets of the exact collections of nodes defined above, but the check in
Step 3 will ensure that only the correct SP dag edges are included. The combined
sizes of these R∗ and L∗ sets is O(n · ν∗ · log n) in our fully dynamic algorithms,
hence the amortized time bound for the overall fully dynamic BC algorithm is
dominated by the time bound for fully dynamic APASP.

Algorithm 1 build-dag(G, s,w, D) (w is the weight function; D is the distance matrix)

1: for each t ∈ V do
2: for each u ∈ R∗(s, t) do
3: if D(s, t) + w(t, u) = D(s, u) then add the edge (t, u) to dag(s)

3 Background

3.1 The NPR Decremental APASP Algorithm [19]

The decremental algorithm NPRdec for APASP builds on the key concept of a
locally shortest path (LSP) in a graph, introduced in the DI method [8]. A path
p in G is an LSP if the path p′ obtained by removing the first edge from p and
the path p′′ obtained by removing the last edge from p are both SPs in G. For
APASP, we need to maintain all shortest paths, and G can have an exponential
(in n) number of SPs. Thus the DI method is not feasible for APASP since
it maintains each SP (and LSP) separately. In order to succinctly maintain all
SPs and LSPs in a manner suitable for efficient decremental updates, NPRdec
developed the tuple-system described below.

3.1.1 A System of Tuples. Since a graph could have an exponential number
of shortest paths, NPRdec introduced the compact tuple-system described below.
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Let w be the edge weight function in G, and let d(x, y) denote the shortest path
length from x to y. A tuple, τ = (xa, by), represents a set of paths in G, all
with the same weight, and all of which use the same first edge (x, a) and the
same last edge (b, y). If the paths in τ are LSPs, then τ is an LST (locally
shortest tuple), and the weight of every path in τ is w(x, a) + d(a, b) + w(b, y).
If d(x, y) = w(x, a) + d(a, b) + w(b, y), then τ is a shortest path tuple (ST).

A triple γ = (τ, wt, count) represents the tuple τ = (xa, by) that contains
count paths from x to y, each with weight wt. We use triples to succinctly store
all LSPs and SPs for each vertex pair in G. For x, y ∈ V , we define:

P (x, y) = {((xa, by), wt, count): (xa, by) is an LST from x to y in G}
P ∗(x, y) = {((xa, by), wt, count): (xa, by) is an ST from x to y in G}.

A left tuple (or `-tuple), τ` = (xa, y), represents the set of LSPs from x to y,
all of which use the same first edge (x, a). A right tuple (r-tuple) τr = (x, by)
is defined analogously. For a shortest path r-tuple τr = (x, by), L(τr) is the set
of vertices which can be used as pre-extensions to create LSTs in G, and for a
shortest path `-tuple τ` = (xa, y), R(τ`) is the set of vertices which can be used
as post-extensions to create LSTs in G. Hence:

L(x, by) = {x′ : (x′, x) ∈ E(G) and (x′x, by) is an LST in G}
R(xa, y) = {y′ : (y, y′) ∈ E(G) and (xa, yy′) is an LST in G}.

For x, y ∈ V , L∗(x, y) denotes the set of vertices which can be used as pre-
extensions to create shortest path tuples in G; R∗(x, y) is defined symmetrically:

L∗(x, y) = {x′ : (x′, x) ∈ E(G) and (x′x, y) is a `-tuple representing SPs in G}
R∗(x, y) = {y′ : (y, y′) ∈ E(G) and (x, yy′) is an r-tuple representing SPs in G}.

Data Structures. The NPRdec algorithm uses priority queues for P and P ∗,
and balanced search trees for L∗, L, R∗ and R, as well as for a set Marked-Tuples
that is specific only to one update. It also uses priority queues Hc and Hf for
the cleanup and fixup procedures, respectively.

Lemma 1. [19] Let G = (V,E) be a directed graph with positive edge weights.
The number of LSTs (or triples) that contain a vertex v in G is O(ν∗2), and the
total number of LSTs (or triples) in G is bounded by O(m∗ · ν∗).

The NPRdec algorithm maintains all STs and LSTs in the current graph,
and for each tuple, it maintains the L, R, L∗ and R∗ sets. To execute a new
update to a vertex v, NPRdec (similar to DI) first calls an algorithm cleanup
on v which removes all STs and LSTs that contain v. This is followed by a
call to algorithm fixup on v which computes all STs and LSTs in the updated
graph that are not already present in the system. The overall algorithm update
consists of cleanup followed by fixup. If the updates are all decremental then
NPRdec maintains exactly all the SPs and LSPs in the graph in O(ν∗2 · log n)
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amortized time per update. Several challenges to adapting the techniques in the
DI decremental method to the tuple-system are addressed in [19]. The analysis
of the amortized time bound is also more involved since with multiple shortest
paths it is possible for the dynamic APASP algorithm to examine a tuple and
merely change its count; in such a case, the DI proof method of charging the
cost of the examination to the new path added to or removed from the system
does not apply.

3.2 The DI Fully Dynamic APSP Algorithm [8]

The DI method first gives a decremental APSP algorithm, and shows that this is
also a correct, though inefficient, fully dynamic APSP algorithm. The inefficiency
arises because under incremental updates the method may maintain some old
SPs and their combinations that are not currently SPs or LSPs; such paths are
called historical shortest paths (HPs) and locally historical paths (LHPs). To
obtain an efficient fully dynamic algorithm, the DI method introduces ‘dummy
updates’ into the update sequence. A dummy update performs cleanup and fixup
on a vertex that was updated in the past. Using a strategically chosen sequence
of dummy updates, it is established in [8] that the resulting APSP algorithm runs
in amortized time O(n2 · log3 n) per real update. The DI method continues to
use the notation P ∗, L∗, etc., even though these are supersets of the defined sets
in a fully dynamic setting. We will do the same in our fully dynamic algorithms.

4 Overview of Our Fully Dynamic APASP Approach

A natural approach to obtain a fully dynamic APASP algorithm would be to
convert the NPRdec decremental APASP algorithm to an efficient fully dynamic
APASP algorithm by using dummy updates, similar to DI. There are two steps
in this process, and each has challenges (the second step is more challenging).

Step 1: Converting NPRdec to a correct (but inefficient) fully dynamic APASP
algorithm. Recall that the decremental APSP algorithm in DI stores old or ‘his-
torical’ SPs (i.e., HPs) in the P ∗ sets if it is used as a fully dynamic algorithm.
Historical paths arise due to the following reason: When incremental updates are
interleaved with decremental ones, a path placed previously in a P ∗ may cease
to be an SP and become a historical SP (or HP) if a shorter path for the same
vertex pair is created by an incremental update. However, DI show that their
decremental algorithm remains correct if HPs remain in P ∗.

For the APASP case, the decremental NPRdec algorithm is not correct when
used with fully dynamic updates. To see this, let us extend the notion of historical
paths to historical tuples (HT and LHT) in the natural way. Using NPRdec, we
could have an HT τ in P ∗ which is no longer an ST, but is an LST. Now, if
additional paths are added to τ in the next update, then NPRdec will treat this
tuple as an LST and update its count in P but not in P ∗. If later, τ is restored as
an ST (through a decremental update), it will have an incorrect lower count in P ∗
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which will not be detected (this can never happen in DI since it assumes unique
SPs). Additional issues occur in NPRdec that need to be addressed (see [21]).

Our first step in developing a fully dynamic APASP algorithm is to update
the NPRdec algorithm so that the resulting algorithm fully-update remains
correct under fully dynamic updates. This algorithm and its analysis are available
in [21]; the details are technical and are omitted here. Algorithm fully-update
matches the amortized bound in NPRdec for decremental updates while being
correct for fully dynamic updates. However, as with DI, it is inefficient as a fully
dynamic algorithm.

Lemma 2. Consider a sequence of r calls to fully-update on a graph with
n vertices. Let C be the maximum number of tuples in the tuple-system that
can contain a path through a given vertex, and let D be the maximum number of
tuples that can be in the tuple-system at any time. Then fully-update executes
the r updates in O((r · (n2 + C) +D) · log n) time.

Lemma 3. Suppose every HT in the tuple-system is an ST in one of z different
n-node graphs, and every LHT is formed from these HTs. Then,
1. The number of LHTs in G’s tuple-system is at most O(z ·m · ν∗).
2. If all HTs that contain a given vertex u lie within z′ ≤ z of the z graphs,

then the number of LHTs that contain u is O((z + z′2) · ν∗2).

The proof of Lemma 2 adapts the NPRdec analysis to fully-update; Lemma 3
follows from basic properties of the tuple-system (see [21] for both proofs).

Step 2. Obtaining a good dummy sequence for efficient fully dynamic APASP.
The DI method uses ‘dummy updates’, where a vertex updated at time t is also
given a ‘dummy’ update at steps t+ 2i, for each i > 0 (this update is performed
along with the real update at step t + 2i). The effect of a dummy update on a
vertex v is to remove any HP or LHP that contains v, thereby streamlining the
collection of paths maintained. Further, with unique SPs, each HP in P ∗(x, y) for
a given pair x, y will have a different weight. An O(log n) bound on the number
of HPs in a P ∗(x, y) is established in DI as follows. Let the current time step be
t, and consider an HP τ last updated at t′ < t. Let us denote the smallest i such
that t′ + 2i > t as the dummy-index for τ . By observing that different HPs for
x, y must have different dummy-indices, it follows that their number is O(log t),
which is O(log n) since the data structure is reconstructed after O(n) updates.

If we try to apply the DI dummy sequence to APASP, we are faced with the
issue that a new ST for x, y (with the same weight) could be created at each
update in a long sequence of successive updates. Then, an incremental update
could transform all of these STs into HTs. If this happens, then several HTs for
x, y, all with the same weight, could have the same dummy-index (in DI only
one HP can be present for this entire collection due to unique SPs). Thus, the DI
approach of obtaining an O(log n) bound for the number of HPs for each vertex
pair does not work for HTs in our tuple-system.

Our method for Step 2 is to use a different dummy sequence, and a com-
pletely different analysis that obtains an O(log n) bound for the number of dif-
ferent ‘PDGs’ (a PDG is a type of derived graph defined in Section 5) that
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can contain the HTs. Our new dummy sequence is inspired by the ‘level graph’
method introduced in Thorup [28] to improve the amortized bound for fully dy-
namic APSP to O(n2 · log2 n), saving a log factor over DI. The Thorup method
is complex because it maintains O(log n) levels of data structures for suitable
‘level graphs’. Our first algorithm fully-dynamic does not maintain these level
graphs (though our second algorithm ffd does). Instead, fully-dynamic per-
forms exactly like the fully dynamic algorithm in DI, except that it uses this
alternate dummy update sequence, and it calls fully-update for APASP in-
stead of the DI update algorithm for APSP. Our change in the update sequence
requires a completely new proof of the amortized bound which we sketch in the
next section (Section 5). We consider this to be a contribution of independent
interest: If we replace fully-update by the DI update algorithm in fully-
dynamic, we get a new fully dynamic APSP algorithm which is as simple as DI,
with a new analysis. The full details of algorithm fully-dynamic are in [21].

In Section 6 we briefly describe the second algorithm ffd, which achieves
an O(log n) improvement over the amortized bound for fully-dynamic. This
algorithm overcomes some technical challenges in order to generalize the Thorup

method to APASP, and is considerably more complicated than fully-dynamic.

5 Algorithm fully-dynamic

Algorithm fully-dynamic applies fully-update (see Section 4, Step 1) to
vertex v with the new weight function w′ for the t-th update. Then it executes
dummy updates on a sequence N of the most recently updated vertices as spec-
ified in Steps 2-5. The length of this sequence of vertices is determined by the
position k of the lsb set to 1 in the bit representation B = br−1 · · · b0 of t.

Algorithm 2 fully-dynamic(G, v,w′, t)

1: fully-update(v,w′)
2: k ← position of the least significant bit set in the representation br−1 · · · b0 of t
3: N ← set of vertices updated at steps t− 1, · · · , t− (2k − 1)
4: for each u ∈ N in decreasing order of update time do
5: fully-update(u,w′) (dummy updates)

Let Gt be the graph after the t-th update, with G0 the initial graph. Thus,
G = Gt−1 in Algorithm 2, and the updated graph is Gt. For each i such that bi =
1, we let timet(i) be the earlier update step t′ whose bit representation matches
B in positions br−1 · · · bi and has zeros elsewhere. We define Prior-times(t) =
{timet(i) | bi = 1}. Note that |Prior-times(t)| = O(log t). The following lemma
follows from the fact that a vertex updated at t′ /∈ Prior-times(t) would have
been updated by a more recent dummy update (see [21] for the proof).

Lemma 4. For every vertex v in Gt, the step tv of the most recent update to v
is in Prior-times(t).
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The Prior Deletion Graph (PDG). For t′ < t, let W be the set of vertices
that are updated in the interval of steps [t′ + 1, t]. We define the prior deletion
graph (PDG) Γt′,t as the induced subgraph of Gt′ on the vertex set V (Gt′)−W .
If t is the current update step, then we simply use Γt′ instead of Γt′,t.

We say that a path p is present in both Gt′ and Gt if no call to fully-update
is made on any vertex in p in the interval [t′+ 1, t]. The following lemma follows
from a PDG Γt′,t being the result of applying a sequence of decremental updates
to Gt′ . Thus, an ST in Gt′ is an ST in Γt′,t if it is present in it.

Lemma 5. 1. If τ is an ST in Gt′ then τ continues to be an ST in every PDG
Γt′,t with t ≥ t′ in which τ is present.

2. For any t̂ ≥ t′, if τ is an ST in Gt̂ then τ is an ST in every PDG Γt′,t′′ ,
t′′ ≥ t̂, in which τ is present.

PDGs for Update t: We will associate with the current update step t, the set
of PDGs Γt′ , for t′ ∈ Prior-times(t). These PDGs are similar to the level graphs
maintained in Thorup, but we choose to give them a different name since we do
not maintain these graphs; we only use them here to analyze the performance
of our algorithm. We rebuild the tuple-system after 2n updates, so t ≤ 2n.

Lemma 6. Each HT in the tuple-system for Gt is an ST in at least one of the
Γt′,t for t′ ∈ Prior-times(t). Further z = O(log n) in Lemma 3 for Gt.

Proof. Consider an HT τ = (xa, by) in Gt. Let the most recently updated vertex
in τ be v, and let its update step be tv ≤ t. By definition of HT, τ is an ST in
some t′ in [tv, t], hence by Lemma 5, part 2, using t̂ = t′ = tv and t′′ = t, we
have τ an ST in Γtv . Further, by Lemma 4, tv ∈ Prior-times(t). Finally, since
|Prior-times(t)| = O(log t) = O(log n) for any t, z = O(log n) in Lemma 3.

We will now use the above lemma to establish the amortized time bound.

Lemma 7. Algorithm 2 executes a sequence Σ of n real updates on an n-node
graph in O(ν∗2 · log3 n) amortized time per update.

Proof. (Sketch) We apply Lemma 2. By Lemma 6 we have z = O(log n) in
Lemma 3, hence D = O(m · ν∗ · log n) in Lemma 2. Let C1 and C2 be the cost
of a cleanup for a real and dummy update, respectively. Then, we use z′ = z in
Lemma 3 for the real updates, so C1 = O(ν∗2 · log2 n).

It is readily seen that there are O(n log n) dummy updates performed during
the n real updates. At the real update step t, when a dummy update is performed
on vertex u (last updated at time tu), only PDGs Γt and Γtu contain u, hence
z′ = 2 in Lemma 3. Thus C2 = O(ν∗2 · log n). Hence, by Lemma 2, the total
time for the n real updates and n log n dummy updates is O( (n · (n2 + C1) +
n log n · (n2 + C2) + D) · log n) = O(n · ν∗2 · log3 n + m · ν∗ · log2 n). Since we
assume ν∗ = Ω(n), we have m = O(n · ν∗), and we obtain the desired amortized
cost for each of the n real updates.
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6 Algorithm ffd

We give a very brief overview of Algorithm ffd, deferring the details to [22].

Background. For unique SPs, Thorup uses a level system of decremental-only
graphs, with updates being insertion or deletion of a node with incident edges.
The PDGs in Section 5 are an abstract representation of the graphs maintained
in Thorup’s level system. Every path maintained by Thorup is an SP or LSP
in some level graph (i.e., PDG), and when a node is removed from the current
graph, it is also removed from every PDG that contains it. This saves a log factor
in the amortized time bound over the DI bound.

Algorithm ffd. In our algorithm ffd for fully dynamic APASP, we explicitly
maintain the PDGs of Section 5 using ‘local’ data structures (see [22] for a
detailed description of the structures). A level i PDG is active at time t if i is
the lsb set in some t′ ∈ Prior-times(t); we say level(t′) = i. Each path p in a
tuple is centered in level k = level(t′), where t′ is the most recent step in which p
entered the tuple system in a fixup step. Thus, the paths represented by a tuple
are spread across the active levels at which these paths are centered; this avoids
copying over all data structures each time a new level is activated, which would
be very expensive. To keep track of this distribution of paths, we associate an
O(log n)-size array Cγ with each tuple γ that stores the number of paths in γ
centered at each level.

We face several challenges when we try to extend the Thorup method to
APASP. Here we briefly describe a major challenge, which we call the partial
extension problem (PEP) (see [22] for a detailed example). This arises when a
collection of HTs for x, y are restored as STs due to a decremental update. A
tuple τ in this collection may have its correct extensions in the local structures
L∗i and R∗i in level i, but its extensions in a more recent level j may not be
in L∗j and R∗j if τ is not an ST in that level, and is instead an HT. Thus,
when the algorithm processes τ as an ST after the current decremental update,
it needs to generate the correct extensions in L∗j and R∗j since they are not
currently present in these sets, but to maintain efficiency, it should not try to
generate extensions in L∗i and R∗i , since they are already present there. Neither
Thorup nor fully-dynamic need to distinguish between these two cases. In
fully-dynamic, algorithm fully-update (called in Steps 1 and 5) creates
LHTs by combining every pair of compatible HTs, hence these LHTs will always
be available in the corresponding tuple-system. This problem is not an issue in
Thorup either, due to the assumption of unique SPs: Thorup can afford to look
at all HPs, since there are only O(n2 · log n) of them. Algorithm ffd maintains
HTs (since it maintains APASP), and their number can be much larger.

In order to maintain both correctness and efficiency in the PEP scenario
for APASP, we introduce two new data structures: (1) the historical distance
matrices DL that allow us to efficiently determine the most recent level graph
in which an HT was an ST, and (2) data structures LN and RN that allow us
to efficiently identify exactly those new extensions that need to be performed.
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7 Conclusion

We conclude with a possible avenue for improving the amortized bound. Instead
of the tuples we maintain in our tuple systems, we could have maintained left and
right tuples (see Section 3.1.1). This would reduce the space usage from Õ(m·ν∗)
to Õ(mn). This improved space bound is achievable with Õ(ν∗2) amortized time
(details omitted). The number of left or right tuples that contain a given vertex
is only Õ(n ·ν∗), but the time bound does not improve with our current method.
Is there an improved method that achieves Õ(n · ν∗) amortized time?
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