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Abstract.Weestablishthatthealgorithmiccomplexity of theminimumspanningtreeproblemisequal
to its decision-treecomplexity. Specifically, wepresentadeterministicalgorithmto find aminimum
spanningtreeof a graphwith n verticesandm edgesthatrunsin time O(T ∗(m, n)) whereT ∗ is the
minimum numberof edge-weightcomparisonsneededto determinethe solution.The algorithmis
quitesimpleandcanbeimplementedonapointermachine.

Althoughour timeboundis optimal,theexactfunctiondescribingit is not known atpresent.The
currentbestboundsknown for T ∗ areT ∗(m, n) = Ä(m) andT ∗(m, n) = O(m · α(m, n)), whereα is
acertainnaturalinverseof Ackermann’s function.

EvenundertheassumptionthatT ∗ is superlinear, weshow thatif theinputgraphis selectedfrom
Gn,m, ouralgorithmrunsin lineartime with highprobability, regardlessof n, m, or thepermutationof
edgeweights.Theanalysisusesa new martingalefor Gn,m similar to theedge-exposuremartingale
for Gn,p.

Categoriesand SubjectDescriptors:F.2.0 [Analysis of Algorithms and Problem Complexity]:
General;G.2.2[Discrete Mathematics]: GraphTheory—graphalgorithms; G.3 [Probability and
Statistics]

GeneralTerms:Algorithms,Theory

AdditionalKey WordsandPhrases:Graphalgorithms,minimumspanningtree,optimalcomplexity

1. Introduction

The minimum spanningtree (MST) problemhasbeenstudiedfor muchof this
centuryandyetdespiteits apparentsimplicity, theproblemis still not fully under-
stood.GrahamandHell [1985]giveanexcellentsurvey of resultsfrom theearliest
known algorithmof Borůvka [1926] to the inventionof Fibonacciheaps,which
were centralto the algorithmsin Fredmanand Tarjan [1987] and Gabow et al.
[1986]. Chazelle[1997] presentedan MST algorithm basedon the Soft Heap
[Chazelle2000a]having complexity O(mα(m, n) logα(m, n)), whereα is a cer-
tain inverseof Ackermann’s function. RecentlyChazelle[2000b] modified the
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algorithmin Chazelle[1997] to bring down the runningtime to O(m · α(m, n)).
Laterasimilaralgorithmof thesamerunningtimewaspresentedby Pettie[1999],
whichgivesan alternateexpositionof theO(m ·α(m, n)) result.This is thetightest
timeboundfor theMST problemto date,thoughnot known to beoptimal.

All algorithmsmentionedabove work on a pointermachine[Tarjan1979a]un-
dertherestrictionthatedgeweightsmayonly besubjectedto binarycomparisons.
If, in addition,we have accessto a streamof perfectlyrandombits, Kargeret al.
[1995] showed that theMST canbecomputedin linear time with highprobabil-
ity. FredmanandWillard [1994] gave adeterministiclinear time MST algorithm
undertheunit-costRAM model,assumingedgeweightsareintegersrepresented
in binary.

It isstill unknownwhetherthesemorepowerfulmodelsarenecessarytocompute
theMSTin lineartime.However, in thisarticle,wegive adeterministic,comparison-
basedMST algorithmthatrunson a pointermachinein O(T ∗(m, n)) time,where
T ∗(m, n) is thenumberof edge-weightcomparisonsneededto determinetheMST
onany graphwith medgesandn vertices.Additionally, weshow thatouralgorithm
runsin lineartimefor thevastmajorityof graphs,regardlessof thenumberof edges
in thegraphor thepermutationof edgeweights.

Becauseof the natureof our algorithm, its exact running time is not known.
This might seemparadoxicalat first. The sourceof our algorithm’s optimality,
andits mysteriousrunningtime, is theuseof precomputed“MST decisiontrees”
whoseexact depthis unknown but nonethelessprovably optimal.The technique
of obtainingoptimalalgorithmsvia precomputationwas usedin a simplersetting
in Larmore[1990] for searchingconvex matricesandin Dixon et al. [1992] for
MST sensitivity analysis.We shouldpoint out that precomputingoptimal deci-
sion treesdoesnot increasethe constantfactor hiddenby big-Oh notation,nor
doesit result in a nonuniformalgorithm.A trivial lower boundon the running
time of our algorithm is Ä(m); the bestupperbound, O(mα(m, n)), is due to
Chazelle[2000b].

OuroptimalMST algorithmshouldbecontrastedwith thecomplexity-theoretic
result that any optimal verification algorithm for someproblemcan be usedto
constructanoptimalalgorithmfor thesameproblem[Jones1997].Thoughasymp-
totically optimal,this constructionhidesastronomicalconstantfactorsandproves
nothingaboutthe relationshipbetweenalgorithmiccomplexity anddecision-tree
complexity. SeeSection8 for adiscussionof theseandotherrelatedissues.

In thenext sections,wereview somewell-knownMSTresultsthatareusedbyour
algorithm.In Section3,weprove akey lemmaandgive aprocedurefor partitioning
thegraphin anMST-respectingmanner. Section4 givesanoverview of ouroptimal
algorithmanddiscussesthestructureanduseof precomputeddecision-treesfor the
MST problem.Section5 givesthealgorithmanda proof of optimality. Section6
showshow thealgorithmmaybemodifiedtorunonapointermachine.In Section7,
we show our algorithmrunsin linear-time with high probabilityif theinput graph
is selectedat random.Sections8 and9 discussrelatedproblemsandalgorithms,
openquestions,andtheactualcomplexity of MST.

2. Preliminaries

Theinputis anundirectedgraphG = (V, E) whereeachedgeis assignedadistinct
real-valuedweight. By convention,|V | = n and|E| = m. Theminimumspanning
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forest(MSF) problemasksfor a spanningacyclic subgraphof G having the least
total weight. In this article, we assumefor conveniencethat the input graphis
connected,sinceotherwisewe canfind its connectedcomponentsin linear time
andthensolvetheproblemoneachconnectedcomponent.Thus,theMSFproblem
is identicalto theminimumspanningtreeproblem.

It is well known thatonecanidentify edgesprovably in theMSF usingthecut
property, and edgesprovably not in the MSF using the cycle property. The cut
propertystatesthat the lightestedgecrossingany partition of the vertex set into
two partsmustbelongto theMSF. Thecyclepropertystatesthattheheaviestedge
in any cycle in thegraphcannotbein theMSF.

2.1. BORŮVKA STEPS. The earliestknown MSF algorithmis dueto Borůvka
[1926].Thealgorithmisquitesimple:It proceedsin asequenceof stages,andin each
stage,or Borůvkastep, it identifiesa forest F consistingof theminimum-weight
edgeincidentto eachvertex in thegraphG, thenformsthegraphG1 = G\F asthe
inputto thenext stage.HereG\F denotesthegraphderived from G by contracting
edgesin F (by the cutpropertytheseedgesbelongto theMSF.) EachBorůvkastep
takeslinear time, andsincethe numberof verticesis reducedby at leasthalf in
eachstep,Borůvka’s algorithmtakesO(m logn) time.

OuroptimalalgorithmusesaprocedurecalledBoruvka2(G; F, G′). Thisproce-
dureexecutestwo Borůvkastepson the input graphG andreturnsthecontracted
graphG′ aswell asthesetof edgesF identifiedaspartof theMSF during these
two steps.

2.2. DIJSKTRA-JARNÍK-PRIM ALGORITHM. AnotherearlyMSF algorithmthat
runsin O(m logn) timeis theonebyJarńık [1930],rediscoveredbyDijkstra[1959]
andPrim[1957].Wereferto thisalgorithmastheDJPalgorithm.Briefly, theDJP
algorithmgrows theMSF T oneedgeat a time. Initially, T is anarbitraryvertex.
In eachstepof the DJP algorithm, T is augmentedwith the least-weightedge
(x, y) suchthat x ∈ T andy 6∈ T . By the cutproperty, all edgesaddedto T arein
theMSF.

LEMMA 2.1. Let T be the treeformedafter theexecutionof somenumberof
stepsof theDJP algorithm.Let e and f be two arbitrary edges,each with exactly
oneendpointin T, andlet g be themaximumweightedge on thepathfrome to f
in T. Then gcannotbeheavierthan bothe and f .

PROOF. Let P bethepathin T connectinge and f, andassumethecontrary,
that g is the heaviest edgein P ∪ {e, f }. Now considerthe momentwhen g is
selectedby DJPandletP ′ betheportionof P presentin thetree.Thereareexactly
two edgesin (P − P ′) ∪ {e, f } thatareeligible to bechosenby theDJPalgorithm
at this moment,oneof which is theedgeg. If theotheredgeis in P, thenby our
choiceof g it mustbelighter thang. If theotheredgeis eithere or f, thenby our
assumptionit mustbelighter thang. In bothcases,g couldnot bechosennext by
theDJPalgorithm,acontradiction.

2.3. THE DENSECASEALGORITHM. Thealgorithmspresentedin Fredmanand
Tarjan[1987],Gabow et al. [1986],Chazelle[1997,2000b],andPettie[1999]will
find the MSF of a graphin linear time if the graphis sufficiently dense,that is,
hasa sufficiently large edge-to-vertex ratio. For our purposes,sufficiently dense
will meanm/n ≥ log(3) n. All of the above algorithmsrun in linear time for that
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density, the simplestof which is easily that of FredmanandTarjan[1987]. This
algorithm executesa numberof phases,wherethe purposeof eachphaseis to
amplify the“nominaldensity”of thegraphby contractinga largenumberof MSF
edges;herethenominaldensityis theratiom/n′, wherem, asusual,is thenumber
of edgesin theoriginalgraph,andn′ is thenumberof verticesin thecurrentgraph.
Eachphaseof thealgorithmrunsin O(m + n) time, andworksby executingthe
DJPalgorithmmany times,eachfor a limited numberof steps.If n′ is thenumber
of verticesbeforea phase,thenumberof verticesafter thephaseis no morethan
n′/2m/n′

, hencenomorethanlog∗ n − log∗(m/n) phasesareneeded.
TheprocedureDenseCase(G; F) takes asinputann-node graphG andreturns

theMSF F of G in lineartime for graphswith densityat leastlog(3) n.
Our optimal algorithm will actually call DenseCaseon a graphderived from

an n-node,m-edgegraphby contractingverticesso that the numberof vertices
is reducedby a factorof at leastlog(3) n. The numberof edgesin the contracted
graphis no morethanm. Hence,DenseCasewill run in O(m + n) time on such
agraph.

2.4. SOFTHEAP. ThemaindatastructureusedbyouralgorithmistheSoftHeap
[Chazelle2000a].TheSoftHeapis akind of priority queuethatgivesusan optimal
trade-off betweenaccuracy andspeed.It is parameterizedby anerrortoleranceǫ,
andsupportsthefollowing operations:

—MakeHeap(): returnsanemptysoft heap.
—Insert(S, x): insertitem x into heapS.
—Findmin(S): returnsitem withsmallestkey in heapS.
—Delete(S, x): deletex from heapS.
—Meld(S1, S2): createnew heapcontainingtheunionof itemsstoredin S1

andS2, destroying S1 andS2 in theprocess.

All operationstake constantamortizedtime, except for Insert, which takes
O(log(1/ǫ)) time.To save time theSoft Heapallows itemsto begroupedtogether
andtreatedasthoughthey have asinglekey. An itemadoptsthelargestkey of any
item in its group,corrupting the item if its new key differs from its original key.
Thus,theoriginal key of an item returnedby Findmin(i.e., any item in thegroup
with minimumkey) is no morethanthekeys of all uncorrupteditemsin theheap.
Theguaranteeis thataftern Insertoperations,nomorethanǫn corrupteditemsare
in theheap.Thefollowing resultis shown in Chazelle[2000a].

LEMMA 2.2. Fixanyparameter0< ǫ < 1/2, andbeginningwithnoprior data,
considera mixedsequenceof operationsthat includesn inserts.On a SoftHeap,
the amortizedcomplexity of each operation is constant,exceptfor insert, which
takesO(log(1/ǫ)) time. At mostǫn itemsarecorruptedat anygiventime.

3. A KeyLemmaandProcedure

3.1. A ROBUST CONTRACTION LEMMA . It is well known that if T is a tree
of MSF edges,we cancontract T into a singlevertex while maintainingthe in-
variantthat theMSF of thecontractedgraphplus T gives theMSF for thegraph
beforecontraction.
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In our algorithm,we find a treeof MSF edgesT in a corruptedgraph,where
someof theedgeweightshavebeenincreaseddueto theuseof aSoftHeap.In the
lemmagivenbelow, weshow thatusefulinformationcanbeobtainedbycontracting
certaincorruptedtrees,in particularthoseconstructedusingsomenumberof steps
from theDijkstra–Jarnik–Prim(DJP) algorithm.Ideassimilar to theseareusedin
Chazelle’s[1997]algorithmandmoreexplicitly in therecentalgorithmof Chazelle
[2000b](seealsoPettie[1999]).

Beforestatingthelemma,weneedsomenotationandpreliminaryconcepts.Let
V(G) andE(G) be thevertex andedgesetsof G, andn andm betheircardinality,
respectively. Let theG-weightof an edge beits weightin graphG (theG maybe
omittedif implied from context).

For thefollowing definitions,M andC aresubgraphsof G. Denoteby G ⇑ M
somegraph derived from G by raising the weight of eachedgein M by ar-
bitrary amounts(theseedgesare said to be corrupted). LetMC be the set of
edgesin M with exactly oneendpointin C. Let G\C denotethe graphobtained
by contractingall connectedcomponentsinducedby C, that is, by replacing
eachconnectedcomponentwith a singlevertex andreassigningedgeendpoints
appropriately.

Definition 3.1. A subgraphC is saidto beDJP-contractiblewith respectto G
if afterexecutingtheDJPalgorithmonG for somenumberof steps,with asuitable
startvertex in C, thetreethatresultsis aspanningtreefor C.

LEMMA 3.2. Let M be a set of edges in a graph G. If C is a subgraph of
G that is DJP-contractible with respectto G ⇑ M , thenMSF(G) is a subsetof
MSF(C) ∪ MSF(G\C − MC) ∪ MC.

PROOF. Eachedgein C that is not in MSF(C) is the heaviest edgeon some
cycle in C. Sincethatcycleexistsin G aswell, thatedgeis not in MSF(G). Sowe
needonly show thatedgesin G\C thatarenot in MSF(G\C − MC) ∪ MC arealso
not in MSF(G).

Let H = G\C − MC; hence,we needto show thatno edgein H − MSF(H ) is
in MSF(G). Let e bein H − MSF(H ), thatis, e is theheaviestedgeonsomecycle
χ in H . If χ doesnot involve thevertex derived by contractingC, thenit existsin
G aswell ande 6∈ MSF(G). Otherwise,χ formsa pathP in G whoseendpoints,
sayx andy, areboth in C. Let theendedgesof P be(x, w) and(y, z). SinceH
includesno corruptededgeswith oneendpointin C, theG-weightof theseedges
is thesameastheir (G ⇑ M)-weight.

Let T be the spanningtreeof C ⇑ M derived by the DJPalgorithm,Q be the
pathin T connectingx andy, andg betheheaviestedgein Q. NoticethatP ∪ Q

formsa cycle. By our choiceof e, it mustbeheavier thanboth (x, w) and(y, z),
andby Lemma2.1, theheavier of (x, w) and(y, z) is heavier thanthe (G ⇑ M)-
weightof g, which is anupperboundon theG-weightsof all edgesin Q. So with
respectto G-weights,e is the heaviest edgeon the cycle P ∪ Q andcannotbe
in MSF(G).

3.2. THE PARTITION PROCEDURE. Our algorithmusesthePartition procedure
thatis given below. ThisprocedurefindsDJP-contractiblesubgraphsC1, . . . , Ck in
which edgesareprogressively beingcorruptedby theSoft Heap.Let MCi contain
only thosecorruptededgeswith oneendpointin Ci at thetime it is completed.
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FIG. 1. ThePartitionprocedure.

EachsubgraphCi will beDJP-contractiblewith respectto agraphderived from
G by severalroundsof contractionsandedgedeletions.WhenCi is finished,it is
contractedandall incidentcorruptededgesarediscarded.By applyingLemma3.2
repeatedly, weseethatafterCi is built, theMSF of G is asubsetof

i
⋃

j =1

MSF(C j ) ∪ MSF

(

G\
i

⋃

j =1

C j −
i

⋃

j =1

MC j

)

∪
i

⋃

j =1

MC j .

ThePartitionprocedureisshownin Figure1.Theargumentsappearingbeforethe
semicolonareinputs;the othersareoutputs.C = {C1, . . . , Ck} is asetof subgraphs
of G, andMC is a setof corruptededgeswith endpointsin differentCi ’s. No edge
will appearin morethanoneof MC, C1, . . . , Ck.

Initially, Partition setsevery vertex to be live. Theobjective is to convert each
vertex to dead, signifyingthatit is partof acomponentCi with ≤ maxsizevertices
andpartof a conglomerateof ≥ maxsizevertices,wherea conglomerateis a con-
nectedcomponentof thegraph

⋃

E(Ci ). Intuitively aconglomerateis acollection
of Ci ’s linkedby commonvertices.Thisschemefor growing componentsis similar
to theonegiven in FredmanandTarjan[1987].

We grow theCi ’s oneat a time accordingto theDJPalgorithm,exceptthatwe
usea Soft Heap.A componentis donegrowing if it reachesmaxsizeverticesor if
it attachesitself to anexisting component.Clearly, if a componentdoesnot reach
maxsizevertices,it haslinkedtoaconglomerateof atleastmaxsizevertices.Hence,
all its verticescanbe designateddead.Upon completionof a componentCi , we
discardthesetof corruptededgeswith oneendpointin Ci .
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Therunningtimeof Partition isdominatedbytheheapoperations,whichdepend
on ǫ. Eachedgeis insertedinto a Soft Heapno morethantwice (oncefor each
endpoint),andextractednomorethanonce.Wecanchargethecostof dismantling
theheapto the insertoperationswhich createdit; hence,thetotal runningtime is
O(m log(1/ǫ)). By Lemma2.2, thenumberof discardededgesis boundedby the
numberof insertionsscaledby ǫ; thus,|MC| ≤ 2ǫm. Thus,wehave

LEMMA 3.3. Givena graphG, any0< ǫ < 1/2,andaparametermaxsize, Par-
tition findsedge-disjointsubgraphsMC, C1, . . . , Ck in time O(|E(G)| · log(1/ǫ))
whilesatisfyingseveral conditions:

(a) For all v ∈ V(G), there is somei such that v ∈ V(Ci ).
(b) For all i , |V(Ci )| ≤ maxsize.
(c) For each conglomerate P ∈

⋃

i Ci , |V(P)| ≥ maxsize.
(d) |E(MC)| ≤ 2ǫ · |E(G)|.
(e) MSF(G) ⊆

⋃

i MSF(Ci ) ∪ MSF(G\(
⋃

i Ci ) − MC) ∪ MC .

We observe thatthefull suiteof soft heapoperationsis not neededaswe never
employ themeldoperation.Wecanthereforeuseamorespace-efficientversionof
the soft heapwhereits nodesareplacedin an arrayandthe links betweenthem
representedimplicitly, as in a binaryheap.

4. Overview of theOptimalAlgorithm

Hereis anoverview of ouroptimalMSF algorithm.

—In thefirst stage,we find DJP-contractiblesubgraphsC1, C2, . . . , Ck with their
associatedsetof edgesMC =

⋃

i MCi , whereMCi consistsof corruptededges
with oneendpointin Ci .

—In the secondstagewe find the MSF Fi of eachCi , and the MSF F0 of the
contractedgraphG\(

⋃

i Ci ) − MC . By Lemma3.2,theMSFof thewholegraph
is containedwithin F0 ∪ (

⋃

i Fi ) ∪ MC . Note that, at this point, we have not
identifiedany edgesasbeingin theMSF of theoriginalgraphG.

—In thethird stage,we find someMSF edges,via Borůvkasteps,andrecurseon
thegraphderived bycontractingtheseedges.

We executethe first stageusing the Partition proceduredescribedin the pre-
vioussection.

We executethesecondstagewith optimaldecisiontrees. Essentially, theseare
hardwiredalgorithmsdesignedto computetheMSF of a graphusinganoptimal
numberof edge-weightcomparisons.In general,decisiontreesaremuch larger
thanthesizeof theproblemthat they solve andfinding optimalonesis very time
consuming.We canafford thecostof building decisiontreesby guaranteeingthat
eachoneis extremelysmall.At thesametime,wemakeeachconglomerateformed
by theCi to besufficiently largesothattheMSF F0 of thecontractedgraphcanbe
foundin lineartimeusingtheDenseCasealgorithm.

Finally, inthethirdstage,wehave areductionin verticesduetotheBorůvkasteps,
andareductionin edgesdueto theapplicationof Lemma3.2.In ouroptimalalgo-
rithm, bothverticesandedgesreduceby aconstantfactor, thusresultingin there-
cursiveapplicationsof thealgorithmongraphswith geometricallydecreasingsizes.
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4.1. DECISIONTREES. Consideracomputationthattakes asinputafixed graph
G andcomputesthe minimum spanningtreefor G for any given permutationof
edgeweights.If weareonly interestedin theedge-weightcomparisonsperformed,
this computationcan be describedin termsof an MSF decisiontree for G. An
MSF decisiontreeis a rootedtreehaving anedge-weightcomparisonassociated
with eachinternal node(e.g.,weight(x, y) < weight(w, z)). Eachinternal node
hasexactly two children,onerepresentingthat the comparisonis true, the other
that it is false.The leaves of the treelist off the edgesin somespanningtreeof
the graph.An MSF decisiontree for G is said to be correct if the edge-weight
comparisonsencounteredon any path from the root to a leaf uniquely identify
the spanningtree at that leaf as the MSF. A decisiontree for G is said to be
optimal if it is correct and there exists no correct decision tree for G with
lesserdepth.

Let us boundthe time neededto find optimal decisiontreesfor all graphson
r verticesby bruteforcesearch.Thereare2

(r2)
suchgraphsandfor eachgraphwe

mustcheckall possibledecisiontreesboundedby asufficientdepth.SincetheDJP
algorithmusesno morethanr (r − 1) comparisonson any graphon r vertices,a
depthof r 2 is sufficient.Hence,thetreehasfewerthan2r 2

internalnodes.Thereare
<r 4 possibilitiesfor eachinternalnode(its comparisonmustidentify two edges);
hence,thereare <r 2r 2+2

distinctdecisiontreesto check.To determineif adecision
treeis correct,we generateall possiblepermutationsof theedgeweightsandfor
each,solve theMSF problemon thegiven graph.Now we simultaneouslycheck
all permutationsagainstadecisiontreeasfollows:First,weplaceall permutations
at the root; thenmove them to the left or right child dependingon the truth or
falsityof theedge-weightcomparisonwith respectto eachpermutation.Werepeat
this step until all permutationsreacha leaf. If for eachleaf, all permutations
sharingthat leaf agreeon theMSF, thenthedecisiontreeis correct.This process
takesno longerthan(r 2 + 1)! for eachdecisiontree,hencethetotal time required
to find anoptimaldecisiontreefor all graphson fewer thanr verticesis bounded
by 2r 2 · r 2r 2+2 · (r 2 + 1)!, which is lessthan22r 2+o(r )

. Settingr = log(3) n allowsusto
precomputeall optimaldecisiontreesin o(n) time.1

Observe that,in thehigh-level algorithmwe gave in Section4, if themaximum
sizeof eachcomponentCi is sufficiently small,thecomponentscanbeorganized
into arelatively smallnumberof groupsof isomorphiccomponents(ignoringedge
weights).For eachgroup,we usea singleprecomputedoptimal decisiontreeto
determinetheMSF of componentsin thatgroup.

In our optimalalgorithm,we usea procedureDecisionTree(G;F ), which takes
asinput a collectionof graphsG, eachwith at mostr vertices,andreturnstheir
minimumspanningforestsin F usingtheprecomputeddecisiontrees.

5. TheAlgorithm

Asdiscussedabove, theoptimalMSFalgorithmisasfollows:First,precomputethe
optimaldecisiontreesfor all graphswith ≤ log(3) n vertices.Next, divide theinput
graphinto subgraphsC1, C2, . . . , Ck, discardingthesetof corruptededgesMCi as

1 Wecansetr ashighas
√

log logn − 1; however, thisprovidesnobenefitto ouralgorithm.
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eachCi is completed.Usethedecisiontreesfoundearlierto computetheMSF Fi
of eachCi , thencontracteachconnectedcomponentspannedby F1 ∪ · · · ∪ Fk
(i.e.,eachconglomerate)into asinglevertex. Theresultinggraphhas≤n/ log(3) n
verticessinceeachconglomeratehasatleastlog(3) n verticesbyLemma3.3.Hence,
we canusetheDenseCasealgorithmto computeits MSF F0 in time linear in m.
At thispoint,by Lemma3.2theMSF is now containedin theedgesetF0 ∪ · · · ∪
Fk ∪ MC1 ∪ · · · ∪ MCk . On this graph,we applytwo Borůvkasteps,reducingthe
numberof verticesby afactorof four, andthencomputerecursively. Thealgorithm
is given below.

Let ǫ = 1/8 (this is usedby theSoftHeapin thePartitionprocedure).
Precomputeoptimaldecisiontreesfor all graphswith ≤ log(3) n0 vertices,where

n0 is thenumberof verticesin theoriginal inputgraph.

OptimalMSF(G)
If E(G) = ∅ then Return(∅)
r := ⌈log(3) |V(G)|⌉
Partition(G, r, ǫ; M, C)
DecisionTree(C; F)
Let k := |C| and let C = {C1, . . . , Ck}, F = {F1, . . . , Fk}
Ga := G\(F1 ∪ · · · ∪ Fk) − M
DenseCase(Ga; F0)
Gb := F0 ∪ F1 ∪ · · · ∪ Fk ∪ M
Boruvka2(Gb; F ′, Gc)
F := OptimalMSF(Gc)
Return(F ∪ F ′)

Apart from recursive calls andusing the decisiontrees,the computationper-
formedby OptimalMSFis clearlylinearsincePartition takesO(m log(1/ǫ)) time,
and owing to the reduction in vertices,the call to DenseCasealso takes lin-
ear time. For ǫ = 1/8, the numberof edgespassedto the final recursive call is
≤m/4 + n/4 ≤ m/2, giving a geometricreductionin thenumberof edges.Since
noMSFalgorithmcandobetterthanlineartime,thebottleneck,if any, mustlie in
usingthedecisiontrees,whichareoptimalby construction.

Moreconcretely, let T(m, n) be therunningtimeof OptimalMSF. Let T ∗(m, n)
betheoptimalnumberof comparisonsneededto determinetheMSFonany graph
with n verticesand m edgesand let T ∗(H ) be the optimal numberof compar-
isonsneededon a specificgraphH . That is, T ∗(m, n) = max{T ∗(H ) : |V(H )| =
n, |E(H )| = m}. We alsoreferto T ∗ asthedecision-treecomplexity of MSF, as it
correspondsto theheightof anoptimaldecision-tree.Therecurrencerelationfor
T is given below. For thebasecase,notethatthegraphsin therecursive callswill
be connectedif the input graphis connected.Hence,the basecasegraphhasno
edgesand onevertex, andwehave T(0, 1) equalto aconstant

T(m, n) ≤
∑

i

c1T
∗(Ci ) + T

(m

2
,

n

4

)

+ c2 · m.

It is straightforwardto seethat,if T ∗(m, n) = O(m), thentheabove recurrence
gives T(m, n) = O(m). Onecanalsoshow thatT(m, n) = O(T ∗(m, n)) for many
naturalfunctionsfor T ∗ (includingm · α(m, n)). However, to show thatthis result
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holdsnomatterwhatthefunctiondescribingT ∗(m, n) is,weneedtoestablishsome
resultson the decisiontreecomplexity of the MSF problem,which we do in the
next section.

5.1. SOME RESULTS FOR MSF DECISION TREES. In this section,we establish
someresultson MSF decisiontreesthat allow us to establishour mainresultthat
OptimalMSFrunsin O(T ∗(m, n)) time.

PROPOSITION 5.1. For m, n > 2, T ∗(m, n) ≥ m/2.

PROPOSITION 5.2. For n′ > n, T ∗(m, n′) ≥ T ∗(m, n), and for m′ > m,
T ∗(m′, n) ≥ T ∗(m, n).

Proposition5.1 is true sincefor m, n > 2 every edgecan be placedon some
cycle, andmust thereforeparticipatein at leastonecomparison.Proposition5.2
holdssincewecanalwaysaddisolatedverticesoredgesof veryhighweight,neither
of whichaffectstheMSF.

Wenow stateapropertythatis usedby Lemmas5.4and5.5.

PROPERTY 5.3. Let H be a graph which is the union of edge-disjoint sub-
graphsC1, . . . , Ck. Thestructureof H dictatesthatMSF(H ) = MSF(C1) ∪ · · · ∪
MSF(Ck).

If C1, . . . , Ck arethecomponentsreturnedby Partition, it canbeseenthat the
graphH =

⋃

i Ci satisfiesDefinition 5.3 sinceevery simplecycle in this graph
mustbecontainedin exactly oneof theCi . To seethis,considerany simplecycle
andlet i bethelargestindex suchthatCi containsan edgein thecycle.Sinceeach
Ci sharesnomorethanonevertex with

⋃

j <i C j , thiscyclecannotcontainan edge
from

⋃

j <i C j .

LEMMA 5.4. If Property5.3holdsfor H, thenthere existsanoptimalMSFdeci-
siontreefor H thatmakesnocomparisonsof theforme< f where e∈ Ci , f ∈ Cj
andi 6= j .

PROOF. ConsiderasubsetP of thepermutationsof all edgeweightswherefor
e ∈ Ci , f ∈ C j and i < j , it holds that weight(e) < weight( f ). Permutations
in P have two usefulattributesthat canbe readily verified.First, any numberof
intercomponentcomparisonsshedno light on therelative weightsof edgesin the
samecomponent.Second,any spanningforestof a componentis theMSF of that
componentfor somepermutationin P.

Now considerany optimaldecisiontreeT for H . Let T ′ bethesubtreeof T that
containsonly leavesthatcanbereachedby somepermutationin P. Eachintercom-
ponentcomparisonnodein T ′ musthave only onechild, andby thefirst attribute,
theMSFateachleafwasdeducedusingonly intracomponentcomparisons.By the
secondattribute,T ′ mustdeterminetheMSFof eachcomponentcorrectly, andthus
by Property5.3 it mustdeterminethe MSF of the graphH correctly. Hence,we
cancontractT ′ into a correctdecisiontreeT ′′ by replacingeachone-childnode
with its only child.

LEMMA 5.5. If Property5.3holdsfor H, thenT ∗(H ) =
∑

i T
∗(Ci ).
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PROOF. GivenoptimaldecisiontreesTi for theCi wecanconstructadecision
treefor G by replacingeachleaf of T1 by T2, andin generalreplacingeachleaf
of Ti by Ti +1 andby labelingeachleaf of the last treeby theunionof the labels
of the original treesalongthis path.Clearly, the heightof this treeis the sumof
the heightsof the Ti, and henceT ∗(G) ≤

∑

i T
∗(Ci ). So we needonly prove

thatno optimaldecisiontreefor G hasheightlessthanthesumof theheightsof
theTi.

Let T be anoptimal decisiontree for G that hasno intercomponentcompar-
isons(as guaranteedby Lemma5.4). We show that T can be transformedinto
a “canonical” decisiontree T ′ for G of the sameheight as T, suchthat in T ′,
all comparisonsfor Ci precedeall comparisonsfor Ci +1, for eachi , andfurther,
thesubtreesof T ′ containingintra-Ci comparisonsareall identical.That is, they
have the sameshapeandthe samecomparisonsareassociatedwith correspond-
ing nodes.This establishesthe desiredresult sinceT ′ must containa path that
is the concatenationof the longestpath in an optimal decisiontree for eachof
theCi.

We first prove this resultfor thecasewhenthereareonly two components,C1
andC2. Assumeinductively thatthesubtreesrootedatall verticesatacertaindepth
d in T havebeentransformedto thedesiredstructureof having theC1 comparisons
occurbeforehe C2 comparisons,andwith all subtreesfor C2 within eachof the
subtreesrootedatdepthd beingidentical.(Thisis trivially thecasewhend is equal
to theheightof T .)

Considerany nodev at depthd − 1. If the comparisonat that nodeis a C1
comparison,thenall C2 subtreesatdescendentnodesmustcomputethesamesetof
leavesfor C2. Hence,thesubtreerootedatv canbeconvertedto thedesiredformat
simplyby replacingall C2 subtreesby onehaving minimumdepth(notethatthere
areatmosttwo differentC2 subtrees:all thosedescendingfrom v’s left child (right
child) areidentical).If thecomparisonat v is a C2 comparison,we know that the
C1 subtreesrootedat its left child x andits right child y mustboth computethe
samesetof leavesfor C1. Hence,wepick theC1 subtreeof smallerheight(without
lossof generality, let its rootbex) andreplacev by x, togetherwith theC1 subtree
rootedat x. We thencopy the comparisonat nodev to eachleaf position ofthis
C1 subtree.For eachsuchcopy, we placeoneof the isomorphiccopiesof theC2
subtreethat is a descendantof x as its left subtree,and the C2 subtreethat is a
descendantof y asits right subtree.Thesubtreerootedat x, which is now at depth
d − 1, is now in thedesiredform; it computesthesameresultasin T, andthere
was no increasein theheightof thetree.Hence,by induction,T canbeconverted
into canonicaldecisiontreeof nogreaterheight.

Assumeinductively that the resulthold for up to k − 1 ≥ 2 components.The
resulteasilyextendsto k componentsby noting thatwe cangroupthefirst k − 1
componentsasC′

1 andlet Ck beC′
2. By theabovemethod,wecantransformT to a

canonicaltreein which theCk comparisonsappearasleaf subtrees.We now strip
theCk subtreesfrom thiscanonicaltreeandthen,by theinductiveassumption,we
canperformthetransformationfor remainingk − 1 components.

COROLLARY 5.6. LettheCi bethecomponentsformedbythePartition routine
appliedto graphG, let H =

⋃

i Ci andlet G havem edgesandn vertices.Then,
∑

i T
∗(Ci ) = T ∗(H ) ≤ T ∗(m, n).

COROLLARY 5.7. For anym andn, 2 · T ∗(m, n) ≤ T ∗(2m, 2n).



AnOptimalMinimumSpanningTreeAlgorithm 27

We cannow solve therecurrencerelationfor therunningtime of OptimalMSF
given in theprevioussection.

T(m, n) ≤
∑

i

c1T
∗(Ci ) + T

(m

2
,

n

4

)

+ c2 · m

≤ c1T
∗(m, n) + T

(m

2
,

n

4

)

+ c2 · m (Corollary 5.6)

≤ c1T
∗(m, n) + c · T ∗

(m

2
,

n

4

)

+ c2 · m (assumeinductively)

≤ T ∗(m, n)
(

c1 +
c

2
+ 2c2

)

(Corollary 5.7andPropositions5.1,5.2)

≤ c · T ∗(m, n) ( for c = 2c1 + 4c2; this completestheinduction).

Thisgives us thedesiredtheorem.

THEOREM 5.8. LetT ∗(m, n) bethedecision-treecomplexity of theMSFprob-
lem on graphswith m edgesand n nodes.AlgorithmOptimalMSF computesthe
MSFofa graphwithm edgesandn verticesdeterministicallyin O(T ∗(m, n)) time.

6. AvoidingPointerArithmetic

We have not precisely specifiedwhat is required of the underlying machine
model.Uponexamination,thealgorithmdoesnot seemto requirethe full power
of a randomaccessmachine(RAM). No bit manipulationis usedand arith-
metic can be limited to just the incrementoperation.However, if procedure
DecisionTree is implementedin the obvious manner, it will requireusing a ta-
ble lookup, and thus randomaccessto memory. In this section,we outline the
pointer machine[Tarjan 1979a]a model that doesnot allow randomaccessto
memory, and describesometechniqueswe usefor implementingthe Decision-
Treeprocedureon a pointermachine.Our methodis similar to that describedin
Buchsbaumetal. [1998],but weensurethatthetimeoverheadin performingtheta-
blelook-upsduringacall toDecisionTreeis linearin thesizeof thecurrentinputto
DecisionTree.

A pointermachinedistinguishespointersfrom all otherdatatypes.The only
operationsallowedonpointersareassignment,comparisonfor equalityandderef-
erencing.Memory is organizedinto records,eachof which holdssomeconstant
numberof pointersandnormaldatawords(integers,floats,etc.).Given a pointer
to a particularrecord,we canrefer to any pointeror dataword in that recordin
constanttime.Onnonpointerdata,theusualarrayof logical,arithmetic,andbinary
comparisonoperationsareallowed.

EveryMSFdecisiontreesolvestheMSFproblemonaparticulargraphtopology:
wecall thisthegenericgraph. InordertosolvetheMSFproblemonanactualgraph,
webindcorrespondingedgesof theactualandgenericgraphs,suchthatgiven one
edgethe othercanbe found in constanttime. Comparisonsin the MSF decision
tree refer to edgesin the genericgraph;hence,they too can be translatedinto
comparisonsin theactualgraphin constanttime.

We match up identical actual graphsand genericgraphs usingthe method
given in Buchsbaumet al. [1998]. If all graphshave fewer than r verticeswe
representthe graphsas a string of numbersbetween1 and r , then perform
a lexicographicsort [Aho et al. 1974]on all thegraphs(bothactualandgeneric).
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A genericgraphwill appearadjacentto all identicalactualgraphs.All thatremains
to bedoneis bind theactualgraphsto theappropriategenericgraphandrun the
associatedMSFdecisiontree.If thetotal sizeof all actualsubgraphsis s (s ≤ m),
thesortingsteptakesO(s + r 22r 2

) time,which is O(m + n) for r = log(3) n. The
lexicographicsortguaranteesthatin therecursivecallsit sufficesto scananinitial
prefixof the sortedlist whosesizeis linearin thesizeof thecurrentgraph.

7. PerformanceonRandomGraphs

Evenif weassumethatMSThassomesuper-linearcomplexity, weshow below that
our algorithmrunsin lineartime for nearlyall graphs,for arbitrarily chosenedge
weights.This improves uponthe expectedlinear-time resultof Karp andTarjan
[1980], which dependedon the edgeweightsbeingchosenrandomly. Our result
may also be comparedwith the randomizedalgorithm of Karger et al. [1995],
which is shown to run in O(m) time with highprobability. However, for any given
graphthe Karger et al. [1995] algorithmcanbe madeto run in Ä(m logn) time
by an adversarythat controlsthe edgeweights.In contrast,we show below that
ouralgorithmrunsin lineartimefor thevastmajorityof graphs,for every possible
assignmentof edgeweights.

Noneof the earlierpublishedMST algorithmsappearto have this propertyof
runningin lineartime with highprobabilityonrandomgraphsfor all edge-weights.
Usingtheanalysisof this sectionandsuitablysouped-upversionsof earlieralgo-
rithms [FredmanandTarjan1987;Gabow et al. 1986;Chazelle2000b],we may
obtainsimilar highprobabilityresults.

Ouranalysishingesontheobservationthatfor sparserandomgraphs,with high
probabilityany subgraphconstructedby thePartition routinehasonly aminiscule
numberin edgesin excessof thenumberof spanningforestedgesin thatsubgraph.
TheMSTof suchgraphscanbecomputedin lineartime,andhencethecomputation
onoptimaldecisiontreestakeslineartimeon thesegraphs.

Throughoutthis section,α will denoteα(m, n).

TherandomgraphmodelGn,m [ErdösandRényi 1961]assignsall ((n2 )
m

) graphs
with medgesequalprobability. InGn,p any graphonmedgesisassignedprobability
pm(1 − p)(n2 )−m. In otherwords,eachpossibleedgeis includedindependentlywith
probability p.

THEOREM 7.1. TheMSTofa graphcanbefoundin linear timewithprobability
(1) 1 − exp(−Ä(m/α2)), for a graphdrawnfromGn,m
(2) 1 − exp(−Ä(pn2/α2)), for a graphdrawnfromGn,p.

Both(1) and(2) hold regardlessof thepermutationof edgeweights.

In thenext section,wedescribetheedge-additionmartingalefor theGn,m model.
In Section7.2,we usethis martingaleandAzuma’s inequalityto prove part(1) of
Theorem7.1.Part (2) is shown to follow from part(1).

7.1. THE EDGE-ADDITION MARTINGALE. It was observed Erdös and Rényi
[1961] that a randomgraphfrom the Gn,m modelcanbe generatedin an incre-
mentalfashionasfollows: We begin with n labeledvertices,addingonerandom
edgeata time thatwasnotpreviouslyselected.Let Xi bearandomedgesuchthat
Xi 6= X j for j < i , andGi = {X1, . . . , Xi } be the graphmadeup of the first i
edges,with G0 beingthegraphonn verticeshaving noedges.
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A martingale is a sequenceof random variables Y0, . . . , Ym such that
E[Yi | Yi −1] = Yi −1 for 0 < i ≤ m. We now prove that if g is any graph-theoretic
functionandgE(Gi ) = E[g(Gm)|Gi ], thengE(Gi ), for 0 ≤ i ≤ m is amartingale.

LEMMA 7.2. The sequencegE(Gi ) = E[g(Gm) | Gi ], for 0 ≤ i ≤ m, is a
martingale, where g is anygraphtheoretic function, G0 is theedge-freegraphon
n vertices, and Gi is derivedfrom Gi −1 by adding a randomedge not in Gi −1
to Gi −1.

PROOF. Let X j
i = {Xi , . . . , X j }. GiventhatGi −1 hasbeenfixed,

E[gE(Gi )] =
∑

Xi =xi

Pr[Xi = xi | Gi −1]

·
∑

Xm
i +1=xm

i +1

Pr
[

Xm
i +1 = xm

i +1

∣

∣Gi −1, Xi = xi
]

· g
(

Gi −1 ∪ xm
i

)

=
∑

Xm
i =xm

i

Pr
[

Xm
i = xm

i

∣

∣Gi −1
]

· g
(

Gi −1 ∪ xm
i

)

= E[g(Gm) | Gi −1] = gE(Gi −1).

Wecall thesequenceproved to be amartingalein Lemma7.2theedge-addition
martingalein contrastto theedge-exposuremartingalefor Gn,p.

We now recall the well-known Azuma’s inequality (see, e.g., Alon and
Spencer[1992]).

THEOREM7.3 (AZUMA’S INEQUALITY ). Let Y0, . . . , Ym be a martingalewith
|Yi − Yi −1| ≤ 1 for 0 < i ≤ m. Let λ > 0 be arbitrary. ThenPr[|Ym − Y0| >
λ
√

m] < exp(−λ2/2).

To facilitatetheapplicationof Azuma’s inequalityto our edge-additionmartin-
gale,weestablishthefollowing lemma:

LEMMA 7.4. Considerthesequence provedto bea martingalein Lemma7.2.
Letg beanygraph-theoretic functionsuch that |g(G) − g(G′)| ≤ 1 for anypair of
graphsG andG′ of theform G = H ∪ {e} andG′ = H ∪ {e′}, for somegraph H.
Then|gE(Gi ) − gE(Gi −1)| ≤ 1, for 0 < i ≤ m.

PROOF. gE(Gi ) andgE(Gi −1) aretheaverageof g(Gi ∪ Xm
i +1) andg(Gi −1 ∪

Xm
i ) whereXm

i +1 andXm
i rangeover their possibleoutcomes,given Gi andGi −1,

respectively. We identify eachoutcomeof Xm
i +1 with equal-sizedisjoint setsof

outcomesof Xm
i thatcover all outcomesof Xm

i . ThengE(Gi −1) mayberegarded
asan averageof setaverages.If, for eachsetcorrespondingto an outcomeP of
Xm

i +1, we establishthatthesetaveragediffersfrom g(Gi ∪ P) by nomorethan1,
theLemmafollows.

Thecorrespondenceis asfollows:Let Gi = Gi −1 ∪ {a} (i.e., Xi = a). For each
outcomexm

i +1, thecorrespondingsetconsistsof outcomesof theform x j
i +1 a xm

j +1
for i < j ≤ m (i.e., the samegraphbut a appearsat different times),andof the
form xi xm

i +1 wherexi rangesover all edgesnot appearingin Gi −1 andxm
i +1. For

eachoutcomeP = xm
i +1 of Xm

i +1 andall Q in P’s associatedset,|g(Gi ∪ P) −
g(Gi −1 ∪ Q)| ≤ 1 sincethegraphsdiffer in atmostoneedge.Clearly, |g(Gi ∪ P)
− AVGQ{g(Gi −1 ∪ Q)}| ≤ 1 holdsaswell, wheretheaverageis over outcomesQ
in P’s associatedset.
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7.2. ANALYSIS. Wedefinetheexcessof asubgraphH to be|E(H )| − |F(H )|,
whereF(H ) is any spanningforestof H. Let f (G) bethemaximumexcessof the
graphmadeupof intracomponentedges, where thesetsof componentsrangeover
all possiblesetsreturnedby the Partition procedure. (Recall that the sizeof any
componentis nomorethank = maxsize= log(3) n.)

Define fE(Gi ) = E[ f (Gm)|Gi ].
The key observation leadingto our linear-time result is that eachpassof our

optimal algorithm definitely runs in linear time if f (G) ≤ m/α(m, n). To see
this, note that if this boundon f (G) holds,we can reducethe total numberof
intracomponentedgesto ≤2m/α in linear time using logα Borůvka steps,and
then,clearly, theMST of theresultinggraphcanbedeterminedin O(m) time.We
show below thatif agraphis randomlychosenfrom Gn,m, f (G) ≤ m/α(m, n) with
highprobability.

Wenow show thatLemma7.4appliesto thegraph-theoreticfunction f , andthen
applyAzuma’s inequalityto obtainourdesiredresult.

LEMMA 7.5. Let G = H ∪ {e} and G′ = H ∪ {e′} betwo graphson asetof
labeledverticesthatdiffer bynomore thanone edge. Then| f (G) − f (G′)| ≤ 1.

PROOF. Supposewithout lossof generalitythat f (G) − f (G′) > 1, thenwe
could applytheoptimalsetof componentsof G to G′. Every intracomponentedge
of G remainsan intracomponentedge,except possiblye. This canreducethe
excessby nomorethanone,acontradiction.Thepossibilitythate′ maybecomean
intracomponentedgecan onlyhelptheargument.

LEMMA 7.6. fE(G0) = o(m/α).

PROOF. Notice that if m/n ≥ αk, it i s simply impossibleto have m/α intra-
componentedges,soweassumem/n < αk.

An upperboundon fE(G0) istheexpectednumberof indicesi suchthatedgeXi
completeda cycle of length≤k in Gi −1, sinceall edgeswhichcausedf to increase
musthave satisfiedthis criterion. Let pi be the probability that Xi completeda
cycle of length≤k. By boundingthe numberof suchcycles,andthe probability
they exist in thegraph,wehave

pi <

k
∑

j =3

n j −2

(

j −1
∏

ℓ=1

i − ℓ
(n

2

)

− (ℓ − 1)

)

<
1

n

k
∑

j =3

(

nm
(n

2

)

) j −1

(recallthat i ≤ m)

= O

(

k
mk−1

nk

)

if m = Ä(n)

or = O

(

m2

n3

)

if m = o(n)

In eithercase,fE(G0) ≤
∑

i pi = o(m/α).
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LEMMA 7.7. Let G be chosen from Gn,m. Then Pr[ f (G) > m/α] <
exp(−Ä(m/α2)).

PROOF. By applyingAzuma’sinequality,wehavethatPr[| fE(Gm)− fE(G0)| >
λ
√

m] < exp(−λ2/2). Settingλ =
√

m/α − fE(G0)/
√

m gives the lemma.Note
that,by Lemma7.6, fE(G0) is quiteinsignificant.

Wearenow readyto proveTheorem7.1.

PROOF. We examineonly thefirst logk passesof ouroptimalalgorithm,since
all remainingpassescertainlytake o(m) time. Lemma7.7assuresusthat thefirst
pass runsin lineartime with highprobability. However, thetopologyof thegraph
examinedin laterpassesdoesdependontheedgeweights.AssumingtheBorůvka
stepscontractall partsof thegraphataconstantrate,whichcaneasilybeenforced,
a partitionof thegraphin onepassof thealgorithmcorrespondsto a partitionof
theoriginal graphinto componentsof sizelessthankc, for somefixedc. Usingkc

in placeof k doesnot affect Lemma7.6,which gives theTheoremfor Gn,m, that
is, part (1). For Gn,p, notethat theprobability that therearenot 2(pn2) edgesis
exponentialin −Ä(pn2); hence,the probability that the algorithmfails to run in
lineartime is dominatedby theboundin part(1).

For the sparsecasewherem< n/α, Theorem7.1 part (1) holds with proba-
bility 1, andfor p< 1/nα, by a Chernoff bound,part (2) holdswith probability
1 − exp(−Ä(n/α)).

8. Discussion

An intriguing aspectof our algorithm is that we do not know its precisedeter-
ministic runningtime althoughwe canprove that it is within a constantfactorof
optimal.Resultsof this naturehave beenobtainedin thepastfor sensitivity anal-
ysisof minimumspanningtrees[Dixon et al. 1992]and convex matrix searching
[Larmore1990].Also, for theproblemof triangulatinga convex polygon,it was
observed in Dixon et al. [1992] that an alternatelinear-time algorithmcould be
obtainedusingoptimaldecisiontreeson small subproblems.However, theseear-
lier algorithmsmake useof decisiontreesin morestraightforwardwaysthanthe
algorithmpresentedhere.

As notedin Section4.1,theconstructionof optimaldecisiontreestakessublin-
eartime. Thus,it is importantto observe that our useof decisiontreesdoesnot
result in a large constantfactor in the runningtime. Further, this constructionof
optimaldecisiontreesis performedby astraightforwardbrute-forcesearch;hence,
the resultingalgorithmis uniform (i.e., it is a fixed algorithmthat works for all
problemsizes).

It was mentionedin the introduction that an optimal algorithm can be con-
structedfor any problem,given an optimalverificationalgorithmfor thatproblem.
We briefly sketchthis construction[Jones1997].Considera problemthathasan
optimalverificationalgorithmthatrunsin timeVer(n). Theabove-mentionedcon-
structionproducesan algorithm that enumeratesprogramsP1, P2, . . . for some
machinemodel and executesthem incrementallyas follows: for eachi ≥ 1, for
everytwooperationsexecutedbyprogramPi , programPi +1 executesoneoperation.
Whenever any of theprogramshaltstheverifier checksits outputfor correctness.
Thealgorithmterminatesoncetheverifierdeterminesthatacorrectoutputhasbeen



32 S. PETTIE AND V. RAMACHANDRAN

producedbyoneof theprograms.If PC is theoptimalprogramfor theproblemwith
runningtime Opt(n), thenthis constructiongives an algorithmthat takesno more
than2C+1(Opt(n) + Ver(n)) steps.SinceC is a constantandVer(n) = O(Opt(n)),
thisgives an algorithmthatis within aconstantfactorof Opt(n).

Using a linear-time MST verification algorithm suchas Dixon et al. [1992],
King [1997], and Buchsbaumet al. [1998], the above constructionyields an
optimal MST algorithm; however, it is unsatisfactory for several reasons.It is
truly impractical since it asks for an enumerationof all possiblealgorithms
and its constantfactor is exponentialin the position of the actualoptimal algo-
rithm in this enumeration.Further, it shedsno light on the relationbetweenthe
algorithmic and decision-treecomplexity of the problem. Our result, in con-
trast, has a very reasonableconstantfactor in the running time, and it is ro-
bust in that it ties the algorithmiccomplexity of MST to its decision-treecom-
plexity, a limiting factor in any machinemodel. It is not always the casethat
algorithmiccomplexity anddecision-treecomplexity areasymptoticallyequiva-
lent: for instance,two sorting-typeproblemswhosedecision-treecomplexity and
algorithmiccomplexity provably diverge aredescribedin Goddardet al. [1993]
and [Pettie and Ramachandran[2002a, Sect. 8]. In fact, one can easily con-
coct simple problemsthat are NP-hardbut neverthelesshave polynomial-depth
decision-trees.

9. Conclusion

We have presenteda deterministicMSF algorithmthat is provably optimal.The
algorithmrunson a pointermachine,andon graphswith n verticesandm edges,
its running time is O(T ∗(m, n)), whereT ∗(m, n) is the decision-treecomplex-
ity of the MSF problemon n-node,m-edgegraphs.Also, on randomgraphs our
algorithmrunsin lineartime with highprobabilityfor all possibleedge-weights.In
fact, a hybrid of our algorithm and the randomizedalgorithm of Karger et al.
[1995] runs in expectedlinear time using only log∗ n randombits [Pettie and
Ramachandran2000b].Although the exact runningtime of our algorithmis not
known, we have shown that the time bound dependsonly on the numberof
edge-weightcomparisonsneededto determinethe MSF, and not on any data
structuralissues.

Determiningtheworst-casecomplexity of ouralgorithmis themainopenques-
tion remainingin the MSF problem;however, thereis a subtleropenquestion.
We have given an optimaluniform algorithmfor theMSF problemthatusespre-
computeddecisiontrees.Is thereanoptimaluniform algorithmthatdoesnot use
precomputeddecisiontrees(or somesimilar technique)?Moregenerally, arethere
problemswhereprecomputationis necessary?Onemaywish to studythis issuein
a simplersetting,saythe MSF verificationproblemon a pointermachine.Here,
thereis still anα(m, n) factorseparatingthebestpointermachinealgorithmthat
usesprecomputeddecisiontrees[Buchsbaumet al. 1998]andtheonewhich does
not [Tarjan1979b].

Onemay alsoask for the parallel complexity of the MSF problem.Here,re-
solvedrecentlywerethedeterministictimecomplexity [Chongetal.2001]andthe
randomizedwork-time complexity [PettieandRamachandran1999] of the MSF
problemon theEREWPRAM. An openquestionthat remainshereis to obtaina
deterministicwork-timeoptimalparallelMSFalgorithm.Parallelizingouroptimal
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algorithmis not at all straightforward.Althoughhandlingdecisiontreesdoesnot
presentany problemsin theparallelcontext, westill needamethodfor identifying
contractiblecomponentsin parallelandabasecasealgorithmthatperformslinear
work for graph-densitiesof log(3) n. Existing sequentialalgorithmsthat aresuit-
ablefor thebasecase,suchastheonein FredmanandTarjan[1987] arealsonot
easilyparallelizable.
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