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8 Conclusions

In this paper we have presented highly parallel work-optimal algorithms for several fundamental
problems for the QRQW PRAM. These include linear work, logarithmic time algorithms for multiple
compaction, generating a random permutation, and hashing; a sublogarithmic time, linear work
algorithm for load balancing when the maximum initial load is small; and a sublogarithmic time
linear work algorithm for generating a random cyclic permutation. We have also presented several
simple algorithms for the sorting problem that improve on algorithms known for exclusive memory
access PRAM models. Complementing these algorithmic results, we have shown an Q(lg L) time lower
bound on the QRQW PRAM for the load balancing problem with maximum load L. All of the algo-
rithms we have presented in this paper are randomized algorithms with high probability performance
guarantees, and our lower bound applies to randomized as well as deterministic algorithms.

We have also provided experimental results from an implementation, on the MasPar MP-1, of
our QRQW PRAM algorithm for generating a random permutation as well as the best EREW PRAM
algorithm for this problem; our experimental results show that the QrQwW PRAM algorithm does,
indeed, run faster than the EREW PRAM algorithm.

The QrQW PRAM models the mechanism used by a number of currently available commercial
shared memory machines to handle memory contention. As has been illustrated in the algorithms
presented in this paper, novel techniques may be needed in the design of efficient algorithms in
the QRQW models. We expect that further research will help obtain a clearer understanding of the
capabilities of this model and its applicability to the design of efficient and cost effective parallel
algorithms that can be implemented on currently available parallel machines.

Among the important open problems remaining are to obtain tight upper and lower bounds
for the running times of (additional) fundamental problems on the QrRQW PRAM, and to obtain a
work-optimal, polylog time simulation of the CRCW PRAM on a QRQW PRAM (or prove that such a
simulation does not exist).
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7. Compact the items in B into an array of size n.

By Observation 2.6, the maximum contention in step 1 is O(lgn/lglgn) w.h.p. For step 2, we
can apply Theorem 7.2 (or use any other algorithm that sorts n keys in O(lgn) time and at most
O(nlg”n) work on a cRQW PRAM). Steps 3, 4, 5, and 7 can be done in O(lgn) time and linear
work using prefix sums computations. For step 6, we replace the procedure used in [RR89] with
our algorithm for “relaxed” heavy multiple compaction (Lemma 4.2). Thus w.h.p., the total time
is O(lgn) and the total work is O(n). Processor allocation is straightforward, yielding the desired
result. .

We observe that, with the exception of step b above, the entire algorithm can be adapted to
run on the QRQW PRAM within the same resource bounds. In step 5, each item needs to learn the
estimate of the set size for its key, and the pointer to its allocated subarray; we use the concurrent-
read capability to stay within the desired resource bounds.

Theorem 7.4 matches the bounds obtained for the cRcw PRAM in [RR89]. (There is also a more

involved, optimal CRCw PRAM algorithm that runs in O(lgn/lglgn) time and linear work w.h.p.;
see, e.g. [Mat92].)

We conclude this section with the following application of integer sorting to emulating the pow-
erful FETCH&ADD PRAM on the CRQW PRAM.

Emulating Fetch& Add PRAM on CRQW PRAM

The FETCH&ADD PRAM model [GGKT83, Vis83] is stronger than the cRCW PRAM; for instance,
the parity and the prefix sums problems with input size n can be solved in constant time on a
FETCH&ADD using n processors, while requiring Q(lgn/lglgn) time on a CRCW PRAM when using
n® processors, for any constant ¢ > 0. The following lemma gives a reduction from the problem of
emulating one step of a FETCH&ADD PRAM on an EREW PRAM, to the integer sorting problem.

Lemma 7.5 ([MV95]) Emulating one step of a FETCH&ADD PRAM wilh n processors and memory
of arbitrary size m on an EREW PRAM can be reduced to [1,n]-integer sorting in O(jlgn) time
and O(n) work w.h.p., using O(nlg(])n) space, for any j = 1,...,1g" n. In particular, it can be
reduced:

(i1) to [1,n]-integer sorting, in O(lgnlg" n) time and O(n) operations with high probability, using
O(n) space; and

(iii) to [1,n]-integer sorting, in O(lgn) time and O(n) operations with high probability, using
O(nlg(])n) space, for any constant j > 0.

By using the cRQW integer sorting algorithm of Theorem 7.4 we obtain:

Theorem 7.6 One slep of an n-processor FETCH&ADD PRAM can be emulaled on an n/lgn-
processor CRQW PRAM in O(jlgn) time w.h.p., and O(nlg(j)n) space, for any j = 1,...,1g" n.
In particular, the emulation takes linear work and O(lgnlg" n) time w.h.p., using O(n) space; and
furthermore, for any constant j the emulation takes linear work and O(lgn) time w.h.p., using

O(n 1g7) n) space.

34



The total work is, w.h.p.,
Z O(nlgn;) = O(nlgn).

1<i<r

The time for bitonic sort on groups of size at most 2V!8" is O(Ign), while the total work
performed is O(nlgn) over all groups. Broadcasting whether any failure has occurred is done only
after the bitonic sort, and takes O(lgn) time and linear work.

It follows that the entire algorithm runs in O(lg” n/lglgn) time and O(n lgn) work w.h.p., using
O(n) space. "

In [GMRY6b], we consider the QRQW ASYNCHRONOUS PRAM model, a more asynchronous QRQw
model in which individual processors may proceed at their own pace without waiting for the con-
tention encountered by other processors. We show how to adapt the above QRQW PRAM sorting
algorithm to obtain a fairly simple randomized sorting algorithm on the QRQW ASYNCHRONOUS
PRAM that runs in O(lgn) time with O(nlgn) work w.h.p.

7.3 Integer sorting

The final class of sorting problems we consider is that of sorting an arbitrary collection of n integers
in the range [1l..nlg" n], for a constant c¢. For this problem, we obtain an O(lgn) time, linear
work randomized algorithm for the cRQqw PRAM. In contrast, no algorithm with O(lgn) time and
simultaneously o(nlgn) work is known for the CREW PRAM.

Theorem 7.4 Sorting n integers in the range [1..n1g" n], for any constant ¢, can be done in O(lgn)
time and linear work w.h.p. on a CRQW PRAM.

Proof. The integer sorting algorithm follows the steps of the Rajasekaran and Reif algorithm
for the crew PRAM [RR89]. The main phase of the algorithm sorts the input keys based on their
lg(n/ 1g® n) least significant bits. Then Fact 4.3 can be applied to stably-sort the resulting sequence
based on the lg(lgc‘l'?’ n) most significant bits of the input keys, to obtain the final sorted sequence.
In what follows, we list the steps of the main phase of the Rajasekaran-Reif algorithm, and then
discuss how to implement the steps on a CRQW PRAM within the bounds stated in the theorem.

Let D = n/lg®n and for each input item, let its lg D least significant bits be its label.

1. Select in parallel n/ lg2 n input items drawn uniformly at random.
2. Sort these sample items according to their labels.

3. For each label j € [1..D], compute the number, N;, of items in the sample with label j. Let
count; = d(1g® n) max(N;,lgn), for a constant d. Rajasekaran and Reif show that for a suitable

d, count; is an upper bound on the number of input items with label j and Z]D:l count; < 2dn,
w.h.p.

4. Let B be an array of size 8dn. Partition array B into subarrays such that the jth subarray is
of size 4count;. Let pointer; be the starting point in B of the jth subarray.

5. Each item with label j reads count; and pointer;.

6. Apply a multiple compaction algorithm to place each item into a private cell in the subarray
for its label.
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tree ensures that, if n searches are performed in parallel such that not too many searches result in
the same leaf of the (non-fat) tree, then each step of the search will encounter low contention.

The process of fattening a search tree can be done in O(lgn) time and O(nlgn) work using
binary broadcasting.

In the case of our sorting algorithm, at the ¢th level of recursion we make n; copies of the median
splitter, n; /2 copies of the 1/4 and 3/4 splitters, and so forth, down to n3/2+6 copies of the ni/z_e
splitters in the leaves of the tree.® Since there are @(ng/zﬁ) items per splitter bucket w.h.p., it can
be shown that at each step in the binary search, an item selecting a random copy of the splitter
encounters constant expected contention. Thus by Observation 2.6, the maximum contention over
all items at each step in the search is O(lgn/lglgn) w.h.p. Thus each item can determine its bucket

in O(lgn;lgn/lglgn) time and O(lgn;) work w.h.p.

At the éth level of recursion, there are n/n; fat-trees, each of which uses O(n;lgn;) space. To
reduce the space per fat-tree to O(n;), we initially make only some of the copies, and then reuse the
space as needed. Specifically, we make n; copies of the median splitter stored in an array Ag, n;/4
copies of the 1/4 and 3/4 splitters stored in an array A;, and in general n; /4’ copies of each splitter
at the jth level of the fat-tree, for a total of n; /27 copies of splitters stored in an array Aj. This is
O(n;) copies in all. The processors begin by probing Ag, encountering constant expected contention.
Then for each array A;, j > 0, the contents of 4; are duplicated and stored in array 4;_,, in constant
time and O(n;) work. The processors again probe Ag, which contains n;/2 copies of the 1/4 and
3/4 splitters, followed by the duplication of all splitter copies, and so forth, alternating probe steps
and duplication steps, until finally probing the n3/2+6 copies of the ni/z_e splitters placed in Ap in
the previous duplication step. In this way, the maximum contention over all items at each step in
the search is O(lgn/lglgn) w.h.p. as before, while the space for all the fat-trees is O(n).

This leads to the following theorem.

Theorem 7.3 Algorithm A for sorting n arbitrary keys can be implemented on a QRQW PRAM in
O(lg” n/1glgn) time and O(nlgn) work w.h.p., using O(n) space.

Proof.  The analysis proceeds as in Theorem 7.2. Since n; < (1+1/lgn)? - n(*/2+9" for all i, there

exists a 7 = O(lglgn) such that n, < Vign, Moreover, since n; > lg®n, we have that, w.h.p.,
ni+1 will be an upper bound on the number of items with the same label, the subarrays designated
for each label are of sufficient size, and the heavy multiple compaction will succeed — therefore the
algorithm will complete without restarting.

We now analyze the QRQW PRAM complexity of Algorithm A. Consider all O(n/n;) subproblems

at the ¢th level of recursion. By Observation 2.6 and since n; > 2\/1‘3_", the maximum contention
in step 1is O(y/Ign) w.h.p. The work is O(n/\/n;). Step 2 can be done in O(Ign;) time and O(n)
work by first making \/n; copies of each item in the sample. For step 3, we build a binary search
fat-tree of depth lg(ng/z_e), and then label each item using a random search into the fat-tree, as
described above. This takes O(lgn; -lgn/lglgn) time w.h.p. and O(nlgn;) work. Step 4 can be
done in O(lg" n;lgn/lglgn) time and O(n) work w.h.p. Thus the total time spent on all recursive
calls is, w.h.p.,

> O(lgnilgn/lglgn) = O(lg* n/Iglgn).

1<i<r

8 A similar idea was used implicitly in [RV87] in the context of sorting on the cube-connected cycles network.
In [RV87], multiple copies of the splitters are placed at nodes in the network. These are used to direct the routing of
each item to a subnetwork designated for the splitter bucket in which its key belongs.
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Proof.  We first show that n; < n'/'8187 after 7 = O(Iglglgn) recursive calls to Algorithm A. We
claim that for all ¢: ' )
ni < (14+1/1gn)’ - nlzt9"

The proof of this claim i1s by induction on i¢. The case ¢ = 0 is straightforward. Assume that the
claim holds for an arbitrary ¢ > 0. We have that n;41 = (1 +1/1gn)- n5+6, which by the inductive

hypothesis is at most (14 1/1gn)((1 4 1/1lgn)’ - n(zT9")3+¢ Since ¢ < 1/2, we have that n;, <
(1+1/1gn)+t. n(3+9™"" and the claim is proved. It follows that there exists a 7 = O(lglglgn)
such that n, < n'/18187  Also, for all i < 7, we have that (1 4+ 1/lgn)’ < (1+1/7)7 <e.

Algorithm A applies the technique of oversampling as used in [RV87] to obtain a sample B’ with
better performance guarantees. Specifically, let X; be the size of the largest group created for a
given subproblem (of size at most n;) at the ith level of recursion. Then from Lemma 7.1 in [RV87],

we have )

Pr{X; > (1+n; %02t = (nf/ 720w ) )

Since n; > lg°n and ¢ > 6/e,

PriX;>ni} = PriXi>(1+1/1gn)n2* Y < PriX; > (1 +1g°/  n)n?*}
< PrX;> (1407 %m2t Y = o(ne/?)  (by 1).

Thus w.h.p., n;41 will be an upper bound on the number of items with the same label, the subarrays
designated for each label are of sufficient size, and the heavy multiple compaction will succeed —
therefore the algorithm will complete without restarting.

We now analyze the CRQW PRAM complexity of Algorithm A. Consider all O(n/n;) subproblems
at the ith level of recursion. Step 1 takes O(1) time and O(n/\/n;) work. Step 2 takes O(lg n;) time
and O(n) work. Step 3 takes O(lgn;) time and O(nlgn;) work. By Lemma 4.2 and the analysis
in the previous paragraph, step 4 can be done in O(lg" n;lgn/lglgn) time and O(n) work w.h.p.
Thus the total time spent on all recursive calls is, wh.p., >, ;. O(lgn; +1g" n; lgn/lglgn). Since
lgn; = O((1/2 4 €)' lgn) and 1g" n; < lg* n, the total time is, w.h.p.,

O((r1g" n/lglgn)lgn) + > O((1/2+¢)'lgn) = O(lgn).
1<i<r

The total work is, w.h.p.,
Z O(nlgn;) = O(nlgn).

1<i<r

The time for mergesort on groups of size at most n'/'8187 ig O(lgn), while the total work
performed is O(nlgn) over all groups. Broadcasting whether any failure has occurred is done only
after the mergesort, and takes O(lgn) time and linear work.

It follows that the entire algorithm runs in O(lgn) time and O(nlgn) work w.h.p. Moreover, all
steps can be done in O(n) space. "

To implement Algorithm A on a QRQW PRAM, we must replace all the high-contention read
steps with techniques that use only low-contention steps. The main obstacle is step 3, in which each
item needs to learn its position relative to the sorted sample. A straightforward binary search on
B’ would encounter @(n) contention. Instead, for the QrQw, we employ the following novel data
structure:

Binary search fat-tree. 1In a binary search fail-iree, there are n copies of the root node, n/2
copies of the two children of the root node, and in general, n/27 copies of each of the 27 distinct
nodes at level j down from the root of the tree. The added fatness over a traditional binary search
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e For the CRQW PRAM, we improve the space bound (to O(n) space) over the CREW PRAM while
maintaining the O(lg n) time, O(nlgn) work bounds.

These algorithms are arguably as simple as the ones cited earlier.

To obtain these improved results, we modify the y/n-sample sort algorithm given above. In the
last phase of our algorithm, we use a work-inefficient, but simple deterministic sorting algorithm.
For our QRQW result, we use bitonic sorting [Bat68]; this runs in O(Ig® n) time and O(n lg? n) work
on an EREW PRAM. For our CRQW result, we use a parallelization of mergesort that applies Valiant’s
O(lglgn) time merging algorithm [Val75, BH85] at each round; this runs in O(lgnlglgn) time with
n processors on a CREW PRAM. (The work can be improved to O(nlgn), see e.g. [J4J92].) Algorithm
A below describes the generic modified algorithm.

Algorithm A.

Let ¢ be any constant such that 0 < ¢ < 1/2. Let n = ng be the number of input items, and for
1> 1, let
Lo
n;=(14+1/lgn) -n2.
W.h.p., n; is an upper bound on the number of items in each subproblem at the ith recursive call

to A.

For subproblems at the ith level of recursion:

1. Let S be the set of at most n; items in this subproblem. Select in parallel |/n; items drawn
uniformly at random from 5.

2. Sort these sample items by comparing all pairs of items, using summation computations to
compute the ranks of each item, and then storing the items in an array B in sorted order.
Move every (n{)th item in B to an array B’.

3. For each item v € S, determine the largest item, w, in B’ that is smaller than v, using a binary
search on B’. Label v with the index of w in B’.

4. Place all items with the same label into a subarray of size @(ng/zﬁ) designated for the label,
using heavy multiple compaction. W.h.p., the number of items with the same label is at most
ni+1 and thus the heavy multiple compaction succeeds in placing all items in each such group

into its designated subarray.

5. Recursively sort the items within each group, for all groups in parallel. When n;41 is at most
n'/18187 finish sorting the group using the CREW PRAM mergesort algorithm. Alternatively,

for our QRQW PRAM result, when n;41 is at most Q(Ig”)l/2, finish sorting the group using the
EREW PRAM bitonic sort algorithm. These cut-off points suffice for n sufficiently large; for

general n, the cut-off points are max{nl/lglg”, lg* n} and maX{Q(lg”)l/Q,lgc n}, respectively,

for ¢ > 6/¢ a suitable constant.

We use “relaxed” heavy multiple compaction, which reports failure if a set size exceeds its upper
bound count (recall the discussion at the end of Section 4.1). If failure is reported for any subproblem,
we restart the algorithm from the beginning.

Algorithm A is readily implemented on a CRQW PRAM, as follows.

Theorem 7.2 Algorithm A for sorting n arbitrary keys can be tmplemented on ¢ CRQW PRAM in
O(lgn) time and O(nlgn) work w.h.p., using O(n) space.
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To obtain a sorted output it remains to sort within each subinterval. Each subinterval contains
O(lgn) items w.h.p., and we assign one processor to the items in each subinterval. Each subin-
terval can be sequentially sorted in O(lgn) expected time by further dividing the subintervals into
lgn buckets (sub-subintervals), having each processor assign its items to the appropriate bucket,
and then having each processor use heapsort to sort within the buckets [MA80]. A more precise
analysis [Hag89] shows that each processor fails to complete its sorting in O(lgn) time with proba-
bility less than 1/1gn (the failure probability is in fact much smaller). We can achieve O(lgn) time
w.h.p., as follows. Each processor applies the sequential sorting algorithm for O(lgn) steps. We
expect O(n/lgn) processors to fail to complete their sorting, and by Fact 2.5, this occurs w.h.p. Use
a parallel prefix sums algorithm to compact the unsuccessful subintervals and then assign O(lgn)
processors to each such subinterval; each processor gets a constant number of unsorted items. In
O(lgn) time, each processor compares its items against the other items in its assigned subinterval,
computes their ranks within the subinterval, and places the items in the appropriate positions in the
output array. Finally, the output array is compacted to size n using a parallel prefix sums algorithm.

At this point, w.h.p., the n numbers drawn from U(0, 1) are successfully sorted, and the stated
time and work bounds are achieved w.h.p. However, for some inputs, e.g. when the number of
items in a subinterval exceeds 4clgn, we will have failed to sort the items. To obtain a Las Vegas
algorithm, in such cases, we sort the input using a single processor; this does not affect the time and
work bounds for the algorithm. .

Theorem 7.1 matches the bounds obtained for the cRcw PRaM in [Chl89, Hag89]. (There is
also a more involved O(lgn/lglgn) time cRCW PRAM algorithm as implied by applying first the
O(lglgn) padded-sorting algorithm of [MS91], followed by the O(lgn/lglgn) prefix sums algorithm
of [CV89].)

7.2 General Sorting

In this section we consider the problem of general sorting, i.e. sorting an arbitrary collection of
n keys from some totally-ordered set. On the EREw PRaM, there are two known O(lgn) time,
O(nlgn) work algorithms for general sorting [AKS83, Col88]; these deterministic algorithms match
the asymptotic lower bounds for general sorting on the EREW and CREW PRAM models. Unfor-
tunately, these two algorithms are not as simple and practical as one would like. Simple parallel
O(nlgn) work algorithms for sorting include a simple straightforward parallelization of mergesort
that runs in O(lg?n) time on a cREw PRAM and an O(lg n) time randomized quicksort algorithm
on an EREW PRAM (see, e.g. [J4J92]).

Another relatively simple parallel sorting algorithm is a randomized y/n-sample sort algorithm
for the CREW PRAM that runs in O(lgn) time, O(nlgn) work, and O(n'*¢) space [Rei85].” This
algorithm consists of the following high-level steps: (1) randomly sample \/n keys, (2) sort the
sample by comparing all pairs of keys, (3) each item determines by binary search its position among
the sorted sample and labels itself accordingly, (4) sort the items based on their labels using integer
sorting, and (5) recursively sort within groups with the same label. When the size of a group is at
most 1g n, finish sorting the group by comparing all pairs of items.

We build on this y/n-sample sort algorithm and obtain the following two results:
e For the QRQW PRAM, we obtain an O(lg” n/lglgn) time, O(nlgn) work, O(n) space random-

ized sorting algorithm, thus improving the time bound by a factor of Iglgn over the EREW
PRAM quicksort algorithm.

"The algorithm in [Rei85] uses ©(n) memory locations of size O(y/nlgn) bits. Under the standard assumption for
the PRAM, adopted as well in this paper, that each memory location is of size O(lgn) bits, the algorithm in [Rei85]
uses ©(n!®) space. This has been improved to O(n'1€) space, for any constant € > 0 (see, e.g. [J4J92]).
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number of active buckets is, w.h.p., smaller than the number of memory blocks. In such cases, the
contention to a memory block in step 2(a) is a binomial random variable with an expected value
less than 1. Tt follows by Observation 2.6 that w.h.p., the maximum contention to a memory block
is O(lgn/lglgn). By Fact 6.3, all buckets contain O(lgn/lglgn) keys w.h.p. Thus, in a constant
number of steps of O(lgn/lglgn) contention w.h.p., keys of each active bucket can learn if their
bucket is allocated with a memory block, read the random linear function selected by their bucket,
and test for injectiveness.

The work for an iteration of step 2 is bounded by the number of keys in active buckets; Gil
and Matias [GM94a] show that w.h.p. this number decreases faster than a geometric series. Thus
step 2 of the algorithm can be described in a QRQW work-time presentation as a geometric decaying
algorithm with O(n) work, consisting of O(lglg n) steps, each with contention O(lgn/lglgn) w.h.p.

This implies an O(lg n) time O(n) work algorithm that, by using Theorem 2.3 and Theorem 2.4,
can be implemented on a QRQW PRAM in O(lgn) time, using n/lgn processors.

We now analyze the lookup queries algorithm. By Lemma 6.4, h(z) can be computed for
each query key in parallel in O(lgn/lglgn) time and linear work w.h.p. By Fact 6.3, at most
O(lgn/lglgn) query keys map to any single bucket w.h.p. Thus the contention encountered for
a query key to read its block address, its secondary hash function, and its hash table location is

O(lgn/lglgn) w.h.p.

This completes the proof of Theorem 6.1. .

7 Sorting

In this section, we present results for three classes of sorting algorithms. First, we consider sorting
keys drawn uniformly at random, and present an O(lgn) time, linear work w.h.p. algorithm. Second,
we consider sorting general keys, and present two simple, work-optimal, comparison-based sorting
algorithms, one running in O(lg” n/lglg n) time w.h.p. and the other running in O(lgn) time w.h.p.
Third, we consider sorting small integer keys, and present an O(lgn) time, linear work w.h.p. algo-
rithm. We apply this result to obtain an O(lgn) time, linear work w.h.p. algorithm for emulating
the powerful FETCH&ADD PRAM. The first two results are for the QRQW PRAM model; the latter
three are for the stronger CRQW PRAM model.

7.1 Distributive Sorting

The sorting from U(0,1) problem is to sort n numbers chosen uniformly at random from the range
(0,1). As indicated in Table 1, the best known linear work EREW PRAM algorithm for this problem
runs in O(n®) time, for fixed ¢ > 0. EREW PRAM algorithms that run in polylog time are work
inefficient by at least a \/lgnlglgn factor. We obtain the following:

Theorem 7.1 Sorting from U(0,1) can be done in O(lgn) time and linear work w.h.p. on a QRQW
PRAM.

Proof.  First partition the real interval (0, 1) into n/ lg n subintervals. Tt follows from Fact 2.5 that
the number of input items in each subinterval 1s with high probability at most ¢lg n for some constant
c. We allocate to each subinterval an array of size 4clgn and employ our multiple compaction
algorithm (Theorem 4.1) to place each input item in a private cell in the subarray allocated to its
subinterval.
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The Gil and Matias algorithm sketched above requires a careful selection of its constants and
parameters, so that O(lglg n) iterations provably suffice. Likewise, our adaptation of their algorithm
requires a careful selection of its constants and parameters to leverage their analysis and obtain the
desired result, as follows. In selecting the hash function that defines the buckets, it suffices to take
R’ =R %(k n) with d; =7, dy = 11, and k = n%/7. Let A = 18/13, and let t* = 21lglgn/lgX be
the number of iterations. Let ¢ = [¢/2]. Fort = 1,2,...,t*, let x4, the block size at iteration ¢, and
my, the number of blocks at iteration ¢, be:

v = gart' b1t/ e,
m; — n2—a)\tl—b2t'+02’
where a = 8/13, by = 1/5, by = 9/20, ¢; = 73/25, and ¢2 = 89/20 (these are the same constants
used in the Gil and Matias algorithm). Then the QqrQw hashing algorithm is:

Constructing a hash table.

1. Select a random hash function h from R’, duplicate the parameters of h, and partition the
input set into n buckets according to h.

2. Fort:=1tot* do

(a) Allocation: Allocate m; memory blocks, each of size ;. Let each bucket select a block at
random, and try to claim it by writing the bucket number in a designated memory cell.

(b) Hashing: Each bucket that successfully claimed an allocated block in the previous step
tries to injectively map its keys into the block using a random linear hash function from
Hit. If it succeeds, record the description of the hash function and the address of the
memory block for that bucket. Buckets that fail carry on to the next iteration. For the
last iteration, t = t*, repeat this hashing substep a total of 8 times.

3. If there are any buckets that have yet to succeed, return to step 1 and restart the algorithm
from the beginning.

Lookup queries for n distinct keys are performed as follows:

Lookup queries.

1. For each query key z, h(x) is computed to locate the memory block for this bucket and the
secondary hash function h;, i = h(x), used within this block.

2. The key z is in the hash table if and only if location h;(#) of this memory block contains the
key x.

Proof of Theorem 6.1. We first analyze the hash table construction algorithm, then the lookup
queries algorithm.

By Lemma 6.4, step 1 of the hash table construction algorithm takes O(lgn) time and linear
work w.h.p. As for step 2, Gil and Matias [GM94a] show that, for their algorithm, the number
of active buckets decreases more rapidly than the number of memory blocks, and hence w.h.p.,
all buckets have become inactive after O(lglgn) iterations. A straightforward adaptation of their
analysis to our algorithm (which uses hash functions from R’), shows that w.h.p., all buckets have
become inactive after t* iterations. Thus w.h.p., the algorithm will not be restarted. Step 3 can be
performed in O(lgn) time and linear work, using an orR computation.

To complete the analysis for the QRQW PRAM, we determine the contention encountered in
step 2. For each active bucket we have a processor standing by that acts in step 2(a) in claiming
a memory block, and in step 2(b) in selecting a random function from Hit. As argued above, the
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6.2 The hashing algorithm

Our algorithm is based on an O(lglgn) time cRcw hashing algorithm of Gil and Matias [GM94a,
GM94b] (see also [GM91]). Their algorithm uses a technique of oblivious execution that circumvents
the need to learn the bucket sizes b%, in order to allocate appropriately-sized memory blocks and

construct the second level functions h;. We first sketch the high-contention crecw algorithm and
then derive our low-contention QRQW algorithm.

1. Partition the input set into n buckets by a random hash function from H%, where d is an
appropriate constant.

2. For t := 1 to O(lglgn) do

(a) Allocation: Allocate my memory blocks, each of size x;, where m; and z; are carefully
selected parameters (#+ behaves as 22" for some constant A and my &2 n/tht). Let each
bucket select a block at random, and try to claim it by writing the bucket number in a
designated memory cell.

(b) Hashing: Each bucket that successfully claimed an allocated block in the previous step
tries to injectively map its keys into the block using a random linear hash function from
Hit. If 1t succeeds, it records the description of the hash function and the address of the
memory block for that bucket. Buckets that fail carry on to the next iteration.

The algorithm above is a high-contention one, since the bucket sizes when using a hash function from
M2 may be polynomially large, while the memory block sizes z; are small (e.g. zg is a constant). To
obtain an efficient low-contention algorithm, we first replace the polynomial class H¢ in step 1 with
the class R defined above, taking k = n'=% 0 < § < 1/2; functions from this class have relatively
small bucket sizes (Fact 6.3). The disadvantage of using functions from R is that each function
h € R is represented by n' =% + ©O(1) numbers that need to be selected at random in an initialization
step, and then used to evaluate in parallel A(z) for # € S as well as any subsequent query set. A
straightforward implementation of this evaluation results in polynomial contention. We devise a
low-contention scheme for the evaluation, yielding the following result:

Lemma 6.4 A function h can be selected at random from R and preprocessed for efficient evaluation
in O(lgn) time and linear work w.h.p. Subsequently, for any set S C U of size n, h(x) can be
evaluated in parallel for all x € S on a QRQW PRAM in O(lgn/lglgn) time and linear work w.h.p.

Proof.  Recall that h = (f, g,a1,a2,...,a,1-¢), for some constant &, where each a; is selected at
random from {0, ..., n— 1}. These n'~% + ©(1) parameters are selected by as many processors and
then duplicated in O(lgn) time and linear work, using a simple binary broadcasting algorithm: the
functions f and g are duplicated n times and each of the a; is duplicated 4n/n'=% = 4n® times. The
total representation requires linear space.

Recall that for a key = € S, we compute h(x) := (g(x) + ay(,)) mod n. Thus, for each key we
need to read the values of f, g, and aj). Reading f and g is easy: the i’th key reads the i’th
copies of these two functions. The main difficulty is in reading aj(,) as contention cannot be entirely
avoided. For each key x € S, a processor allocated to the key evaluates f(z) and then chooses at
random one of the copies of aj(,) and reads it. By Fact 6.2,

Prob (bfC <ol for0<i< nl_é) >1-— O(nl_é_édl/z) .

Therefore, w.h.p. the contention distribution obtained in the read step of af(,) is upper bounded
by a distribution obtained by n'~? instances of throwing 2n’® balls into 4n® urns at random. In
particular, it follows from Fact 2.5 that the maximum contention is O(lgn/lglgn) w.h.p. .
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Theorem 6.1 A hash table for S can be constructed in O(lgn) time and linear work w.h.p. on
a QRQW PRAM. Subsequently, lookup queries for n given distinct keys can be completed in
O(lgn/lglgn) time and linear work w.h.p. on & QRQW PRAM.

The set S of keys to be stored in the hash table as well as the set of keys appearing in lookup
queries can be arbitrary subsets of U. We assume that the choice of sets is independent of the random
bits used by the algorithm. Our result is for distinct keys. As shown in Table 1, the best known
linear work EREW PRAM algorithm for this problem runs in O(n€) time.

6.1 Basics

Consider the universe U = {0,1,...,¢q — 1} where ¢ is some prime. A hash function h, U A
[0,...,s— 1], maps the universe U into a smaller universe of size s. Given a set S C U of size n, the
hash function h splits S into buckets B! := {z € S|h(z) = i} of sizes b! = |B!|, 0 < i < 5. The
function h is c-perfect for S if b < c for all 0 < i < s; h is perfect for S if it is 1-perfect for it.

Let d be a constant. The class of d-degree polynomial hash functions is defined as follows:

d
HE = {h ‘ h(z) = (Z a;z' mod q) mod s, a; € U}.

i=0

Fact 6.2 ([KRS90]) Let h be selected al random from Hgl_é. Then, for each i, i=1,...,n'"?

Prob (b} > 2n%) = O(n=%42)

The class M} is denoted the class of linear hash functions.

Siegel [Sie89] and then Dietzfelbinger and Meyer auf der Heide [DM90] showed how polynomial
hash functions can be combined to create a new class of hash functions. The class R = R%42(k, n)
of hash functions, defined in [DM90], is the set of all (k + 2)-tuples h = (f, g, a1, a2, ..., ax), where
fe Hgl, for some constant dy, g € H42, for some constant ds, and ay,as,...,a; € {0,...,n —1}.
The action of h € R on # € U is defined as h(x) := (g(x) + aj(,)) mod n.

With high probability, a random hash function from R has a distribution of bucket sizes that is
very close to that of a truly random function. In particular:

Fact 6.3 ([DM90]) Let 0 < 6 < 1/2 and let k = n'~°. For h randomly chosen from R, h is
O(lgn/lglgn)-perfect with high probability.

The two-level hashing scheme. Fredman, Komlos, and Szemeredi [FKS84] introduced a simple
and elegant two-level scheme for constructing a perfect hash function: a first-level hash function A
partitions the input set S into n buckets B 0 < i < n; this function is constructed in a first phase
and is assumed to imply a certain distribution on the bucket sizes b?. For each bucket B}, a private
memory block of appropriate size is allocated and a second-level function h; maps the elements of
B! injectively into its block; these functions are constructed in a second phase. Fredman, Komlos,
and Szemeredi showed that both the first level and the second level can be constructed in linear
expected time, by using linear hash functions only, and by allocating to each bucket B! a memory

block of quadratic size O((b2)?).

25



in Table 2 on the choice resulting in the best performance, namely, an initial subarray of size 4n — 1.
Note that the inactive 15K processors are used solely for the extra memory they provide; only the
active 1K processors execute useful steps in the program.

The second column of timings in Table 2 shows the results of these experiments. As can be seen
from this table, the QrRQW algorithm 1s over three times faster than the EREW algorithm, and the
dart-throwing with scans algorithm is in between.

Asymptotic analysis of the implemented algorithms. We provide an asymptotic analysis of
the implemented algorithms to determine if the relative order of the analyzed bounds corresponds
to the relative order of the measured performance on the MP-1. We consider two possible models
on which to base our analysis: the SIMD-QRQW PRAM described at the end of Section 2.1, and
the SCAN-SIMD-QRQW PRAM, defined to be a SIMD-QRQW PRAM augmented with a unit time SCAN
operation. As mentioned above, features of the MP-1 are more closely reflected in the sIMD-QRQW
PRAM model. Considering both the SIMD-QRQW PRAM and SCAN-SIMD-QRQW PRAM models allows
us to explore whether the builtin SCAN operations on the MP-1 should be considered unit time
operations when modeling the MP-1.

We analyze the three implemented algorithms in turn.

The sorting-based algorithm uses bitonic sorting (the sorting method employed by the MP-1
system sort routines), and hence takes O(lg2 n) time w.h.p. on the n-processor SIMD-QRQW PRAM
or SCAN-SIMD-QRQW PRAM (same bounds as for the EREW PRAM).

The first dart-throwing algorithm takes O(lg nlglgn) time w.h.p. on the n-processor SIMD-QRQW
PRAM, and is readily shown to take O(lgn) time w.h.p. on the n-processor SCAN-SIMD-QRQW PRAM.
(A more careful analysis for the SCAN-SIMD-QRQW PRAM yields a time bound that is slightly sublog-
arithmic.)

The random permutation algorithm given in Theorem 5.1 takes O(lgn) time w.h.p. on the n-
processor SIMD-QRQW PRAM. On the n-processor SCAN-SIMD-QRQW PRAM, the time is again slightly
sublogarithmic.

We conclude that for the particular implementations studied above, the relative order according
to the sSIMD-QRQW PRAM matches the observed performance, and to a lesser extent, the same can
be said for the SCAN-SIMD-QRQW PRAM. The SIMD-QRQW PRAM has the advantage over the SCAN-
SIMD-QRQW PRAM in predicting the faster of the two dart-throwing algorithms.

Related experimental results. Recall that the random permutation algorithm described in
Theorem 5.1 permitted each processor to have multiple reads/writes in progress at a time, and that
this pipelining feature was exploited to obtain a work-optimal algorithm on the QRQwW PRAM. On the
MasPar, however, each processor can have at most one read/write in progress at a time, so we were
not able to exploit this aspect of the algorithm (and in fact the resulting implemented algorithm
is not work-optimal). Recently, the random permutation algorithm described in Theorem 5.1 was
implemented on an 8-processor CRAY J90, a parallel vector machine that permits this pipelining
feature. This algorithm was compared with the fastest known sorting-based random permutation
algorithm on the CRAY J90, and was shown to be considerably faster over a range of problem sizes
(e.g. a factor of 2.5 faster in generating a random permutation for n = 16,384) [BGMZ95].

6 Parallel hashing

Given a finite universe U and a set S C U of size n, the hashing problem is to construct a linear-
size data structure (a “hash table”) that can support lookup operations, i.e. queries of the type “is

z €5, for any & € U. We show:

24



A number of builtin library routines are provided with the MPL language, including primitives
for routing on the multistage network or the X-Net, for various SCAN operations, and for random
number generation. The timings were done using the timing functions provided with MPL, and
did not include the cost of generating an initial random seed for each processor at the start of the
experiments.

In our first set of experiments, we compare the following three randomized Las Vegas algorithms,
for 16,384 processors (n = p = 16,384):

¢ A sorting-based algorithm: Each processor selects a random number between 1 and 23" —1.
These numbers are sorted, and 7(7) = the rank of ¢’s number in the sorted order. In the unlikely
event that two processors select the same number, we repeat the algorithm.

We use a builtin library routine for the sorting and ranking (rank32) and for detecting if the
algorithm needs to be repeated (globalor). This is arguably the simplest and most popular
EREW PRAM algorithm for random permutation.

¢ A dart-throwing algorithm using scan: At each iteration, until all items have been placed:
Each unplaced item selects a random cell from an array A of size n — 1; an item succeeds in
claiming a cell if no other item selects the same cell this iteration. (This is detected using
the “write,read,write,read” procedure outlined at the beginning of Section 5.1.) Compact the
successful items in A and transfer them to locations #(K + 1), 7(K +2),...,7(K + k), where
K is the number of items that succeeded in previous iterations and k is the number of items
that succeeded in this iteration. Array = will contain the random permutation.

We use a builtin scaN-type routine for the compaction (enumerate) and for detecting when
all items have been placed (globalor).

e A dart-throwing algorithm for the QrqQw: We implement the algorithm described in
Theorem 5.1, using n processors (and no reallocation), and taking the initial subarray size to
be 2n — 1.

We use a builtin library routine for detecting when all items have been placed (globalor) and
for the compaction at the end (scaniddi1s).

The MP-1 provides for single-step data parallel operation on plural variables, i.e. parallel opera-
tion on p data items, one per processor. In the initial iterations of the dart-throwing algorithm for
the QRQW, p processors throw darts into a subarray of size m, for some m greater than p; however
parallel operation on p data items out of a larger set m of possible data items is not efficiently
supported by the MP-1. We employ m/p plural variables to represent the subarray of size m. We
emulate each dart throwing step by m/p substeps cycling through these plural variables, such that
each processor throws its dart only during the substep for the plural variable containing its randomly
selected cell. This overhead increases with m; on the other hand, decreasing m results in a lower
success probability for each item and hence extra iterations may be needed before all items succeed
in claiming a cell. With this trade-off in mind, we have explored a range of possible array sizes for
each of the dart-throwing algorithms, and selected the one that resulted in the best performance.

The first column of timings in Table 2 shows the results of these experiments. Both dart-throwing
algorithms outperform the EREW algorithm, with the QRQw algorithm the fastest.

In our second set of experiments, we explore the performance of the three algorithms on an
optimistic configuration of the MP-1. In particular, we employ only 1024 processors of the MP-1,
one per cluster, so that each processor has its own input port and output port to the multistage
network. Moreover, we use plural variables that are the full size of the machine, permitting one-step
parallel operation on p = 1024 data items out of a larger set m < 16,384 of possible data items
(overcoming the bottleneck described above). This improves the relative performance of the QrQw
algorithm. For this configuration, we again explored a range of possible initial array sizes, and report
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The implementation of the algorithm described above on a QRQW PRAM 1is similar to the imple-
mentation of the heavy multiple compaction algorithm. That is, it can be described in an O(lgn)-
spawning model and be implemented using Corollary 3.8, or it can be implemented directly as in
the proof of Lemma 4.2. The theorem follows. "

5.2 Preliminary experimental results

We have performed several illustrative experiments comparing random permutation algorithms;
these experiments were performed on a 16,384 processor MasPar MP-1 [Mas91]. The goal was to
see whether a good QrRQW algorithm would outperform the popular EREW algorithm. We have
implemented the random permutation algorithm given in Theorem 5.1, as well as a variant of
this algorithm that uses more extensively the builtin library routine provided by the MP-1 for
performing SCAN operations, and compared their performance to the popular sorting-based EREW
random permutation algorithm.®

We perform two sets of experiments. In the first set, we use all 16,384 processors to generate
random permutations of {1,...,16384}, i.e. we study the case where n = p = 16,384. Then in the
second set, we use only 1024 processors of the full machine to generate random permutations of
{1,...,1024}, i.e. we study the case where n = p = 1024. The results are shown in Table 2. In both
cases, the QRQW algorithm described in Theorem 5.1 is the fastest. In the rest of this section, we
present the details of our experiments. We begin with a brief description of the MasPar MP-1.

| Random Permutation on the MasPar MP-1 |

algorithm 16K proc. | 1K proc.
sorting-based (EREW) 11.25 ms 10.01 ms
dart-throwing with SCANs 8.02 ms 6.05 ms
dart-throwing for QrQw 7.57 ms 2.88 ms

Table 2: FEach running time represents the average of generating 1000 random permutations of
{1,...,p}, where p is the number of processors. The experiments with 1K processors were run on
the same machine as the experiments with 16K processors, but using only one processor per router
cluster. See the text for more details.

In the MasPar MP-1, the 16,384 processors are connected by a mesh-like point-to-point network
called the X-Net, as well as by a multistage network used for global routing. Processors are parti-
tioned into clusters, such that the 16 processors in a cluster share a single output port and a single
input port to the multistage network. Each processor has 16K bytes of local memory; processors
can read or write to locations in each other’s local memories using either network. The MP-1 is a
SIMD machine.

In siMD machines, the processors execute in lock-step; thus if any processor is delayed due to
contention at a location, all processors are delayed. On the MasPar, processors wait after each
read /write for the read/write with the maximum contention. This feature is captured by the siMD-
QRQW PRAM model.

Our implementations were done using version 2.0 of the system software provided for the MP-1.
The programs were written in the MPL language, an extension of C that permits data parallel
operations. MPL provides “plural” versions of many C data types, for defining variables suitable for
data parallel operation. A plural int for example is a data type with an integer on each processor;
adding two plural int variables results in a plural int variable that is the component-wise sum.

6Random cyclic permutation algorithms (such as those given in Theorem 5.2 and Theorem 5.3) were not considered
in our comparison.
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Note that detecting whether we are done and notifying all the processors requires Q(lg n) time, by
Theorem 3.1, so this cannot be done. We can ensure, however, that the algorithm always produces a
valid random cyclic permutation, by adding the following steps to handle the unlikely scenario where
there are unplaced items or items whose successors have not been determined. Let x be a memory
location apart from the array A. Any processor assigned an item that remains unplaced or without
a known successor writes its ID to x; the resulting value in x designates the processor that will
complete the work sequentially. The designated processor checks each item to see if it is unplaced,
and if so, attempts to place the item into a random cell of A until 1t succeeds in finding an unclaimed
cell. Finally, after all the items have been placed, the processor steps through A to determine the
successors for all items, and fills in the output array. Thus we have a Las Vegas algorithm, but since
we do not inform all the processors when the algorithm completes, some processors may not know
when it 1s safe to use the output.

To complete the proof of the theorem, we show that the time and work for the algorithm matches
the bounds stated in the theorem. Step 1 is O(nf) work and, by Observation 2.6, O(f) contention
w.h.p. Step 2 is O(n) work and O(1) contention. Step 3 is O(f) substeps of O(n) work and O(1)
contention each. Step 4 is O(n) work and O(1) contention. The sequential cleanup phase described
in the previous paragraph occurs with polynomially small probability, and can be ignored in the
analysis. "

5.1.3 An efficient random cyclic permutation algorithm

We next show how to solve the random cyclic permutation problem in sublogarithmic time and linear
work. The algorithm is based on an O(lg" n) time CRCW PRAM algorithms for linear compaction
and random permutation [MV91la].

Theorem 5.3 The random cyclic permutation problem can be solved by a QRQW PRAM algorithm
in O(lgnlg” n/lglgn) time and linear work w.h.p.

Proof.  We adapt the heavy multiple compaction algorithm from Section 4.1 as follows. First, we
consider the special case where there 1s but a single label. Second, we permit an item to claim a cell
only if it is the only item attempting to claim the cell, to ensure that the items are placed at random
into the array. Third, after completing all the rounds of the log-star paradigm, we determine the
successor for each item, using the approach described in Theorem 5.2, as follows. Consider a binary
tree imposed on A and walk up the tree 21glgn levels: At each node, v, maintain a linked list of the
items in the subtree rooted at v by linking the rightmost item in v’s left subtree with the leftmost
item in v’s right subtree. Then for each node, v, at level 21glgn, link v’s rightmost item to the
leftmost item of the next node to v’s right at this level (with wrap-around). This finds successors
for all items whose successors are within a distance of 1g?n cells. We complete the algorithm by
having each item, i, with successor j, write 7 to the ith output cell. A Las Vegas algorithm can be
obtained by following the procedure given in Theorem 5.2.

The analysis of the heavy multiple compaction algorithm using the ¢;-spawning model given
in Section 4.1 can be readily adapted to show that the time for each of the O(lg" n) rounds is
O(lgn/lglgn) w.h.p., that the overall work is O(n) w.h.p., and that w.h.p., all items are placed
prior to finding the successors. Walking up the tree takes O(lglgn) time and O(n) work (the work
is linear here since the tree has only O(n) nodes). To analyze the probability that all successors will
be found in walking up the tree, consider an arbitrary subarray of A of size 1g?n. Each dart hits
a cell in the subarray with probability p = lg2 n/cn, where en is the size of A, ¢ a constant. The
probability that no item is in the subarray is less than (1 — p)* < 1/61g2”/c. It follows that w.h.p.,
all subarrays of A of size 1g” n have at least one item. In particular, for any given item, the subarray
starting just to its right in A (with wrap-around) will contain its successor w.h.p.
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compression step) then the time is sublogarithmic, and can be somewhat improved if the algorithm
from [MV91a] is used. Such an algorithm is actually described in the proof of Theorem 5.3.

5.1.2 A fast random cyclic permutation algorithm

For random cyclic permutation, we observe that the contention during the dart throwing can be
reduced by using a larger array; this was the technique used in the linear compaction algorithm
given in [GMR96a]. However, this reduction in contention due to throwing into a larger array must
be balanced against the additional time spent by an item finding its successor in the larger array.
Consider an array of size O(n2/), for Iglgn < f < lgn, into which n random darts are thrown.
By Observation 2.6, the maximum contention will be O(lgn/f) w.h.p.; the maximum gap between
darts can be shown to be O(2/) w.h.p. Successors can be found in time logarithmic in the maximum
gap. Hence we have an O(lgn/f + f) time requirement for this approach, which is minimized when
f = Vlgn. The algorithm given below is based on this approach. Since the contention at each
round of dart throwing is O(y/Ign), even after many of the items have been placed, we aim for only
a constant number of rounds.

Theorem 5.2 The random cyclic permutation problem can be solved by an n-processor QRQW PRAM
algorithm in O(\/Ign) time w.h.p.

Proof.  Let A be an auxiliary array of size m = nf2°/, where f = /Ign, for a constant ¢ > 1
determined by the analysis.

1. Each item attempts to claim f random cells in A; an attempt succeeds if there is no other
claim on that cell.

2. W.h.p., each item will have at least one claimed cell. Each item marks all but its first such
claimed cell as unclaimed.

3. Fach item finds its successor in A (with wrap-around), as follows. Consider a binary tree
imposed on A. Each item begins at its leaf and walks up the tree level by level for at most 2¢f
levels, until 1t encounters an item to its left and to its right in A. In particular, at each node,
v, we maintain a linked list of the items in the subtree rooted at v by linking the rightmost
item in v’s left subtree with the leftmost item in v’s right subtree. Then, for each item that is
the rightmost item in its subtree at level 2¢f (and hence has failed to find its successor), link
the item to the leftmost item (if any) in the subtree immediately to its right at this level. Note
that this finds successors for all items whose successors are within a distance of 22¢7 cells.

4. For each item, 7, with successor j, write j to the ith output cell.

The probability of an item failing to be placed in step 1 1s less than
(nf/m)f = (1/2°7)) = 1/2°'8" = 1/n".

To analyze the probability that all successors will be found in step 3, consider an arbitrary subarray
of A of size 2%¢/. Each dart hits a cell in the subarray with probability p = 22¢/ /m. The probability
that no item 1s in the subarray is less than

(1 —p)n < (1/6)pn _ 1/622cf/f26f = 1/620\/1g_n/\/1g_” .

It follows that w.h.p., all subarrays of A of size 2%°/ have at least one item. In particular, for any
given item, the subarray starting just to its right in A will contain its successor w.h.p. Thus w.h.p.,
the above algorithm outputs a random cyclic permutation.
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failures; this ensures that the policy for arbitrating between multiple writers to a cell does not bias
the random permutation. At the end of this first step, the relative order of the items in the array
gives an implicit random permutation. In the second step, the items are compressed into an array
[1..n], in order to compute the permutation explicitly.

A simple compression can be obtained by compacting the items using a prefix sums algo-
rithm [MR89, RR89]. An alternative compression technique that circumvents the need for com-
paction was presented in [MV9la]: each item in the linear size array finds its neighboring item,
and points to it; using the pointers all items can be placed in an array [1..n] in constant time, re-
sulting with a random cyclic permutation. (A general random permutation is obtained in [MV91a]
by breaking the global cycle into smaller cycles in an appropriate manner, using a prefix-minima
computation.)

The difference between the two compression techniques is illustrated by the following example.
Let n =5, and consider the items placed at random into an array of size 10, as follows:

(4] [5(=2] [ [ [t[3] |

In the first technique, the items are compacted in order, yielding the permutation on the right in Fig-
ure 1. In the second technique, the items specify the cycle representation, yielding the permutation
on the left in Figure 1.

In each of the QRQW PRAM algorithms in this section, we need to detect whether a processor
attempting to claim a cell z succeeds, i.e. whether the attempt is the only claim on cell . This is
accomplished for all attempts over all cells in a constant number of steps as follows. Each processor
first writes its index into its selected cell, then reads the cell. Any processor that does not read its
own index has detected multiple claims on that cell and hence has failed to claim the cell; it writes
again to the cell. Finally, each processor that did read its own index reads again the cell; if the cell
no longer contains its index, it has failed to claim the cell, otherwise it has succeeded.

5.1.1 A random permutation algorithm

Theorem 5.1 The random permutation problem can be solved by ¢ QRQW PRAM algorithm in
O(lgn) time and linear work w.h.p.

Proof.  We use an algorithm adapted from a randomized crRew algorithm of Gil [Gil91] for the
renaming problem, in which the processors in an anonymous set of at most n processors are given
distinct names from [1..0(n)]. For each of ¢lglgn rounds, for a constant ¢ > 1, each unplaced item
selects a random cell from a subarray of an array A (a new subarray is used for each round); if no
other item selects the same cell, the item has been successfully placed. The size of the subarray used
in the first round is d - n, for some constant d > 1, and the size decreases by a factor of two at each
round. If after clglgn rounds, not all items have been placed, restart from the beginning. After all
items have been placed, the array A 1s compacted to size n.

Gil [Gil91] shows that, w.h.p., the algorithm completes without restarting. Moreover, w.h.p., the
number of active items decreases more rapidly than the subarray size. In such cases, the contention
to a memory cell at each round is a binomial random variable with an expected value less than 1.
It follows by Observation 2.6 that w.h.p., the maximum contention is O(lgn/lglgn) at each round,
and hence the total time is O(lgn) w.h.p. The total work is O(n) w.h.p. Processor allocation can
be done directly or by applying Theorem 2.4. "

We note that there are other cRCw algorithms that may also give similar complexity bounds.
Also, if the output may consist of an implicit (or “padded”) random permutation (i.e. without the
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order as in the input; (iii) the p processors compute the prefix sums of the numbers N[i, j] (in row
major order) into the two-dimensional array Sign p; (iv) each processor j traverses its group j, and
computes the global rank r of each element in its group; if = is an element in a subgroup ¢ that is
ranked r;(#) in its subgroup’s list, then the global rank of x is r(z) = S[i, j — 1]+ r;(#); and (v) each
processor copies all the items in its group into the output array in sorted order by their global rank.
All steps can be easily implemented in O(lgn) time. "

This gives us the following lemma.

Lemma 4.4 The multiple compaction problem in which the count of each set is at most v -1g>n for
the constant o in Lemma 4.2 (i.e. the light multiple compaction problem) can be solved on a QRQW
PRAM in O(lgn) time and linear work w.h.p.

5 Random permutation

The random permutation problem is to generate a permutation of {1,... n} such that all permuta-
tions are equally likely. The random cyclic permutation problem is to generate a cyclic permutation
(one that consists of a single cycle) of {1,...,n} such that all such permutations are equally likely.
Examples of cyclic and noncyclic permutations are given in Figure 1. As indicated in Table 1, the
best known linear work random permutation algorithm for the EREW PRAM run in O(n®) time, for
fixed € > 0. This is also the best bound known for the random cyclic permutation problem. Polylog
time EREW algorithms known for both problems are work inefficient by at least a 1/Ig nlglgn factor.

i [1 2 3 4 5 i [1 2 3 4 5
70 [3 1 4 5 2 o) [4 5 2 1 3
(45213) (41)(253)

Figure 1: Permutations. On the left, a cyclic permutation, 7, and a corresponding cycle representation. On the
right, a noncyclic permutation, ¢, and a corresponding cycle representation.

In this section, we present three QRQW PRAM algorithms that significantly improve upon the best
EREW algorithms. The first, an adapted cRCW algorithm, solves the random permutation problem
in O(lgn) time, linear work w.h.p. The second, a newly designed algorithm, solves the random
cyclic permutation problem in O(y/lgn) time w.h.p., using n processors. The third, an adapted
CRCW algorithm, solves the random cyclic permutation problem in O(Ignlg” n/lglgn) time, linear
work w.h.p. This section concludes with some results obtained from running random permutation
algorithms on the MasPar MP-1 [Mas91].

5.1 Algorithms

Dart throwing is a popular technique for random permutation on the crcw PrAM [MR89, RR89,
MV91la, Hag91, Mat92]. The random permutation algorithms in the cited references all essentially
consist of two basic steps. First, the items 1,...,n are placed at random into a linear size array,
by a process in which each item attempts to claim a random cell in the array until it succeeds (in
later rounds, multiple processors may work on behalf of each item). If multiple items attempt to
claim the same cell in the same step (by writing to the cell), all such attempts are considered to be
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4.2 The light multiple compaction algorithm

In this section we present an O(lgn) time, linear work QRQW PRAM algorithm for the multiple com-
paction problem when the count of every set is at most ozlg2 n, 1.e. for the light multiple compaction
problem. The main steps in the algorithm are as follows.

(1) Elect a leader for every set ®; as follows: Write each item into a random location in its output
subarray. Then use a simple prefix sums computation on the output array to identify the item
written in the first non-empty location in each subarray. Designate this item as the leader for
its set.

(i1) Have the leader of every set ®; write the value of n; in location j of an array C[l..n]. For
every empty set ®; write the value 1 (empty sets are assumed to have one dummy member).

(iii) Let each subarray of size ozlg2 n in ' define a superset containing the sets represented in this
subarray. Note that each superset is of size between «lg”n and (ozlg2 n)%.

(iv) Process the data for the supersets defined in step (iii) to serve as an input for the heavy
multiple compaction problem as follows: Compute prefix sums in array C' to determine the
starting position of the subarray for each superset in the (new) output array for the supersets.
The leader for each set in the superset writes the label of the superset, its count, and its pointer
in the starting position of the output subarray for its set. The processors then apply a simple
broadcast computation to broadcast this information to all locations within each subarray
in an optimal logarithmic time EREW PRAM computation. Each item then reads a random
location in its output subarray to determine the label of its superset, its count, and its pointer.

(v) Apply the heavy multiple compaction algorithm of Lemma 4.2 to place each superset item in
the appropriate subarray.

(vi) Within each superset, sort the items with the keys being the input labels modulo « lg? n. This
places items with the same input label consecutively within the subarray.

(vii) Rank each item within the consecutive subarray for its input label, using a prefix sums com-
putation. Then move each item, say with rank ¢, to the ¢th position in the original output
subarray for its input label, using its input pointer.

The maximum contention in steps (i) and (iv) is O(lgn/lglgn) w.h.p., by Observation 2.6. Thus
each of the steps (i)—(v) and (vii) above is easily seen to run on a QRQW PRAM in O(lgn) time and
linear work w.h.p. For step (vi), we apply the following result.

Fact 4.3 (see, e.g. [Rei93]) The EREW PRAM can stably-sort n integers in the range [1..1g°n],
for any integer constant ¢, in O(lgn) time and linear work.

Proof. The following steps stably-sort integer keys in the range [1..lgn]; the desired result is
obtained by repeating these steps ¢ times on increasingly significant bits of the input integers.

We use p = n/lgn processors. The input items are partitioned into p groups of size lg n, by their
location in the input array. Each group consists of lgn subgroups (some of them perhaps empty),
according to the key values. We use a two-dimensional array Nigy, p; N[i, j] will represent the number
of keys with value ¢ in group j. Thus, each row ¢z in N will represent the sizes of subgroups of keys
with value ¢, whereas each column j in N will represent the subgroups of group j. The algorithm
consists of the following steps: (i) each processor j, j = 1,...,p, traverses its group j, counts the
number of items in each subgroup ¢, and records them into N[¢, j], i = 1,..., lgn; (ii) each processor j
traverses its group and puts the items of each subgroup in a separate list, ordered in the same relative
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the number of items that fail is less than lgm w.h.p. in m. This establishes the claim on the number
of active items remaining at the end of each round.

Thus at the beginning of round 7', the number of active items in each set ®; is at most
max(nj/(Qil_lqi/),lgm) w.hp. in m, ie at most n;j/algm (recall that n; > alg?m). Since
qi» = «algm processors are allocated to each item in round ¢, all active items succeed in this
round w.h.p. in m. A Las Vegas algorithm can be obtained by repeating this last round on the
remaining active items until all such items have been placed.

Now we describe an implementation of this algorithm on the QrQw pPraM. The algorithm
can be easily implemented on the L-spawning model of Section 3.3, taking L = ¢ = algm.
Moreover, the L-spawning algorithm is predicted. The number of parallel steps is ¢’ = O(lg" n). The
expected contention at each deactivation step is less than 1, so by Observation 2.6, the maximum
contention at each deactivation step is O(lgm/lglgm) w.h.p. in m, and the time of the algorithm is
therefore ¢t = O(lg" nlgm/lglgm). The work of the algorithm is O(Zz;l n/2%) which is O(n). By
Corollary 3.8, the algorithm described above can be implemented on the QRQW PRAM in O(n) work
and O(lg" nlgm/lglgm + 1g" n\/Igmlglglgm) time, i.e. O(1g" nlgm/lglgm) time, w.h.p. in m.

We next describe a more direct implementation of the L-spawning algorithm above, which does
not require the use of the linear compaction algorithm (as in Corollary 3.8). Consider a partition of
the input elements in array A into groups of size lg2 m. Since the expected number of active items
in each group is £2(lgm) in each round, by Chernoff bounds (Fact 2.5), the number of active items
within each group is, w.h.p. in m, within a constant factor of the expected value. Therefore, the
allocation step can be implemented within each group. Specifically, within each group a linear-work
O(lg(lg® m))-time prefix sum algorithm is used to

(i) identify successful copies and select one of them to deactivate their item;

i)
(ii) count the number of active items in the group;
(iii) duplicate each active item into ¢; copies; and

)

(iv) partition the set of copies into equal-sized chunks, one chunk per processor.

Thus, the deactivation step of round i can be implemented in O(lglgm) time and O(n/2) work
w.h.p. in m. This leads to the following lemma.

Lemma 4.2 The multiple compaction problem in which the count of each set is at least oz~1g2 m for
a suitable constant o > 0 can be solved by a QRQW PRAM algorithm in O(lg* nlgm/lglgm) time
and O(n) work w.h.p. in m. The heavy multiple compaction problem (the case n = m) can be solved
in O(lgnlg” n/lglgn) time and linear work w.h.p. in n.

In Section 7, we will use a relaxed version of the heavy multiple compaction problem in which
the input assumption that all counts n; are upper bounds on the sizes of their respective sets ®; is
true w.h.p. only. When some set ®; has more than n; items, the algorithm is permitted to report
failure. The algorithm given above can be readily adapted to handle this relaxed version, within
the same time and work bounds, as follows: After round ¢/, use the output subarray to count the
number of items in each set ®;; if there exists a set ®; with more than n; items, report failure. This
can be done in O(lgn) time and linear work using prefix sum computations. Repeat round i’ and
this test until either all items are placed or failure is reported.
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describe our algorithm for heavy multiple compaction, and prove that it runs in O(lgn) time and
linear work w.h.p. on a QRQW PRAM (Lemma 4.2). Then in Section 4.2 we describe our algorithm
for light multiple compaction, and prove that it also runs in O(lg n) time and linear work w.h.p. on a
QRQW PRAM (Lemma 4.4). To solve the overall multiple compaction problem, it suffices to perform
one application each of the heavy and light multiple compaction algorithms. Thus the theorem
follows from Lemma 4.2 and Lemma 4.4. .

4.1 The heavy multiple compaction algorithm

We follow the general strategy used in the multiple compaction algorithm given in [GMV91] for
the cRCwW PRAM, and the log-star paradigm of [MV91la, Mat92]. To highlight and distinguish the
dependence of our algorithm on the input size and the confidence bounds, we consider an input of
size n and show a Las Vegas algorithm that, for any m, obtains its time bounds (which are a function
of n and m) with high probability in m (i.e. with probability 1 — 1/m? for any constant § > 0).

The log-star paradigm as adapted to our algorithm consists of O(Ig" n) basic rounds. An item
is initially active and becomes inactive when it is moved into a private cell in the subarray for its
set. The number of active items in set ®; at the beginning of round i > 1 is at most n; /(2°~¢;),
where {¢;} is a sequence defined by

gi+1 = min{2%, o -lgm},

with ¢; a sufficiently large constant. Round 1 is repeated a constant number of times to establish
the base case of this invariant. The number of rounds is defined as ¥ = min {i : ¢; = algm}.

Round ¢ consists of two steps:

(1) Allocation, where each active item in ®; is allocated with a set of ¢; processors (a “team”);
and

(i1) Deactivation, where a processor handling an active item of a set ®; tries to get hold of a private
cell in the subarray assigned to ®;, by selecting a cell in the subarray at random and writing
its index into that cell. An active item is deactivated if any one of the processors assigned to
it is able to obtain a private cell for the item.

In each round, the number of processors trying to write to the subarray for ®; (of size 4n;) is at
most n;. A processor fails in a write attempt if there is already a value written in that location from
a previous step. To simplify the analysis, we will also consider a write attempt to be a failure if
another processor tries to write into the location in the same step; this only increases the probability
of failure. Then, the failure probability of each processor is at most 1/2; moreover, these probabilities
are “pseudo-independent” in the sense that the bound on the failure probability of an item is valid
no matter what happens with other items. If any of the processors for an active item succeeds in
claiming a cell, then the item becomes inactive by selecting one of its successful processors. Since ¢;
processors are allocated to each item, the probability that an entire team for an item fails is at
most 279+,

We claim that the number of active items in each set ®; at the end of round ¢ < ¢ is at most
max(n;/(2'¢;4+1),1gm) w.h.p. in m. Assume inductively that at the end of round i — 1, the number
of active items in each set ®; is at most max(n;/(2°=1¢;),1gm); the base case can be easily obtained
by repeating the first round for a constant number of times. If nj/(Qi_lqi) > lg m then the expected
number of items that fail is at most (n;/(2:=1¢;)) - 27%. If this expected number is Q(Igm), then
by Chernoff bounds (Fact 2.5), the number of items that fail is O(n;/(g; - 2= gi+1)) w.h.p. in m,
i.e. no more than n;/(2¢;11); if this expected number is o(lgm), then again by Chernoff bounds,
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which is defined to be the same as the QRQW work-time presentation except that time is accounted
for using the CRQW metric instead of the QRQW metric. An algorithm A in the cRQW work-time
presentation obeying the L-spawning model with time ¢, work n, and number of parallel steps ¢’
can be implemented on a p-processor CRQW PRAM to run in time O(n/p) when p = O(n/(t +¢ -
Tis(n, L, M))), where M is the cRQqw PRAM model. The proof is similar to the proof of Theorem 3.6,
and 1s omitted.

4 Multiple compaction

In this section we present a logarithmic time, linear work QRQW PRAM algorithm for the multiple
compaction problem. We start by recalling the definitions of the compaction and linear compaction
problems, which we studied in the context of the QRQw PRAM in [GMR96a].

Compaction Problem. Given an array A[l..n] with & nonzero cells, where k is known but the
positions of the k& nonzero cells are not known, move the contents of the nonzero cells to the first &
locations of array A.

Linear Compaction Problem. Given an input to the compaction problem (i.e. an array A[l..n]
with & nonzero cells, where k is known but the positions of the k nonzero cells are not known), move
the contents of the nonzero cells to an output array of size O(k).

In [GMRY96a] we give a randomized algorithm for linear compaction on the QRQW PRAM that,
w.h.p., runs in O(y/Ign) time while performing linear work. The same algorithm with an additional
simple post-processing step solves the compaction problem in O(y/Ign + g k) time and linear work,
w.h.p.

The multiple compaction problem that we consider in this section is a generalization of the linear
compaction problem. The input consists of n items given in an array A[l..n]; each item has a label,
a count, and a pointer, all from [1..0(n)]. The labels partition the items into k sets ®1,..., Py,
k < n, where ®; is the set of items labeled with j. For simplicity we will let ¥ = n, and allow some
of the ®; to be empty. The count of an item belonging to ®; is an upper bound, n; = count(®;), on
the number of items in ®;, such that Z?Il n; < c-n for some constant ¢ > 0. Also given is an array
Bl[l..¢/n], where ¢/ > 4c is a constant. Array B is partitioned into subarrays such that each set ®;
has a private subarray of size at least 4n;; the subarrays are assigned in some arbitrary order. The
pointer of an item belonging to a set ®; is the starting point in B of the subarray assigned to ®;.

Multiple Compaction Problem. Given an input of the form stated in the above paragraph,
move each item in array A into a private cell in the subarray for its set in array B.

An important application of multiple compaction is in a randomized CRCW PRAM algorithm for
integer sorting [RR89]. In Section 7, we will use the algorithm for multiple compaction given in this
section to obtain a logarithmic time, linear work CRQW PRAM algorithm for integer sorting, as well
as to obtain efficient QRQW or crRQW algorithms for general sorting and sorting from U(0, 1).

Our main result in this section is a QRQW PRAM algorithm for multiple compaction that runs in
O(lgn) time and linear work w.h.p. as stated in the following theorem.

Theorem 4.1 The multiple compaction problem can be solved by a QRQW PRAM algorithm in
O(lgn) time and linear work w.h.p.

Proof.  We consider two special cases of the multiple compaction problem: In the heavy multiple
compaction problem, the count of each set 1s at least « - lg2 n, for a suitable constant « > 0, and in
the light multiple compaction problem, the count of each set is at most « - lg2 n. In Section 4.1 we
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Theorem 3.6 Let A be an algorithm in the QRQW work-time presentation obeying the L-spawning
model with time t and work n, and let t' be the number of parallel steps in A. If Algorithm A
is predicted then @t can be implemented on a p-processor QRQW PRAM to run in time O(n/p) if
p=0n/E+ -Tw(n,L,M))), where M is the QRQW PRAM model.

Proof.  The processor allocation technique extends the techniques for the 2-spawning model used
in [Mat92] for the cRcw PrRAM and in [GMR96a] for the QRQW PRAM. Let p be the number of Qrw
PRAM processors. Let w; be the total number of tasks at the beginning of step ¢ of Algorithm A, and
let n; be the approximate bounds on w;, as defined above. Thus, Z:I:l w; = n and Z:I:l n; = O(n).
In order to get an O(n)-work implementation on the QRQW PRAM, we keep the invariant that at each
step the tasks are evenly distributed among the p processors; i.e. the number of tasks per processor
at the beginning of step 7 is at most en; /p, for some constant ¢ > 0.

Step ¢ of Algorithm A is implemented as in the algorithm of Theorem 2.3, using the p-processor
QRQW PRAM. After step i, each task may spawn at most I, — 1 new tasks. Therefore, the total
number of tasks, n;41, becomes at most Ln;, and the number of tasks per processor becomes at
most ¢Ln; /p. A load balancing algorithm is used to redistribute the tasks among the processors so
that the number of tasks per processor becomes at most en;1/p. If n;y1 > n;/2, then the maximum
normalized load is at most 2¢L, and hence the time for load balancing is at most Tj;(p, 2¢L, M),
which is O(Ti(p, L, M)). So consider the general case where n;y; may drop below n;/2. In such
cases, we will add (for the sake of analysis only) dummy tasks to increase n; 4 so that the maximum
normalized load i1s at most 2¢L, and then argue that the addition of these dummy tasks increases
the time and work bounds by at most a factor of 2 over the original algorithm.

In more detail, we partition the steps of Algorithm A into phases, where a phase consists of
a maximal subsequence of steps for which the n;’s each decrease by more than a factor of 2. Let
p1 = nq, and for i = 2, ... ¢/, let p; = max{n;, p;—1/2}. For each step i, we add max {0, u; — n;}
dummy tasks. Consider any phase, comprised of steps j through k. Then y; = n;, and p;,..., pz
constitute a decreasing geometric series. Thus Zf:j Hs < 2n;, so adding the dummy tasks increases
the time and work bounds for the algorithm by at most a factor of 2.

By Theorem 2.3 and the invariant, the implementation of all steps i, i = 1,2, ..., ¢, when dummy
tasks are included, takes O(n/p+1t) time. The implementation of all the load balancing steps when
dummy tasks are included adds an additive overhead of O(#' - Tiy(p, L, M)). Hence the algorithm
runs in time O(n/p) when p = O(n/(t +t' - Ty (p, L, M)). The theorem follows. "

By Theorem 3.4 we obtain:

Corollary 3.7 Algorithm A in Theorem 3.6 can be tmplemented on a p-processor QRQW PRAM to
run in time O(n/p) w.h.p. when p=O(n/(t+t'\IgnlglgL +t'1gL)).

In particular,

Corollary 3.8 Let A be an algorithm in the QRQW work-titme presentation obeying the L-spawning
model with time t and work n, and let t' be the number of parallel steps in A. Then, if L =

20(Wlgnlglen) gnd Algorithm A is predicted, then A can be implemented on a p-processor QRQW
PRAM to run in time O(n/p) w.h.p. when p=0O(n/(t+1 -/IgnlglgL)).

An application of Corollary 3.8 is given in the next section.

The above results can be extended to algorithms obeying the L-spawning model that are not
predicted, if the CRQW PRAM model is used. Specifically, consider a CRQW work-time presentation,
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5. We now have a load balancing problem on O(p) super-tasks using p processors, with an initial
maximum load of O(g) super-tasks per physical processor and with the initial size of each
pointer array being wg = O(g). We solve this problem in O(lglg¢) stages using the linear
processor algorithm given earlier. Since the initial pointer array is as large as the maximum
load per processor, we need to be careful about the processing of the pointer arrays and
the task distribution step in order to stay within the time and work bounds. We perform this
computation as follows: We add the pointer array for each new set of tasks added to a processor
as a separate pointer array, and the processors in the team assigned to distribute the tasks
in this processor will search serially through the different pointer arrays in this processor to
determine the ones that contain its collection of tasks. Since we have at most O(,/g) processors
in a team and 2889 = O(lgg) different pointer arrays in any processor at any stage, this step
can be performed in O(,/g -1g g) time per stage leading to a total of O(\/g -1gg -1glg g), which
is O(g) time for processing the pointer arrays through all stages of the algorithm. At the end
of this step, each physical processor has O(g) tasks as required.

It is straightforward to see that the above algorithm runs in time O(lg L + T.(P, M) - 1glg L) (for
step 3) + O(lgg + T1.(P, M) - 1glg g + g) (for step b), which is O(lg L + Ti.(n, M) - 1glg L + n/p).
Finally, if needed, each physical processor P; can distribute its O(yg) tasks in O(g = n/p) time to
the 2n/p virtual processors in its group by a sequential algorithm. "

By using the linear compaction algorithm given in [GMR96a], where for M being a SIMD-QRQW
PRAM Ti.(n, M) = O(v/Ign) w.h.p., we obtain

Theorem 3.4 The load balancing problem with mazimum normalized load L can be solved by a
p-processor SIMD-QRQW PRAM algorithm in O(\/Ignlglg L +1g L) time and linear work w.h.p.

In particular,

Corollary 3.5 The load balancing problem with mazimum normalized load L = 200V1gn18len) cqp
be solved by a p-processor SIMD-QRQW PRAM algorithm in O(\/Ignlglgn) time and linear work
w.h.p.

3.3 Application to automatic processor allocation

As mentioned in Section 2, the paper [GMR96a] gave a few examples of general classes of algorithms
for which automatic processor allocation techniques can be applied to advantage. Such classes
include geometric-decaying algorithms, general task-decaying algorithms, and spawning algorithms.
Processor allocation is done by a scheduling scheme using an algorithm for linear compaction.

We show now that load balancing can be used to provide automatic processor allocation to a
more general class of algorithms: the L-spawning algorithms. In an L-spawning model, at each
step each task can spawn at most L — 1 more tasks. The total number of tasks may increase
or decrease at each step. Thus, the L-spawning model generalizes the spawning model (which
is equivalent to the 2-spawning model), as well as the models for task-decaying algorithms and
geometric-decaying algorithms. Let w; be the total number of tasks at the beginning of step ¢ of an
L-spawning algorithm A. Similarly to the task-decaying and to the spawning models, an L-spawning
algorithm A is predicted if an approximate bound on the sequence of work loads {w;} is known in
advance. Specifically, if a sequence {n;} is given such that for all ¢, n; > w; and >, n; = O3, wi).
Furthermore, it is required that for all ¢, n; < L - n;_1.
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The time for step 2 is dominated by the broadcasting substep and the time needed to compute
the prefix sums on the array of pointers (J; as well as to construct the array of pointers ;11 for the
next stage. It is straightforward to see that the broadcasting substep can be implemented in O(lgw;)
time, and the computations on array @); can be performed in O(lgw;) time. The overall time for
the ith stage is O(lgu;) as long as u; > w;, which holds for all but the last ©(lglglg L) stages of the
algorithm. Let i¥ = lglgL — lglglg L. The time taken by the first 5t steps of the algorithm is
(to within a constant factor)

1 it—1 it—1
D lgui= 3ol < 3724 a7 Ig L) <lg L 2it
3=0 i=0 i=0

which is O(lg L). The total running time for the first ¢* stages of the algorithm is therefore O(lg L +
Tic(n, M)lglg L), using n processors.

It is not difficult to see that at the end of step i*, u;+ = O(lgL) and w;+ = O(lgL/lglg L)
= O(lgL). Since each processor has a total of O(lg L) tasks arranged in a collection of w;+ = O(lg L)
arrays, each processor can sequentially collect together all of the tasks in all of its task arrays into a
single task array in O(lg L) time. Now we have a new load balancing problem on n processors with
maximum load O(lg L). We apply steps 1 and 2 repeatedly to this problem until the load balancing
i1s completed. This second phase clearly takes no more time than the first phase. Hence, the overall
running time of the algorithm is O(lg L + Tj.(n, M) lglg L), using n processors.

Finally, each processor can convert its task representation from the array of array format to the
single array format in constant time since it has only a constant number of tasks assigned to it at
the end of the algorithm.

Reducing the number of processors. It remains to show how to implement the above algorithm
(which assumes 2n virtual processors) on p < n processors with an additive time overhead of O(n/p).

The 2n virtual processors are partitioned into p groups of g = 2n/p processors each, and the jth
group is assigned to the jth physical processor, 1 < j < p. We will combine the tasks in the virtual
processors into ‘super-tasks’ that contain g original tasks (with possibly a few smaller super-tasks)
and perform load balancing on these super-tasks. For this, the jth real processor P; will perform
the following computation on the virtual processors in the jth group, 1 < j < p:

1. Designate the virtual processors in the jth group whose load is at least ¢ = 2n/p as “heavy
processors” and the remaining processors in the jth group as “light processors”.

2. For each heavy processor H; ; in the jth group, let its load be m;. Combine its tasks into super-
tasks of size g, with possibly one smaller super-task by setting its new load to be [m;/(2n/p)],
and setting its ‘normalizing’ factor to be g.

3. Perform load balancing on the super-tasks in the heavy processors using the linear processor
algorithm given earlier. This is a load balancing problem on p processors with O(p) super-tasks
and an initial maximum load of O(L) super-tasks per processor.

4. At this stage each physical processor has O(g?) original tasks consisting of a constant number
of super-tasks (of size g) from heavy processors and tasks from up to g light processors, each
of which has at most g tasks. These tasks are organized in a pointer array of size O(g). Fach
physical processor processes this pointer array and its array(s) of tasks so that the tasks are
once again grouped into super tasks of size ¢ (and possibly one smaller super-task in the jth
group), and such that a chunk of r super-tasks, starting with £th super-task can be retrieved
in constant time, given r and £. This preprocessing can be performed in O(g) time sequentially
by each physical processor.

11



Lemma 3.3 Let M be a model at least as strong as the EREW PRAM. Then

Tip(n, L, M) = O(lg L + Tio(n, M) - Iglg L) .

Proof.  Assume first that the number of available processors is 2n. We later show how to reduce
the number of processors to n/Ty(n, L, M), as required.

Our algorithm is based on a crcw load balancing algorithm by [Gil91], which consists of
O(lglg L) applications of a dispersal stage. FEach dispersal stage uses a linear compaction algo-
rithm as a main building block.

Let wg,ui,... be a sequence defined by ;41 = 2,/u; and uy = VL. Tt is straightforward to
verify by induction on ¢ that u; = 92-1/2'7" p27 04
i = O(lglgn). For simplicity, we will assume that the numbers \/u;, ¢ = 0,1,..., as well as other
outcomes of calculations below, are integers; it is straightforward, albeit somewhat tedious, to adapt
the setting of parameters and the analysis to handle the general case.

for ¢ > 1, and hence u; becomes constant for

As an invariant, we let u? be an upper bound on the maximum load among the processors at the
beginning of the (¢ + 1)st dispersal stage. A processor is said to be overloaded if it has at least 2u;
tasks. The (i + 1)st dispersal stage reduces the upper bound on the maximum load per processor
to u?_l_l = 4u;, as follows:

Step 1. The overloaded processors are injectively mapped into an auxiliary array of size 2n/u;.

Step 2. For each cell of the auxiliary array there 1s a team of u; processors standing by: each of
them adopts up to 2u; tasks of the overloaded processor that was mapped into this cell, thereby
freeing the overloaded processor from all its tasks. Each processor has now at most 2u; old
tasks and at most 2u; new tasks. Therefore, the upper bound on the maximum load among
the processors becomes 4u; = U22+1a as required.

Clearly, after i* = Iglg . stages | u;» is reduced to a constant, and we are done.

Implementation of step 1. An injective mapping is obtained by using a linear compaction
algorithm, in O(Tj.(n, M)) time. Note that since the total number of tasks is at most 2n, there
are at most n/u; overloaded processors. The contribution of step 1 to the entire algorithm is

therefore O(Ti.(n, M)lglg L) time.

Implementation of step 2. FEach processor FP; keeps an array of pointers ¢); to the arrays of
tasks which currently belong to the processor. In each stage, the size of this pointer array at most
doubles, so in the ith stage, the size of this pointer array is no more than w; = ¢ - 2, where ¢ is the
initial size of the pointer array. Since the initial size of the pointer array is 1 (by our convention for
the input representation), the size of this array in the ith stage is bounded by 2! for each processor.

Processor P; also keeps an additional array T; which represents the prefix sums T;[¢] = 22:1 tik,
1 < ¢ < w;, where t; 1 is the number of tasks in the kth task array of processor P;. The tasks of
the ¢th subarray of an overloaded processor P; are to be adopted by [t;¢/u;] processors. The
pointer to the fth subarray of P; is broadcast together with T;[¢ — 1] and T;[¢] to processors P,,
ve{[L[¢—1]/u] +1,...,[T;[€]/u;] }, in the team which is allocated to P; (here v is the numbering
of processors within the team). Each processor can infer from this information the pointer(s) to the
subarray(s) of tasks it needs to adopt and hence perform the appropriate updates. Note that an
overloaded processor P; may also be part of a team allocated to another overloaded processor.
Therefore, before the above update takes place, each overloaded processor P; updates both its
pointers array (); and its prefix sums array 7; to null.
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m = w(n) our load balancing algorithm continues to have the time bound of O(lg L++/Ign - l1glg L),
but the output representation of tasks will be an array of ‘super-tasks’, each of size [m/n], where
each super-task is represented by a pointer into the input task arrays.

3.1 A lower bound

In this section we show that the load balancing problem requires Q(lg L) time on the QRQW PRAM,
where L is the maximum load on any processor. The lower bound uses the following lower bound
on the ‘broadcasting” problem, which is given in [GMR96a].

Theorem 3.1 ([GMR96a]) Any deterministic or randomized algorithm thatl broadcasts the value
of a bit to any subset of k processors in a« QRQW PRAM requires expected time Q(lgk), regardless of
the number of processors used.

We now present our lower bound for the load balancing problem.

Theorem 3.2 Any deterministic or probabilistic QRQW PRAM algorithm for the load balancing prob-
lem with mazimum initial load L requires Q(lg L) time regardless of the number of processors used.

Proof.  Let the load balancing algorithm guarantee that each processor has at most e(1 + m/n)
tasks, for a suitable constant ¢ > 1. Our proof is based on showing a constant time EREW PRAM
reduction from the problem of broadcasting the value of a bit to any subset of (1/¢) - L processors
out of a total of n processors to the following load balancing problem: one processor P has L tasks,
and the remaining n — 1 processors have 0 tasks. If the value of the bit to be broadcast is 0 then
the L tasks are located in an array starting at memory location n + 1; if the value of the bit to be
broadcast 1s 1 then the L tasks are located in an array starting at memory location 2n 4+ 1. All of
the tasks are ‘dummy’ tasks, with constant size representation. This reduction can be implemented
in constant time by having the ¢th processor enter the task representation for the ¢th dummy task
to the array starting at location n + 1 and to the array starting at location 2n + 1. Processor P
initializes the pointer to the array of task representations to n+ 1 or 2n 4+ 1 depending on whether
its bit value is 0 or 1, and sets its load to be L.

The solution to the above load balancing problem consists of a subset § of at least L/¢ processors,
each receiving a pointer to a subarray consisting of at most ¢ tasks. These subarrays are either in
the block of memory between n+1 and 2n or between 2n+41 and 3n. Depending on which range the
pointer lies, each of the processors in § can determine whether the value b of the bit in processor P
is 0 or 1. Hence by Theorem 3.1 it follows that the load balancing problem requires Q((1/¢)-1g L)
expected time, i.e. Q(lg L) expected time. .

3.2 An algorithm

Let Tip(n, L, M) be the time needed to solve the load balancing problem of size n with maximum
normalized load L, using linear work on a model M. By Theorem 3.2, if M is a QRQW PRAM, then
Tiw(n, L, M) = Q(lg L).

A problem related to load balancing is the previously studied linear compaction problem: Con-
sider an array of size n with & nonempty cells, with £ known. The linear compaction problem is to
move the contents of the non-empty cells to an output array of O(k) cells. Let Ti.(n, M) be the time
for solving the linear compaction problem of size n, using n processors on a model M. Our load
balancing algorithm is primarily based on repeated applications of a linear compaction algorithm:



Fact 2.5 Pr{X > BE[X]} < (1-V/B-nBBEX] " for qll § > 1 .
A convenient corollary to this Chernoff bound is the following (see, e.g. [GMR96a]):

Observation 2.6 Let X be a binomial random variable. For all f = O(lgn), if E[X] < 1/27, then
X =0(lgn/f) wh.p. Furthermore, if E[X] <1 then X = O(lgn/lglgn) w.h.p.

3 Load balancing

Let m independent tasks be distributed among n virtual processors, and let L be the maximum
number of tasks (i.e. the maximum “load”) on any of the processors. In the load balancing problem,
the input to each processor P; consists of m;, the number of tasks allocated to this processor (its
“load”), together with a pointer to an array of task representations; no other information about the
global partition is available, except for m and L. The load balancing problem asks for a redistribution
of the tasks among the processors so that each processor has O(1 + m/n) tasks.

Our load balancing algorithms will use a more general representation for the tasks during the
course of the computation. In this representation, which we call the array of arrays format, the
tasks assigned to each processor are specified by an array of pointers to arrays of tasks, so that each
task is in exactly one of those task arrays. The format specified for the input to the load balancing
problem is a specific instance of the array of arrays format in which the array of pointers contains
only one element. Note that if the input is specified in the more general array of arrays format, then
we can convert it into the prescribed input format in O(lg L) time with O(m) work as follows: We
convert the task arrays into linked lists. We then link these linked lists for the different arrays for a
given processor into a single linked list. Both of these steps can be performed in constant time and
O(m) work over all processors. We then perform list ranking on the linked list for each processor,
and transfer the tasks in the linked list into an array of suitable size. This can be performed in
O(lg L) time and O(m) work. In view of this conversion procedure, we assume, for convenience, that
the input 1s in the form prescribed above.

We note the following property of the array representation for tasks. Given the array represen-
tation for tasks for each processor as specified above for the input, a given processor P; can acquire
a block of k tasks assigned to processor P; starting at a given location r in F;’s task representation
in constant time, given the values of ¢, k and r. If P;’s task representation is the array of arrays
format, then P; can access a block of & tasks starting at position r of the sth array of P; in constant
time, given the values of ¢, k, r and s.

We will assume that m < 2n, and that L < n. This assumption is justified below, by showing a
constant time reduction from the general load balancing problem.

Consider a general load balancing problem. The tasks at each processor P; can be grouped into
super-tasks of [m/n] tasks each, with possibly one smaller super-task. The number of super-tasks
per processor is [m;/[m/n]]. Therefore, the total number of super-tasks is > ., [m;/[m/n]] < 2n
and the maximum load per processor is [m;/[m/n]] < n. A load balancing algorithm for the super-
tasks will allocate a constant number of super-tasks per processor. Therefore, the number of tasks
allocated per processor will be O([m/n]), as required. We refer to the maximum load in the new
input, [m;/[m/n]] as the normalized mazimum load.

In this section we show that Q(lg L) time is required to solve the load balancing problem with
maximum load L on a QRQW PRAM. We then present a QRQW PRAM algorithm for this problem on
n processors with m = O(n) tasks that runs in time O(lg L 4+ +/Ign -1glg L). The \/Ign term in the
time bound arises from the use of an algorithm for the ‘linear compaction’ problem, for which we
use the QRQW PRAM algorithm in [GMR96a], which runs in O(y/Ign) time w.h.p. In the case when



In the previous paper, we showed that the work-time framework is well-suited to the QrQwW
PRAM. In the QRQW work-time presentation, a parallel algorithm is described as a sequence of steps,
where each step may include any number of concurrent read, compute, or write operations. In this
context, the work i1s defined to be the total number of operations, and the #ime 1s defined to be the
sum over all steps of the maximum contention of the step. Then Brent’s scheduling principle [Bre74]
can be applied to give a QRQW PRAM algorithm running in O(work/p + time) time on p processors:

Theorem 2.3 ([GMR96a]) Assume processor allocation is free. Any algorithm in the QRQW
work-time presentation with x operations and t time (t is the sum of the mazimum contention
at each step) runs in at most x/p+1 time on a p-processor QRQW PRAM.

We further showed a number of general scenarios under which automatic techniques can be used to
efficiently handle processor allocation issues. Consider, for instance, geometric-decaying algorithms,
in which the sequence of work loads (i.e. operations per step), {w; }, is upper bounded by a decreasing
geometric series, and each task at step ¢ was appointed by one task at the preceding step i — 1. For
this scenario, we have shown a technique for automatic processor allocation that yields the following
result:

Theorem 2.4 ([GMR96a]) Let A be a geometric-decaying algorithm in a QRQW work-time pre-
sentation with time t and work n. Then Algorithm A can be implemented on a p-processor QRQW

PRAM in time O(n/p) w.h.p. if p = O(n/(t ++/lgnlglgn))

For ease of exposition, most of the QRQW algorithms in this paper are presented using the QRQW
work-time framework; Theorem 2.4 is used as appropriate.

Among the algorithmic results in our previous paper [GMR96a] are sublogarithmic time random-
ized algorithms on the queue-write PRAM model for two problems for which the fastest algorithm
known on the corresponding exclusive-write PRAM model takes ©(lg n) time. The two results are an
O(lgn/lglgn) time, linear work w.h.p. SIMD-CRQW PRAM algorithm for computing the or of n bits
and an O(y/Ign) time, linear work w.h.p. SIMD-QRQW PRAM algorithm for the linear compaction
problem.

In addition, we present an (lgn) expected time lower bound on a QRQW PRAM with an un-
bounded number of processors for the problem of broadcasting the contents of a given memory
location to n memory locations.

2.3 Probability facts and notations

A Las Vegas algorithm is a randomized algorithm that always outputs a correct answer, and obtains
the stated bounds with some stated probability. All of the randomized algorithms in this paper are
Las Vegas algorithms, obtaining the stated QRQW PRAM bounds with high probability. Recall that
a probabilistic event occurs with high probability (w.h.p.), if, for any prespecified constant § > 0,
it occurs with probability 1 — 1/n°, where n is the size of the input. Thus, we say a randomized
algorithm runs in O(f(n)) time w.h.p. if for every prespecified constant & > 0, there is a constant ¢
such that for all n > 1, the algorithm runs in ¢ f(n) steps or less with probability at least 1 — 1/n®.
Often, we can test whether the algorithm has succeeded, and if not repeat it. In this case, it suffices
to design an algorithm that succeeds with probability 1 — 1/n¢ for some positive constant e, since
we can repeat the algorithm /¢ times if necessary, to boost the algorithm success probability to the
desired 1 —1/n’. With this in mind, we will freely use “with high probability” in this paper to refer
to events or bounds that occur with probability 1 — 1/n¢ for some positive constant e.

In the results that follow, we apply the following Chernoff bound on the tail of a binomial random

variable X ([Lei92], p.168):



Concurrent reads and writes to the same location are permitied in a step. In the case of multiple
writers to a location x, an arbitrary write to x© succeeds in writing the value present in x at the end
of the step.

Definition 2.3 Consider ¢ QRQW PRAM slep with mazimum conlention k, and lel m = max;{r;, ¢;,
w; } for the step, i.e. the maxzimum over all processors i of its number of reads, computes, and writes.
Then the time cost for the step is max{m,k}. The time of a QRQW PRAM algorithm is the sum
of the time costs for its steps. The work of ¢ QRQW PRAM algorithm is its processor-time product.

This cost measure models, for example, a MIMD machine such as the Tera Computer [ACCT90],
in which each processor can have multiple reads/writes in progress at a time, and reads/writes to
a location queue up and are serviced one at a time. Note that as a pure shared memory model,
the QRQW PRAM model is independent of the particular layout of memory on the machine, e.g. the
number of memory modules, and can be used to model even cache-based (coMa) machines, e.g. the
KSR1 [FBR93], in which the mapping of memory cells to machine nodes varies dynamically as the
computation proceeds.

Our previous paper also defined the SIMD-QRQW PRAM model, a restricted version of the QrRQw
PRAM in which r; = ¢; = w; = 1 for all processors i at each step. This model is suitable for
SsIMD machines such as the MasPar MP-1 or MP-2, in which each processor can have at most one
read/write in progress at a time, reads/writes to a location queue up and are serviced one at a time,
and all processors await the completion of the slowest read/write in the step before continuing to the
next step. Another variant is the CRQW PRAM, in which unlimited concurrent reading is permitted;
for this model, the maximum contention for a step is defined to be the maximum over all locations
of the number of writers to the location. Several of our results in Section 7 are for the CRQW PRAM.

2.2 Previous results

In addition to defining the QRQW models, our previous paper [GMR96a] presented a number of
results characterizing the power of the QRQW models relative to other models. For two models, M;
and M, let My < My denote that one step of M; with time cost ¢ > 1 can be emulated in O(2)
time on M5 using the same number of processors. We have:

Fact 2.1 (|[GMR96a]) EREW PRAM =< SIMD-QRQW PRAM < QRQW PRAM =< CRQW PRAM =< CRCW
PRAM.

Moreover, we have characterized the relative power of these models as follows:

Theorem 2.2 ([GMR96a]) The following relations hold:
1. There is an Q(v/Ign) time separation between an EREW PRAM with arbitrarily many processors
and an n-processor SIMD-QRQW PRAM.

2. A SIMD-QRQW PRAM can emulate a QRQW PRAM to within constant time factors, given suffi-
ciently many extra processors.

3. There is an Q(lgn) time separation between a QRQW PRAM with arbitrarily many processors
and an n-processor CRQW PRAM.

4. There is an Q(lgn/lglgn) time separation between a deterministic CRQW PRAM with arbitrar-
tly many processors and a deterministic n-processor CRCW PRAM.



It appears that coordination among processors may occasionally be quite expensive on the QRQwW
PRAM, as implied by the lower bounds for broadcasting [GMR96a] and load balancing, and should
be avoided if at all possible. Fast CRCW PRAM algorithms tend to have very little such coordination,
which makes them good candidates as basis for adaptation to QRQW PRAM algorithms. Indeed,
one of the main features in the O(lglgn) time cRCw PRAM hashing algorithm [GM94b] which is
the basis for our QRQW PRAM algorithm is the “oblivious execution” technique, which allows the
computation to proceed without coordination among processors. By contrast, an O(lgn) time CRCwW
PRAM hashing algorithm [MV91b] makes extensive use of (semi-)sorting for processor coordination,
which on the QRQwW PRAM would be both slow and inefficient.

Finally, we remark on the role that randomization plays for our QRQW PRAM algorithms. We
recall that the power of the QRQW PRAM model, in comparison with the EREW PRAM model, is in
the fact that it is not necessary to schedule the memory accesses explicitly so as to avoid concurrent
access. There are two natural ways to leverage on this power. One way is the use of irregular
small contention (deterministic) memory accesses, as illustrated in [GMR96a] in the context of the
2-compaction problem. Another way is to use randomization as a technique for random assignment
of resources, be it read operations as in the hashing algorithm and in the fat-tree data structure,
or write operations as in the linear compaction, multiple compaction, load balancing and random
permutation algorithms. This technique has been essentially used in all the algorithms presented in
this paper, and has proved to be a simple and effective tool for low-contention parallel algorithms.

The rest of this paper is organized as follows. In Section 2 we review the definition of the QrQw
model and some previous results for the model. Then, as indicated above, Sections 3-7 consider load
balancing, multiple compaction, generating a random permutation, hashing, and sorting. Finally,
Section 8 contains concluding remarks.

The results in this paper appeared in preliminary form in [GMR93, GMR94a, GMR94b].

2 Preliminaries

2.1 The QRQW PRAM model

We begin by reviewing the definition of the QRQwW PRAM model [GMR96a].

Definition 2.1 Consider a single step of a PRAM, consisting of a read substep, a compute substep,
and a write substep. The maximum contention of the step is the mazimum, over all locations
x, of the number of processors reading x or the number of processors writing x. For simplicity in
handling a corner case, a step with no reads or writes is defined to have mazrimum contention ‘one’.

Definition 2.2 The QRQW PRAM model consists of a number of processors, each with its own
private memory, communicating by reading and writing locations in a shared memory. Processors
erecute a sequence of synchronous steps, each consisting of the following three substeps:

1. Read substep: Each processor i reads rv; shared memory locations, where the locations are known
at the beginning of the substep.

2. Compute substep: Fach processor i performs c; RAM operations, involving only its private state
and private memory.

3. Write substep: Fach processor i writes to w; shared memory locations (where the locations and
values written are known at the beginning of the substep).



the MasPar MP-1 parallel machine [Mas91]. Recently, the QRQwW random permutation algorithm
was also implemented on a CRAY J90, and was shown to be considerably faster than the best known
(sorting-based) EREW algorithm [BGMZ95].

In Section 6 we present a linear work, O(lgn) time randomized QRQW PRAM algorithm for
constructing a hash table and for parallel membership queries into the table. Our algorithm is based
on an O(lglgn) time crcw algorithm of [GM94b], which uses an oblivious execution technique
to keep to minimum the required “bookkeeping” operations. In order to obtain a fast, efficient
QRQW algorithm, we replace the polynomial hash functions used in the crRcw algorithm by hash
functions [DM90] which have collision behavior that looks quite random. To implement an efficient
access to these hash functions, we devise a low-contention QRQW PRAM algorithm which is based on
the following simple, yet useful, idea: if a program variable is to be read by & (a priori unknown)
processors, then we replace the program variable with k copies of the same value; we then let each
of the k processors select one of the copies at random and read the selected copy.

Our sorting algorithms are given in Section 7. We present linear work, O(lgn) time randomized
algorithms for sorting from U(0, 1) on the QRQW PRAM, and for integer sorting on the CRQW PRAM.
We use the latter result in a fast, efficient emulation of the powerful FETCH&ADD PRAM on the
CRQW PRAM. In addition, we adapt the y/n-sample sort CREW PRAM algorithm of Reischuk [Rei85]
to obtain a simple, work-optimal QRQW PRAM algorithm for general sorting. The QrQW algorithm
employs a novel binary search fai-tree data structure;® the added fatness over a traditional binary
search tree ensures that, with high probability, each step of the search encounters low contention.

1.2 Techniques for QRQW PRAM algorithms

Important technical i1ssues arise in designing algorithms for the queue models, that are present in
neither the concurrent nor the exclusive PRAM models. For example, much of the effort in designing
algorithms for the QRQW models is in estimating the maximum contention in a step, and occasionally
identifying the number of processors that try to access the same memory address. As one high
contention step can dominate the running time of the algorithm, we cannot afford to underestimate
the contentions significantly.

There are several techniques for replacing a high contention step with a sequence of a few low
contention steps. One such technique is to replace concurrent read operations by local broadcasting
steps, as done in the algorithms for load balancing, multiple compaction, and random permutation.
Another technique is using larger arrays into which processors are “compacted”; so as to reduce the
size of collision sets; this is used in the linear compaction algorithm in [GMR96a], as well as in an
algorithm for random cyclic permutation. A third important technique is that of duplicating the
contents of one or more program variables, and then having each processor access a random copy of
such a variable, thereby reducing contention. Algorithms that use this technique include the hashing
and the general sorting algorithms.

Some QRQW PRAM algorithms consist of iterations that include a random scatter step, in which
processors access a random cell in a linear size array; this is an example of the duplication scheme
mentioned above. The maximum contention in such steps is ©(lg n/lglgn) w.h.p., implying that to
obtain O(lgn) time the number of iterations must not exceed O(lglgn). Indeed, some of the O(lgn)
time QRQW PRAM algorithms are based on “highly paralle]” ¢cRCcw PRAM randomized algorithms,
whose running time on the cRcw is w.h.p. O(lglgn) or O(Ig" n) [Mat92]. Algorithms that use the
“doubly-logarithmic paradigm” include those for load balancing, random permutation, and hashing.
Algorithms that use the “log-star paradigm” include those for multiple compaction and random
cyclic permutation.

5The term fat-tree was previously used by Leiserson [Lei85] in the context of interconnection networks, to describe
a tree that becomes thicker as it gets closer to the root.



| Summary of Algorithmic Results |

problem previous result (EREW) new result (QRQW)
random O(lg n) time, O(nlgn) work [Hag91] O(lg n) time, linear work w.h.p.
permutation O(lgnlglgn) time, o({;—llg—jl) work [AH92]

O( lgllg'fgnn) time, O(n+/Ig nlglgn) work [AH92]

O(n) time, constant ¢ > 0, linear work [KRS90]

multiple same as above O(lg n) time, linear work w.h.p.
compaction

sorting from same as above O(lg n) time, linear work w.h.p.
U(0,1)

parallel same as above O(lg n) time, linear work w.h.p.
hashing with Ig* n slowdown [GMV91, MV95]

load balancing, O(lg n) time, linear work [LF80] O(Vlgnlglg L +1g L) time,
max load L linear work w.h.p.

Table 1: Fast, efficient low-contention parallel algorithms for several fundamental problems. For the
first four problems above, we obtain work-optimal low-contention (QRQW PRAM) algorithms running
in logarithmic time, whereas the best known work-optimal zero-contention (EREW PRAM ) algorithms
run i polynomial time. For load balancing, we tmprove upon the EREW result whenever the ratio
of the maximum to the average load is not too large. The EREW results shown are the best known
for either deterministic or randomized algorithms. The EREW results for the first three problems are
obtained by easy reductions to the integer sorting problem. The result for the fourth is obtained using
a CRCW hashing algorithm and a general simulation of the CRCW PRAM on the EREW PRAM. The
load balancing EREW PRAM result is a simple application of a prefix sums algorithm.

to the load balancing problem, and using the lower bound for broadcasting presented in [GMR964a].

The load balancing algorithm is a useful tool for processor allocation. We use it to obtain an
algorithm that automatically handles processor allocation for any algorithm that can be described
within certain specifications (such algorithms are called “L-spawning algorithms”). We use this
general result in our work-optimal algorithms for the multiple compaction problem and for the
problem of generating a random cyclic permutation.

In Section 4 we consider the multiple compaction problem, which has an important application
in a CRCW PRAM algorithm for integer sorting [RR89]. We present a linear work, O(lgn) time
randomized QRQW PRAM algorithm, which is quite different than the known CRCW PRAM algorithms
for the problem. Some parts of the algorithm follow a general strategy used in a CRCW PRAM
algorithm that runs in O(lg" n) time [GMV91], and in particular the log-star paradigm [Mat92].
The QRQW PRAM algorithm for multiple compaction has applications for QRQW or CRQW algorithms
for integer sorting, general sorting, and sorting from U(0, 1).

The problem of generating a random permutation is considered in Section 5. We present a linear
work, O(lgn) time randomized QRQW PRAM algorithm that is essentially the same as the O(lglgn)
time CRCW PRAM algorithm of [Gil94], analyzed for the QRQW metric. Two algorithms are presented
for the problem of generating random cyclic permutations. A linear work, O(lgnlg* n/lglgn) time
randomized algorithm is adapted (with some modifications) from an O(lg" n) time CRCW PRAM
algorithm of [MV91a]. A faster QRQW PRAM algorithm, which takes O(y/Ign) time w.h.p. but uses
n processors, is based on the linear compaction algorithm presented in [GMR96a]. The idea behind
the algorithm 1s to use a relatively large array into which processors are “compacted”, so that the
number of processors accessing the same array location is not too large.

We also demonstrate in Section 5 the efficiency of a QRQW PRAM low-contention random per-
mutation algorithm, compared with the popular EREW algorithm, through several experiments on



The QRQW PRAM is strictly more powerful than the EREW PRAM, while being as efficiently
emulated on a BSP or a hypercube-type, non-combining network, and is also a better match for
real machines. Hence an important theoretical and practical question is the extent to which fast,
work-optimal, low-contention (QRQW) algorithms can be designed for problems for which there are
no known fast, work-optimal, zero-contention (EREW) algorithms. This paper considers five such
problems — generating a random permutation, multiple compaction, distributive sorting, parallel
hashing, and load balancing — and presents fast, work-optimal QRQW PRAM algorithms for these
fundamental problems. These results are summarized in Table 1, and are contrasted with the best
known EREW PRAM algorithms for the same problems. All of our algorithms are randomized, and
are of the “Las Vegas” type; they always output correct results, and obtain the stated bounds with
high probability.

Another important question is the extent to which EREW PRAM algorithms can be replaced by
QRQW PRAM algorithms that are simpler, and therefore perhaps more appealing for implementation.
In this context we would allow the theoretical efficiency of the simpler QRQW PRAM algorithm
to be similar or even somewhat inferior to that of the EREW PRAM algorithms as long as the
resulting algorithm is simpler. This paper considers such algorithms for the general sorting problem.
It presents a QRQW PRAM algorithm that is considerably simpler than the known EREW PRAM
algorithms with comparable asymptotic performance. The new algorithm is arguably as simple as
the known CRCW PRAM algorithms.

All of the algorithms we present in this paper are randomized, and many of our results are
obtained “with high probability” (w.h.p.). A probabilistic event occurs with high probability (w.h.p.),
if, for any prespecified constant 6 > 0, it occurs with probability 1 —1/n’, where n is the size of the
input. Thus, we say a randomized algorithm runs in O(f(n)) time w.h.p. if for every prespecified
constant § > 0, there is a constant ¢ such that for all n > 1, the algorithm runs in ¢ - f(n) steps or
less with probability at least 1 — 1/n’.

We provide next a summary of our algorithmic results, and point out a few technical issues that
are relevant for QRQW PRAM algorithms.

1.1 Summary of results

Our first results are for the load balancing problem, considered in Section 3. We present a linear
work randomized algorithm whose running time is O(y/Ignlglg L +1g L), where L is the ratio of the
maximum to the average load per processor. Our load balancing algorithm is an adaptation of a
CRCW PRAM algorithm by Gil [Gil94], which runs in O(lglgn) time w.h.p. Gil’s algorithm uses as a
subroutine an algorithm for the so-called “renaming” problem. Our low-contention implementation
is essentially obtained by substituting this subroutine with a QRQW pPrRAM algorithm for linear
compaction, presented in [GMR96a], and by replacing concurrent read operations executed during
bookkeeping steps with local broadcasting steps.

For small values of L, our load balancing algorithm can be much faster than the ©(lgn) time,
prefix-sum based EREW PRAM algorithm. However, for L = Q(n*) with constant € > 0, the 1g L term
implies a running time of O(lgn). In contrast, load balancing on n processors can be performed on
a CRCW PRAM in O(lg* n) time* w.h.p., independent of L [GMV91]. We show that the 1g L term is
unavoidable by presenting a lower bound of Q(lg L) expected time on the QRQW PRAM for the load
balancing problem. Our lower bound result is based on a reduction from the broadcasting problem

the EREW performs ©(lg p) times more work than the CRCW it emulates. Hence, it cannot be used to obtain EREW PRAM
algorithms, much less hypercube algorithms, with linear or near-linear speedups. Similarly, the best known emulations
for the CREW PRAM (or ERCW PRAM) on the EREW PRAM (or standard BSP or hypercube) require logarithmic work
overhead for logarithmic slowdown or, alternatively, polynomial slowdown for constant work overhead.

4The function lg(J)(~) is defined as the j'th iterate of lg: lg(l) r =lgx, and for 5 > 1, lg(J) r = lglg(J_l) z. The
function 1g*(+) is defined as lg* z = min {] gz < 2}.



1 Introduction

The Parallel Random Access Machine (PRAM) model of computation is the most-widely used model
for the design and analysis of parallel algorithms (see, e.g. [KR90, J4J92, Rei93]). The PRAM
model consists of a number of processors operating in lock-step and communicating by reading
and writing locations in a shared memory. Standard PRAM models can be distinguished by their
rules regarding contention for shared memory locations. These rules are generally classified into the
exclusive read /write rule in which each location can be read or written by at most one processor in
each unit-time PRAM step, and the concurrent read/write rule in which each location can be read or
written by any number of processors in each unit-time PRAM step. These two rules can be applied
independently to reads and writes; the resulting models are denoted in the literature as the EREW,
CREW, ERCW, and CRCW PRAM models.

In a previous paper [GMR96a], we argued that neither the exzclusive nor the concurrent rules ac-
curately reflect the contention capabilities of most commercial and research machines, and proposed
a new PRAM contention rule, the queue rule, that permits concurrent reading and writing, but at an
appropriate cost:

Queune read/write: Each location can be read or written by any number of processors in
each step. Concurrent reads or writes to a location are serviced one-at-a-time.

Thus the worst case time to read or write a location is linear in the number of concurrent readers
or writers to the same location.

The queue rule more accurately reflects the contention properties of machines with simple, non-
combining interconnection networks than either the exclusive or concurrent rules. The exclusive rule
is too strict, and the concurrent rule ignores the large performance penalty of high contention steps.
Indeed, for most existing machines, including the CRAY T3D, IBM SP2, Intel Paragon, MasPar
MP-1 and MP-2 (global router), MIT J-Machine, nCUBE 2S, Stanford DASH, Tera Computer,
and Thinking Machines CM-5 (data network), the contention properties of the machine are well-
approximated by the queue-read, queue-write rule. For the Kendall Square KSR1, the contention
properties can be approximated by the concurrent-read, queue-write rule.!

In [GMRY96a] we defined the Queue-Read, Queue-Write (QRQW) PRAM model, a model for the
design and analysis of coarsely-synchronized parallel algorithms running on MIMD machines, and
investigated some of its capabilities. In particular, we showed that the QRQW PRAM can be effectively
emulated on the Bulk-Synchronous Parallel (BsP) model of Valiant [Val90]:

Theorem 1.1 ([GMR96a]) A p-processor QRQW PRAM algorithm running in time t can be emu-
lated on a (p/lgp)-component standard BsP model® in O(tlgp) time with high probability.

It follows from Valiant’s work [Val90] and Theorem 1.1 that the QRQW PRAM can be emulated
in a work-preserving manner on hypercube-type, non-combining networks with only logarithmic
slowdown, even when latency, memory granularity, and synchronization overheads are taken into
account. This matches the best known emulation for the EREW PRAM on these networks given
in [Val90]; in contrast, work-preserving emulations for the CRCW PRAM on such networks are only
known with polynomial slowdown.® We refer the reader to [GMR96a] for further details relating the
QRQW PRAM to existing models and machines.

1In the KSR1, multiple requests to read the same location are combined in the network, so there is no penalty for
high contention steps. Note that caches have only a secondary effect on the contention rule; see [GMR96a] for details.

?We denote as the standard BSP model a particular case studied by Valiant in which the model’s throughput
parameter, g, is taken to be a constant and its periodicity parameter, L, is taken to be ©(lgp).

3Note that the standard ©(lg p) time emulation of CRCW on EREW (see, e.g. [KR90]) is not work-preserving, in that
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Abstract

The queue-read, queue-write (QRQW) parallel random access machine (PRAM) model
permits concurrent reading and writing to shared memory locations, but at a cost propor-
tional to the number of readers/writers to any one memory location in a given step. The
QRQW PRAM model reflects the contention properties of most commercially available par-
allel machines more accurately than either the well-studied CRCW PRAM or EREW PRAM
models, and can be efficiently emulated with only logarithmic slowdown on hypercube-
type non-combining networks.

This paper describes fast, low-contention, work-optimal, randomized QRQW PRAM
algorithms for the fundamental problems of load balancing, multiple compaction, gener-
ating a random permutation, parallel hashing, and distributive sorting. These logarith-
mic or sublogarithmic time algorithms considerably improve upon the best known EREW
PRAM algorithms for these problems, while avoiding the high-contention steps typical
of CcRCW PRAM algorithms. An illustrative experiment demonstrates the performance
advantage of a new QRQW random permutation algorithm when compared with the pop-
ular EREW algorithm. Finally, this paper presents new randomized algorithms for integer
sorting and general sorting.
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