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Abstract

We present work-preserving emulations with small slowdown between LogP and two other parallel models: BSP and QSM. In

conjunction with earlier work-preserving emulations between QSM and BSP, these results establish a close correspondence between

these three general-purpose parallel models. Our results also correct and improve on results reported earlier on emulations between

BSP and LogP. In particular we shed new light on the relative power of stalling and non-stalling LogP models.

The QSM is a shared-memory model with only two parameters—p; the number of processors, and g; a bandwidth parameter. The
simplicity of the QSM parameters makes QSM a convenient model for parallel algorithm design, and simple work-preserving emulations

of QSM on BSP and QSM on LogP show that algorithms designed for the QSM will also map quite well to these other models. The

simplicity and generality of QSM present a strong case for the use of QSM as the model of choice for parallel algorithm design.

We present QSM algorithms for three basic problems—prefix sums, sample sort and list ranking. We show that these algorithms

are optimal in terms of both the total work performed and the number of ‘phases’ for input sizes of practical interest. For prefix

sums, we present a matching lower bound that shows our algorithm to be optimal over the complete range of these parameters. We

then examine the predicted and simulated performance of these algorithms. These results suggest that QSM analysis will predict

algorithm performance quite accurately for problem sizes that arise in practice.

r 2003 Elsevier Inc. All rights reserved.
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1. Introduction

There is a vast amount of literature on parallel
algorithms for various problems. However, algorithms
developed using traditional approaches such as PRAM
or fixed-interconnect networks do not map well to real
machines. In recent years several general-purpose paral-

lel models have been proposed—BSP [24], LogP [6],
QSM and s-QSM [12]. These models attempt to capture
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the key features of real machines while retaining a
reasonably high-level programming abstraction. Of
these models, the QSM and s-QSM models are the
simplest for two reasons: each has only 2 parameters,
and each is shared-memory (shared-memory models are
generally more convenient than message passing for
developing parallel algorithms).
There are both practical and algorithmic reasons for

developing a general model for parallel algorithm
design.

* On the practical side, the long-term goal is to be able
to replace hand tuning with automated methods for
larger fractions of programs. The argument here is
similar to the argument of hand-tuned assembly
versus compiled code, and the goal is to reach a
similar point, where automatic methods able to do as
well as or better than the average programmer. As
parallel programming becomes more and more
common—a decade ago parallel supercomputers
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were rare, today Beowulf clusters are within the reach
of moderate-sized organizations, tomorrow most
chips on individual desktops may have parallel
cores—we expect parallel programming to become
more mainstream, and for higher-level programming
techniques to become increasingly important.

* On the algorithmic side it is important to identify the
simplest programming models that expose the right
system and algorithmic properties. Giving algorithm
designers a simpler model will make it easier for them
to focus on the underlying idea without being
distracted by less fundamental concerns.

In this paper we first provide two strong justifications
for utilizing the QSM models for developing general-
purpose parallel algorithms:

1. We present work-preserving emulations with only
modest (polylog) slowdown between the LogP model
and the other 3 models. (Work-preserving emulations
between BSP, QSM and s-QSM were presented
earlier in [12] (see also [20]).) An emulation is work-
preserving if the processor-time bound on the
emulating machine is the same as that on the machine
being emulated, to within a constant factor. The
slowdown of the emulation is the ratio of the number
of processors on the emulated machine to the number
on the emulating machine. Typically, the emulating
machine has a somewhat smaller number of proces-
sors and takes proportionately longer to execute. For
many situations of practical interest, both the original
algorithm and the emulation would be mapped to an
even smaller number of physical processors and thus
would run within the same time bound to within a
constant factor.
Our results indicate that the four models are more

or less interchangeable for the purpose of algorithm
design. The only mis-match we have is between the
‘stalling’ and ‘non-stalling’ LogP models. Here we
show that an earlier result claimed in [3] is erroneous
by giving a counterexample to their claim. (The
journal version [4] of paper [3] corrects this error,
attributing the correction to the first author of our
paper, and citing the conference version [21] of our
paper.)

2. The emulations of s-QSM and QSM on the other
models are quite simple. Conversely, the reverse
emulations—of BSP and LogP on shared-memory—
are more involved. The difference is mainly due to the
‘message-passing’ versus ‘shared-memory’ modes of
accessing memory. Although message passing can
easily emulate shared memory, the known work-
preserving emulations for the reverse require sorting
as well as ‘multiple compaction.’ Hence, although
such emulations are efficient since they are work-
preserving with only logarithmic slowdown, the
algorithms thus derived are fairly complicated.
Since both message-passing and shared-memory are
widely used in practice, we suggest that a high-level
general-purpose model should be one that can be simply
and efficiently implemented on both message-passing
and shared-memory systems. The QSM and s-QSM
have this feature. Additionally, these two models have a
smaller number of parameters than LogP or BSP, and
they do not have to keep track of the distributed
memory layout.
To facilitate using QSM or s-QSM for designing

general-purpose parallel algorithms, we develop a
suitable cost metric for such algorithms and evaluate
several algorithms both analytically and experimentally
against this metric. The metric asks algorithms to (1)
minimize work (where ‘work’ is defined in the next
section), (2) minimize the number of ‘phases’ (defined in
the next section), and (3) maximize parallelism, subject
to the above requirements. In the rest of the paper we
present QSM algorithms for three basic problems: prefix

sums, sample sort, and list ranking, and we show that
they have provably good behavior under this metric.
Finally we describe simulation results for these algo-
rithms that indicate that the difference between the
QSM and BSP cost metrics is small for these algorithms
for reasonable problem sizes.
A popular model for parallel algorithm design is the

PRAM (see, e.g., [17]). We do not discuss the PRAM in
this paper since it does not fall within the frame-work of
a ‘general-purpose model’ for parallel algorithm design
in view of the fact that it ignores all communication
costs. However, the QSM and s-QSM can be viewed as
realistic versions of the PRAM. Extensive discussions on
the relation between the PRAM model and the QSM
model can be found in [11,9,12,20].
The rest of this paper is organized as follows. Section

2 provides background on the models examined in this
paper and Section 3 presents our emulation results.
Section 4 presents a cost metric for QSM and describes
and analyzes some basic algorithms under this metric.
Section 5 describes experimental results for the three
algorithms and Section 6 summarizes our conclusions.
2. General-purpose parallel models

In this section, we briefly review the BSP, LogP, and
QSM models.

BSP model. The Bulk-Synchronous Parallel (BSP)
model [24] consists of p processor/memory components
that communicate by sending point-to-point messages.
The interconnection network supporting this commu-
nication is characterized by a bandwidth parameter g

and a latency parameter L: A BSP computation consists
of a sequence of ‘‘supersteps’’ separated by bulk
synchronizations. In each superstep the processors can
perform local computations and send and receive a set
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of messages. Messages are sent in a pipelined fashion,
and messages sent in one superstep will arrive prior to
the start of the next superstep. It is assumed that in each
superstep messages are sent by a processor based on its
state at the start of the superstep. The time charged for a
superstep is calculated as follows. Let wi be the amount
of local work performed by processor i in a given
superstep and let si ðriÞ be the number of messages sent
(received) in the superstep by processor i: Let hs ¼
max

p
i¼1 si; hr ¼ maxp

i¼1 ri; and w ¼ maxp
i¼1 wi: Let h ¼

maxðhs; hrÞ; h is the maximum number of messages sent
or received by any processor in the superstep, and the
BSP is said to route an h-relation in this superstep. The
cost, T ; of the superstep is defined to be T ¼
maxðw; gh;LÞ: The time taken by a BSP algorithm is
the sum of the costs of the individual supersteps in the
algorithm.
The work performed by the computation is the

processor-time product.
LogP model. The LogP model [6] consists of p

processor/memory components communicating with
point-to-point messages. It has the following para-
meters.

* Latency l: Time taken by network to transmit a
message from one processor to another is at most l:

* Gap g: A processor can send or receive a message no
faster than once every g units of time.

* Capacity constraint: A receiving processor can have
no more than Jl=gn messages in transit to it.

* Overhead o: To send or receive a message, a processor
spends o units of time to transfer the message to or
from the network interface; during this period of time
the processor cannot perform any other operation.

If the number of messages in transit to a destination
processor p is Jl=gn; then a processor that needs to send
a message to processor p stalls and does not perform any
operation until it can send the message.
The time taken by a LogP algorithm is the amount of

time needed for the computation and communication to
terminate at all processors, assuming each message takes
maximum time (l units) in transit.
The work performed by the computation is the

processor-time product.
QSM and s-QSM models. The Queuing Shared

Memory (QSM) model [12] consists of p processors,
each with its own private memory, that communicate by
reading and writing shared memory. Processors execute
a sequence of synchronized phases, each consisting of an
arbitrary interleaving of shared memory reads, shared
memory writes, and local computation. QSM imple-
ments a bulk-synchronous programming abstraction in
that (i) each processor can execute several instructions
within a phase but the values returned by shared-
memory reads issued in a phase cannot be used in the
same phase and (ii) the same shared-memory location
cannot be both read and written in the same phase.
Concurrent reads or writes (but not both) to the same

shared-memory location are permitted in a phase. In the
case of multiple writers to a location x; an arbitrary
write to x succeeds.
The maximum contention of a QSM phase is the

maximum, over all locations x; of the number of
processors reading x or the number of processors
writing x: A phase with no reads or writes is defined
to have maximum contention one.
Consider a QSM phase with maximum contention k:

Let mop be the maximum number of local operations
performed by any processor in this phase, and let mrw be
the maximum number of read and write requests to
shared memory issued by any processor. Then the time

cost for the phase is maxðmop; gmrw; kÞ: The time of a
QSM algorithm is the sum of the time costs for its
phases. The work of a QSM algorithm is its processor-
time product.
The s-QSM (Symmetric QSM) is a QSM in which the

time cost for a phase is maxðmop; gmrw; gkÞ; i.e., the gap
parameter is applied to the accesses at memory as well as
to memory requests issued at processors.
The particular instance of the QSM model in which

the gap parameter, g; equals 1 is the Queue-Read
Queue-Write (QRQW) PRAM model defined in [11].
Note that although the QSM models are shared-

memory they explicitly reward careful data placement
since local memory is cheap but it is expensive to
access global memory. The results we present in this
paper indicate that once one has accounted for local
memory in the algorithm design, it is not necessary to
burden the programmer with more detailed global
memory layout.
3. Emulation results

The results on work-preserving emulations between
models are shown in Table 1 with new results printed
within boxes. In this section we focus on three aspects of
these emulations. First, we develop new, work-preser-
ving emulations of QSM or BSP on LogP; previously
known emulations [3] required sorting and increased
both time and work by a logarithmic factor. Second, we
provide new analysis of the known emulation of LogP
on BSP [3]; we provide a counter-example to the claim
that this emulation holds for the stalling LogP model,
and we observe that the original non-work-preserving
emulation may be trivially extended to be work-
preserving for non-stalling LogP. Third, we discuss the
fact that known emulations of message passing on
shared memory require sorting and multiple-compac-
tion, complicating emulations of BSP or LogP algo-
rithms on shared memory.
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Table 1

All results are randomized and hold whp except those marked as ‘det.’, which are deterministic emulations. Results in which the LogP model is either

the emulated or the emulating machine are new results that appear boxed in the table and are reported in this paper. (For exact expressions, including

sub-logarithmic terms, please see the text of the paper.) The remaining results are in [12,20].

aThis result is presented in [3], but it is stated erroneously that it holds for stating Log programs. We provide a countersample in Claim 3.8 and

Theorem 3.9 here.
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We focus on work-preserving emulations. An emula-
tion is work-preserving if the processor-time bound on
the emulating machine is the same as that on the
machine being emulated, to within a constant factor.
The ratio of the running time on the emulating machine
to the running time on the emulated machine is the
slowdown of the emulation. Typically, the emulating
machine has a smaller number of processors and takes
proportionately longer to execute. For instance, con-
sider the entry in Table 1 for the emulation of s-QSM on
BSP. It states that there is a randomized work-
preserving emulation of s-QSM on BSP with a slow-
down of OðL=g þ log pÞ: This means that, given a p-
processor s-QSM algorithm that runs in time t (and
hence with work w ¼ pt), the emulation algorithm will
map the p-processor s-QSM algorithm on to a p0-
processor BSP, for any p0pp=ððL=gÞ þ log pÞ; to run on
the BSP in time t0 ¼ Oðtðp=p0ÞÞ whp in p: Note that if
sufficient parallelism exists, for a machine with p

physical processors, one would typically design the
BSP algorithm on YððL=gÞ þ log pÞp or more proces-
sors, and then emulate the processors in this BSP
algorithm on the p physical processors. In such a case,
the performance of the BSP algorithm on p processors
and the performance of the QSM emulation on p

processors would be within a constant factor of each
other. Since large problems are often the ones worth
parallelizing, we expect this situation to be quite
common in practice.
Many of our algorithms are randomized. We will say

that an algorithm runs in time t whp in n if the
probability that the time exceeds t is less than 1=nc;
for some constant c40:
3.1. Work-preserving emulations of QSM and BSP on

LogP

We now sketch our results for emulating BSP, QSM
and s-QSM on LogP. Our emulation is randomized, and
is work-preserving with polylog slowdown. In the next
subsection, we describe a slightly more complex
randomized emulation that uses sorting (with sampling)
and which reduces the slowdown by slightly less than a
logarithmic factor.

Fact 3.1 (Karp et al. [18]). The following two problems

can be computed in time O l log p
logðl=gÞ

l m� �
on p processors

under the LogP model.

1. Barrier synchronization on the p processors.
2. The sum of p values, stored one per processor.

We will denote the above time to compute barrier
synchronization and the sum of p values on the p-
processor LogP by BðpÞ:

Theorem 3.2. Suppose we are given an algorithm to route

an h-relation on a p-processor LogP while satisfying the

capacity constraint in time Oðgðh þ HðpÞÞ þ lÞ; when the

value of h is known in advance. (Here, HðpÞ is some given

function of p.) Then,

1. There is a work-preserving emulation of a p-processor

QSM on LogP with slowdown O g log p þ log2 pþ
�

ðHðpÞ þ BðpÞÞ log p
log log p

Þ whp in p:
2. There is a work-preserving emulation of a p-processor

s-QSM and BSP on LogP with slowdown O log2 pþ
�

ðHðpÞ þ BðpÞÞ log p
log log p

Þ whp in p:
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Proof. We first describe the emulation algorithm, and
then prove that it has the stated performance.
Algorithm for Emulation on LogP:
I.
 For the QSM emulation we map the QSM (or s-
QSM) processors uniformly among the LogP
processors, and we hash the QSM (or s-QSM)
memory on the LogP processors so that each
shared-memory location is equally likely to be
assigned to any of the LogP components. For the
BSP emulation we map the BSP processors uni-
formly among the LogP processors and the asso-
ciated portions of the distributed memory to the
LogP processors.
II.
 We route the messages to destination LogP proces-
sors for each phase or superstep while satisfying the
capacity constraint as follows:

1.
 Determine a good upper bound on the value of h:

2.
 Route the h relation while satisfying the capacity
constraint in Oðgðh þ HðpÞÞ þ lÞ time.
3.
 Execute a barrier synchronization on the LogP
processors in OðBðpÞÞ time.
To complete the description of the algorithm, we
provide in Fig. 1 a method for performing step II.1 in
the above algorithm. To estimate h; the maximum
number of messages sent or received by any processor,
the algorithm must estimate the maximum number of
messages received by any processor (note that the
maximum number of sent messages by any processor,
maxsend; is already known). The algorithm does this by
selecting a small random subset of the messages to be
sent and determining their destinations. The size of this
subset is gradually increased until either a good upper
bound on the maximum number of messages to be
received by any processor is obtained or this value is
determined to be less than maxsend:

Claim 3.3. The algorithm for Step II.1 runs in time

Oðg log2 p þ ðHðpÞ þ BðpÞÞðlog pÞ=log log pÞ whp, and
Fig. 1. Algorithm for Step II.1 of the a
whp it returns a value for h that is (i) an upper bound

on the correct value of h, and (ii) within a factor of 2 of the

correct value of h.

Proof. The correctness of the algorithm follows from
the following observations, which can be derived using
Chernoff bounds:

1. If mXlog p after some iteration of the repeat loop,
then whp, the LogP processor that receives m
messages in that iteration has at least m=ð2qÞ
messages being sent to it in that phase/superstep,
and no LogP processor has more than 2m=q messages
sent to it in that phase/superstep.

2. If molog p at the end of an iteration in which
qXð2 log pÞ=maxsend then whp the maximum num-
ber of messages received by any LogP processor in
this phase/superstep is less than maxsend:

3. In each iteration, whp the total number of messages
sent does not exceed the value used for h in that
iteration, hence the number of messages sent or
received by any processor in that iteration does not
exceed the value used for h:

For the time taken by the algorithm we note that
maxsendXm=p; hence the while loop is executed
Oðlog p=log log pÞ times. Each iteration takes time
Oðgmaxðm;maxsend qÞ þ gHðpÞ þ lÞ whp to route the
h-relation, and time OðBðpÞÞ to compute m and perform
a barrier synchronization. Hence each iteration takes
time Oðgðmþ maxsend q þ HðpÞ þ BðpÞÞÞ since loBðpÞ:
Since the while loop terminates when mXlog p or
maxsend qX2 log p; and q is increased by a factor
of log p in each iteration, the overall time taken by
the algorithm is Oðg log2 p þ gðlog p=log log pÞ
ðHðpÞ þ BðpÞÞÞ: &

Finally, to complete the proof of Theorem 3.2 we
need to show that the emulation algorithm is work-
preserving for each of the three models. Let t ¼ log2 p þ
ðHðpÞ þ BðpÞÞðlog pÞ=log log p:
lgorithm for emulation on LogP.
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If p0pp=t then the time taken by the emulation
algorithm to execute steps II.1 and II.3 is OðgtÞ; and
hence the work performed in executing these two steps is
Oðgtp0Þ ¼ OðgpÞ: Since any phase or superstep of the
emulated machine must perform work Xgp; steps II.1
and II.3 of the emulation algorithm are executed in a
work-preserving manner on a LogP with p0 or fewer
processors.
For step II.2, we consider each emulated model in

turn. For the BSP we note that if we map the p BSP
processors evenly among p0 LogP processors, where
p0pp=t; then a BSP superstep that takes time c þ gh þ L

will be emulated in time Oððp=p0Þðc þ ghÞ þ lÞ on a LogP
with p0 processors and hence is work-preserving. (We
assume that lpL since L includes the cost of synchro-
nization.)
Next consider a phase on a p processor s-QSM in

which h is the larger of (a) the maximum number of
reads/writes by a processor and (b) the maximum queue-
length at a memory location. If we hash the shared
memory of the QSM on the distributed memory of a p0-
processor LogP, and map the p s-QSM processors
evenly among the p0 LogP processors, then by the
probabilistic analysis in [12], the number of messages
sent or received by any of the p0 LogP processors is
Oðhðp=p0ÞÞ whp in p; if p0pp=log p: Hence the memory
accesses can be performed in time T ¼ Oðghðp=p0ÞÞ whp
in p; once the value of h is determined. This is work-
preserving since Tp0 ¼ OðghpÞ:
Similarly, we can obtain the desired result for QSM

by using the result in [12] that the mapping of QSM on a
distributed memory machine results in the number of
messages sent or received by any of the p0 LogP
processors being Oðhðp=p0ÞÞ whp in p; if
p0pp=g log p: &

Corollary 3.4 (to Theorem 3.2). 1. There is a work-

preserving emulation of a p-processor QSM on LogP with

slowdown O g log p þ log4 p þ l=g
logðl=gÞ

log2 p
log log p

� �
whp in p:

2. There is a work-preserving emulation of a p-

processor s-QSM and BSP on LogP with slowdown

O log4 p þ l=g
logðl=gÞ

log2 p
log log p

� �
whp in p:

Proof. The corollary follows from Theorem 3.2 using
the algorithm in [18] for barrier synchronization on p-

processor LogP that runs in time O l log p
logðl=gÞ

l m� �
; and the

algorithm in [1] for routing an h-relation on a
p-processor LogP in Oðgðh þ log3 p log log pÞ þ lÞ whp
in p: &

3.1.1. A faster emulation of BSP and QSM on LogP

For completeness, we describe a faster method for
Step II.1 of the emulation algorithm given in the
previous section. Since the algorithm given in this
section uses sorting, it is not quite as simple to
implement as the algorithm for Step II.1 given in
Fig. 1, although it is simpler to describe and analyze.

Claim 3.5. The algorithm given in Fig. 2 for Step II.1
determines an upper bound on the value of h whp in time

Oðgh þ l log pÞ: If hXlog2 p then the algorithm deter-

mines the correct value of h to within a constant factor

whp.

Proof. The result follows from the Oððgr þ lÞlog pÞ
running time of the AKS sorting algorithm on the
LogP [2,3], when rp keys in the range ½1::p� are
distributed evenly across the p processors. (If the keys
are not evenly distributed across the processors,
they can be distributed evenly at an additional cost of
Oðgh þ lÞ time, where h is the maximum number of keys
at any processor.)
The number of elements selected in step 3 is m=log p

whp, where m is the total number of messages to be sent.
Hence the number of elements to be sorted is
ðm=ðp log pÞÞp; which is Oððs=log pÞpÞ: Hence the time
needed to execute step 4 is Oðgs þ l log pÞ whp. The
remaining steps can be performed within this time
bound in a straightforward manner.
Let mi be the number of messages to be received by

processor Pi: In step 3 of the algorithm in Fig. 2, for
each processor Pi for which mi ¼ Oðlog2 pÞ; yðmi=log pÞ
messages are selected whp (by a Chernoff bound).
Hence (again by a Chernoff bound) it follows that the
upper bound computed in step 6 for processor Pi is
equal to mi to within a constant factor, and hence the
overall upper bound computed in step 7 is correct to
within a constant factor. If no processor is the
destination of more than log2 p messages, then clearly
the upper bound computed in step 7 is correct (although
it may not be tight). &

Theorem 3.6. 1. There is a work-preserving emulation of

a p-processor QSM on LogP with slowdown

Oðlog3 p log log p þ ðg þ ðl=gÞÞlog pÞ whp in p:
2. There is a work-preserving emulation of p-processor

s-QSM and BSP on LogP with slowdown

Oðlog3 p log log p þ ðl=gÞlog pÞ whp in P:

3.2. Emulation of LogP on BSP

If a LogP program is non-stalling then it can be
emulated in a work-preserving manner on BSP with
slowdown OðL=lÞ by dividing the LogP computation
into blocks of computations of length l; and emulating
each block in two BSP supersteps of time L each. This
emulation is presented in [3] as an emulation where both
the time and work increases by a factor of L=l: In the
following theorem we pin down some of the details of
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Fig. 2. Faster algorithm for Step II.1 of algorithm for emulation on LogP.
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the emulation not specified in [3], and we also make the
emulation work-preserving.

Theorem 3.7. There is a deterministic work-preserving

emulation of a p-processor non-stalling LogP on BSP with

slowdown OðL=lÞ:

Proof. We map the LogP processors evenly among the
BSP processors. Each BSP processor then emulates the
L=l LogP processors assigned to it as follows.

* Divide the LogP computation into blocks of compu-
tation of length l:

* Emulate the steps performed by each LogP processor
in this block of computation.

In the LogP cost measure the time taken is computed
assuming that each message takes exactly l units of time
to reach its destination. We show that we can perform
the BSP computation in accordance with this measure.
Since each block of LogP computation is of length l;
messages sent within a block will arrive at their
destination in the next block. In the BSP emulation
each BSP processor tags each message sent with the
LogP step in which it was sent. At the start of emulating
a LogP block the BSP processor examines the messages
received from the previous block, and sorts them by
their tags in OðLÞ time using integer sort. It then
processes the received messages in the sorted order.
Hence the BSP emulation executes the LogP steps at
each processor in the same order as the execution under
which LogP running time was measured.
Let us compute the time cost of emulating one block

of LogP computation on a ðl=LÞp-processor BSP. The
total amount of local computation at each BSP
processor is pðL=lÞl ¼ L: Each BSP processor sends
pðL=lÞðl=gÞ ¼ L=g messages to other processors. Since
the LogP computation is non-stalling, each BSP
processor receives at most ðL=lÞðl=gÞ ¼ L=g messages.
Hence the time cost of this computation on the BSP is
OðLÞ and the work is OðpLðl=LÞÞ ¼ OðplÞ: Hence
each block of LogP computation is emulated on the
BSP in a work-preserving manner with slowdown
OðL=lÞ: &

The analysis in [3] erroneously states that the L=l

performance bound holds for stalling LogP computa-
tions. We now show a simple example of a stalling LogP
computation whose execution time squares when
emulated in the above manner on the BSP.
The LogP computation is shown in Fig. 3.
The following claim shows that this computation

cannot be mapped on to the BSP with constant slowdown.

Claim 3.8. The LogP computation shown in Fig. 3 takes

time Oðrl þ gqÞ: When mapped on to the BSP this

computation takes time OðrðL þ gqÞÞ:

Proof. We note the following about the computation in
Fig. 3:
(i)
 At time ði 	 1Þl þ g; all processors in the ith group
send a message to processor Pi; 1pipr: This is a
stalling send if q4l=g: Processor Pi then receives all
messages at time il þ gq:
(ii)
 The computation terminates at time rl þ gq when
Pr receives all messages sent to it.
On a BSP we note that the computation in Fig. 3 must
be executed in r phases (or supersteps) since a processor
in groups 2 to r can send its message(s) only after it has
received a message from a processor in group ði 	 1Þ: In
a BSP computation any send based on a message
received in the current phase cannot be executed in the
same phase. Hence the computation requires r phases.
In each phase there are q messages received by some
processor (by processor Pi in phase i). Hence this
computation takes time OðrðL þ gqÞÞ; which is OðrL þ
rgqÞ time. Thus the slowdown of this emulation is

O rLþrgq
rlþgq

� �
:

Note that the parameter o does not appear in the cost
of the LogP computation since there is no local
computation in this program. &

The above claim leads to the following theorem.
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Fig. 3. A stalling LogP computation whose execution time can increase by more than L=l when emulated on a BSP with same number of processors.
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Theorem 3.9. Consider the deterministic emulation of

non-stalling LogP on BSP.
a. Any deterministic step-by-step emulation of LogP on

BSP can have arbitrarily large slowdown.

b. There is no deterministic step-by-step emulation of

stalling LogP on BSP that is work-preserving.

Proof. For part a, consider the computation given in the
proof of Claim 3.8. If r is any non-constant function
with rl ¼ oðgqÞ and lpL; then the slowdown of this
emulation is YðrÞ and is not dependent on the ratio L=l:
We can assume that lpL since l accounts only for
latency while L accounts for both latency and global
synchronization cost. Thus to obtain a slowdown of S;
we choose, e.g., r ¼ S and q ¼ Sl2=g: Since all that was
assumed of the emulation is that it is step-by-step, i.e.,
each step of a LogP processor is executed by some BSP
processor in the same manner as prescribed by the LogP
computation, the result follows.
For part b, suppose there is a work-preserving

emulation of stalling LogP on BSP with slowdown t:
Then consider the emulation on BSP of the LogP
computation in Fig. 3 with r ¼ oðtÞ and with rl ¼ oðgqÞ
and lpL: Then the work performed by the LogP
computation is YðgqpÞ while the work performed by the
emulating BSP computation is Yðrgqp=tÞ; which is
oðgqpÞ: Hence the emulation is not work-preser-
ving. &

3.3. Emulation of LogP on QSM

In this section we consider the emulation of LogP on
QSM. For this emulation we assume that the input is
distributed across the local memories of the QSM
processors in order to conform to the input distribution
for the LogP computation. Alternatively one can add
the term ng=p to the time bound for the QSM algorithm
to take into account the time needed to distribute the
input located in global memory across the private
memories of the QSM processors. We prefer the former
method, since it is meaningful to evaluate the computa-
tion time on a QSM in which the input is distributed
across the local processors of the QSM—as, for
instance, in an intermediate stage of the large computa-
tion, where values already reside within the local
memories of the QSM, and where the result of a
computation executed on these values will be used
locally by these processors later in the computation.
As in the case of the emulations seen earlier, we map

the LogP processors uniformly among the QSM
processors in the emulating machine, and we assign to
the local memory of each QSM processor the input
values that were assigned to the LogP processors
emulated by it. We can then emulate LogP on a QSM

or s-QSM with slowdown O g log p
l

l m� �
whp as follows:
I.
 Divide the LogP computation into blocks of size l:l m� �

II.
 Emulate each block in O g log p

l
time in two QSM

phases as follows, using the shared memory of the
QSM (or s-QSM) only to realize the h-relation
routing performed by the LogP in each block of
computation.
Each QSM (or s-QSM) processor copies into its

private memory the messages that were sent in the
current superstep to the local memory of the LogP
processors mapped to it using the method of [12] to
emulate BSP on QSM, which we summarize below.
1. Compute M; the total number of messages to be sent
by all processors in this phase. Use the shared
memory to estimate the number of messages being
sent to each group of log3 M destination processors
as follows:
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Sample the messages with probability 1=log3 M;
sort the sample, thereby obtaining the counts of the
number of sample elements being sent to each group
of log3 M destination processors; then estimate an
upper bound on the number being sent to the ith
group as cmaxðki; 1Þlog3 M; where ki is the number
of sample elements being sent to the ith group, and c

is a suitable constant.
2. Processors that need to send a message to a processor
in a given group use a queue-read to determine the
estimate on the number of messages being sent to the
ith group and then place their messages in an array of
this size using a multiple compaction algorithm.

3. Perform a stable sort (by destination processor ID)
on the elements being sent to a given group, thereby
grouping together the elements being sent to each
processor.

4. Finally each processor reads the elements being sent
to it from the grouping performed in the above step.

Theorem 3.10. A non-stalling LogP computation can be

emulated on the QSM or s-QSM in a work-preserving

manner whp with slowdown O g log p
l

l m� �
; assuming that

the input to the LogP computation is distributed uniformly

among the local memories of the QSM processors.

3.4. Discussion

We have presented work-preserving emulations be-
tween LogP and the other three models—QSM, s-QSM
and BSP. (Work-preserving emulations between QSM,
s-QSM and BSP were presented earlier in [12], see also
[20].) Overall these results indicate that these models are
essentially interchangeable for the purpose of algorithm
design since each can emulate the others in a work-
preserving manner with only a small slowdown.
A couple of features about our emulations are worth

further discussion.

1. Stalling versus non-stalling LogP. The one mis-match
we have in our emulations is between stalling and
non-stalling LogP. Here we showed that there is a
simple, deterministic, work-preserving emulation of
non-stalling LogP on BSP, but there is no determi-
nistic step-by-step emulation of stalling LogP on BSP
that is work-preserving. This is in contrast to an
incorrect inference made in [3] that LogP is essentially
equivalent to BSP.
Our counterexample that shows the negative result

on emulating stalling LogP on BSP indicates that the
stalling LogP gives processors an automatic scheduling
feature. This does not appear to mirror the behavior of
real parallel systems, and seems to indicate that the
modeling of stalling should be done more carefully in
order to be reflective of real machines.
2. Emulating message-passing on shared-memory and

vice versa. The algorithms we have given for
emulating a distributed memory model, LogP or
BSP, on shared-memory are rather involved due to
the use of sorting and multiple compaction. On the
other hand the shared-memory models, QSM and
s-QSM, have simple emulations on BSP and LogP.
The reason for the complications in our BSP/LogP

emulation on shared-memory is the need to map a
message-passing interface on to a shared-memory
environment. Since both message-passing and
shared-memory are widely used in practice, we
suggest that a high-level general-purpose model
should be one that maps on to both in a simple
way. We have shown that QSM and s-QSM give us
this feature. Additionally, they have a smaller
number of parameters, and do not have to keep
track of the layout of data across shared memory.

Since the QSM and s-QSM have fewer parameters
than the BSP or LogP, and they are shared-memory, for
the rest of this paper we use these two models as our
basic models. We analyze algorithms using the s-QSM
cost metric, as the symmetry between processor requests
and memory accesses in the s-QSM model leads to
simpler analyses, and also helps achieve a clean
separation between the cost for local computation and
cost for communication. Since any s-QSM algorithm
runs within the same time and work bounds on the
QSM, our upper bounds are valid on both models.
4. Basic QSM algorithms

To support using QSM or s-QSM for designing
general-purpose parallel algorithms, we develop a
suitable cost metric for such algorithms. We then
present simple QSM algorithms for prefix sums, sample
sort and list ranking; all three algorithms are adapta-
tions of well-known PRAM algorithms suitably mod-
ified to optimize for our cost measure. In the next
section we present some experimental analysis and data
on simulations using parallel code we wrote for these
algorithms.

4.1. Cost measures for a QSM computation

Our cost metric for a QSM algorithm seeks to

1. minimize the work performed by the algorithm,
2. minimize the number of phases in the algorithm, and
3. maximize parallelism, subject to the requirements (1)
and (2).

The work wðnÞ of a parallel algorithm for a given
problem is the processor-time product for inputs of size
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n: There are two general lower bounds for the work
performed by a QSM algorithm: First, the work is at
least as large as the best sequential running time of any
algorithm for the problem; and second, if the input is in
shared-memory and the output is to be written into
shared-memory, the work is at least gn; where n is the
size of the input [12].
The maximum parallelism of an algorithm with work

wðnÞ is the smallest running time tðnÞ achievable by the
algorithm while performing wðnÞ work. As for a PRAM
algorithm, maximum parallelism is a meaningful mea-
sure for a QSM or s-QSM algorithm, since these
algorithms can always be slowed down (by using a
smaller number of processors) while performing the
same work [12].
The motivation for the new second metric on

minimizing number of phases is the following. One
major simplification made by QSM is that it does not
incorporate an explicit charge for latency or the
synchronization cost at the end of each phase. The total
time spent on synchronizations is proportional to the
number of phases in the QSM algorithm. Hence
minimizing the number of phases in a QSM algorithm
minimizes the hidden overhead due to synchronization.
In particular it is desirable to obtain an algorithm for
which the number of phases is independent of the input
size n as n becomes large. All of the algorithms we
present have this feature.
Related work on minimizing the number of phases (or

supersteps) using the notion of rounds is reported in [13]
for sorting and in [5] for graph problems. Several lower
bounds for the number of rounds needed for basic
problems on the QSM and BSP are presented in [19].
A ‘round’ is a phase or superstep that performs linear

work (Oðgn=pÞ time on s-QSM, and Oðgn=p þ LÞ time
on BSP). Any linear-work algorithm must compute in
rounds, hence this is a useful measure for lower bounds
on the number of phases (or supersteps) needed for a
given problem. On the other hand, a computation that
proceeds in rounds need not lead to a linear work
algorithm if the number of rounds in the algorithm is
non-constant. In fact, all of the algorithms presented in
[5] perform superlinear work. The algorithm in [13]
performs superlinear communication when the number
of processors is large.
In contrast to the cost metric that uses the notion of

rounds, in this paper we seek algorithms that perform
optimal work and communication and additionally
compute in a small number of phases.
Our metric does not consider providing good perfor-

mance for tiny problem sizes to be a primary considera-
tion. This is because our emphasis is on simple
algorithms that can be used in practice. This encourages
us to focus on algorithms for the case when the input
size is, say, at least quadratic in the number of
processors, since the input sizes for which we would
use a parallel machine for the problems we study would
normally be at least as large, if not larger. The pay-off
we get for considering this moderate level of parallelism
is that our algorithms are quite simple. Our algorithm
for sample sort is inspired by, and fits this frame-work.
However, our algorithms for prefix sums and list
ranking achieve a much higher level of parallelism. In
fact, we prove that our prefix sums algorithm is optimal
for the complete range of values for parameters that lead
to linear-work algorithms, and it differs from earlier
prefix sums algorithms for the case when p is very close
to n=log n; i.e., for the highly parallel case. But it should
be noted that this is achieved with a simple algorithm
that is easily implementable in practice. In short, our
goal in developing all three algorithms was to obtain
effective algorithms for moderate levels of parallelism.
Discussion of simulation results in the next section
support our belief that we can simplify QSM algorithms
without hurting performance for practical problems.
As noted in the section describing our emulation of

LogP on QSM, it is meaningful to consider computa-
tions in which the input and output remain distributed
uniformly across the local memories of the QSM
processors. This would correspond, for instance, to a
situation where the computation under consideration is
part of a more complex computation. In such a case a
QSM processor would not need to write back the
computed values into shared-memory if these values will
be used only by this processor in later computations.
Our simple prefix sums algorithm (given in Fig. 5) has
an improved performance under this assumption of
distributed input and output. In the other algorithms we
present, the savings gained by this configuration is no
more than a constant factor. However, we will come
back to this point in the next section where we present
experimental results. There we pin down the constant
factors for the running time, based on the distributed
input environment that we used to run our algorithms.

4.2. Prefix sums algorithm

The prefix sums algorithm is given in Fig. 4. The
processors perform a corresponding sequence of ‘ex-
pansion’ steps in which the correct prefix sum value is
computed for each position once the correct offset is
supplied to it.
We analyze its performance in the following claim,

and in the next claim, we show that its performance is
optimal whenever ppn=log n: (Note the parameter f in
this algorithm, which distinguishes it from all other
known algorithms for prefix sums. This parameter
becomes relevant only when the value of p is close to
n=log n:)

Claim 4.1. The algorithm in Fig. 4 computes the prefix

sums of array A½1::n�; and runs in Oðgn=pÞ time (and
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Fig. 4. Prefix sums algorithm.
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hence OðgnÞ work) and OðfÞ phases when ppn=log n on

QSM and s-QSM.

Proof. Let t be the number of iterations of the
repeat loop. Then t ¼ log p=log r; i.e., t ¼ log p

logðn=pÞ	log f:

We have logðn=pÞ ¼ log log n þ log f ðnÞ and log f ¼
log log n 	 log log f ðnÞ; hence t¼
Y log p

log log nþlog f ðnÞ	log log nþlog log f ðnÞ

� �
¼Y log p

log f ðnÞ

� �
¼OðfÞ:

The algorithm performs each iteration of the repeat

loop in one phase, hence the number of phases in the
algorithm is 2t þ 1; which is OðfÞ:
The time taken by each iteration of the repeat loop is

OðgrÞ; hence the overall running time of the repeat loop
is OðtgrÞ; which is Oðgfðn=pÞð1=fÞÞ ¼ Oðgðn=pÞÞ: The
first pfor loop takes Oðgn=pÞ time, and hence the overall
running time of the algorithm is Oðgn=pÞ; and the work
performed by the algorithm is OðgnÞ: When r ¼ Oð1Þ;
the time taken by the algorithm is Oðg log nÞ; hence the
algorithm performs OðgnÞ work as long as
p ¼ Oðn=log nÞ: &

Note that this algorithm runs in a constant number of
rounds if p ¼ OðncÞ; for some constant co1: In the
following claim we show that this algorithm uses an
optimal number of phases over the entire range of values
for p (i.e., 1pppn=log n) for which a prefix-sums
algorithm with OðgnÞ work is possible.

Claim 4.2. The algorithm in Fig. 4 computes the prefix

sums of array A½1::n� on s-QSM with optimal OðgnÞ
work and in optimal number of phases whenever

ppn=log n:
Proof. The bound on the work performed is OðgnÞ
when ppn=log n: This is seen to be the best possible (for
either the QSM or the s-QSM) through a simple lower
bound given in [12].
We need to show that the upper bound given in Claim

4.1 for the number of phases is optimal for s-QSM. If
n=pXlog1þe n then the optimality follows from a lower
bound of Oðlog n=logðn=pÞÞ given in [19] for the number
of phases needed to compute the OR of n bits on s-QSM
when constrained to perform Oðgðn=pÞÞ communication
per phase. Note that log n=log f ðnÞ ¼ Yðlog n=logðn=pÞÞ
when n=pXlog1þe n:
We now strengthen the above lower bound to show

that for computing parity and prefix sums, the number
of phases needed is O log n

log f ðnÞ

� �
; where f ðnÞ ¼ n=ðp log nÞ:

In [19] it is shown that if an s-QSM computes the parity
of n bits in l phases while performing gT communica-
tion, then

Yl

j¼1
ð6tjÞXn;

where gtj is the time taken for communication in the jth
phase. Since

Pl
j¼1 tj ¼ T ; the above product is max-

imized when the tj’s are all equal, and equal to T=l:

Hence we have ð6T=lÞl
Xn; i.e., l ¼ O log n

log T	log l

� �
:

We have T ¼ n=p ¼ log nf ðnÞ; hence l ¼
O log n

log log nþlog f ðnÞ	log l

� �
: Solving for l we find that l ¼

O log n
log f ðnÞ

� �
; giving us the desired matching lower bound

(since computing prefix sums on an n-array is at least as
hard as computing parity of n bits). &

Broadcasting. We note that the above algorithm can
be run in reverse to broadcast a value to p processors to
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obtain the same bounds if Oðgn=pÞ time is allowed per
phase.
Finally we note that the QSM algorithm for prefix

sums is extremely simple when pp
ffiffiffi
n

p
; which is the

situation that typically arises in practice. This algorithm
is shown in Fig. 5. It is straightforward to see that this
algorithm computes the result in Oðgn=pÞ time and two
phases. The process of writing and then reading
locations in the array S½i; j� is a simple method of
broadcasting p values to all processors.

Theorem 4.3. The simple prefix sums algorithm runs in

Oðgn=pÞ time and in two phases when pp
ffiffiffi
n

p
:

If the input and output are to be distributed uniformly

among the local memories of the processors, then the

simple prefix sums algorithm runs in OðgpÞ time when

pp
ffiffiffi
n

p
:

Fig. 5. Simple prefix sums

Fig. 6. Sample sor
4.3. Sample sort algorithm

Fig. 6 shows the QSM sample sort algorithm. We
assume that pp

ffiffiffiffiffiffiffiffi
n

log n

q
; in other words, there

is a significant amount of work for each processor
to do.
This algorithm is based on the standard sample sort

algorithm that uses ‘over-sampling’ and then picks
pivots evenly from the chosen samples arranged in
sorted order [7,8,10,11,16,22,23].

Theorem 4.4. The algorithm in Fig. 6 sorts the input

array while performing optimal work (Oðgn þ n log nÞ),
optimal communication (OðgnÞ), in Oð1Þ phases whp when

the number of processors p ¼ O
ffiffiffiffiffiffiffiffi

n
log n

q
 �
:

algorithm for pp
ffiffiffi
n

p
:

t algorithm.
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Proof. The algorithm selects cp log n random samples in
step 1. In step 2 these samples are read by each
processor, then sorted, and p 	 1 evenly spaced samples
are chosen as the ‘pivots’. The pivots divide the input
values into p buckets, where the ith bucket consists of
elements whose values lie between the ði 	 1Þst pivot
and the ith pivot in sorted order (assuming the 0th pivot
has value 	N and the pth pivot has value N: The
elements in the ith bucket are locally sorted by
the processor pi and then written in sorted order in
the output array. Hence the algorithm correctly sorts the
input array.
We now analyze the running time of the algorithm

with p processors, pp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n=log n

p
: Steps 1a and 2d take

Oðgn=pÞ time, and steps 1b and 2a take time
Oðgp logðn=pÞÞ ¼ Oðgn=pÞ; since pp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n=log n

p
: Step 2b

takes time Oðp log n logðp log nÞÞ ¼ Oððn=pÞlogðn=pÞÞ;
and step 2c takes time Oððn=pÞlog pÞ if binary search
on the pivots is used to assign each element to its bucket.
Step 3 takes time OðB log B þ gBÞ; where B is the size of
the largest bucket.
We now obtain a bound on the size of the largest

bucket B:
Consider the input elements arranged in sorted order

in a sequence S: Consider an interval I of size s ¼ an=p

on S; for a suitable constant a41: In the following we
obtain a high probability bound on the number of
samples in any interval of size s:
Let Yi;j; 1pipc log n; 1pjpp; be a random variable

that is 1 if the ith sample of the jth processor lies in I ;
and is zero otherwise.

Pr½Yi;j ¼ 1� ¼ sjp=n; for 1pipc log n; where sj is the
number of elements in I that are from processor pj’s
block of n=p elements.
Let Y ¼

Pc log n
i¼1

Pp
j¼1 Yi;j : Note that Y is the number

of samples in I :
E½Y � ¼ c log n

Pp
j¼1 sjðp=nÞ ¼ ðscp log nÞ=n

Hence E½Y � ¼ ac log n:
By Hoeffding’s inequality, Pr½Ypk�pPr½Xpk�; for

koac log n; where X is the sum of pc log n 0-1
independent random variables, with probability of
success equal to s=n for all of these random variables.

E½X � ¼ ca log n:
By a Chernoff bound, PrðXpc log nÞpe	

cða	1Þ2 ln n
2a ln 2 ¼

n	cða	1Þ2=ð2a ln 2Þ; i.e., PrðYpc log nÞpn	cða	1Þ2=ð2a ln 2Þ:
Let ai be the position of the ci log nth sample in the

sorted sequence S; 1pipp 	 2: Let Bi be the interval of
size an=p on sequence S starting at ai; 1pipp 	 2: Let
B0 be the interval of size an=p starting at the first
element of S and let Bp	1 be the interval of size an=p

ending at the last element of S:
The probability that any of the intervals

Bi; 0pipp 	 1 has less than c log n samples is no more
than pn	cða	1Þ2=ð2a ln 2Þ; which is Oð1=nrÞ; r40; for a
suitable choice of a and c: Hence whp every bucket has
no more than an=p elements.
Thus whp, step 3 takes time Oððn=pÞlog n þ gn=pÞ;
and thus the overall running time of the algorithm is
Oðgðn=pÞ þ ðn log nÞ=pÞ; which is optimal.
There are 6 phases in the algorithm—one each for

steps 1a, 1b, 2a, 2d, 3, and 4. &

4.4. List ranking algorithm

Fig. 7 summarizes the list ranking algorithm.

Theorem 4.5. The List Ranking algorithm runs with

optimal work and optimal communication (Oðgn=pÞ for

both), and in Oðlog pÞ phases whp when the number of

processors p ¼ Oðn=log nÞ:

Proof. We first consider the case when p ¼ oðneÞ:
Consider a given iteration of the pfor loop. Let r be
the number of elements in a given processor P; and let
r ¼ re þ ro; where re denotes the number of elements at
even distance, and ro denotes the number at odd
distance from the end of the current linked list.
Let Xe be a random variable denoting the number of

elements at even distance from the end of the list in
processor P that are eliminated in this iteration of the
pfor loop. Let Xo be the corresponding random variable
for elements at odd distance from the end of the linked
list. The random variables Xe and Xo are binomially
distributed r.v.’s with E½Xe� ¼ re=4 and E½Xo� ¼ ro=4:
By a Chernoff bound,
PrðXepð1	 bÞre=4Þpe	b2re=8 and PrðXopð1	

bÞro=4Þpe	b2ro=8:
Hence, since either re or ro is at least r=2; with

exponentially high probability in r; at least ð1	 bÞ=8 of
the elements in P are eliminated in this iteration.
If p ¼ oðneÞ; for any e40; then n=p2 ¼ OðnbÞ; for

some constant b40: Hence, in every iteration of the pfor
loop, either at least ð1	 bÞ=8 of the elements are
eliminated at each processor with exponentially high
probability, or the number of elements remaining at the
processor is oðn=pÞ: Hence, after c log p iterations, the
number of elements remaining in the linked list ispð1	
bÞ=4Þc log p

n with exponentially high probability. With a
suitable choice of c this number of elements remaining
can be made pn=p:
By the above analysis the number of elements

eliminated at any given processor is geometrically
decreasing from iteration to iteration. Hence the total
time for step 2 (and hence for step 4) is Oðgn=pÞ: At the
end of step 2 the number of elements is reduced to
Oðn=pÞ (with exponentially high probability), hence the
time for step 3 is Oðgn=pÞ: Hence the overall running
time of the algorithm is Oðgn=pÞ: The number of phases
is Oðlog pÞ; since there is a constant number of phases in
each iteration of step 2.
If p ¼ OðneÞ; we can use a standard analysis of

randomized list ranking to show that all elements at a
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Fig. 7. List ranking algorithm.

Vijaya Ramachandran et al. / J. Parallel Distrib. Comput. 63 (2003) 1175–11921188
processor are eliminated in Oðlog nÞ ¼ Oðlog pÞ time
whp. In this case, for a suitable choice of c; the length of
the list is reduced to 1 at the end of step 2, and step 3 is
not required (although one might still use step 3 for
improved performance). &
5. Experimental results

We investigated the performance of the prefix sums,
sample sort and list ranking algorithms on Armadillo

[14], which is a simulated architecture with parameteriz-
able configurations and cycle-by-cycle profiling and
accuracy. In this section we describe the results we
obtained by simulating our three algorithms on an eight-
processor machine. Results for a 16-processor machine,
as well as results of other experiments and conclusions
derived from them can be found in [15]. A detailed
description of the experimental set-up can be found
there as well. (Those experiments were performed on a
simulator in order to evaluate the effect of varying
parameters of the parallel machine such as latency and
overhead and the effectiveness of the QSM model and
the BSP model in predicting performance of algorithms.)
The results of the experiments indicate that the QSM

predictions come close to the observed values for fairly
small problem sizes and that they become more accurate
as problem sizes increase. We also found that the
looseness of bounds obtained using standard techniques
of algorithm analysis for non-oblivious algorithms and
standard tools for analyzing randomized algorithms are
often larger than the errors introduced by QSM’s
simplified network model. This was certainly the case
for both sample sort and list ranking.

5.1. General comments

The graphs for the three algorithms are given in
Figs. 8–10. Each of our graphs shows the measured
results of running one of the three algorithms, and
compares the measured communication time to the
communication time predicted by QSM. As a compar-
ison, we also plot the communication time for the same
algorithm as would be predicted by the more detailed
BSP model. We do not include predictions of the LogP
model since they would be almost identical to the
predictions of the BSP model for the three algorithms
we consider.
Our analysis focuses on communication perfor-

mance—excluding CPU time—for two reasons. First,
all models examined here model CPU performance in
the same way, so comparisons of predictions of CPU
performance are not interesting. Second, exact CPU
time calculations depend on low level parameters that
are beyond the scope of the QSM and BSP models.
However, for completeness the graphs also show the
total measured time taken by the computation.
The architecture we simulated was that of a dis-

tributed-memory multiprocessor, and thus the input and
the output was distributed uniformly across the
processors. Hence in analyzing the algorithms we
excluded the initial cost of reading the input from
shared-memory and the final cost of writing the output
into shared-memory. As discussed earlier, such an
analysis is meaningful in the context of a shared-
memory model since it would correspond, for instance,
to a situation where the computation under considera-
tion is part of a more complex computation and the
input/output is available at the local memories of the
appropriate processors. The algorithms were simulated
on 4, 8 and 16 processors.
We plotted several computed and measured costs as

listed below:

1. ‘Communication’ is the measured cost of the com-
munication performed by the algorithm, measured in
cycles.

2. ‘QSM best-case’ represents the ideal performance of
each of the randomized algorithms. It uses the QSM
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Fig. 8. Measured and predicted performance for the prefix sums

algorithm on 8 processors. (a) Total running time and communication

time. (b) Communication time.
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Fig. 9. Measured and predicted performance for the sample sort

algorithm on 8 processors. (a) Total running time and communication

time. (b) Communication time.
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analysis but assumes no skew in the performance of
the randomized steps.

3. ‘QSM WHP bound’ represents the performance of
each of the randomized algorithms that we can
guarantee with probability at least 0.9 using Chernoff
bound analysis.

4. The ‘QSM estimate’ line is a plot of the measured
maximum number of communication operations at
any processor multiplied by the gap parameter. (Since
none of the algorithms we implemented had queue
contention at memory locations, this correctly
measures the communication cost as modeled by
QSM.) It accounts for the actual skew encountered
during the runs. For the prefix sums algorithm the
‘QSM estimate’ line also gives ‘QSM best case’ since
the algorithm is deterministic and oblivious. For the
randomized algorithms, this line plots the QSM
prediction without the inaccuracy that is incurred
when working with loose analytical bounds on the
amount of communication.

5. The ‘BSP estimate’ line is similar to ‘QSM estimate’,
except that there is an additional term to account for
the latency parameter.
6. ‘Total running time’ is the measured cost of the total
running time of the algorithm, measured in cycles.
We include this for completeness.

5.2. Discussion

For all three algorithms, we found that ‘QSM
estimate’ tracks communication performance well
when the input size is reasonable large. The input sizes
for which we simulated the algorithms are fairly
small due to the CPU-intensive computation of the
step-by-step simulation performed by Armadillo. Mod-
ern parallel architectures typically give each processor
many megabytes of memory, so problems of practical
interest are likely to be even larger than those presented
here.
As expected, the communication cost for the prefix

sums algorithm is negligible compared to the total
computation cost as n becomes large. QSM (and to a
lesser extent BSP) both underestimate the communica-
tion cost by a large amount, but since the communica-
tion cost is very small anyway, this does not appear to
be a significant factor. The possible cause for this
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Fig. 10. Measured and predicted performance for the list ranking

algorithm on 8 processors. (a) Total running time and communication

time. (b) Communication time.
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discrepancy between the predicted and measured com-
munication costs is discussed in [15].
As expected, for both sample sort and list ranking the

lines for ‘QSM best-case’ and ‘QSM WHP bound’
envelope the line for actual measured communication
except for tiny problem sizes (when latency dominates
the computation cost). For both algorithms the ‘QSM
estimate’ line is quite close to the ‘communication’ line,
indicating that QSM models communication quite
effectively when an accurate bound is available for the
number of memory accesses performed by the proces-
sors. For instance with 8 processors, ‘QSM estimate’ is
within 20% of ‘communication’ for sample sort when
the input size is larger than 40,000, and is within 5% of
‘communication’ for list ranking when input size is
larger than 20,000. The ‘BSP estimate’ lines are very
close to the ‘QSM estimate’ lines for both algorithms.
For both sample sort and list ranking the ‘QSM

WHP’ line gives a very conservative bound, and lies
significantly above the line for ‘communication.’ This is
to be expected, since the ‘communication’ line represents
the average of ten runs while the ‘QSM WHP’ line
guarantees the bound for at least 90% of the runs.
Further, the bounds were computed using Chernoff
bounds, and hence are not tight. It should be noted that
the fairly large gap between the ‘communication’ and
the ‘QSM WHP bound’ lines is mainly due to the
looseness of the bounds we obtained on the number of
memory accesses performed by the randomized algo-
rithms, and not due to inaccuracy in the QSM
communication model. As noted above, the ‘QSM
estimate’ line which gives the QSM prediction based
on the measured number of memory accesses is quite
close to the ‘communication’ line.
Overall these graphs show that QSM models com-

munication quite effectively for these algorithms, for the
range of input sizes that one would expect to see in
practice. We also note that the additional level of detail
in the BSP model has little impact on the ability to
predict communication costs for the algorithms we
studied, as compared to the QSM.
6. Conclusion

This paper has examined the use of QSM as a general-
purpose model for parallel algorithm design. QSM is
especially suited to be such a model because of the
following.

1. It is shared-memory, which makes it convenient for
the algorithm designer to use.

2. It has a small number of parameters (namely, p; the
number of processors, and g the gap parameter).

3. We have presented simple work-preserving emula-
tions of QSM on other popular models for parallel
computation. Thus an algorithm designed on the
QSM will map on to these other models effectively.

To facilitate using QSM for designing general-
purpose parallel algorithms, we have developed a
suitable cost metric for such algorithms and we have
evaluated algorithms for some fundamental problems
both analytically and experimentally against this metric.
These results indicate that the QSM metric is quite
accurate for problem sizes that arise in practice.
Appendix. Description of the experimental setup

The Armadillo multiprocessor simulator [14] was used
for the simulation of a distributed memory multi-
processor. The primary advantage of using a simulator
is that it allows us to easily vary hardware parameters
such as network latency and overhead. The core of the
simulator is the processor module, which models a
modern superscalar processor with dynamic branch
prediction, rename registers, a large instruction window,
and out-of-order execution and retirement. For this set



ARTICLE IN PRESS

Table 3

Raw hardware performance and measured network performance

(including hardware and software) for simulated system

Parameter Hardware setting Observed

performance

ðHWþ SWÞ

Gap g (Bandwidth) 3 cycles/byte (133

MB/s)

35 cycles/byte

(put), 287

cycles/byte (get)

Per-message overhead o 400 cycles ð1 msÞ N/A

Latency l 1600 cycles ð4 msÞ N/A

Synchronization

barrier L

N/A 25500 cycles

(16-processors)

ð64 msÞ
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of experiments, the processor and memory configuration
parameters were set as shown in Table 2.
The simulator supports a message-passing multi-

processor model. The simulator does not include
network contention, but it does include a configurable
network latency parameter. In addition, the overhead of
sending and receiving messages is included in the
simulation, since the application must interact with the
network interface device’s buffers. Also, the simulator
provides a hardware gap parameter to limit network
bandwidth and a per-message network controller over-
head parameter.
We implemented our algorithms using a library that

provides a shared memory interface in which access to
remote memory is accomplished with explicit get() and
put() library calls. The library implements these
operations using a bulk-synchronous style in which
get() and put() calls merely enqueue requests on the
local node. Communication among nodes happens when
the library’s sync() function is called. During a sync(),
the system first builds and distributes a communications
plan that indicates how many gets and puts will occur
between each pair of nodes. Based on this plan, nodes
exchange data in an order designed to reduce contention
and avoid deadlock. This library runs on top of
Armadillo’s high-performance message-passing library
(libmvpplus).
Our system allows us to set the network’s bandwidth,

latency, and per-message overhead. Table 3 summarizes
the default settings for these hardware parameters as
well as the observed performance when we access the
network hardware through our shared memory library
software. Note that the bulk-synchronous software
interface does not allow us to measure the software o

and l values directly. The hardware primitives’ perfor-
mance correspond to values that could be achieved on a
network of workstations (NOW) using a high-perfor-
mance communications interface such as ‘Active Mes-
Table 2

Architectural parameters for each node in multiprocessor

Parameter Setting

Functional units 4 int/4 FPU/2 load-store

Functional unit latency 1/1/1 cycle

Architectural registers 32

Rename registers Unlimited

Instruction issue window 64

Max. instructions issued per cycle 4

L1 cache size 8KB 2-way

L1 hit time 1 cycle

L2 cache size 256KB 8-way

L2 hit time 3 cycles

L2 miss time 3þ 7 cycles
Branch prediction table 64K entries, 8-bit history

Subroutine link register stack Unlimited

Clock frequency 400 MHz
sages’ and high-performance network hardware such as
‘Myrinets’. Note that the software overheads are
significantly higher because our implementation copies
data through buffers and because significant numbers of
bytes sent over the network represent control informa-
tion in addition to data payload.
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