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Competitive Cache Replacement Strategies for a

Shared Cache

Anil Kumar Katti, M.S.C.S

The University of Texas at Austin, 2011

Supervisor: Vijaya Ramachandran

We consider cache replacement algorithms at a shared cache in a multi-

core system which receives an arbitrary interleaving of requests from processes

that have full knowledge about their individual request sequences. We estab-

lish tight bounds on the competitive ratio of deterministic and randomized

cache replacement strategies when processes share memory blocks. Our main

result for this case is a deterministic algorithm called global-maxima which

is optimum up to a constant factor when processes share memory blocks. Our

framework is a generalization of the application controlled caching framework

in which processes access disjoint sets of memory blocks. We also present a de-

terministic algorithm called rr-proc-mark which exactly matches the lower

bound on the competitive ratio of deterministic cache replacement algorithms

when processes access disjoint sets of memory blocks. We extend our results to

multiple levels of caches and prove that an exclusive cache is better than both

inclusive and non-inclusive caches; this validates the experimental findings in

the literature. Our results could be applied to shared caches in multicore

systems in which processes work together on multithreaded computations like

Gaussian elimination paradigm, fast Fourier transform, matrix multiplication,

etc. In these computations, processes have full knowledge about their individ-

ual request sequences and can share memory blocks.
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Chapter 1

Introduction

This thesis studies cache replacement algorithms for a shared cache in

the multicore setting. Cache replacement algorithms decide which block in the

cache needs to be replaced by the newly requested block in order to minimize

the number of cache misses incurred on a request sequence. The decision taken

by a cache replacement algorithm has to be online (i.e., the eviction decision

has to be based only on the requests seen in the past and the current request) in

order for the algorithm to be implementable in practical systems. The caching

problem is derived from the classical paging problem [22] and hence most

of the results on the paging problem directly hold for the caching problem.

These problems have a rich historical background and practical importance.

A number of models and frameworks have been proposed in the literature to

develop and analyze cache replacement algorithms. We give a quick overview

of the previous models before describing our model, results and approach.

The competitive analysis framework proposed by Sleator and Tarjan

[22] for the paging problem has been used extensively to measure and compare

the performance of different cache replacement algorithms. The competitive

ratio of a cache replacement algorithm alg is defined as the ratio of number

of cache misses incurred by alg to the number of cache misses incurred by

an optimal offline cache replacement algorithm (opt) on a worst case request

sequence. Belady [4] proposed a simple offline greedy strategy which evicts

the block that is requested farthest in the future request sequence (fitf) from

the cache in case of a cache miss. It was also shown in [4] that fitf is optimal

in the classical caching framework.

Borodin et al. [6] introduced the notion of access graphs in order to

model locality of reference. An access graph is a graph (undirected or directed)

that governs the pattern of block requests in the request sequence. The nodes
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in the access graph represent memory blocks and the edges in the access graph

control the pattern of requests in the following fashion: The request that

follows a request to node x could either be another request to x or to some

neighbor of x in the access graph. A natural algorithm called far was proposed

for the access graph framework in [6]. It was shown that far is optimal (up to

a constant factor) in the access graph framework by Irani, Karlin and Philips

[16].

Two different approaches to the caching in the parallel setting were

considered by Fiat and Karlin [12] and Cao et al. [8]. Fiat and Karlin [12]

introduced the multi-pointer access graph framework in which an undirected

access graph with multiple pointers pointing to the nodes of the graph is

assumed to govern the request sequence reaching the cache. The multiple

pointers are used to model multiple processors accessing data in parallel. Cao

et al. [8] introduced the application controlled caching framework in which

processes (or applications) having varying degrees of knowledge about their

future request sequences share a cache. In both of these frameworks, the

interleaving of requests from the individual request sequences as seen at the

shared cache is assumed to be fixed, and is assumed to be adversarial for the

competitive ratio.

Cao et al. [8] presented experimental results in the application con-

trolled caching framework to support the deterministic algorithm that they

proposed. Barve et al. [3] formalized the application controlled caching frame-

work where processes access disjoint sets of memory blocks and each process

has varying degrees of knowledge about its future request sequence. The in-

terleaving of requests from the request sequences is assumed to be fixed and

adversarial as in [8, 12]. In [3], lower bounds were established on the competi-

tive ratio of deterministic and randomized online cache replacement algorithms

at a shared cache when each process has full knowledge about its future request

sequence. It was shown in [3] that the algorithm proposed in [8] is optimal up

to a constant factor in the application controlled caching framework when each

process has full knowledge about its future request sequence. Note that the

case when processes have no knowledge about their future request sequences

reduces to the classical (or sequential) caching and hence a simple determinis-

tic cache replacement algorithm like lru is optimal in this scenario. Barve et
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al. also proposed a randomized algorithm in the application controlled caching

framework and proved that its competitive ratio was optimal up to a constant

factor when each process has full knowledge about its future request sequence.

The scenario in which the processes share memory blocks was left as an open

problem. We consider this open problem in our thesis.

We consider the application controlled caching framework where pro-

cesses share memory blocks and each process has full knowledge about its

future request sequence. The interleaving of requests from these request se-

quences is still assumed to be fixed and adversarial. We call this generalization

of the application controlled caching framework the shared memory framework.

We establish tight bounds (up to a constant factor) on the competitive ratio

of deterministic and randomized algorithms in this framework. Our main re-

sult in this case is a deterministic algorithm called global-maxima which

is optimum up to a constant factor. Note that even though each process has

full knowledge about its individual future request sequence, the cache replace-

ment algorithm at the shared cache does not have any control of or knowledge

about the interleaving of requests from these request sequences. On the other

hand, offline algorithms have complete control of and knowledge about the

interleaving.

We call the application controlled caching framework where processes

access disjoint sets of memory blocks and have full knowledge about their indi-

vidual request sequence the disjoint memory framework. In this framework, we

propose a natural algorithm called rr-proc-mark which matches the lower

bound established in [3].

Modern multicore systems have multiple levels of caches to get better

caching performance. We model multicore systems with multiple levels of

caches using the hierarchical caching framework. We consider lru and rr-

proc-mark and analyze their competitive ratio at inclusive, exclusive and

non-inclusive L2 caches. We prove that an exclusive cache is better than

inclusive and non-inclusive caches.

3



1.1 An overview of the thesis

In this section we describe the model that we consider in our research,

state previously known results and discuss our results, motivation and ap-

proach.

1.1.1 Disjoint and shared memory frameworks

Our main focus is on the analysis of cache replacement algorithms at

a shared cache in the disjoint and shared memory frameworks. We formally

describe these frameworks as follows:

Features common to both disjoint and shared memory frameworks:

The following features are common to both the disjoint memory framework

and the shared memory framework. We list features specific to each of these

two frameworks after listing the common features.

1. Processes access a shared cache and the cache replacement algorithms

are designed for the shared cache.

2. Each process has full knowledge about its individual request sequence.

By request sequence we mean the exact order in which memory blocks

are requested by the process in the future.

3. An interleaving of requests from these request sequences is seen at the

shared cache. We analyze the performance of cache replacement al-

gorithms developed for the shared cache with respect to a worst case

interleaving.

4. The online algorithms do not have any knowledge about the interleaving

of requests from these request sequences reaching the shared cache.

5. The optimal offline algorithm on the other hand, has complete control

of and knowledge about the interleaving of these request sequences.

6. The interleaving of requests from these request sequences is assumed

to be fixed. i.e., the same interleaving reaches the shared cache for
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all of the cache replacement algorithms, including the optimal offline

cache replacement algorithm — irrespective of their cache replacement

decisions.

Feature specific to the disjoint memory framework: In the disjoint

memory framework, the processes request disjoint sets of memory blocks.

Thus, every block in the memory can be accessed by at most one process.

Feature specific to the shared memory framework: In the shared

memory framework, the processes share memory blocks. Thus, any block

in the memory can be accessed by any subset of processes.

1.1.1.1 Connecting these models to the real world

Relating to the real world: In a number of parallel shared memory appli-

cations, processes or cores work together to solve a given problem and hence

share memory blocks. In most of these computations, each process also has full

knowledge about its future request sequence of its current task. For instance,

the computation of Gaussian elimination paradigm as discussed by Chowd-

hury and Ramachandran [9] has this type of behavior. Even the computation

of matrix multiplication and fast Fourier transform have this type of behavior.

Chowdhury et al. [10] discuss these types of computations in more detail.

Another scenario in which the shared memory model relates well to

the real world is when modern multicore processor systems are equipped with

hardware and software prefetchers [7, 20]. These units predict the future re-

quest sequence in an online fashion for most of the computations.

Both of these examples motivate us to consider the shared memory

framework where processes share memory blocks and each process has full

knowledge about its request sequence.

Deviation from the real world: In modern multicore systems, requests

from all of the cores reach the shared cache in parallel. When a cache miss

is incurred, only the core that requested the block which was a cache miss
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gets delayed. All other cores can continue requesting memory blocks. Thus,

the interleaving of request sequences depends on the cache misses incurred by

the cache replacement algorithm at the shared cache. We refer to this type of

interleaving as free interleaving. Hassidim [15] and Lopez-Ortiz and Salinger

[18] considered free interleaving while analyzing cache replacement algorithms

at the shared cache.

On the other hand, modern operating systems interrupt processes for

a number of reasons (like, serving system calls, priority scheduling, etc.) and

hence the interleaving does not necessarily depend on just the delays due to

cache misses. This was stated as the motivation behind fixed and adversarial

interleaving considered in [8]. We consider this type of interleaving in our

thesis.

1.1.2 Notation used in this thesis

1. We let p processes share a cache of size k. We let Pi denote the ith

process.

2. Observe that k is at least as large as p. This is because each process

should have at least one block in the cache for its use. Usually, k is

orders of magnitude larger than p.

3. We use σi to represent the request sequence of the ith process. Recall

that, the request sequence is the exact order in which memory blocks

are requested by the process in the future.

4. An arbitrary interleaving of σ1, σ2, . . . , σp is seen at the shared cache. We

develop cache replacement algorithms for the shared cache and analyze

their performance with respect to a worst case interleaving (represented

by σ). Recall that the same interleaving is seen by both online and

offline algorithms. The difference is that offline algorithm knows the

exact sequence of requests in σ but online algorithm doesn’t.

5. If a memory block q can be accessed by a process Pi, we say that q

belongs to Pi and Pi owns q: these terms make sense only in the disjoint

memory framework. In the shared memory framework, any block can be

accessed by a subset of processes.

6



1.1.3 Results

The first part of Table 1.1 and 1.2 describes the previously known

results for deterministic and randomized algorithms respectively.

The following are some important contributions of our research:

1. The shared memory framework:

(a) Lower bounds on the competitive ratio of deterministic and ran-

domized algorithms in the shared memory framework. [Section 4.3]

(b) A deterministic algorithm called global-maxima which is optimal

(up to a constant factor ≤ 5) in the shared memory framework.

[Section 4.4]

2. The disjoint memory framework:

(a) A deterministic algorithm called rr-proc-mark which closes the

gap between the upper and lower bounds on the competitive ra-

tio of deterministic algorithms in the disjoint memory framework.

[Section 3.3]

(b) Analysis of rr-proc-mark in a more realistic cost model called

the full access cost model. [Section 3.3.3]

3. The hierarchical caching framework: Analysis of cache replacement

algorithms at inclusive, non-inclusive and exclusive L2 caches in the hi-

erarchical caching framework. [Chapter 5]

Results on deterministic algorithms: Our results on deterministic algo-

rithms are tabulated in the second part of Table 1.1.

We classify cache replacement algorithms in the shared memory frame-

work into 2 types — local and global algorithms. Local algorithms make evic-

tion decisions based on the local knowledge available at a particular process

and on the other hand, global algorithms make eviction decisions based on the

global knowledge available from all of the p processes.
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In the shared memory framework, we establish a lower bound of p
2
log 4(k+1)

3p

on the competitive ratio of deterministic local and global algorithms. We give

a natural deterministic marking algorithm called global-maxima and estab-

lish an upper bound of 2(p ln(ek
p
) + 1) on its competitive ratio. Further, we

show that, if the cache replacement strategy used by deterministic local algo-

rithms is known, the lower bound on the competitive ratio can be pushed to k.

Note that an upper bound of k can be obtained by using a simple determinis-

tic algorithm like lru at the shared cache by completely ignoring knowledge

about future request sequences.

In the disjoint memory framework, we introduce a family of algorithms

called the process marking algorithms that is motivated from the randomized

algorithm presented in [3]. We give a natural deterministic process marking

algorithm called rr-proc-mark which matches the lower bound of p+1 on the

competitive ratio of deterministic algorithms established by [3]. We analyze

the performance of rr-proc-mark in a more realistic cost model called the

full access cost model.

Results on randomized algorithms: Our result on randomized algorithms

is tabulated in the second part of Table 1.2.

In the shared memory framework, we establish a lower bound of 1
2
log(k+

1) on the competitive ratio of randomized algorithms. Note that an upper

bound of Hk can be obtained by using a randomized algorithm like partition

(due to McGeoch and Sleator [19]) at the shared cache by completely ignoring

knowledge about future request sequences. We conclude that randomization

is not of much help in the shared memory framework.

Results in the hierarchical caching framework: We analyze the com-

petitive ratio of cache replacement algorithms in a hierarchical caching frame-

work. Our results in the hierarchical caching framework are presented in Ta-

ble 1.3. We introduce the concept of effective size of the L2 cache in order to

analyze online cache replacement algorithms at inclusive, exclusive and non-

inclusive L2 caches as seen in modern multicore systems like Intel-Nehalem and

AMD-Shanghai. We consider cache replacement algorithms in the sequential
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and parallel disjoint memory models and establish upper and lower bounds on

their competitive ratio.

1.1.4 Our approach

Our algorithms and analysis build on the methodology developed for

multi-pointer access graph [12] and application controlled caching [3] frame-

works.

Our approach for the shared memory framework: We present a deter-

ministic cache replacement algorithm called global-maxima in the shared

memory framework. global-maxima proceeds in phases. Upon a cache miss,

global-maxima evicts a block from the cache that has the maximum global

distance among all of the blocks that were not requested in the current phase.

The global distance of a memory block x is the minimum over all of the local

distances of x. Further, the local distance of x with respect to a particular

process is the number of unmarked blocks in cache that occur before the first

request to x in the request sequence of that process.

global-maxima can be considered as a parallel adaptation of far

which was proposed in [6] for the single-pointer access graph framework. far

proceeds in phases. Upon a cache miss, far evicts a block from the cache

which is farthest from the set of already requested blocks in the access graph.

We describe access graphs in more detail in the next chapter.

We use the concept of holes (introduced in [3]) for analysis. A hole

essentially represents a memory block that is missing from the cache. Upon

a request to a block that is not in the cache, an existing block is evicted

and hence a hole is created in its place. Request to this missing block causes

another cache miss. This process continues till the end of the phase. We

bound the total cost of global-maxima by bounding the maximum number

of cache misses attributed to each hole during a given phase of the algorithm.

In order to establish lower bounds on the deterministic and random-

ized algorithms in the shared memory framework, we fix the request sequence

for each of the p processes and construct an adversarial interleaving. For the

randomized case we use the von Neumann minimax principle as described by

9



Yao [27] to give a probability distribution on the interleaving. This principle

states that the expected cost of any deterministic algorithm on the probabilis-

tic interleaving gives a lower bound on the cost of the randomized algorithms

on the interleaved sequence.

Our approach for the disjoint memory framework: We present a de-

terministic cache replacement algorithm called rr-proc-mark in the disjoint

memory framework. It improves the competitive ratio from 2(p + 1) to p + 1

(lower bound presented in [3]). This algorithm is motivated from the following

observation about the algorithm proposed in [8]: upon a request to a clean

block, the algorithm proposed in [8] evicts a block from the cache resulting in

the creation of a hole. In the worst case, all of these holes could be created

in one of the p processes. They all could move from one process to another in

a group, leading to a maximum number of cache misses for every such move-

ment. This led to a factor of 2 in the upper bound on the competitive ratio.

In contrast, rr-proc-mark carefully distributes these holes among all of the

processes by using a simple scheme (round robin) for selecting processes which

are then asked to make evictions. We show that this scheme is effective in

reducing the constant factor in the upper bound.

Our approach for the hierarchical caching framework: Modern mul-

ticore systems have a hierarchy of caches in order to obtain a better caching

performance. We present the hierarchical caching framework to model such

systems. We consider two levels of shared caches and compare the inclusive,

exclusive and non-inclusive properties in both sequential and parallel disjoint

memory frameworks.

For the sequential caching framework, we consider lru and obtain an

upper bound on the competitive ratio when the L2 cache is inclusive, exclusive

and non-inclusive of the L1 cache. For the parallel disjoint memory framework,

we consider rr-proc-mark and obtain an upper bound on the competitive

ratio first in the (h, k)-paging context and then at the L2 cache.

10



Table 1.1: Competitive ratio of deterministic cache replacement algorithms.
Algorithms in the classical caching framework assume no knowledge about fu-
ture request sequence and the algorithms in the parallel caching frameworks
assume that each process has full knowledge about its individual request se-
quence.

Deterministic cache replacement algorithms

Model Lower Bound Upper Bound

Known results

Classical-caching
(sequential)

k [22] k [22]

lru, fifo

Disjoint memory
framework (parallel)

p + 1 [3] 2(p + 1) [8] and [3]

lru-proc-mark

Shared memory
framework (parallel)

Open Open

Our results

Disjoint memory
framework (parallel)

p + 1 [3] p + 1 [Thm 3.3.9]

rr-proc-mark

Shared memory
framework (parallel)

p
2 log

4(k+1)
3p [Thm 4.3.2] 2(p ln(ekp ) + 1) [Thm 4.4.1]

global-maxima

Upper bound on rr-proc-mark in full access cost model

1 +
2(Hp+O(1))(b−1)

b+1 [Thm 3.3.10]
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Table 1.2: Competitive ratio of randomized cache replacement algorithms. Al-
gorithms in the classical caching framework assume no knowledge about future
request sequence and the algorithms in the parallel caching frameworks assume
that each process has full knowledge about its individual request sequence.

Randomized cache replacement algorithms

Model Lower Bound Upper Bound

Known results

Classical-caching
(sequential)

Hk [13] Hk [19]

partition

Disjoint memory
framework (parallel)

Hp−1 [3] 2Hp−1 + 2 [3]

rand-proc-mark

Shared memory
framework (parallel)

Open Open

Our result

Shared memory
framework (parallel)

1
2 log(k + 1) [Thm 4.3.4] Hk [19]

partition

12



Table 1.3: Competitive ratio of cache replacement strategies in the (h, k)-
paging framework. Algorithms in the classical caching framework assume no
knowledge about future request sequence and the algorithms in the parallel
caching frameworks assume that each process has full knowledge about its
individual request sequence.

(h, k)-paging framework

Model Lower Bound Upper Bound

Known results

Sequential (Deterministic) k
k−h+1 [22] k

k−h+1 [22]

lru, fifo

Sequential (Randomized)
when h = k

Hk [13] Hk [19]

partition

Sequential (Randomized)
when h < k and k

k−h > e for
a constant e

ln k
k−h − ln ln k

k−h − 2
k−h [28] 2(ln k

k−h − ln ln k
k−h + 1

2) [28]

rand-mark

Our result

Parallel disjoint memory
(h, k)-paging (Deterministic)
when h = k [Thm 5.3.1]

p + 1 p + 1

rr-proc-mark

Parallel disjoint memory
(h, k)-paging (Deterministic)

when h ≤ c · k : for a
constant c < 1 [Thm 5.3.1]

O(1) O(1)

rr-proc-mark

Parallel disjoint memory
(h, k)-paging (Randomized)

Open 2k
k−h+k/(Hp−1+1) [Thm 5.3.4]

rand-proc-mark
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Table 1.4: Effective size of the L2 cache for online marking algorithms. These
values of k and h can be directly applied for the algorithms presented in the
previous two tables in order to obtain the competitive ratio at the shared L2

cache.

Model Effective cache size (k)

Inclusive cache k2
Non-inclusive cache k2
Exclusive cache k1 + k2

Note: Proofs can be found in [Thm 5.2.2]. The effective size of the L2 cache
for the optimal offline algorithm is h = h1 + h2.
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Chapter 2

The Caching Problem

The caching problem is similar to the classical paging problem which

was introduced in the virtual memory context. In the paging problem, the

RAM (which is modelled as the main memory) is the fast memory and the

disk drive is the slow memory whereas in the caching problem, the cache is the

fast memory and the main memory is in fact considered the slow memory (in

comparison to the cache). Caches help bridge the gap between the speed of

the processor and the main memory. Caches are typically placed much closer

to the processor than the main memory and hence they are both faster and

smaller (due to chip real estate constraints). Because they are much smaller

in size when compared to the main memory, the number of memory blocks

that can be stored in them is limited. This leads to the problem of caching.

In general a cache lies in between a processor or a set of processors and

the main memory. When the processor wants to access a memory block, it

sends a block request to the cache. If the cache already contains the requested

block, the block request is served immediately. If the cache does not have the

requested block, it sends a block request to the main memory. The block is

fetched from the main memory into the cache before the processor can use it.

A cache miss occurs when the processor requests a memory block which does

not exist in the cache and a cache hit occurs when the processor requests a

memory block which exists in the cache. A cache miss is more expensive than

a cache hit because the requested block has to be read from the main memory

and the main memory is usually orders of magnitude slower than the cache.

Upon a cache miss, an existing block should be evicted from the cache

in order to accommodate the newly requested block. The caching problem is

to determine the block that should be evicted from the cache on every cache

miss. The goal of a cache replacement algorithm is to solve the cache problem
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while incurring a minimum number of cache misses on any given sequence of

block requests. A cache replacement algorithm could be either online or offline.

Online cache replacement algorithms make eviction decisions based on just the

current block request and block requests seen till that moment. Offline cache

replacement algorithms, on the other hand, make eviction decisions based on

the entire sequence of block requests, including the future block requests. Any

cache replacement algorithm used in practice has to be online in order to be

implementable.

In this chapter, we consider cache replacement algorithms in different

scenarios — the classical caching context, caching with access graph, caching

in the parallel context and caching at multiple levels of caches. We describe

the model proposed in the literature for all these scenarios and discuss the

performance of cache replacement algorithms proposed in the past. In each

of these models, the performance of the cache replacement algorithms is mea-

sured using an analytical tool called competitive analysis. We first describe

competitive analysis, before presenting a survey on the models and cache re-

placement algorithms proposed in the literature.

Competitive analysis

Competitive analysis is an analytical tool developed by Sleator and

Tarjan [22] to measure and compare the performance of cache replacement

algorithms. Let alg be an online cache replacement algorithms and let σ

represent an arbitrary request sequence (sequence of block requests). We use

a(σ) to represent the number of cache misses incurred by a cache replacement

algorithm a on block requests in σ. The competitive ratio of alg is defined as

the ratio of number of cache misses incurred by alg to the number of cache

misses incurred by an optimal offline cache replacement algorithm (opt) on

the worst case request sequence. More formally, the competitive ratio of alg

is said to be c if there exists a constant c� such that:

∀σ : alg(σ) ≤ copt(σ) + c�

Belady [4] proposed a simple offline greedy algorithm called fitf which

evicts a block from the cache that is requested farthest in the future request
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sequence upon a cache miss. It was also proved in [4] that fitf is optimal

in the classical caching framework. fitf is also referred to as lfd in the

literature. lfd stands for longest forward distance indicating that the block

which is evicted by lfd has the longest forward distance in the future request

sequence.

2.1 A survey of cache replacement algorithms

In this section, we present the models and cache replacement algo-

rithms developed in the past. In each of these models, we describe the known

algorithms and present known upper and lower bounds on their competitive

ratio.

2.1.1 Classical (or sequential) caching framework

The classical caching framework consists of a processor, cache and a

main memory. A number of deterministic and randomized cache replacement

algorithms have been proposed in the classical caching framework. A few of

these algorithms are used in practical systems. We present a few algorithm

that have been well studied in the literature:

1. Deterministic algorithms:

(a) lru: Upon a cache miss, the least recently used block is evicted

from the cache.

(b) fifo: Upon a cache miss, the block which was first brought into

the cache is evicted from the cache.

2. Randomized algorithms:

(a) rand [21]: Upon a cache miss, a random block is evicted from the

cache.

(b) mark-rand [13]: Upon a cache miss, a random block that was

not requested in the current phase is evicted from the cache. The

algorithm keeps track of the blocks that were not requested during

the current phase by using a mark bit.
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It was shown in [22] that the competitive ratio of both lru and fifo

is at most k — size of the cache and that both lru and fifo are optimal in

the classical caching framework. The optimality was established by proving

a lower bound of k on the competitive ratio of deterministic algorithms. The

competitive ratio of rand was shown to be at most k in an expected sense by

Raghavan and Snir [21]. The attractive feature of rand is its simplicity. It

attains the same competitive ratio as an optimal deterministic cache replace-

ment algorithm (ex. lru) with minimal time and space complexity. Fiat et al.

[13] proved that rand was far from optimal in the classical caching framework

by establishing a lower bound of Hk on the competitive ratio of randomized

cache replacement algorithms. Fiat et al. also presented mark-rand and es-

tablished an upper bound of 2Hk on its competitive ratio. Later, the Hk lower

bound was matched by an algorithm called partition proposed by McGeoch

and Sleator [19].

Marking algorithms: Based on the definition of mark-rand, a family of

algorithms called marking algorithms was introduced by Borodin et al. in [6].

A marking algorithm proceeds in marking phases. A phase starts with all the

blocks in the cache unmarked. A block gets marked when a request to it is

served. Upon a cache miss, a marking algorithm evicts an unmarked block

from the cache. A marking algorithm could be either explicit or implicit.

Explicit and implicit marking algorithms: An explicit marking algo-

rithm follows the above mentioned marking scheme explicitly. On the other

hand, an implicit marking algorithm does not follow the marking scheme. But

if we split the request sequence into multiple phases, it can be observed that

an implicit marking algorithm never evicts a block that was requested during

the current phase.

Observe that mark-rand is an explicit marking algorithm and lru

is an implicit marking algorithm. fifo on the other hand is a non-marking

algorithm. Since on a particular sequence, fifo could evict a block that was

requested during the current phase.
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Trong [26] generalized the results from [22] to deterministic marking

algorithms. It was shown in [26] that any deterministic marking algorithm is

k-competitive in the classical caching framework.

(h, k)-paging framework: The (h, k)-paging framework was introduced in

[22] as a variation on the classical caching framework. In this framework, the

online algorithm is given more resources (i.e. a bigger cache) than the offline

algorithm. The online algorithm is given a cache of size k and the offline

algorithm is given a cache of size h (k ≥ h). Sleator and Tarjan [22] proved

that lru and fifo are optimal in this framework by established an upper

bound of k
k−h+1

on their competitive ratio and a lower bound of k
k−h+1

on the

competitive ratio of deterministic algorithms.

2.1.2 Access graph framework

It has been observed that in practice, lru has a competitive ratio much

less than k [29]. It is also seen that lru performs much better than fifo in

practice even though both lru and fifo have the same competitive ratio.

This inconsistency in the competitive ratio has been attributed to locality of

reference by Borodin et al. [6]. Locality of reference refers to the notion that

after a request to a block, say x, a block that is both spatially and temporally

closer to x has a higher probability of getting requested in practical compu-

tations. This notion was not captured in the classical competitive analysis

presented in [22].

Different models were proposed in the literature to capture the concept

of locality of reference. In [6], locality of reference has been modeled in the

form of an access graph. Koutsoupias and Papadimitriou [17] modeled locality

of reference in form of a diffused adversary model. The access graph frame-

work has been quite influential and our research derives motivation from this

framework. We describe the access graph framework in detail in the following

part of this subsection.

An access graph is a graph G that governs the pattern of block requests

in the request sequence. The nodes in the access graph represent the memory

blocks and the edges control the pattern of requests in the following fashion:
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The request that follows a request to node x could either be another request to

x or to some neighbor of x in G. The competitive ratio of an online algorithm

alg on an access graph G is defined as the ratio of number of cache misses

incurred by alg to the number of cache misses incurred by an optimal offline

algorithm (opt) on a worst case request sequence which is a valid walk on G.

More formally, the competitive ratio of alg is said to be c(G) on a graph G

if there exists a constant c� such that:

∀σ ∈ walks(G) : alg(σ) ≤ c(G)opt(σ) + c�

We use walks(G) to represent the set of valid walks on the access

graph G. It was shown in [6] that lru is optimal when the access graph is an

undirected tree and that the competitive ratio of lru is at most a constant

times the competitive ratio of fifo on any access graph.

Borodin et al. [6] established a lower bound of �log(k + 1)� on the

competitive ratio of deterministic and randomized algorithms on a k + 1-node

cycle. In [6], both lru and fifo were shown to be far from optimal on a

k + 1-node cycle by establishing an upper bound of k on their competitive

ratio. A deterministic marking algorithm called far was presented in [6] for

the access graph framework. Later, it was proved that far is optimal up to a

constant factor for any graph by Irani et al. [16]. Motivated by the analysis of

far, a randomized algorithm was presented and analyzed by Fiat and Karlin

in [12].

Multi-pointer access graph framework Fiat and Karlin [12] considered

the multi-pointer access graph framework consisting of multiple pointers point-

ing at nodes in the access graph. The multi-pointer access graph framework

was proposed to address caching in the parallel context. Multiple pointers

model multiple processes sharing a cache and requesting memory blocks in

parallel. An arbitrary interleaving of requests from these processes reaches

the shared cache. An algorithm called mpalg was proposed along with the

the multi-pointer access graph framework in [12]. It was also shown in [12]

that mpalg was optimal up to a constant factor in this framework.
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2.1.3 Application controlled caching framework

The notion of giving control to applications to make system level de-

cisions was extremely influential in the operating systems community during

the nineties. Applications (or processes) usually have much better knowledge

about the resources (for instance: memory blocks) they might need in future

than the operating system. The application controlled caching framework ex-

ploits this feature. In this framework, each process has varying degrees of

knowledge about its future request sequence and the operating system relies

on that knowledge to make better cache replacement decisions. The appli-

cation controlled caching framework was proposed by Cao et al. in [8]. A

deterministic algorithm was proposed along with the model which picks a pro-

cess that owns the least recently used (lru) page and asks it to make an

eviction. The picked process makes an eviction based on its knowledge about

its future request sequence.

Barve et al. [3] considered the application controlled caching frame-

work where processes access disjoint sets of memory block and each process

has varying degrees of knowledge about its future request sequence. In [3],

lower bounds were established on the competitive ratio of deterministic and

randomized algorithms and a randomized algorithm was proposed which was

optimal (up to a constant factor) in this framework.

We model these two scenarios — where processes access disjoint sets

of memory blocks and where processes share memory blocks as two different

models: the disjoint memory framework and the shared memory framework.

In both of these frameworks, we assume that each process has full knowledge

about its future request sequence. Recall that the case when processes have no

knowledge about their future request sequence reduces to the classical caching

problem.

The disjoint memory framework When the application controlled caching

framework was first introduced [8], it was assumed that processes access dis-

joint sets of memory blocks. We model this assumption as the disjoint mem-

ory framework. When processes access disjoint sets of memory blocks, a block

evicted by a process cannot be requested by any other process. Algorithms

in this framework exploit this feature to obtain better competitive ratio. We
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present a natural deterministic algorithm which matches the lower bound es-

tablished in [3]. We consider this framework in detail in Chapter 3.

The shared memory framework We model the scenario in which pro-

cesses share memory blocks as the shared memory framework. Any memory

block can be requested by any subset of processes. This assumption makes the

adversary more powerful. We develop a natural deterministic marking cache

replacement algorithm which is optimal up to a constant factor and establish

lower bounds on the performance of deterministic and randomized algorithms.

We consider this framework in detail in Chapter 4.

2.1.4 Hierarchical caching framework

We present the hierarchical caching framework to model multicore pro-

cessor systems like Intel-Nehalem and AMD-Shanghai [1, 11]. A multicore

system typically consists of multiple cores and a hierarchy of caches in order

to obtain better caching performance. The cores in a multicore system are

analogous to processes in the application controlled caching framework. On

the other hand, only a single level shared cache was considered in the ap-

plication controlled caching framework whereas multiple levels of caches are

considered in the hierarchical caching framework. These caches could be either

private to each core or shared among all the cores. For instance, the L1 and L2

caches are private in both Intel-Nehalem and AMD-Shanghai processors and

the L3 cache is shared. We consider all levels of caches to be shared among all

cores in our thesis.

The cache hierarchy consists of at least two levels — L1 and L2 caches.

With two levels of caches, the L2 cache could be either inclusive, exclusive

or non-inclusive of the L1 cache. We are interested in the analysis of the

performance of cache replacement algorithms at the shared L2 cache in each

of these cases. We consider this framework in detail in Chapter 5.
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Chapter 3

Disjoint memory framework

In this chapter we present our results on cache replacement algorithms

in the disjoint memory framework. Section 3.1 describes and motivates the

disjoint memory framework. In Section 3.2, we present a survey on known

algorithms and results in this model. In Section 3.3, we present a natural

deterministic algorithm called rr-proc-mark which is optimal in the disjoint

memory framework.

3.1 Disjoint memory framework description

The disjoint memory framework was proposed and formalized in [8]

and [3] respectively. We described the model in Chapter 1. As a review, we

describe the model below:

1. We let p processes share a cache of size k. We let Pi denote the ith

process.

2. Each process has full knowledge about its request sequence. We use σi to

represent the request sequence of the ith process. Recall that this request

sequence is the exact order in which memory blocks are requested by the

process Pi in the future.

3. An arbitrary interleaving of σ1, σ2, . . . , σp is seen at the shared cache.

The analysis of algorithms at the shared cache is with respect to a worst

case interleaving (represented by σ).

4. The online algorithm at the shared cache does not have any knowledge

about the interleaving of request sequences from the p processes.
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5. The optimal offline algorithm (opt) on the other hand, has complete

control of and knowledge about the interleaving.

6. The interleaving is assumed to be fixed, i.e., the same interleaving is

assumed to reach the shared cache for all of the cache replacement al-

gorithms, including the optimal offline algorithm — irrespective of the

cache replacement decisions taken at the shared cache.

7. The processes request disjoint sets of memory blocks. Thus, every block

in the memory can be accessed by at most one of the p processes. If

block q can be accessed by process Pi, we say that q belongs to Pi and

Pi owns q.

Research on cache replacement algorithms for the application controlled

caching framework was initiated in [8] and [3]. In the application controlled

caching framework, each process is assumed to have varying degrees of knowl-

edge about its future request sequence — full knowledge or no knowledge. The

cache replacement algorithms developed in the application controlled caching

framework were analyzed in both of these cases. Note that the application con-

trolled caching framework reduces to the sequential caching framework when

processes have no knowledge about their individual request sequences. A sim-

ple algorithm like lru at the shared cache is optimum in this framework.

This motivates us to consider the case when each process has full knowl-

edge about its future request sequence and model it as the disjoint memory

framework. We continue our search for more efficient cache replacement algo-

rithms when each process has full knowledge about its future request sequence.

Results from the application controlled caching framework for the case when

each process has full knowledge about its future request sequence clearly hold

for the disjoint memory framework. In the next section, we discuss all such

results from the application controlled caching framework.

3.2 Previous results in this model

In this section, we present a survey on the cache replacement algorithms

proposed in the application controlled caching framework. In Subsection 3.2.1,
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we present a family of algorithms called process marking algorithms motivated

by the process marking scheme used in the randomized algorithm proposed

in [3]. We present a few lemmas for all of the process marking algorithms in

Subsection 3.2.2.

A deterministic cache replacement algorithm which picks a process that

owns the least recently used (lru) block and asks it to make an eviction was

proposed in [8]. We observe that the proposed algorithm is an implicit process

marking algorithm and since the algorithm uses lru to pick a process, we call

it lru-proc-mark from now on. This algorithm was not given any specific

name in [8].

The process picked by lru-proc-mark makes an eviction based on

its knowledge about its future request sequence. If the process picked by the

algorithm has full knowledge about its future request sequence, it makes a

good eviction. We define the term good eviction later. If it does not have

knowledge about its future request sequence, a global lru block is evicted.

Following the algorithm in [8], Barve et al. [3] analyzed lru-proc-

mark for the case when each process has full knowledge about it future re-

quest sequence and established an upper bound of 2(p + 1) on its competitive

ratio. A few important bounds on the competitive ratio of deterministic and

randomized cache replacement algorithms were also established in [3]. A lower

bound of p+ 1 was established on the competitive ratio of deterministic cache

replacement algorithms in the application controlled caching framework for the

case when each process has full knowledge about its future request sequence.

A lower bound of Hp−1 was established on the competitive ratio of ran-

domized cache replacement algorithms in the application controlled caching

framework for the case when each process has full knowledge about its future

request sequence. A simple randomized algorithm was also proposed in [3],

which uses a simple randomized algorithm to pick a process, which is then

asked to make an eviction. We observe that the randomized algorithm pro-

posed in [3] is a process marking algorithm similar to lru-proc-mark. We

call this algorithm rand-proc-mark from now on.

The process picked by rand-proc-mark makes an eviction based on

its knowledge about its future request sequence. If the process picked by the
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algorithm has full knowledge about its future request sequence, it makes a

good eviction.

We close the gap between the upper and lower bounds on the competi-

tive ratio of deterministic cache replacement algorithms in the disjoint memory

framework by introducing a simple scheme for picking processes. We propose

an algorithm called rr-proc-mark which, instead of picking a process that

owns the least recently used (lru) block, uses the round robin (rr) scheme to

pick a process, which is then asked to make an eviction. The process picked

by the algorithm uses mark-fitf cache replacement algorithm to make an

eviction. We define mark-fitf later. We establish an upper bound of p + 1

on the competitive ratio of our algorithm in the disjoint memory framework.

Two level cache replacement strategy: In order to exploit the knowledge

each process has about its future request sequence, algorithms proposed in the

application controlled caching framework take decisions at two levels:

• process-selection: A process (also referred to as a victim process in [3])

is picked and asked to make an eviction.

• block-eviction: The process picked by the algorithm evicts one of the

blocks that belong to it from the cache based on its knowledge about its

future request sequence.

lru-proc-mark uses lru for process-selection and the process picked

by the algorithm makes a good eviction decision when it has full knowledge

about its future request sequence. rand-proc-mark uses a simple random-

ized algorithm for process-selection and the process picked by the algorithm

makes a good eviction decision when it has full knowledge about its future

request sequence. rr-proc-mark uses a round robin strategy for process-

selection and mark-fitf for block-eviction.

Marking algorithms: Before describing good evictions, we present a quick

review of the marking algorithms. Marking algorithms are a family of cache

replacement algorithms which proceed in marking phases. A phase starts with
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all of the blocks unmarked. A block gets marked when a request to it is served.

Upon a cache miss, one of the unmarked blocks is evicted from the cache. The

marking scheme employed in these algorithms ensures that a block requested

during a particular phase is not evicted from the cache till the end of that

phase. This property gives marking algorithms an optimum competitive ratio

of k in the sequential caching framework. The definition of good eviction is

implicitly based on this marking scheme.

Good set and good eviction: The term good eviction was introduced in

[3], along with the term good set. A good set for process Pi is a set of blocks

consisting of the unmarked block in the cache which is requested farthest in

the future request sequence of Pi, say ui, and all of the marked blocks in the

cache that belong to Pi which are requested after ui. A process is said to have

evicted a good block, or made a good eviction if it evicts a block from its good

set. Note that even if the online algorithm is not a marking algorithm, good

set and good eviction terms can still be defined by considering an implicit

marking scheme during analysis. Also note that the good set of a process

could contain both marked and unmarked blocks.

3.2.1 Process marking algorithms

Similar to the marking algorithms in the sequential caching framework,

we consider a family of cache replacement algorithms for the disjoint memory

framework which we call the process marking algorithms. In process marking

algorithms, processes are marked in addition to the memory blocks. The no-

tion of marking processes was first introduced for rand-proc-mark in [3].

Our contribution is to formalize this notion into a general framework of algo-

rithms for the disjoint memory framework. We establish a few new lemmas

for processes marking algorithm and generalize the lemmas that were estab-

lished in [3] specifically for rand-proc-mark to all of the process marking

algorithms.

Definition: Process marking algorithms are a family of cache replacement

algorithms which proceed in marking phases. A phase starts with all blocks
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and processes unmarked. A block gets marked when a request to it is served.

A process gets marked when all of the blocks that belong to it in the cache

are marked. Upon a cache miss, one of the unmarked processes is picked and

asked to make an eviction. The process picked by the algorithm evicts one of

the unmarked blocks that belongs to it from the cache.

Explicit and implicit process marking algorithms: Similar to the mark-

ing algorithms, process marking algorithms are either explicit or implicit. An

explicit process marking algorithm maintains an explicit mark bit for every

process and block. It follows the marking scheme described in the definition

of the process marking algorithms explicitly. On the other hand, an implicit

process marking algorithm always pick an unmarked process and evict an un-

marked block from the cache if the process marking scheme was followed.

However, an implicit process marking algorithm chooses not to maintain the

mark bit and follow the process marking scheme explicitly.

Process only marking algorithms: In contrast to the process marking al-

gorithms, process only marking algorithms evict both marked and unmarked

blocks from the cache. These algorithms still use the process marking scheme

defined in the previous paragraph and pick unmarked processes which are

asked to make evictions. The algorithms proposed in [8] and [3] for the ap-

plication controlled caching framework were process only marking algorithms.

Recall that processes in these algorithms make good evictions (which could

include eviction of marked blocks).

In the sequential caching framework, rand-mark [13] and far [6]

are examples of explicit marking algorithms and lru is an implicit marking

algorithm. In the disjoint memory framework, rand-proc-mark [3] is an

example of an explicit process only marking algorithm and lru-proc-mark

[8] is an implicit process only marking algorithm. rr-proc-mark (presented

in the next section) is an example of an explicit process marking algorithm.

We summarize below the three algorithms discussed in the disjoint memory

framework till now.
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1. rand-proc-mark [3]: Upon a cache miss, a random unmarked process

(chosen with uniform probability) is picked and asked to make an evic-

tion. The process picked by the algorithm evicts a good block from the

cache if it has full knowledge about its future request sequence. This is

an explicit process only marking algorithm.

2. lru-proc-mark [8]: Upon a cache miss, a process that owns the least

recently used (lru) block in the cache is picked and asked to make an

eviction. The process picked by the algorithm evicts a good block from

the cache if it has full knowledge about its future request sequence. This

is an implicit process only marking algorithm.

3. rr-proc-mark [This thesis]: Upon a cache miss, an unmarked process

is picked using the round robin scheme and asked to make an eviction.

i.e., the first unmarked process which has process id greater than that of

the most recently process picked by the algorithm is picked and asked to

make an eviction. The process picked by the algorithm uses mark-fitf

to evict an unmarked block from the cache. This is an explicit process

marking algorithm.

mark-fitf as a block-eviction policy: A simple offline cache replacement

algorithm called fitf was proposed for the sequential caching framework in

[4]. Upon a cache miss, fitf evicts a block from the cache that is requested

farthest in the future request sequence. It was also shown that fitf was

optimal in [4]. A marking version of fitf is mark-fitf. Instead of evicting a

block which is requested farthest in the future request sequence, mark-fitf

evicts an unmarked block which is requested farthest in the future request

sequence. Note that when a process Pi uses mark-fitf to make an eviction,

a good eviction is ensured. This is because, mark-fitf always evicts ui, the

unmarked block in the cache which is requested farthest in the future request

sequence of Pi. Recall that ui always belongs to the good set of process Pi.

3.2.2 Lemmas for process marking algorithms

Before presenting lemmas for process marking algorithms, we review a

few terms from [3].
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1. Clean block: A block q is said to be a clean block with respect to a

particular phase of a process marking algorithm if q does not exist in the

cache at the start of this phase.

2. Non-clean block: A block q is said to be a non-clean block with respect

to a particular phase of a process marking algorithm if q exists in the

cache at the start of this phase.

3. Hole: When a non-clean block q is evicted from the cache in order to

serve the request to a clean block, we say that a hole h is created at q.

A hole basically suggests that the block q is missing from the cache.

4. Hole association: Since the hole h is created due to the eviction of q,

we also say that h is associated with q. If q belongs to process Pi, we

say that h is associated with Pi.

5. Hole movement: Let q be requested again by Pi at some point during

the phase. Since q is not in the cache, another unmarked block q� is

evicted in order to serve the request to q. At that point, we say that the

hole h now moves from q to q�. It gets associated with q� from now on.

If q� belongs to another process Pi� , we also say that h moved from Pi to

Pi� .

6. Relating cache misses and holes: Every cache miss results either

in creation or in movement of a hole. In case of a process marking

algorithm, a hole is always associated with an unmarked block (recall

that, always an unmarked block is evicted from the cache). Since all clean

blocks are marked when they are brought in, holes are always associated

with non-clean blocks. Further, holes are always created at unmarked

processes and when a hole moves, it always moves into an unmarked

process. This is because, always an unmarked process is picked and

asked to make an eviction.

The first two lemmas in this section generalize lemmas presented in [3]

for rand-proc-mark to all of the process marking algorithm.
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Lemma 3.2.1. Let ui be an unmarked block in the cache belonging to process

Pi that is requested farthest in Pi’s future request sequence at some point

during a phase. If ui is requested during the same phase, process Pi is marked

by the time the request for block ui is served.

Proof. The proof of this lemma is directly based on the proof of Lemma 6.2 in

[3]. Before the request to ui is served, requests to all other unmarked blocks

in cache belonging to Pi are served and hence they are all marked. Even ui is

marked when a request to it is served. All of the blocks in cache that belong

to Pi are marked and hence by the definition of a process marking algorithm,

Pi is marked by the time the request to ui is served.

Lemma 3.2.2. If the processes picked by a process marking algorithm always

make good evictions, the following statement holds: by the time the request

to a block q associated with a hole is served during the phase, the process Pi

that owns q is marked.

Proof. The proof of this lemma is again directly based on the proof of Lemma

6.4 in [3]. Since q is associated with a hole, q was evicted by Pi at some point

during the phase. The process Pi would have chosen either ui, the unmarked

block that was requested farthest in Pi’s future request sequence at that point

or a block that is requested after ui in its request sequence for eviction.

Hence, either q = ui or the request to q is after the request to ui in

Pi’s request sequence. In both of these cases, the request to ui is served by the

time the request to q is served. Lemma 3.2.1 proves that Pi is marked by the

time the request to ui is served. Hence, Pi is marked by the time the request

to its block associated with a hole is served.

We prove 3 additional results for process marking algorithms in the

remaining part of this section.
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Lemma 3.2.3. Consider a marking phase of a process marking algorithm with

l clean block requests. The cost of an optimal offline algorithm (opt) for this

phase is at least l/2 in an amortized sense.

Proof. The key observation is that every process marking algorithm is also

a marking algorithm. This is because the block marking scheme used in the

process marking algorithms is exactly similar to the scheme used in marking

algorithms for the sequential caching framework. An amortized lower bound

of l/2 was established on the cost of opt for a marking phase with l clean

block requests in [13]. The same lower bound holds in the case of process

marking algorithms.

Lemma 3.2.4. Once a process Pi gets marked during the phase of a process

marking algorithm, it remains marked till the end of the phase.

Proof. The marking scheme used by a process marking algorithm ensures that

once a block gets marked, it remains marked till the end of the phase. A

process Pi gets marked when all of the blocks belonging to Pi in the cache are

marked.

If Pi does not request any new block after getting marked, it remains

marked till the end of the phase since blocks belonging to Pi in the cache

remain marked.

If Pi requests a new block, say r, after getting marked, r gets marked

when it is served. The process Pi remains marked in this case as well since

blocks belonging to Pi in the cache are marked.

Lemma 3.2.5. The number of holes associated with every unmarked process is

non-decreasing and the number of holes associated with every marked process

is non-increasing in case of a process marking algorithm.
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Proof. First, we shall prove that the number of holes associated with an un-

marked process is non-decreasing. Consider an unmarked process Pi. The

number of holes associated with Pi can decrease only when one or more of

these holes get filled. By filled, we mean, Pi requests the blocks associated

with one or more of these holes. Lemma 3.2.2 proves that Pi is marked by

the time its request to a block associated with a hole is served. This implies

that the process Pi gets marked when the number of associated holes decreases

and once marked, Pi remains marked till the end of the phase (Lemma 3.2.4).

Hence, the number of holes associated with Pi is non-decreasing till it remains

unmarked.

Next, we shall prove that the number of holes associated with a marked

process is non-increasing. Consider a marked process Pi. The number of holes

associated with Pi can increase only when Pi evicts one of its blocks from the

cache. The process Pi can make an eviction only when it is picked by the

process marking algorithm to make an eviction. Recall that a process marking

algorithm always picks an unmarked process and asks it to make an eviction.

This implies that the process Pi is never picked and asked to make an eviction.

Hence, the number of holes associated with Pi is non-increasing after it gets

marked.

3.3 Deterministic process marking algorithm : rr-proc-
mark

In this section, we present a natural deterministic algorithm for the dis-

joint memory framework called rr-proc-mark. It improves the competitive

ratio from 2(p + 1) to p + 1. This algorithm is motivated by the following

observation about lru-proc-mark: upon a request to a clean block, lru-

proc-mark evicts a non-clean block from the cache resulting in the creation

of a hole. Let l be the number of such holes created during a particular phase

of lru-proc-mark. In the worst case, all of these l holes are created in one

of the p processes. They all move from one process to another in a group,

leading to l cache misses on every such movement. This leads to a total of

lp + l cache misses per phase (the extra +l term is to account for the number
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of cache misses at the time of creation of these holes). Lemma 3.2.3 proves

that the cost of opt is at least l/2 per phase in an amortized sense. Hence,

the competitive ratio of lru-proc-mark is at most 2(p + 1).

In contrast, rr-proc-mark carefully distributes these holes among all

of the processes by using a simple scheme (round robin) for selecting processes.

We show that this scheme is effective in reducing the constant factor in the

upper bound. Two additional useful features of rr-proc-mark are that it

is a fair algorithm (every process is asked to make almost equal number of

evictions) and the algorithm is computationally very efficient.

3.3.1 Description of rr-proc-mark

rr-proc-mark is an explicit process marking algorithm. It proceeds in

marking phases. A phase starts with all of the blocks and processes unmarked.

A block gets marked when a request to it is served. A process gets marked

when all its blocks get marked. Upon a cache miss, an unmarked process is

picked using the round robin scheme and asked to make an eviction. The

process picked by the algorithm evicts an unmarked block from the cache that

belongs to it and is requested farthest in its future request sequence (mark-

fitf).

Participating process: A process Pi is said to be a participating process

during a particular phase of rr-proc-mark if it owns one or more blocks in

the cache at the start of the phase. rr-proc-mark picks only the participat-

ing processes and asks them make to evictions during any given phase. This

is ensured by marking all of the non-participating processes at the start of the

phase (note that a marked process is never picked by our algorithm). Also,

note that, once a process gets marked, it remains marked till the end of the

phase (Lemma 3.2.4).

rr-proc-mark(Pi, r):

Input: Requested cache block r and the process that owns r, Pi.

Output: Eviction decision.
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• if r is in the cache: Mark r if it is not marked; mark process Pi if all its

blocks are marked. No eviction is needed in this case.

• if r is not in the cache:

1. If blocks in the cache are marked (end of phase):

(a) Start a new phase by unmarking all of the blocks and processes.

(b) Mark all non-participating processes at this point.

(c) Reset victim process to 0.

2. process-selection: use round-robin to pick the next unmarked

process.

(a) victim process = victim process + 1

(b) while Pvictim process is marked:

victim process = (victim process mod p) + 1

(c) Pvictim process is picked and is asked it to make an eviction.

3. block-eviction: use mark-fitf to evict a block q from the cache

such that:

(a) q is unmarked

(b) q belongs to Pvictim process

(c) q appears farthest in Pvictim process’s future request sequence.

4. Bring r in place of q and mark r; mark process Pi if all its blocks

are marked.

5. Mark Pvictim process if it does not own any unmarked block in cache

at this point.

3.3.2 Competitive ratio of rr-proc-mark

In this section we establish an upper bound of max(10, p + 1) on the

competitive ratio of rr-proc-mark. Our approach involves establishing a

bound on the cost of rr-proc-mark and opt on every process marking

phase. Using these bounds, we prove an upper bound on the competitive ratio

of rr-proc-mark.

35



Consider an arbitrary phase of rr-proc-mark with l clean block re-

quests and p� participating processes. We prove the following key results:

• Lemma 3.3.5 of Section 3.3.2.1 proves that the cost of rr-proc-mark

is at most l
2
(p� + 1) for this phase, when l < p�.

• Lemma 3.3.8 of Section 3.3.2.2 proves that the cost of rr-proc-mark

is at most l · (Hp� + 2) for this phase, when l ≥ p
�.

Using the above two results and the bound on cost(opt), we prove

that the competitive ratio of rr-proc-mark is at most max(10, p + 1) in

Lemma 3.3.9 of Section 3.3.2.3.

Road map: The basic idea behind our approach to bound the cost of rr-

proc-mark is to split the interleaved request sequence in the current phase

into a number of stages. We establish bounds on the cost of rr-proc-mark

for each of these stages. We define stages differently for the case when l < p�

and l ≥ p�. Recall that a cache miss is either due to a request to a clean

block or due to a request to a non-clean block which is associated with a hole.

We bound the number of cache misses due to requests to clean and non-clean

blocks separately. The number of cache misses due to requests to clean blocks

is bounded by the number of clean block requests (l for the current phase). On

the other hand, the number of cache misses due to requests to non-clean blocks

which are associated with holes depends on how our algorithm distributes these

holes.

3.3.2.1 Upper bound on the cost of rr-proc-mark when l < p�

Recall that l is the number of clean block requests and p� is the number

of participating processes during the current phase. We shall prove that the

cost of rr-proc-mark is at most l
2
(p� + 1) for this phase, when l < p�.

Stage: We split the request sequence in the current phase into a number of

stages as follows:
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Stage 1 starts with the first request during the current phase and ends

just before the request that results in an unmarked process getting associated

with 2 holes for the first time. Stage 2 starts with the request that results in

an unmarked process getting associated with 2 holes for the first time and ends

just before the request that results in an unmarked process getting associated

with 3 holes for the first time and so on.

More generally, stage j starts with the request that results in an un-

marked process getting associated with j holes for the first time and ends just

before the request that results in an unmarked process getting associated with

j + 1 holes for the first time.

By Lemma 3.2.5 we know that the number of holes associated with an

unmarked process is non-decreasing. This implies that after the first request

in stage j is served, exactly one unmarked process has j associated holes and

all of the other unmarked processes have less than j associated holes.

Since there are at most l holes present at any point, we have at most l

stages during the current phase.

Notations used for the case when l < p�

1. Let uj be the number of unmarked processes just before the start of stage

j.

2. Let lj be the number of clean block requests during stage j.

3. Let λj be the total number of clean block requests from the start of stage

1 through the end of stage j.

4. Let mj be the number of cache misses during stage j.

5. Let cost(rr-proc-mark) represent the total number of cache misses

incurred by rr-proc-mark during the current phase.
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Observations:

1. For 1 ≤ j ≤ l : λj =
�j

i=1 li and λj ≤ l: follows directly from the

definitions of λj, li and l.

2. u1 = p
�: the number of unmarked processes just before the start of stage

1 is exactly equal to the number of participating processes (note that all

non-participating processes are marked at the start of the phase).

3. cost(rr-proc-mark) =
�l

j=1 mj: follows directly from the definitions

of mj and cost(rr-proc-mark).

4. Lemma 3.3.1 proves that the number of holes associated with every un-

marked process is exactly j − 1 just before the start of stage j.

5. Lemma 3.3.3 proves that the number of unmarked processes is at most
λj−1

j−1
just before the start of stage j. For 1 ≤ j ≤ l : uj ≤

λj−1

j−1
.

6. Lemma 3.3.4 proves that the number of cache misses during stage j is

bounded by the number of unmarked processes at the start of the stage.

For 1 ≤ j ≤ l : mj ≤ uj.

Lemma 3.3.5 proves the key result for this section. It proves that the

cost of rr-proc-mark is at most l
2
(p� + 1) for the current phase when l < p�.

Lemma 3.3.1. The number of holes associated with every unmarked process is

exactly j − 1 just before the start of stage j.

Proof. From the definition of stage j, note that the number of holes associated

with every unmarked process just before the start of stage j is strictly less than

j. We shall prove that the number of holes associated with every unmarked

process just before the start of stage j is exactly j −1. We prove our claim by

induction.

Base case: j = 1. Just before the start of stage 1, there are no holes in the

system. Hence, every process hence has exactly 0 associated holes.
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Inductive assumption: Assume that the statement holds just before the

start of stage j − 1. Restating the statement for stage j − 1:

Just before the start of stage j − 1, every unmarked process has exactly

j − 2 associated holes.

Inductive step: We shall prove that the statement holds just before the

start of stage j.

From the inductive assumption, every unmarked process has exactly

j − 2 associated holes just before the start of stage j − 1. We shall now prove

that every unmarked process is picked exactly once and asked to make an

eviction during stage j − 1. This will increase the number of holes associated

with every unmarked process by exactly one and hence by the end of stage

j −1 (or equivalently, just before the start of stage j) every unmarked process

will have exactly j − 1 associated holes.

We can trivially prove that none of the unmarked processes are picked

more than once and asked to make evictions during stage j − 1. If some un-

marked process, say Pi was picked more than once and asked to make evictions

during stage j − 1, the number of holes associated with Pi will exceed j − 1

and hence stage j has already begun.

We now prove that every unmarked process is picked at least once and

asked to make an eviction during stage j −1. A process Pi is picked and asked

to make an eviction in Line 2c, when the following condition holds:

victim process = i ∧ Pi = unmarked

In order to prove that every unmarked process is picked and asked to

make an eviction at least once, we have to prove the following:

∀1 ≤ i ≤ p� : victim process = i at some point during the j − 1st stage.

Let stage j start with the process Px. i.e., let Px be the unmarked

process which was picked and asked to make an eviction to serve the the first

request in stage j.
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The process Px has exactly j − 1 associated holes just before the start

of stage j and exactly j−2 associated holes just before the start of stage j−1.

Hence, Px was picked and asked to make an eviction at some point during

stage j − 1. At this point, victim process = x. Notice that victim process is

only changed in Line 2a of our algorithm during a given phase. The only way

it changes is by the following operation:

victim process = victim process mod p + 1

The first cache miss after the point when Px was picked and asked to

make an eviction during stage j −1 changes victim process to x mod p+1 �=

x. From that point onwards, victim process takes on all values in the set

{1, 2, . . . , p} − {x} before it is equal to x (at the start of stage j). ∀1 ≤ i ≤

p� : victim process = i at some point during stage j − 1. Hence proved.

The following is a corollary for Lemma 3.3.1. This corollary continues

to hold for the case when l ≥ p� because of the following reasons:

1. The definition of the stage for the case when l < p� does not depend on

the l < p� inequality.

2. The proof of Lemma 3.3.1 is just based on the definition of a stage and

does not use l < p� inequality in its proof.

Corollary 3.3.2. The difference between the maximum number of holes associ-

ated with an unmarked process and the minimum number of holes associated

with an unmarked process is at most 1 at any point during the phase.

Proof. This corollary follows from Lemma 3.3.1. Consider some point in time

during the current phase of our algorithm. Let this point be in stage j.

Lemma 3.3.1 proves that the number of holes associated with every unmarked

process just before the start of stage j is exactly j −1 and the number of holes

associated with every unmarked process just before the start of the j + 1st

stage is exactly j. Further, the number of holes associated with an unmarked

process is non-decreasing.
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Hence, at any point during stage j, the maximum number of holes

associated with an unmarked process is at most j and the minimum number

of holes associated with an unmarked process is at least j − 1. Hence the

difference is at most 1.

Lemma 3.3.3. Recall that λj−1 is the total number of clean block requests

from the start of stage 1 through the end of stage j − 1. The total number of

unmarked processes just before the start of stage j (uj) is at most
λj−1

j−1
.

Proof. Recall that the number of holes in the system at some point during the

phase is exactly equal to the number of clean block requests till that point.

Hence, the total number of holes in the system just before the start of stage j is

at most λj−1. Further, Lemma 3.3.1 proves that the number of holes associated

with every unmarked process just before the start of stage j is exactly j − 1.

Every unmarked process has exactly j − 1 associated holes and the

remaining holes are associated with marked processes. Let x be the number of

holes associated with marked processes. The number of holes associated with

any process is non-negative. Hence, x ≥ 0.

λj−1 = uj · (j − 1) + x

≥ uj · (j − 1)

uj ≤
λj−1

j − 1

Hence, the total number of unmarked processes just before the start of stage

j (uj) is at most
λj−1

j−1
.

Lemma 3.3.4. The number of cache misses during stage j (mj) is no more than

the number of unmarked processes just before the start of stage j (uj).

Proof. We shall prove this lemma for an arbitrary stage (stage j).
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The main observation for this lemma is as follows: every cache miss is

served by exactly one unmarked process (which is picked by our algorithm).

The process picked by the algorithm evicts one of its unmarked blocks leading

to an increase in the number of associated holes by exactly 1. Hence, every

cache miss increases the number of holes associated with exactly one unmarked

process by exactly one. In order to bound the number of cache misses during

stage j, we bound the increase in number of holes associated with all of the

unmarked processes during this stage.

From Lemma 3.3.1 we have that every unmarked process has exactly

j − 1 associated holes just before the start of stage j and every unmarked

process has exactly j associated holes just before the start of stage j + 1.

Hence,

1. The increase in number of holes associated with an unmarked process is

at most 1 during stage j.

2. Also, we have at most uj unmarked processes during stage j. Because

once a process gets marked it remains marked till the end of the phase.

The number of cache misses during stage j is at most
�uj

i=1 1 = uj.

Hence proved.

Lemma 3.3.5. Consider a phase of rr-proc-mark with l clean block requests

and p� participating processes. The cost of rr-proc-mark is at most l
2
(p�+1)

for this phase when l < p�.

Proof. From Observation 3, we have,

cost(rr-proc-mark) =
l�

j=1

mj (3.1)

and from Lemma 3.3.4, for all j such that 1 ≤ j ≤ l, we have,

mj ≤ uj (3.2)
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From the Equations 3.1 and 3.2, we have,

cost(rr-proc-mark) ≤

l�

j=1

uj (3.3)

From Observation 2 and Lemma 3.3.3, we have,

u1 ≤ p
� (3.4)

for all j such that 2 ≤ j ≤ l : uj ≤
λj−1

j − 1
(3.5)

From Equations 3.3, 3.4 and 3.5, we have,

cost(rr-proc-mark) ≤ p� +
l�

j=2

λj−1

j − 1

≤ p� +
l−1�

j=1

λj
j

Note that for all i such that 1 ≤ i ≤ p� : λi ≤ l. Hence,

cost(rr-proc-mark) ≤ p� + l ·
l−1�

j=1

1

j

≤ p� + l · Hl−1

Given l < p�, we shall prove that p� + l ·Hl−1 is at most
l
2
(p� + 1). Rearranging

p� + l · Hl−1 ≤
l
2
(p� + 1), we need to prove:

l · (2Hl−1 − 1)

l − 2
≤ p�

Since l < p�, it suffices to prove:

l · (2Hl−1 − 1)

l − 2
≤ l

2Hl−1 − 1 ≤ l − 2
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This holds for all l such that l ≥ 6. An upper bound of l
2
(p� + 1) can be

established on cost(rr-proc-mark) for l < 6 by considering case-by-case

analysis.

We aim to establish a tighter bound on the competitive ratio of rr-

proc-mark when l ≥ p�. We hence proceed to the next subsection in which

we establish an upper bound of 2(Hp� + 2) on the competitive ratio of rr-

proc-mark.

3.3.2.2 Upper bound on the cost of rr-proc-mark when l ≥ p�

Recall that l is the number of clean block requests and p� is the number

of participating processes during the current phase. We shall prove that the

cost of rr-proc-mark is at most l · (Hp� + 2) for this phase, when l ≥ p
�.

Stage: We split the request sequence in the current phase into a number of

stages as follows:

The stage 0 starts with the first request during the current phase and

ends just before the request that results in the first participating process get-

ting marked. The stage 1 starts with the request that results in the first

participating process getting marked and ends just before the request that

results in the second participating process getting marked and so on.

More generally, stage j starts with the request that results in the jth

participating process getting marked and ends just before the request that

results in the j + 1st participating process getting marked.

Since there are exactly p� participating processes, we have exactly p�+1

stages (including stage 0) during the current phase.

Without loss of generality, we assume that {P1, P2, . . . , Pp�} is the set

of participating processes, and that Pj gets marked due to the first request in

stage j for 1 ≤ j ≤ p�.
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Notations used for the case when l ≥ p�

1. Let uj be the number of unmarked processes just before the start of stage

j.

2. Let lj be the number of clean block requests during stage j.

3. Let λj be the total number of clean block requests from the start of stage

0 through the end of stage j.

4. Let mj be the number of cache misses during stage j.

5. Let cost(rr-proc-mark) represent the total number of cache misses

incurred by rr-proc-mark during the current phase.

6. (new for this case) Let ni be the total number of requests to non-clean

blocks which are not in the cache by the participating process Pi during

the current phase.

7. (new for this case) Let N be the total number of requests to non-clean

blocks which are not in the cache during the entire phase. Note that

N ≥
�p�

i=1 ni. We shall soon prove that N is in fact equal to
�p�

i=1 ni.

Observations:

1. For 0 ≤ j ≤ p� : λj =
�j

i=0 li and λj ≤ l: follows directly from the

definitions of λj, li and l.

2. u0 = p
�: the number of unmarked processes just before the start of stage

0 is exactly equal to the number of participating processes (note that all

of the non-participating processes are marked at the start of the phase).

3. For 1 ≤ j ≤ p� : uj = p� − j + 1: exactly one unmarked process gets

marked in every stage (except stage 0). Hence, the number of unmarked

processes decreases by 1 in each stage (except stage 0).

4. cost(rr-proc-mark) =
�p�

j=0 mj: follows directly from the definitions

of mj and cost(rr-proc-mark).
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5. Recall that non-clean blocks are those that exist in the cache at the start

of the phase and non-participating processes do not own any blocks in

cache at the start of the phase. Hence, only the participating processes

can request non-clean blocks.

6. Lemma 3.3.6 proves that the total number of requests to non-clean blocks

which are not in the cache during the entire phase is exactly equal to the

total number of requests to non-clean blocks which are not in the cache

by all of the p� participating process. N =
�p�

i=1 ni.

7. Recall that requesting a hole means requesting the block associated with

the hole. Also, recall that holes are associated only with non-clean blocks

in our algorithms.

8. Every hole h can only be requested by the participating process that

owns the non-clean block associated h: Let q be the non-clean block

associated with h. In the disjoint memory framework, q belongs to at

most one process. Since q is a non-clean block, it belongs to exactly

one participating process, say Pi. Hence, only Pi can request h which is

associated with q.

9. Every participating process Pi can only request associated holes: From

the previous observation, we know that Pi can request a hole associated

with it. We need to show that Pi cannot request the hole h which is

not associated with Pi. Since h is not associated with Pi, it should

be associated with a non-clean block, say q belonging to some other

participating process. Since q does not belong to Pi, it cannot request h

which is associated with q.

10. Lemma 3.3.7 proves that the number of holes associated with Pi just

before it gets marked is at most λi−1

ui
+ 1.

Lemma 3.3.8 proves the key result for this section. It proves that the

cost of rr-proc-mark is at most l · (Hp� + 2) for the current phase when

l ≥ p�.
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Lemma 3.3.6. The total number of requests to non-clean blocks which are

not in the cache during the entire phase is exactly equal to the total number

of requests to non-clean blocks which are not in the cache by all of the p�

participating process.

Proof. Since only the participating processes can request non-clean blocks (by

Observation 5), the number of requests to non-clean blocks which are not in the

cache during the entire phase is exactly equal to the total number of requests

to non-clean blocks which are are not the cache by all of the p� participating

processes.

Lemma 3.3.7. The number of holes associated with Pi just before it gets

marked is at most λi−1

ui
+ 1.

Proof. Recall that Pi gets marked due to the first request in stage i. Hence,

it is sufficient to bound the maximum number of holes associated with an

unmarked process just before the start of stage i to bound the maximum

number of holes associated with Pi just before it gets marked.

Recall that the number of holes in the system at some point during the

phase is exactly equal to the number of clean block requests till that point.

Hence, the total number of holes in the system just before the start of stage i

is at most λi−1. We have a total of ui unmarked processes just before the start

of stage i. Out of ui unmarked processes, at least one has less than or equal

to λi−1

ui
associated holes. Hence the minimum number of holes associated with

an unmarked process is at most λi−1

ui
.

Corollary 3.3.2 proves that the difference between the maximum num-

ber of holes associated with an unmarked process and the minimum number

of holes associated with an unmarked process is at most 1 at any point during

the current phase. Recall that Corollary 3.3.2 can be used for the case when

l ≥ p� because it is based only on the definition of the stage in the previous

case and not on the l < p� inequality as such.
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Hence the maximum number of holes associated with an unmarked

process just before the start of stage i is at most λi−1

ui
+ 1. In other words,

the maximum number of holes associated with Pi just before it gets marked

at most λi−1

ui
+ 1.

Lemma 3.3.8. Consider a phase of rr-proc-mark with l clean block requests

and p� participating processes. The cost of rr-proc-mark is at most l ·(Hp� +

2) for this phase when l ≥ p�.

Proof. The main observation for this lemma is the following: every cache miss

is either due to a request to a clean block or due to a request to a non-clean

block which is not in the cache. The number clean block requests during stage

j is exactly lj. The number of requests to non-clean blocks which are not in

the cache during the entire phase is exactly N. Further, from Lemma 3.3.6,

we have,

N =

p��

i=1

ni

Hence,

cost(rr-proc-mark) =

p��

j=0

lj + N

=

p��

j=0

lj +

p��

i=1

ni

A request to a non-clean block which is not in the cache is the same as

a request to a hole associated with that non-clean block. In order to bound

ni, we will need to bound the number of requests to holes by each of the

participating processes.

From Observations 8 and 9, Pi can only request holes that are associated

with it. The process Pi gets marked as soon the first hole associated with it is

requested. From that point onwards, the number of holes associated with Pi
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is non-increasing and non-negative. Hence, the number of requests to holes by

Pi is bounded by the number of associated holes just before it gets marked.

From Lemma 3.3.7, the number of holes associated with Pi just before

it gets marked is at most λi−1

ui
+ 1. Hence,

cost(rr-proc-mark) ≤

p��

j=0

lj +

p��

i=1

(
λi−1

ui
+ 1)

Note that,
�p�

j=0 lj = l and for all i such that 1 ≤ i ≤ p
� : λi ≤ l. Further, by

Observation 3, for all i such that 1 ≤ i ≤ p�, we have,

ui = p
� − i + 1

Hence,

cost(rr-proc-mark) ≤ l +

p��

i=1

(
l

p� − i + 1
+ 1)

≤ l + p� + l ·

p��

i=1

1

p� − i + 1

≤ l + p� + l · Hp�

≤ l · (1 + p�/l + Hp�)

Given l ≥ p�, the cost of rr-proc-mark is at most l · (Hp� + 2).

3.3.2.3 Upper bound on the competitive ratio

Theorem 3.3.9. The competitive ratio of rr-proc-mark in the disjoint mem-

ory framework is at most max(10, p + 1).

Proof. Consider an arbitrary phase of rr-proc-mark with l clean block re-

quests and p� participating processes. We have the following two key results:
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• Lemma 3.3.5 in Section 3.3.2.1 proves that the cost of rr-proc-mark

is at most l
2
(p� + 1) for this phase, when l < p�.

• Lemma 3.3.8 in Section 3.3.2.2 proves that the cost of rr-proc-mark

is at most l · (Hp� + 2) for this phase, when l ≥ p
�.

Since the number of participating processes during any given phase is

at most p. The cost of rr-proc-mark is at most max(l · (Hp + 2),
l
2
· (p+ 1))

for this phase.

On the other hand, opt incurs at least l/2 cache misses per phase in

an amortized sense. We can conclude that the competitive ratio of rr-proc-

mark is at most max(2(Hp + 2), p + 1).

Note: 2(Hp + 2) is less than p + 1 when p ≥ 9. Hence, the competitive

ratio is at most max(10, p + 1).

3.3.3 rr-proc-mark in full access cost model

The full access cost model is proposed in [5] as a more realistic cost

model for the sequential caching framework. In contrast to the classical com-

petitive analysis in which we measure the ratio of the total number of cache

misses incurred by the online algorithm to the total number of cache misses

incurred by the offline algorithm, in the full access cost model, we measure

the ratio of the total access cost incurred by the online algorithm to the to-

tal access cost incurred by the offline algorithm to serve the entire request

sequence.

Access cost: Access cost of a block request is the time taken to serve the

request. We let thit and tmiss represent the time taken to serve a request

that results in a cache hit and a cache miss, respectively. Let n be the total

number of requests in the given request sequence σ and m be the total number

of cache misses incurred by alg on this sequence. The access cost of alg on
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σ represented by accesscost(alg) is given by:

accesscost(alg) = (n −m) · thit + m · tmiss

= n · thit + m · (tmiss − thit)

In order to keep the equations simple, we let tmiss = b and thit = 1. The

access cost of alg is reduced to:

accesscost(alg) = n +m · (b − 1)

It was shown in [5] that the competitive ratio of any marking algorithm

in the full access cost model is at most 1 + (k−1)b
k+b

in sequential caching frame-

work. We consider the competitive ratio of rr-proc-mark in the full access

cost model in the disjoint memory framework. Recall that each process has

full knowledge about its individual request sequence in the disjoint memory

framework.

We show that the competitive ratio of rr-proc-mark in the full access

cost model is at most 1 + 2(Hp+O(1))(b−1)

b+1
. Further, under the very reasonable

assumption that k ≥ pHp (note that k is usually orders of magnitude larger

than p), we prove that the competitive ratio is at most 1 + 2(Hp+O(1))(b−1)

2(Hp+O(1))+b−1
.

The main intuition behind the better performance of rr-proc-mark

is as follows. We observed in Subsection 3.3.2.2 that rr-proc-mark performs

extremely well (with an upper bound of 2(Hp + 2) on the competitive ratio)

when the number of clean block requests in every phase is more than the

number of participating processes. On the other hand, when the number of

clean block requests is less, the total number of cache misses incurred by rr-

proc-mark is naturally less. Hence, rr-proc-mark incurs relatively lesser

number of cache misses for the entire range of l. This motivates us to consider

its competitive ratio in the full access cost model which instead of counting

just the number of cache misses, computes the fraction of cache misses in the

entire request sequence.
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Theorem 3.3.10. The competitive ratio of rr-proc-mark in the full access

cost model is at most 1+ 2(Hp+O(1))(b−1)

b+1
. Further, when k ≥ pHp, the compet-

itive ratio is at most 1 + 2(Hp+O(1))(b−1)

2(Hp+O(1))+b−1
.

Proof. Consider an arbitrary phase of rr-proc-mark with l clean block re-

quests and p� participating processes. From Lemmas 3.3.5 and 3.3.8, we have

the following for the number of cache misses incurred by rr-proc-mark:

cost(rr-proc-mark) ≤

�
p� + lHl−1 if l < p�

l + p� + lHp� if l ≥ p�

Let n be the total number of requests during the current phase. Recall that,

n ≥ k. We have the following for the full access cost of rr-proc-mark:

accesscost(rr-proc-mark) ≤

�
n + (p� + lHl−1)(b − 1) if l < p�

n + (l + p� + lHp�)(b − 1) if l ≥ p�

On the other hand, opt incurs at least l/2 cache misses during this phase in

an amortized sense. The cost of opt in the full access cost model is at least

n + (l/2)(b − 1) per phase in an amortized sense. In order to keep equations

compact, we let s = b − 1. The competitive ratio of rr-proc-mark in the

full access cost model is:

accesscost(rr-proc-mark)

accesscost(opt)
≤






n+(p�+lHl−1)s

n+(l/2)s
if l < p�

n+(l+p�+lHp�)s

n+(l/2)s
if l ≥ p�

Rewriting the above equations:

accesscost(rr-proc-mark)

accesscost(opt)
≤






1 + (p�+l(Hl−1−1/2))s

n+(l/2)s
if l < p�

1 +
(Hp�+p�/l+1/2)ls

n+(l/2)s
if l ≥ p�

Note that the total number of requests (n) in the considered phase of rr-

proc-mark is at least k (since the phase ends only after all of the k blocks

in the cache are marked).

accesscost(rr-proc-mark)

accesscost(opt)
≤






1 + (p�+l(Hl−1−1/2))s

k+(ls/2)
if l < p�

1 +
(Hp�+3/2)ls

k+(ls/2)
if l ≥ p�

We now consider each of these equations individually.
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Case 1: l < p�

accesscost(rr-proc-mark)

accesscost(opt)
≤ 1 +

(p� + l(Hl−1 − 1/2))s

k + (l/2)s

We can observe that the expression is monotonically increasing with l and

achieves maximum value at the maximum value of l. Maximum value of l in

this case is p�. We have,

accesscost(rr-proc-mark)

accesscost(opt)
≤ 1 +

(p� + p�(Hp�−1 − 1/2))s

k + (p�/2)s

≤ 1 +
(Hp� + 1/2)s

k/p� + s/2

Recall that k ≥ p ≥ p�. The cache should at least as large as the number of

processes in order to accommodate at least one block requested by each of the

p processes. Since k ≥ p�, we have k/p� ≥ 1. Hence,

accesscost(rr-proc-mark)

accesscost(opt)
≤ 1 +

(Hp� + 1/2)s

1 + s/2

≤ 1 +
2(Hp� + 1/2)s

2 + s

Further, k is usually orders of magnitude larger than p. Under a very reason-

able assumption that k ≥ pHp ≥ p
�Hp�, we have:

accesscost(rr-proc-mark)

accesscost(opt)
≤ 1 +

(Hp� + 1/2)s

Hp� + s/2

≤ 1 +
2(Hp� + 1/2)s

2Hp� + s

Case 2: l ≥ p�

accesscost(rr-proc-mark)

accesscost(opt)
≤ 1 +

(Hp� + 3/2)ls

k + (ls/2)

≤ 1 +
(Hp� + 3/2)s

k/l + s/2
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We can observe that the expression is monotonically increasing and achieves its

maximum at the maximum value of l. Note that the maximum number of cache

misses incurred by rr-proc-mark in any marking phase is k. Recall that the

number of cache misses incurred by rr-proc-mark is at most l · (Hp� +2) for

this phase when l ≥ p�. This quantity cannot exceed k. Hence,

l · (Hp� + 2) ≤ k

k

l
≥ (Hp� + 2)

This implies that the competitive ratio of rr-proc-mark in the full access

cost model when l ≥ p� is at most:

accesscost(rr-proc-mark)

accesscost(opt)
≤ 1 +

2(Hp� + 3/2)s

2(Hp� + 2) + s

We conclude by stating our results for full access model as follows:

When k ≥ p:

accesscost(rr-proc-mark)

accesscost(opt)
≤






1 + 2(Hp+1/2)s

2+s
if l < p�

1 + 2(Hp+3/2)s

2(Hp+2)+s
if l ≥ p�

When k ≥ pHp:

accesscost(rr-proc-mark)

accesscost(opt)
≤






1 + 2(Hp+1/2)s

2Hp+s
if l < p�

1 + 2(Hp+3/2)s

2(Hp+2)+s
if l ≥ p�

Representing constants by O(1) and substituting s = b − 1, the com-

petitive ratio of rr-proc-mark in full access cost model is at most

1 + 2(Hp+O(1))(b−1)

b+1
when k ≥ p and 1 + 2(Hp+O(1))(b−1)

2(Hp+O(1))+b−1
when k ≥ pHp.
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Chapter 4

Shared memory framework

In this chapter we present our results on cache replacement algorithms

in the shared memory framework. We classify cache replacement algorithms in

the shared memory framework into two families — local and global algorithms.

We establish lower bounds on the competitive ratio of deterministic local and

global cache replacement algorithms in the shared memory framework. The

main contribution of this chapter in terms of algorithm is a deterministic global

marking algorithm called global-maxima. We prove that global-maxima

is optimal (up to a constant factor ≤ 5) in the shared memory framework.

Further, we establish a lower bound on the competitive ratio of randomized

cache replacement algorithms in the shared memory framework. We show that

a randomized cache replacement algorithm called partition [19] proposed in

the classical caching framework is optimal up to a constant factor in the shared

memory framework.

Section 4.1 describes and motivates the shared memory framework. In

Section 4.2, we describe local and global algorithms. In Section 4.3, we present

lower bounds on the competitive ratio of deterministic (local and global) and

randomized algorithms in this model. In Section 4.4, we present a natural

deterministic marking algorithm called global-maxima which is optimal (up

to a constant factor ≤ 5) in the shared memory framework.

4.1 Shared memory framework description

The shared memory framework is a generalization of the disjoint mem-

ory framework which was introduced in [8] and discussed in Chapter 3. In

contrast to the disjoint memory framework, processes in the shared memory

framework can share memory blocks, i.e., every block in the memory can be
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accessed by any subset of processes.

We present a formal description of the shared memory framework be-

low. Points 1 through 6 are identical to the corresponding points in the disjoint

memory framework description. The last point is specific to the shared mem-

ory framework:

1. We let p processes share a cache of size k. We let Pi denote the ith

process.

2. Each process has full knowledge about its request sequence. We use σi to

represent the request sequence of the ith process. Recall that this request

sequence is the exact order in which memory blocks are requested by the

process Pi in the future.

3. An arbitrary interleaving of σ1, σ2, . . . , σp is seen at the shared cache.

The analysis of algorithms at the shared cache is with respect to a worst

case interleaving (represented by σ).

4. The online algorithm at the shared cache does not have any knowledge

about the interleaving of request sequences from the p processes.

5. The optimal offline algorithm (opt) on the other hand, has complete

control of and knowledge about the interleaving.

6. The interleaving is assumed to be fixed, i.e., the same interleaving is

assumed to reach the shared cache for all the cache replacement algo-

rithms, including the optimal offline algorithm — irrespective of the

cache replacement decisions taken at the shared cache.

7. The processes request non-disjoint sets of memory blocks. Thus, every

block in the memory can be accessed by any subset of p processes.

Motivation for the shared memory framework: Processes share mem-

ory blocks in a number of parallel shared memory algorithms when they work

on different parts of the computations together. In several of such applications,

processes also have perfect knowledge about the sequence of requests they plan
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to request in the future since they work on a well-defined computation like ma-

trix multiplication or Gaussian elimination paradigm [9, 10]. Observe that in

these computations, the interleaving of requests from different processes reach-

ing the shared cache still remains adversarial since the interleaving depends

on factors like the difference in the clock period, interrupts from the operating

systems, etc. This motivates us to consider the shared memory framework

which is a generalization of the application controlled caching framework.

4.2 Local and global algorithms

We classify algorithms in the shared memory framework into two fam-

ilies — local and global algorithms. Recall that each process in the shared

memory framework has full knowledge about its future request sequence.

• Local algorithms: Local algorithms are a family of cache replacement

algorithms which take eviction decisions based on the local knowledge of

the request sequence available at one process.

• Global algorithms: Global algorithms are a family of cache replace-

ment algorithms which aggregate knowledge about the request sequences

from all the p processes and uses this global information to take an evic-

tion decision.

We establish a lower bound of k on the competitive ratio of the de-

terministic local algorithms when the adversary knows the eviction strategy

used by the algorithm in Subsection 4.3.2. Recall that a simple deterministic

no-knowledge algorithm like lru achieves a competitive ratio of k [22] at the

shared cache by completely ignoring the knowledge about the future request

sequences. This motivates us to search for better cache replacement algorithms

in the shared memory framework which use the available information regarding

the request sequences of all the p processes. We will show that determinis-

tic global algorithms have a lower bound of p
2
log 4(k+1)

3p
on their competitive

ratio in Subsection 4.3.3. We establish a lower bound of 1
2
log(k + 1) on the

competitive ratio of randomized algorithms in Subsection 4.3.4.
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4.3 Lower bound on the competitive ratio

In this section we establish lower bounds on the competitive ratio of de-

terministic (local and global) and randomized algorithms in the shared memory

framework. In Subsection 4.3.1, we present the individual request sequences

which we use to establish lower bounds on the competitive ratio of both de-

terministic (local and global) and randomized algorithms. The main idea is

to fix the individual request sequences for all three types of algorithms and

control the interleaving in an adversarial manner.

4.3.1 Individual request sequences

Our approach for establishing the lower bounds involves fixing the in-

dividual request sequences for all the p processes and building an adversarial

interleaving. In fact, we use the exact same request sequence for all the lower

bound proofs that we present in this section.

We group the p processes into p/2 pairs (each pair containing 2 pro-

cesses). We assume that p is even in order to keep the analysis simple. The

ith pair consists of process P2i−1 and P2i. Both the processes in every pair

request the exact same set of memory blocks but in different order.

The lower bound request sequence consists of requests to k + 1 dis-

tinct memory blocks. These blocks are evenly distributed among p/2 pairs

of processes. Hence, every pair requests 2(k + 1)/p distinct memory blocks.

Processes in the ith pair request the following distinct memory blocks:

(2i − 2)
k + 1

p
+ 1, (2i − 2)

k + 1

p
+ 2, . . . , 2i

k + 1

p

Process P2i−1 requests these blocks in the order mentioned above and

process P2i requests these blocks in the reverse order (Table 4.1).

By defining an interleaving of requests from the individual request se-

quences in Table 4.1, we establish a lower bound on the competitive ratio of

marking algorithms (deterministic local, global and randomized algorithms).

We use the notion of repeated requests to already requested blocks (described in

the next paragraph) to generalize the established lower bound to non-marking
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Table 4.1: Individual lower bound request sequences

1st Pair 2nd Pair · · · ith Pair

P1 P2 P3 P4 P2i−1 P2i

1 2k+1
p 2k+1

p + 1 4k+1
p (2i − 2)k+1

p + 1 2ik+1
p

2 2k+1
p − 1 2k+1

p + 2 4k+1
p − 1 (2i − 2)k+1

p + 2 2ik+1
p − 1

. . . . . .

. . . . . .

2k+1
p − 1 2 4k+1

p − 1 2k+1
p + 2 2ik+1

p − 1 (2i − 2)k+1
p + 1

2k+1
p 1 4k+1

p 2k+1
p + 1 2ik+1

p (2i − 2)k+1
p

algorithms. The idea is to prove that on a small tweak of the above defined re-

quest sequence, a non-marking algorithm always incurs at least as many cache

as an optimal marking algorithm. This allows a lower bound established on

marking algorithms to extend for all the cache replacement algorithms.

Repeated requests to already requested blocks: The notion of repeat-

edly requesting already requested blocks was introduced and used in the lower

bound proofs in [6]. The intention is make an algorithm pay by extra cache

misses if it is not a marking algorithm by repeatedly requesting the blocks

that have already been requested during the phase.

As a quick review we present the main difference between marking and

non-marking algorithms. Recall that marking algorithms proceed in marking

phases. At the start of a phase, all the blocks in the cache are unmarked. A

block gets marked when a request to it is served. Upon a cache miss, marking

algorithms evicts an unmarked block. When all the blocks in the cache are

marked, they all are unmarked and a new phase starts. We call this a marking

phase.

In contrast to the marking algorithms, non-marking algorithms do not

follow the marking scheme and hence evict any block (even marked) from the

cache upon a cache miss. Intuitively, marking algorithms perform better than
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non-marking algorithms in the shared memory framework because marking

algorithms retain blocks that were requested during a phase till the end of

the phase. If an algorithm evicts a block that was recently brought in, the

adversary can easily request the evicted block and make the algorithm incur

extra cache miss without it incurring any cache miss.

We modify our lower bound sequences presented in Table 4.1 to ac-

commodate this flexibility for the adversary by repeatedly requesting already

requested blocks. The request sequence of process Pi is given by:

σi = s1, s2, . . . , sj

The new request sequence σ�i is given by:

σ�i = s1, t1, s2, t2, . . . , sj, tj

Where tj = s1, s2, . . . , sj. For instance, consider the blocks requested by P1:

σ1 = 1, 2, 3, . . . , 2
k + 1

p
− 1, 2

k + 1

p

We modify this sequence to the set of blocks that were already requested by

P1 before requesting a new block. The changed sequence looks as follows:

1∗, 1, 2∗, 1, 2, 3∗ . . . , 1, 2, 3, . . . , 2
k + 1

p

∗

, 1, 2, . . . , 2
k + 1

p

We use the notation of x∗ in the above sequence to represent the first

request to block x. Observe that the sequence that is described above forces

any cache replacement algorithm not to evict blocks that were requested previ-

ously during the current phase. Because if at some point, an algorithm evicts

a block that was requested during the current phase, the adversary can easily

request that block by marking at most one block.

Thus an algorithm incurs at least as many cache misses as the optimal

marking algorithm. Hence, establishing a lower bound on the competitive

ratio of marking algorithms is sufficient. The same lower bound extends to

other algorithms. For completeness, we give the final set of individual request

sequences used in our lower bound proofs in Table 4.2.
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Table 4.2: Individual lower bound request sequences with repeated requests
to already requested blocks for ith pair of processes

ith Pair

P2i−1 P2i

[(2i − 2)k+1
p + 1]∗ [2ik+1

p ]∗

(2i − 2)k+1
p + 1, [(2i − 2)k+1

p + 2]∗ 2ik+1
p , [2ik+1

p − 1]∗

. .

. .

(2i − 2)k+1
p + 1, (2i − 2)k+1

p + 2, . . . , [2ik+1
p ]∗ 2ik+1

p , 2ik+1
p − 1, . . . , [(2i − 2)k+1

p ]∗

In conclusion, the individual request sequences can be easily modified

to make a non-marking algorithm incur at least as many cache misses as a

marking algorithm in the shared memory framework. Hence, we just concen-

trate on marking algorithms and establish lower bounds on the competitive

ratio of deterministic and randomized marking algorithms using the individual

request sequence presented in Table 4.1.

4.3.2 Lower bound for deterministic local algorithms

Theorem 4.3.1. The competitive ratio of any deterministic local algorithm in

the shared memory framework is at least k provided the adversary knows the

eviction strategy used by the algorithm.

Proof. We start with a deterministic local marking algorithm alg and estab-

lish a lower bound on the competitive ratio of alg. Using the technique of

repeated requests to already requested blocks, we generalize the lower bound

to all the deterministic local algorithms.

We assume that the eviction policy used by the algorithm is known

beforehand. Without loss of generality, we assume that upon a cache miss,

the local algorithm evicts an unmarked block that is requested farthest in the

future request sequence (mark-fitf) of a particular process. If a different
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eviction strategy is used, the adversary can suitably modify the individual re-

quest sequences. For the case when mark-fitf is used, the individual request

sequences for p processes are as specified in Table 4.1. Once the individual

request sequences are fixed, the adversary just controls the interleaving of re-

quests from these sequences. We shall describe construction of one phase in

this proof. The remaining phases can be constructed in a similar fashion.

Without loss of generality, we assume that the shared caches of both

alg and opt are initially warm and contain 1, 2, . . . , k blocks. If this is not

the case, the adversary can request a set of blocks before starting the lower

bound sequence in order to bring both these caches to the same state.

The first phase starts with process Pp requesting k + 1. Since k + 1

does not exist in the cache, alg takes an eviction decision based on the local

knowledge of one of the p processes, say P2i−1. Since we assume that an un-

marked block that it requested farthest in its future request sequence of P2i−1

is evicted, alg ends up evicting 2ik
p
. Note that P2i can immediately request

this block. The adversary makes P2i request 2i
k
p
. This request results in an-

other cache miss. In order to serve this request alg uses the local knowledge

of another process to make an eviction and the pattern repeats. This continues

till all the blocks in the cache are marked. At that point, the adversary makes

all the p processes request the remaining blocks in their request sequences in

order to start a new phase.

Note that alg ends up incurring a cache miss on every request during

this phase. The optimal offline algorithm opt on the other hand incurs just 1

cache miss by evicting the block that is requested farthest in the interleaved

request sequence when it incurs a cache miss on k + 1. The last cache miss

of the first phase falls into the second phase and hence, the lower bound on

the competitive ratio of a deterministic local marking algorithm for this phase

is k. Since every phase proceeds in a similar fashion, the lower bound on the

competitive ratio of deterministic local marking algorithms is k.

Recall that previously we proved that the number of cache misses in-

curred by any non-marking algorithm is at least as many as an optimal mark-

ing algorithm when the request sequence is tweaked slightly. Hence the lower

bound of k holds for any deterministic local algorithm when the eviction strat-

egy used by the algorithm is known.
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4.3.3 Lower bound for deterministic global algorithms

Theorem 4.3.2. The competitive ratio of any deterministic global algorithm in

the shared memory framework is at least p
2
log 4(k+1)

3p
.

Proof. We start with a deterministic global marking algorithm alg and estab-

lish a lower bound on the competitive ratio of alg — similar to the proof for

lower bound on the competitive ratio of deterministic local algorithms. Using

the technique of repeated requests to already requested blocks, we generalize

the lower bound to all the deterministic global algorithms. The individual

request sequences for the p processes are again as specified in Table 4.1.

Observe that the cache of alg has exactly k blocks and hence one out

of these k+1 distinct memory blocks in the request sequences, say q, does not

exist in the cache. The block q appears in the request sequences of two out of

p processes, say P2i−1 and P2i. The adversary picks one of these two processes

such that minimum number of blocks get marked before q is requested again.

Let P2i be the picked process. The adversary makes P2i request q. Since q was

not in the cache, request to q results in a cache miss. In order to serve this

request another block is deterministically chosen for eviction and the pattern

repeats.

Lemma 4.3.3 which follows this theorem proves that the number of

cache misses incurred by alg in the first phase is at least p
2
log 4(k+1)

3p
. opt on

the other hand incurs just 1 cache miss by evicting the block that is requested

farthest in the interleaved request sequence when it incurs a cache miss during

this phase. Hence, the lower bound on the competitive ratio of determinis-

tic global marking algorithm for this phase is p
2
log 4(k+1)

3p
. Since every phase

proceeds in a similar fashion, the lower bound on the competitive ratio of

deterministic global marking algorithms is p
2
log 4(k+1)

3p
.

Lemma 4.3.3. The total number of cache misses incurred by any deterministic

global marking algorithm in the first phase of the request sequence is at least
p
2
log 4(k+1)

3p
.

63



Proof. Consider a deterministic global marking algorithm alg. We prove that

alg incurs at least log 4(k+1)
3p

cache misses for every pair of processes. i.e., given

a pair of processes, we prove that alg incurs at least log 4(k+1)
3p

cache misses

on the blocks requested by these processes before all the blocks requested by

these processes are marked. Since we have p/2 such pairs, the cost of alg is

at least p
2
log 4(k+1)

3p
. We consider the ith pair (P2i−1 and P2i) and establish a

bound on the number of cache misses incurred by alg for this pair.

Let U = {(2i−2)k+1
p
+1, (2i−2)k+1

p
+2, . . . , 2ik+1

p
} be the set of blocks

in the request sequences of P2i−1 and P2i. Let Uj be the set of all unmarked

blocks in the request sequences of P2i−1 and P2i just before the jth block in U

is evicted by alg. Further, we use uj to represent |Uj|.

Note that the adversary does not request blocks in U till a block ∈ U

is evicted from the cache and hence U1 = U. In order to bound the number

of cache misses incurred by alg on the blocks in U before all the blocks in

U are marked, we bound uj in terms of uj−1 for an arbitrary j. Consider the

state of the request sequences of P2i−1 and P2i just before the j − 1
st block in

U was evicted. The number of unmarked blocks in the request sequences of

P2i−1 and P2i at this point is exactly uj−1. Let q be the j −1
st block in U that

is evicted by alg.

Let the number of unmarked blocks requested before the first request to

q in the request sequence of P2i−1 and P2i be d2i−1(q) and d2i(q), respectively.

Adversary requests q such that at most min(d2i−1(q), d2i(q)) unmarked blocks

in Uj−1 are marked before requesting q again. Further, q also gets marked as

soon as the request to q is served. Hence, at most min(d2i−1(x), d2i(x)) + 1

blocks in Uj−1 get marked by the time the request to q is served.

After the request to q is served, the adversary does not request any

other block belonging to the request sequences of P2i−1 and P2i till the jth

element in U is evicted. Hence uj is equal to the number of elements left

unmarked in the the request sequences of P2i−1 and P2i after the request to q

is served. Hence,

uj = uj−1 − (min(d2i−1(q), d2i(q)) + 1) (4.1)

Now, we bound min(d2i−1(q), d2i(q)) from above. Observe that the

sequence of unmarked blocks in the request sequence of P2i−1 always remains
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an exact reverse of the sequence of unmarked blocks in the request sequence

of P2i. Hence for all x in Uj−1, we have,

min(d2i−1(x), d2i(x)) ≤ �uj−1/2� − 1

Since di(x) ≤ di(q), we have,

min(d2i−1(q), d2i(q)) ≤ �uj−1/2� − 1 (4.2)

From Equations 4.1 and 4.2, we have,

uj ≥ uj−1 − �uj−1/2�

and by rearranging the terms, we get,

uj ≥ �uj−1/2� (4.3)

From the Equation 4.3 and the fact that u1 = 2(k + 1)/p, we can prove by

induction on j (for all j such that j ≥ 2) that:

uj ≥
k + 1

2j−2p
−

j−2�

l=0

1

2l

Base case: j = 2: The claim clearly holds for the case when j = 2 because,

from Equation 4.3, we have:

u2 ≥ �u1/2�

Substituting k+1
p
for u1,

u2 ≥
k + 1

p
− 1

Induction step: Assume that the claim holds for j − 1. We shall prove that

it holds for j.

uj ≥ �uj−1/2�

≥ �

k+1
2j−3p

−
�j−3

l=0
1
2l

2
�

≥
k + 1

2j−2p
−
1

2

j−3�

l=0

1

2l
− 1

≥
k + 1

2j−2p
−

j−2�

l=0

1

2l

65



Hence proved.

The phase ends for the ith pair of processes when there is just one

unmarked block left. Hence, we let uj to go to 1:

1 ≥
k + 1

2j−2p
−

j−2�

l=0

1

2l

≥
k + 1

2j−2p
− (2 −

1

2j−2
)

Rearranging,

3 · 2j−2 ≥
k + 1

p
+ 1

j ≥ log
4(k + 1)

3p

Hence a global algorithm alg incurs at least log 4(k+1)
3p

cache misses on blocks in

U before all the blocks in U get marked. Hence, alg incurs at least p
2
log 4(k+1)

3p

cache misses in the entire phase.

4.3.4 Lower bound for randomized algorithms

Theorem 4.3.4. The competitive ratio of any randomized algorithm in the

shared memory framework is at least 1
2
log(k + 1).

Proof. As discussed before, we just concentrate on marking algorithms in the

proof. We shall later generalize it to any randomized cache replacement algo-

rithm.

In order to establish a lower bound on the competitive ratio of ran-

domized marking algorithms, we use the von Neumann minimax principle as

described by Yao [27]. We give a probability distribution on the interleaving of

requests from the individual request sequences (Table 4.1). We then calculate
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the expected number of cache misses incurred by any deterministic marking

algorithm alg. This will give us a lower bound on the cost of randomized

marking algorithms in an expected sense.

Now we describe the construction of the interleaved sequence along

with the probability distribution. We maintain a mark bit for every block in

the cache. Initially, all the blocks that exist in the cache of alg are unmarked.

We mark a block when the adversary requests it. The following algorithm is

used to generate a phase of the interleaved request sequence:

• Repeat the following steps till all the blocks in the cache are marked:

1. Start a new stage: for i from 1 through p/2: repeat the following

steps:

(a) Pick one of the two processes in the ith pair (P2i−1 or P2i) with

equal probability (1/2).

(b) Let u be the total number of unmarked blocks in the request

sequences of the ith pair of processes. Request the first u/2

unmarked blocks belonging to the process picked in step 1a.

2. Mark all the blocks that were requested in the first step.

We show that the expected cost of alg on the probabilistic interleaving

described above is at least log(k + 1). Let kj be the total number of distinct

unmarked blocks in the request sequences of all the p processes at the start of

the jth stage. Exactly kj/2 blocks are requested and hence marked in the jth

stage. The phase ends when all the blocks in the cache are marked. Hence,

the total number of stages in a given phase is no less than log k1.

In every stage, each unmarked block is requested with probability 1/2.

Since one of the kj unmarked blocks is missing from the cache, the expected

number of cache misses incurred by alg in the jth stage is 1/2.

Hence, the total number of cache misses incurred by alg in the entire

phase is at least 1
2
log k1 in an expected sense. Since k1 = k + 1, the expected

number of cache misses incurred by alg is at least 1
2
log(k + 1).
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The lower bound on the cost of a randomized marking algorithm is
1
2
log(k + 1) in an expected sense. Recall that opt incurs exactly one cache

miss on any deterministic interleaving consisting of k + 1 distinct blocks.

As noted in the previous two proofs, the lower bound for randomized

marking algorithms can be generalized to randomized algorithms by using the

concept of repeated requests to already requested blocks. Hence the competi-

tive ratio of any randomized algorithm is at least 1
2
log(k + 1).

A few observations on these lower bounds:

1. The lower bound on the competitive ratio of deterministic local algo-

rithms suggests that relying on the local knowledge about the future

request sequence of a particular process does not turn out to be useful

in the shared memory framework. A simple deterministic marking algo-

rithm like lru matches the lower bound of k by ignoring the knowledge

about the future request sequences.

2. The lower bound on the competitive ratio of randomized algorithms

proves that randomization does not yield impressive results in the shared

memory framework. partition [19] achieves an optimal competitive ra-

tio of Hk in the sequential caching framework. One can use partition

at the shared cache in the shared memory framework by ignoring the

knowledge about the future request sequences. Our lower bound on ran-

domized algorithms proves that partition remains optimal (up to a

constant factor) in the shared memory framework.

3. The lower bound on the competitive ratio of global algorithms gives

hope that more efficient algorithms may exist in the shared memory

framework. Making eviction decisions based on the global knowledge

about the future request sequences from all the p processes seems to be

the key for better cache replacement algorithms in this framework. In

the next section, we develop a deterministic global marking algorithm

called global-maxima motivated by this observation.
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4.4 Deterministic global algorithm : global-maxima

We present a natural deterministic global marking algorithm called

global-maxima for the shared memory framework. We shall prove that

global-maxima is optimal (up to a constant factor ≤ 5) in the shared mem-

ory framework. We describe the algorithm in Subsection 4.4.1 and analyze its

competitive ratio in Subsection 4.4.2.

4.4.1 Description of global-maxima

global-maxima is a global algorithm. Recall that a global algorithm

aggregates knowledge regarding the future request sequences from all the p pro-

cesses and makes an eviction decision based on the global knowledge. global-

maxima is also an explicit marking algorithm. It proceeds in marking phases.

A phase starts with all the blocks unmarked. A block gets marked when a

request to it is served. Upon a cache miss, a global distance function (de-

scribed in the algorithm) is applied on all the unmarked blocks in the cache.

An unmarked block with the maximum global distance is evicted from the

cache.

global-maxima(r):

Input: Requested cache block r.

Output: Eviction decision.

• if r is in the cache: Mark r if it is not marked. No eviction is needed in

this case.

• if r is not in the cache:

1. If all the blocks in the cache are marked (end of phase), start a new

phase by unmarking all the blocks.

2. Let U be the set of all unmarked blocks in the cache.

3. Compute local distance: For all x ∈ U and 1 ≤ i ≤ p : di(x) =

number of distinct blocks ∈ U in the request sequence of process
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Pi before the first request to x. If x never occurs in the request

sequence of process Pi, di(x) = |U| − 1.

4. Compute global distance: For all x ∈ U : d(x) = minpi=1 di(x)

5. Evict an unmarked block q such that, q = argmaxx∈U d(x)

6. Bring r in place of q and mark r.

4.4.2 Competitive ratio of global-maxima

In this section, we prove that the competitive ratio of global-maxima

in the shared memory framework is at most 2(p ln(ek/p)+1). We use the con-

cept of holes to establish an upper bound on the competitive ratio of global-

maxima. Here is a quick recap of the definitions and notations around holes

borrowed from [3] and stated in Chapter 3. All the points except the last 3

are exactly similar to the ones stated in Chapter 3.

1. Clean block: A block q is said to be clean block with respect to a

particular phase of a process marking algorithm, if q does not exist in

the cache at the start of this phase.

2. Non-clean block: A block q is said to be non-clean block with respect

to a particular phase of a process marking algorithm, if q exists in the

cache at the start of this phase.

3. Hole: When a non-clean block q is evicted from the cache, in order to

serve the request to a clean block, we say that a hole h is created at q.

A hole basically suggests that the block q is missing from the cache.

4. Hole association: Since the hole h is created due to eviction of q, we

also say that h is associated with q.

5. Hole movement: Let q be requested again by some process at some

point during the phase. Since q is not in the cache, another unmarked

block q� is evicted in order to serve the request to q. At that point, we

say that the hole h moves from q to q�. It gets associated with q� from

now on.
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6. Relating cache misses and holes: Every cache miss results either in

creation or in movement of a hole. In case of a marking algorithm, a

hole is always associated with an unmarked block (recall that always an

unmarked block is evicted from the cache). Since all the clean blocks

are marked when they are brought in, holes are always associated with

non-clean blocks.

Theorem 4.4.1. The competitive ratio of global-maxima in the shared mem-

ory framework is at most 2(p ln(ek/p) + 1).

Before proving this theorem we make the following observations regard-

ing the local and global distance functions (di and d respectively) defined and

used in our algorithm.

Observations:

1. 0 ≤ di(x) ≤ k − 1 for all 1 ≤ i ≤ p and x ∈ U.

2. 0 ≤ d(x) ≤ k − 1 for all x ∈ U.

3. For every eviction candidate q in our algorithm, |U|
p
− 1 ≤ d(q) ≤ k − 1.

The first two bounds directly follow from the definitions of local and

global distance functions (Lines 3 and 4 of our algorithm). The third bound is

proved by Lemma 4.4.2 which is presented after the proof for Theorem 4.4.1.

Significance of the global distance function (d): The global distance of

an unmarked block q at the time q was evicted from the cache is the minimum

number of blocks that get marked before q is requested again in the current

phase. This is because, there are at least d(q) unmarked blocks in cache that

are requested before the first request to q in the future request sequences of all

the p processes. Upon a cache miss, global-maxima chooses an unmarked

block q with maximum value for its global distance and evicts it from the

cache. By doing so, global-maxima is ensuring that maximum number of

unmarked blocks get marked before q gets requested again.
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Proof. This proof is for Theorem 4.4.1. Consider an arbitrary phase of global-

maxima. Let l be the number of clean block requests during this phase. These

l requests to clean blocks result in creation of l holes. Consider one such hole,

h.

We aim to bound the number of cache misses due to repeated requests

to h during the current phase. Let u0 be the number of unmarked blocks in

the cache when h is created (due to a request to a clean block). Note that,

u0 ≤ k. Let u1 be the number of unmarked blocks in the cache when the

non-clean block associated with h is requested for the first time.

More generally, let uj represent the number of unmarked blocks in the

cache when the non-clean block associated with h is requested for the jth time.

Lemma 4.4.3 (which is presented at the end of this proof) proves that

at least
uj−1

p
blocks are marked between two consecutive requests (j − 1st and

jth requests) to the non-clean blocks associated with h. Hence,

uj−1 − uj ≥
uj−1

p

uj ≤ uj−1 · (1 − 1/p)

≤ u0 · (1 − 1/p)
j

Recall that u0 ≤ k,

uj ≤ k ·
1

e
j
p

With at most p ln(k/p) requests to h, the number of unmarked blocks

in cache reduces to p. From that point on wards, at most p cache misses

are incurred before all the blocks in the cache get marked (end of the current

phase).

Total number of cache misses due to h is at most p ln(k/p) + p =

p ln(ek/p).

Since every cache miss (hole) is treated in a similar fashion, the total

number of cache misses due to l holes is bounded by l + lp ln(ek/p) cache
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misses. The extra l additive term is to account for the number of cache misses

that occur due to creation of these l holes.

cost(global-maxima) ≤ l · (p ln(ek/p) + 1)

Recall that opt incurs at least l/2 cache misses on this phase in an

amortized sense. Hence, the competitive ratio of global-maxima in the

shared memory framework is at most 2(p ln(ek/p) + 1).

To complete the proof of the theorem, we now state and prove Lemma 4.4.2

and 4.4.3.

Lemma 4.4.2. For every eviction candidate q in our algorithm,

|U|

p
− 1 ≤ d(q) ≤ k − 1

Proof. Consider an eviction candidate q in our algorithm. From the definition

of d, we have,

d(q) ≤ k − 1

What is left to be shown is that d(q) ≥ |U|
p
− 1. Observe that for an eviction

candidate q and a block x in U,

d(q) ≥ d(x)

hence, it is sufficient if we prove that there exists an unmarked block x in the

cache for which d(x) ≥ |U|
p
− 1. First of all, we assume that every unmarked

block in the cache is requested by at least one process. If not, there exists an

unmarked block, say x which is not requested by any process. Hence, for all i

such that 1 ≤ i ≤ p, we have,

di(x) = |U| − 1

and since,

d(x) =
p

min
i=1

di(x)
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we have,

d(x) = |U| − 1 ≥
|U|

p
− 1

Let V be the set of all unmarked blocks in cache which have their global

distance function less than |U|
p
− 1. Hence, for all x in V ,

d(x) <
|U|

p
− 1

For all, x in V , there exists an i such that 1 ≤ i ≤ p, for which,

di(x) ≤
|U|

p
− 2

Consider any 2 elements requested by Pi — x and y. Clearly, either the first

occurrence of x appears before the first occurrence of y or vice versa. Hence,

di(x) �= di(y). This implies that for a given i, the number of elements with

0 ≤ di(x) ≤
|U|
p
− 2 is at most |U|

p
− 1.

Hence, the number of elements with 0 ≤ di(x) ≤
|U|
p
− 2 for all i is at

most p · ( |U|
p
− 1) = |U| − p.

The remaining p unmarked blocks in U − V have their global distance

function at least |U|
p
− 1. Hence there exists an unmarked block x ∈ U whose

global distance function is at least |U|
p
− 1. Hence proved.

Lemma 4.4.3. Consider a hole h during the current phase of our algorithm.

The number of unmarked blocks that get marked between any two consecutive

requests (j−1st and jth request) to h is at least
uj−1

p
where uj−1 is the number

of unmarked blocks in cache just before the j − 1st request to h.

Proof. Let q be the non-clean block which is evicted to serve the j−1st request

to the unmarked block associated with h. The number of unmarked blocks in

cache when q is evicted is exactly uj−1. From Lemma 4.4.2, at the time q is

evicted, we have,

d(q) ≥
uj−1

p
− 1 (4.4)
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Since q is associated with h now, the jth request to a non-clean block

associated with h is essentially a request to q. At least d(q) + 1 unmarked

blocks get marked by the time the request q is served. The extra +1 term is

to account for q getting marked. Hence the number of unmarked blocks in the

cache after the request to q is served is

uj ≤ uj−1 − d(q) − 1

From Equation 4.4, we have,

uj ≤ uj−1 −
uj−1

p

uj−1 − uj ≥
uj−1

p

Hence the lemma is proved.
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Chapter 5

Hierarchical caching framework

In this chapter we present our results on the performance of cache

replacement algorithms in the hierarchical caching framework. The main mo-

tivation for considering the hierarchical caching framework is to model modern

multicore processor systems which have a multi-level cache hierarchy in order

to obtain better caching performance. In Section 5.1, we present a model for

multicore systems with two levels of caches — L1 and L2. We consider the L2

cache with 3 different properties - inclusive, exclusive and non-inclusive. In

Section 5.2, we consider one core with two levels of caches and establish upper

and lower bounds on the competitive ratio of deterministic cache replacement

algorithms at inclusive, exclusive and non-inclusive L2 caches. Recall that al-

gorithms do not have any knowledge about the future request sequence in the

sequential caching framework. In Section 5.3, we consider p cores with two

levels of caches and establish upper and lower bounds on the competitive ratio

of deterministic cache replacement algorithms at inclusive, exclusive and non-

inclusive L2 caches when each core has full knowledge about its future request

sequence. In Section 5.4, we present a case study of the cache architecture in

Intel Nehalem and AMD-Shanghai processors and discuss the relevance of our

results in modern multicore processor systems.

5.1 Multicore systems with two levels of caches

In Chapters 3 and 4, we considered a simple framework with multiple

processes sharing a cache and analyzed cache replacement algorithms at the

shared cache. In this chapter we consider a theoretical model for the multicore

processor systems with multiple levels of caches and analyze cache replacement

algorithms at these caches. Initially, we consider a multicore processor system
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with just two levels of caches and later extend these results to higher levels of

caches.

A multicore processor system with two levels of caches consists of p

cores, first level L1 cache and a second level L2 cache. The L1 cache could be

either private to each core (in which case, the system consists of p L1 caches)

or shared among all the p cores as in Chapters 3 and 4. Similarly, the L2 cache

could be either private to each core or shared among all the p cores. In our

analysis, we consider both L1 and L2 caches to be shared among all the p cores.

With two levels of caches, the contents of the L2 cache could either inclusive,

exclusive or non-inclusive of the contents of the L1 cache. We describe these

three types of caches in the following part of this section.

5.1.1 Inclusive, exclusive and non-inclusive caches

The L2 cache is said to be an inclusive cache if the invariant: “the

contents of the L1 cache are a strict subset of the contents of the L2 cache”

is maintained. The inclusion property wastes expensive cache real estate by

maintaining redundant copies of the memory blocks in both L1 and L2 caches.

Thus, the total number of cache misses incurred by the system increases when

the L2 cache is inclusive of the L1 cache. But, it turns out that the inclusion

property improve the cache efficiency by reducing coherence traffic at the lower

level caches. Further, it also decreases the core idle time and thereby increases

the overall efficiency of the system. In the following part of this subsection,

we describe the cache coherence problem and the role of inclusion property in

solving the problem.

Hardware background: The L1 cache is usually placed on the same chip

as the core and hence is much faster and smaller when compared to the L2

cache (which is typically placed on a different chip). The L1 cache controller

communicates with the core through the local processor bus. The L2 cache

controller communicates with the L1 cache controller through the system bus.

The Random Access Memory, which is modeled as the main memory lies

outside of these chips and it communicates with all these cache controllers

through the system bus. The cache controllers take charge of the system bus

in order to read/write data from/to main memory.
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Cache coherency, snooping and inclusion property: The cache coher-

ence (or cache coherency) refers to the problem of maintaining consistency of

memory blocks stored in the L1 cache. Both hardware and software based

solutions have been proposed to this problem in the literature [23, 25]. One

commonly used hardware based solution for the cache coherence problem in

write-back caches is snooping. In this technique, the cache controllers of the

L1 caches snoop the traffic through the system bus. There are two types of

snooping — read snooping and write snooping.

In read snooping, the system bus is continually monitored by the cache

controllers of the L1 caches when they read memory blocks because there is a

possibility that these blocks could be changed by another core and the changed

copy might not have be updated in the main memory. In write snooping, the

system bus is continually monitored by the cache controllers of the L1 caches

when they write to a memory block because there is a possibility that these

blocks reside in caches of some other cores. Upon detecting an inconsistency,

the cache which owns the consistent copy of the block writes it back to the

main memory and all other caches reload this block from the main memory

before proceeding with their current operation.

Snooping costs a lot to the L1 cache controller in terms of both time

and resources. Thus, the L1 cache controllers will not be able to dedicate

sufficient time and resources for serving block requests from the cores. To

address this problem, the inclusion property was introduced. The inclusion

property ensures that the L2 cache has a copy of the contents in the L1 cache

at all time. This allows the L1 caches to just concentrate on serving block

requests from the cores the L2 cache on the other hand, will take care of the

snooping protocol. This results in a dramatic improvement in the performance

of the L1 caches and also reduces the core idle time.

In conclusion, the inclusion property has a very important role to play

in multicore processor systems with multiple levels of write-back caches. The

inclusion property helps the lower level caches concentrate more on serving

the block requests from the cores and less on maintaining cache coherency.

The upper level caches on the other hand continually snoop the system bus in

order to maintain cache coherency.
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Exclusive and non-inclusive caches: Even though making the L2 cache

inclusive improves the performance of the L1 cache (when considered in iso-

lation), the overall performance of the system degrades due to the wastage of

cache real estate. In a retrospective paper on inclusive caches, Baer and Wang

[2] present specific arguments against inclusive caches.

This led to two new types of caches: exclusive and non-inclusive caches.

The L2 cache is said to be an exclusive cache if the invariant: “the contents of

the L1 and L2 caches are disjoint” is maintained. Non-inclusive caches on the

other hand, do not enforce either of these (inclusive or exclusive) invariants.

Implementation of inclusive, exclusive and non-inclusive caches: We

discuss the implementation details for inclusive, exclusive and non-inclusive

caches below:

Inclusive cache: An inclusive L2 cache is forced to include the contents

of the L1 cache. This is implemented by using inclusion bits. An inclusion bit

is maintained for every cache line present in the L1 cache. A detailed flowchart

for the implementation of the inclusion property due to Tipley is presented in

[24]. The technique can be described as follows: upon a cache miss at the

L1 cache, the request is sent to the L2 cache. If the requested block exists

in the L2 cache, it is read into the L1 cache. If the requested block does not

exist in the L2 cache, the block is read from the main memory into both L2

and L1 caches. A block whose inclusion bit is not set is evicted from the L2

cache in order to accommodate the newly requested block. A block is evicted

from the L1 cache in order to accommodate the newly requested block and its

corresponding inclusion bit is cleared in the L2 cache.

Exclusive cache: An exclusive L2 cache is forced to exclude the con-

tents of the L1 cache. This is implemented by using a technique called victim

caching. A secondary cache like the L2 cache is also referred to as a victim

cache since it is used to store blocks evicted from the L1 cache anticipating

their access in the recent future. The AMD-Shanghai multicore processor sys-

tem implements this technique. The technique can be described as follows:

upon a cache miss at the L1 cache, the request is sent to the L2 cache. If

the requested block exists in the L2 cache, it is read into the L1 cache. If the

requested block does not exist in the L2 cache, the block is read from the main
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memory directly into the L1 cache. A block, say x, is evicted from the L1

cache. Instead of evicting x completely, it is stored in the L2 cache. A block,

say y, is evicted from the L2 cache and x occupies the position of y in the L2

cache.

Non-inclusive cache: This is the simplest of the three types of caches.

A non-inclusive cache is implemented very similar to an inclusive cache except

for the inclusion bits. Upon a cache miss at the L1 cache, the request is sent to

the L2 cache. If the requested block exists in the L2 cache, it is read into the L1

cache. If the requested block does not exist in the L2 cache, the block is read

from the main memory into both L2 and L1 caches. A block is evicted from

the L2 cache in order to accommodate the newly requested block. A block is

evicted from the L1 cache in order to accommodate the newly requested block.

Comparing inclusive, exclusive and non-inclusive properties: The

above-mentioned properties influence the efficiency of L1 caches in terms of

the time taken to serve a block request from the core. But the number of

cache misses incurred by a cache replacement algorithm at the L1 cache is not

influenced and hence the competitive ratio of cache replacement algorithms

at the L1 cache remains unchanged. However, the number of cache misses

incurred by cache replacement algorithms at the L2 cache is influenced by the

above-mentioned properties. Hence, we consider the competitive ratio of well

known algorithms at the L2 cache to compare inclusive, exclusive and non-

inclusive properties. The number of cache misses at the L2 cache is exactly

equal to the number of requests reaching the main memory.

5.2 Sequential model with two levels of caches

In this section, we compare inclusive, exclusive and non-inclusive prop-

erties by measuring the competitive ratio of lru at the L2 cache in each of

these three cases. In order to establish an upper bound on the competitive

ratio of lru at the L2 cache, we establish bounds on the effective size of the L2

cache when it is inclusive, exclusive and non-inclusive of the L1 cache. We then

extend results on the competitive ratio of lru in the sequential (h, k)-paging

framework to the L2 cache.
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Review of lru in the sequential (h, k)-paging framework: The (h, k)-

paging framework was introduced in [22] in order to analyze the performance of

online cache replacement algorithms with better resources (i.e., bigger cache)

against optimal offline algorithms. The online cache replacement algorithm is

given a cache of size k and the offline algorithm is given a cache of size h (with

k ≥ h). It was shown in [22] that the competitive ratio of lru with respect to

an optimal offline algorithm in the (h, k)-paging framework is at most k
k−h+1

.

It was also shown that lru was optimal in the (h, k)-paging framework. i.e.,

the competitive ratio of any deterministic cache replacement algorithms in the

(h, k)-paging framework was shown to be at least k
k−h+1

. For completeness,

we review proof for these two results in Theorem 5.2.1.

k-phase partition: This terminology was introduced in [22]. A k-phase

partition of an input request sequence σ is basically a partition of σ into

phases such that each phase contains requests to exactly k distinct blocks.

The first phase starts with the first request and ends just before request to the

k + 1st distinct block in the request sequence. The second phase starts with

request to the k+1st distinct block and ends just before request to the 2k+1st

distinct block in the request sequence.

Theorem 5.2.1. [22] The competitive ratio of lru is at most k
k−h+1

and the

competitive ratio of any deterministic cache replacement algorithm is at least
k

k−h+1
in the (h, k)-paging framework.

Proof. A classic proof for this theorem was presented in [22]. We restate the

proof for completeness. Consider the k-phase partition of an arbitrary request

sequence σ. lru incurs at most k cache misses on the current phase (with k

distinct block requests). On the other hand, opt incurs at least k − h + 1

cache misses on k distinct block requests. Hence the competitive ratio of lru

is at most k
k−h+1

.

The lower bound on the competitive ratio of a deterministic cache re-

placement algorithm alg can be established by constructing an adversarial

request sequence consisting of requests to k + 1 distinct blocks. Without loss
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of generality, we assume that the cache of alg is initially warm and contains

1, 2, 3, . . . , k blocks. The adversarial request sequence begins with a request to

k+1. Since k+1 does not exist in the cache, it results in a cache miss and alg

deterministically evicts a block from the cache. Without loss of generality, let

the evicted block be 1. The adversary makes the next request to 1. Request to

1 again incurs a cache miss and the pattern continues. Since alg is determin-

istic, the sequence can be deterministically constructed. Note that alg incurs

cache miss on every single request in the request sequence. On the other hand,

opt incurs just k − h + 1 cache misses for every k cache misses incurred by

alg by keeping h− 1 blocks fixed in its cache. Hence the competitive ratio of

any deterministic algorithm in the (h, k)-paging framework is at least k
k−h+1

.

Effective cache size: In order to analyze the competitive ratio of cache

replacement algorithms in the hierarchical caching framework, we introduce a

new term called the effective cache size. The effective size of the L2 cache for

a deterministic cache replacement algorithm alg is said to be at least k, if

alg incurs at most k cache misses at the L2 cache on any request sequence

consisting of requests to k distinct blocks. Further, the effective size of the L2

cache for alg is tight if there exists a request sequence consisting of requests

to k distinct blocks on which alg incurs exactly k cache misses at the L2

cache. We establish bounds on the effective size of the L2 cache for marking

algorithms in Theorem 5.2.2. Since lru is an implicit marking algorithm,

the bounds hold for it as well. We then, use the results on the competitive

ratio of lru in the (h, k)-paging framework and effective cache size to establish

bounds on the competitive ratio of lru in the sequential model with two levels

of caches.

Notation used in sequential model with two levels of caches: We first

introduce notation used in the sequential model with two levels caches. We let

k1 and k2 represent the size of the online algorithm’s L1 and L2 cache and h1
and h2 represent the size of offline algorithm’s L1 and L2 caches respectively.
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Theorem 5.2.2. The effective size of the L2 cache for any marking algorithm

is k2 when the L2 cache is either inclusive or non-inclusive of the L1 cache and

is k1 + k2 when the L2 cache is exclusive of the L1 cache.

Proof. We consider request sequences consisting of requests to k2, k2 and k1+k2
distinct blocks to establish bounds on the effective size of the L2 cache for a

marking algorithm when the L2 cache is inclusive, non-inclusive and exclusive

of the L1 cache respectively.

Inclusive cache: Consider a sequence consisting of requests to k2 dis-

tinct blocks. Observe that a marking algorithm incurs at most k2 cache misses

on this sequence at an inclusive L2 cache because a block that is read into

the L2 cache is not evicted till at least k2 new blocks are read into the cache.

Hence the effective size of the L2 cache for a marking algorithm is at least k2
when the L2 cache is inclusive of the L1 cache.

Non-inclusive cache: Consider a sequence consisting of requests to k2
distinct blocks. Observe that a few of these requests could get served by the

L1 cache and hence requests to at most k2 distinct block requests reach the

L2 cache. On the sequence that reaches the L2 cache, a marking algorithm

incurs at most k2 cache misses. Hence the effective size of the L2 cache for a

marking is at least k2 when the L2 cache is non-inclusive of the L1 cache.

Exclusive cache: Recall that the hardware forces the L2 cache to be

exclusive of the L1 cache. It can be observed that the L1 and L2 caches

together hold the k1+k2 most recently requested blocks at all the time. Hence

these two together work as a bigger cache. Consider a sequence consisting of

requests to k1+k2 distinct blocks. Observe that a marking algorithm incurs at

most k1 + k2 cache misses during the current phase at the exclusive L2 cache.

Hence the effective size of the L2 cache for a marking algorithm is at least

k1 + k2 when the L2 cache is exclusive of the L1 cache.

One can prove that the effective size of the L2 cache for any determinis-

tic algorithm is in fact at most k2, k2 and k1+k2 when the L2 cache is inclusive,

non-inclusive and exclusive of the L1 cache respectively by consider specific

adversarial sequences with requests to k2, k2 and k1 + k2 distinct blocks.
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The adversarial sequence is constructed in the exact same manner as

described in Theorem 5.2.1.

Since lru is an implicit marking algorithm, these results hold for lru

as well.

Optimal offline algorithm for the sequential model with two levels

of caches: We now present an optimal offline algorithm for the sequential

model with two levels of caches which is an extension of fitf. We call this

algorithm 2-fitf. In order to analyze the performance of inclusive, exclusive

and non-inclusive, we keep the optimal offline algorithm independent of the

property used at the L2 cache. 2-fitf is defined as follows:

Upon a cache miss at the L1 cache, the request is sent to the L2 cache.

If the requested block exists in the L2 cache, it is read into the L1 cache. If the

requested block does not exist in the L2 cache, the block is read from the main

memory directly into the L1 cache. A block, say x, which is requested farthest

in the future request sequence is evicted from the L1 cache. The block x is

stored in the L2 cache. The L2 cache chooses a block, say y, which is requested

farthest in the future request sequence. The L2 cache evicts y if it is requested

after x in the future request sequence and evicts x if it is requested after y in

the future request sequence.

Theorem 5.2.3. When the cost measure is the total number of cache misses at

the L2 cache, 2-fitf is an optimal in the sequential model with two levels of

caches.

Proof. We start with a few notes on the optimal offline algorithm in the se-

quential caching framework — fitf. fitf has also been referred to as lfd in

the literature. lfd stands for longest forward distance. Upon a cache miss,

lfd evicts a block from the cache that has the longest forward distance in the

future request sequence. Belady [4] established the optimality of lfd.

We compare 2-fitf with two levels of caches (of sizes h1 and h2 re-

spectively) with lfd with a single level cache of size h1 + h2 and prove that
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the number of block requests reaching the main memory is same for both of

these algorithms. Initially we assume that the set of memory blocks in the

two levels of caches for 2-fitf is the same as the set of memory blocks in the

single level cache for fitf. In order to establish the optimality of 2-fitf, we

show that on every request in an arbitrary request sequence σ, 2-fitf takes

the exact same decision as lfd.

In order to show that 2-fitf takes the exact same decision as lfd, it is

sufficient if we consider a cache miss and prove that both of these algorithms

evict the same block when their cache contents match.

Consider a request that results in a cache miss and let at this point

the contents of both 2-fitf’s and lfd’s cache match. Let z be the block

which was evicted from the two level cache structure by 2-fitf. Let x be the

block with the longest forward distance in the L1 cache and y be the block

with the longest forward distance in the L2 cache at the time the cache miss

occurred. From the definition of 2-fitf, the forward distance of z is equal to

the maximum of forward distances of x and y. Hence z is the block with the

longest forward distance in both of these caches considered together. Recall

that lfd evicts a block with the maximum forward distance. Hence, lfd also

evicts z.

Further, it is easy to see that 2-fitf is not better than fitf because if

2-fitf performed better than fitf, fitf could mimic 2-fitf by splitting the

one level cache into two parts — of size h1 and h2 respectively.

Note that 2-fitf forces the L2 cache to be exclusive of the L1 cache

in order to get a better effective cache size. 2-fitf basically evicts the block

that is requested farthest in the future of the request sequence from the two

caches considered collectively. Hence it has an effective cache size of h1 + h2.

Theorem 5.2.4. The following are tight bounds for the competitive ratio of

lru:

1. k2
k2−(h1+h2)+1

at an inclusive L2 cache.

2. k2
k2−(h1+h2)+1

at a non-inclusive L2 cache.

85



3. k1+k2
k1+k2−(h1+h2)+1

at an exclusive L2 cache.

Proof. Lemma 5.2.2 proves that the effective size of the L2 cache for any

marking algorithm (including lru) is at least k2, k2 and k1 + k2 when the

L2 cache inclusive, non-inclusive and exclusive of the L1 cache respectively.

This implies that lru incurs at most k2, k2 and k1 + k2 cache misses at the

L2 cache when the L2 cache is inclusive, non-inclusive and exclusive of the L1

cache respectively.

On the other hand, opt incurs at least k2−(h1+h2−1), k2−(h1+h2−1)

and k1 + k2 − (h1 + h2 − 1) cache misses at the L2 cache when the sequences

with k2, k2 and k1 + k2 distinct block requests are considered. Hence the

competitive ratio of lru in each of these cases is: k2
k2−(h1+h2)+1

, k2
k2−(h1+h2)+1

and k1+k2
k1+k2−(h1+h2)+1

respectively.

Further, Lemma 5.2.2 also proves that the effective size of the L2 cache

for any deterministic algorithm is at most k2, k2 and k1+k2 when the L2 cache

inclusive, non-inclusive and exclusive of the L1 cache respectively. This proves

the lower bound on the competitive ratio of the cache replacement algorithms.

Hence the bound on the competitive ratio of lru is tight.

5.3 Parallel disjoint memory model with two levels of
caches

In this section, we compare inclusive, exclusive and non-inclusive prop-

erties by measuring the competitive ratio of rr-proc-mark at the L2 cache

in each of these three cases when the processes have full knowledge about

their future request sequences. In order to establish an upper bound on the

competitive ratio of rr-proc-mark at the L2 cache, we establish a bound on

the effective size of L2 cache when it is inclusive, exclusive and non-inclusive

of the L1 cache. We then establish results on the competitive ratio of lru in

the parallel (h, k)-paging framework and extend it to the L2 cache.
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Relating disjoint memory and multicore caching frameworks: The

disjoint memory framework is closely related to the multicore caching frame-

work. We present some observations regarding the relationship between these

two frameworks below:

1. Both disjoint memory framework and multicore caching framework model

parallel machines.

2. Processes in the disjoint memory framework are analogous to cores in

the multicore caching framework.

3. Similar to processes in the disjoint memory framework, cores in the mul-

ticore caching framework have full knowledge about their future request

sequences in the following two scenarios:

(a) The cores work on a well defined computation like matrix multipli-

cation or Gaussian elimination paradigm which have known request

access pattern.

(b) The hardware and software prefetchers ([7, 20]) predict the future

request access pattern in an online manner.

4. The interleaving of these request sequences, however, cannot be predicted

in both of these frameworks and hence remains adversarial.

By relating these two frameworks, we can use the algorithms developed

in the disjoint memory framework on multicore caches. In this section, we

consider deterministic algorithms developed in the Chapter 3 and analyze their

performance in the parallel model with two levels of caches when cores have

full knowledge about their future request sequences.

Before considering algorithms in the parallel model with two levels of

caches, we introduce the disjoint memory (h, k)-paging framework. In Chap-

ter 3, we considered the disjoint memory (k, k)-paging framework in which

both online and offline algorithms gets shared caches of the same size — k).

In the disjoint memory (h, k)-paging framework, the online algorithm gets a

shared cache of size k and the offline algorithm gets a shared of size h (k ≥ h).

We establish an upper bound on the competitive ratio of rr-proc-mark in
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the disjoint memory (h, k)-paging framework and then prove a lower bound

on the competitive ratio of deterministic process marking algorithms in this

framework.

Theorem 5.3.1. The competitive ratio of rr-proc-mark in the disjoint mem-

ory (h, k)-paging framework is at most max( 2k
k−h+2k/(p+1)

, 2k
k−h+k/(Hp+2)

).

Proof. Consider an arbitrary interleaving of the request sequences from all the

p cores and call it σ. We split σ into a number of phases (as per the definition

of phase in rr-proc-mark). Consider a marking phase with l clean block

requests and p� participating cores for analysis. From Lemma 3.3.5 and 3.3.8,

we have the following inequalities on the number of cache misses incurred by

rr-proc-mark.

cost(rr-proc-mark) ≤






l
2
(p� + 1) if l < p�

p� + l + lHp� if l ≥ p�

Clearly, for l < p� ≤ p,

p� + lHl−1 ≤
l

2
(p + 1)

for l ≥ p�,

p� + l + lHp� ≤ l(Hp + 2)

cost(rr-proc-mark) ≤






l
2
(p + 1) if l < p�

l(Hp + 2) if l ≥ p�

On the other hand, opt incurs at least (k − h + l)/2 cache miss per marking

phase in an amortized sense [28]. Competitive ratio of rr-proc-mark is:

cost(rr-proc-mark)

cost(opt)
≤






l(p+1)
k−h+l

if l < p�

2l(Hp+2)

k−h+l
if l ≥ p�

Since the number of cache misses incurred by any online marking al-

gorithm is at most k per marking phase, we have the following inequalities:
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When l < p�:

l

2
(p + 1) ≤ k

l ≤
2k

p + 1

When l ≥ p�:

l(Hp + 2) ≤ k

l ≤ k/(Hp + 2)

Observe that the above two expressions monotonically increases with l

and hence attain maxima for the maximum value of l. Hence,

cost(rr-proc-mark)

cost(opt)
≤






2k
k−h+2k/(p+1)

if l < p�

2k
k−h+k/(Hp+2)

if l ≥ p�

The upper bound on competitive ratio of rr-proc-mark in the dis-

joint memory (h, k)-paging framework is at most max( 2k
k−h+2k/(p+1)

, 2k
k−h+k/(Hp+2)

).

Theorem 5.3.2. The competitive ratio of any deterministic process marking

cache replacement algorithms in the disjoint memory (h, k)-paging framework

is at least max( p+1
k−h+1

, k
k−h+k/Hp

).

Proof. Let alg be a deterministic process marking cache replacement algo-

rithm in the disjoint memory (h, k)-paging framework. We establish two

bounds on the competitive ratio of alg.

1. The first bound follows directly from the lower bound established in

Theorem A.2 [3] which consists of one clean block request per phase.

2. The second bound is established for a general l.
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First bound: In [3], it was shown that the cost of alg is at least p+1 with

one clean block request per phase. On the other hand, opt incurs exactly

k − h + 1 cache misses per marking phase with one clean block request [28]

giving us a competitive ratio of:

cost(alg)

cost(opt)
≥

p + 1

k − h + 1

Second bound: In order to establish the second bound on the competitive

ratio, we construct an explicit sequence consisting of infinitely many phases.

We give construction of one such phase and prove that the cost of alg on

one phases is at least lHp and cost of opt is at most k − h + l. Hence, the

competitive ratio is lHp

k−h+l
. This expression attains maxima for the maximum

value of l. Since alg incurs at most k cache misses per marking phase, lHp ≤ k.

cost(alg)

cost(opt)
≥

k

k − h + k/Hp

What is left is the construction of a phase for which cost(alg) ≥ lHp

and cost(opt) ≤ k − h + l. W.l.o.g, we assume that the cache of the deter-

ministic online algorithm is initially warm and each of the p cores own exactly

k/p blocks in the cache. The phase that we consider consists of a number of

stages as defined below:

Stage: The zeroth stage consists of p cores collectively requesting l clean

blocks.

At the end of zeroth stage, at least one core will have at least l/p holes

associated with it. Without loss of generality, let P1 be one such core. The

first stage consists of request to all the holes associated with P1 and marking

all the other blocks in cache that belong to P1. Since we are assuming that

alg is a process marking algorithm, none of the blocks in cache belonging

to P1 get evicted in later stages. All these holes are now associated with the

other p − 1 cores (P1 does not have any holes associated with it).

At the end of first stage, at least one core will have at least l/(p − 1)

holes associated with it. Without loss of generality, let P2 be one such core.

90



The second stage consists of request to all the holes associated with P2 and

marking all the other blocks in cache that belong to P2 and so on..

In general, at the end of i − 1st stage, at least one core will have at

least l/(p − i + 1) holes associated with it. Without loss of generality, let Pi

be one such core. ith stage consists of request to all the holes associated with

Pi and marking all the other blocks in cache that belong to Pi. After the i
th

stage, Pi will not participate in the future stages.

At the end of p − 1st stage, exactly one core, Pp, will have all the l

holes associated with it. alg could make sure that all the blocks belonging to

Pp get marked before the first hole associated with Pp is requested and thus

ending the marking phase. Hence, the number of stages is at least p (including

the zeroth stage). Let Mi be the number of cache misses incurred by alg in

ith stage. We have the following expression for the cost of alg,

cost(alg) =

p−1�

i=0

Mi

Note that M0 = l and Mi ≥ l/(p − i + 1) (for 1 ≤ i ≤ p − 1).

cost(alg) ≥ l +

p−1�

i=1

l/(p − i + 1)

≥ l

p�

i=1

1/i

≥ lHp

Hence the competitive ratio of any deterministic marking algorithm in the

disjoint memory (h, k)-paging framework is at least max( p+1
k−h+1

, k
k−h+k/Hp

).

Corollary 5.3.3. The competitive ratio of rr-proc-mark is constant when

the size of the optimal offline algorithm’s cache is less than a constant factor

of the size of the online cache replacement algorithm.
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Proof. This is a corollary of Theorem 5.3.1. We shall prove that the competi-

tive ratio of rr-proc-mark is constant when h ≤ c·k for some fixed constant

c < 1.

Theorem 5.3.1 proves that the competitive ratio of rr-proc-mark in

the disjoint memory (h, k)-paging framework is:

Ru ≤ max(
2k

k − h + 2k/(p + 1)
,

2k

k − h + k/(Hp + 2)
)

When h ≤ c · k:

Ru ≤ max(
2(p + 1)

(p + 1)(1 − c) + 2
,

2(Hp + 2)

(Hp + 2)(1 − c) + 1
)

= O(1)

Hence, the competitive ratio of rr-proc-mark is a constant when the

size of the optimal offline algorithm’s cache is less than a constant factor of

the size of the online cache replacement algorithm.

Further, Theorem 5.3.2 proves that the competitive ratio of any deter-

ministic algorithm in the disjoint memory (h, k)-paging framework is:

Rl ≥ max(
p + 1

k − h + 1
,

k

k − h + k/Hp

)

When h ≤ c · k:

Rl ≥ max(
p + 1

k(1 − c) + 1
,

Hp

Hp(1 − c) + 1
)

= O(1)

Hence, the competitive ratio of rr-proc-mark is optimal up to a

constant factor when h ≤ c · k.

Also note that when h = k, the competitive ratio of rr-proc-mark

is at most p + 1 and that of a deterministic process marking algorithm is at

least p + 1.

92



Theorem 5.3.4. The competitive ratio of rand-proc-mark in the disjoint

memory (h, k)-paging framework is at most 2k
k−h+k/(Hp−1+1)

.

Proof. An upper bound of 2Hp−1 + 2 was established on the competitive ratio

of rand-proc-mark in [3]. We aim to establish a bound on the competitive

ratio of rand-proc-mark in the disjoint memory (h, k)-paging framework.

Consider an arbitrary interleaving of the request sequences from all the p cores

and call it σ. We split σ into a number of phases (as per the definition of phase

in rand-proc-mark). Consider a marking phase with l clean block requests

and p� participating cores for analysis. From [3], we have the following bound

on the number of cache misses incurred by rand-proc-mark.

cost(rand-proc-mark) ≤ l(Hp−1 + 1)

On the other hand, opt incurs at least (k − h + l)/2 cache miss per

marking phase in an amortized sense [28]. Hence, the competitive ratio of

rand-proc-mark is:

cost(rand-proc-mark)

cost(opt)
≤
2l(Hp−1 + 1)

k − h + l

Since the number of cache misses incurred by any online marking algo-

rithm is at most k per marking phase, we have the following inequalities,

l(Hp−1 + 1) ≤ k

l ≤ k/(Hp−1 + 1)

Observe that the above expression monotonically increases with l and

hence attain maxima for the maximum value of l. Hence,

cost(rand-proc-mark)

cost(opt)
≤

2k

k − h + k/(Hp−1 + 1)

The upper bound on competitive ratio of rand-proc-mark in the

disjoint memory (h, k)-paging framework is at most 2k
k−h+k/(Hp−1+1)

.

In the remaining part of this section, we establish a bound on the

effective size of the L2 cache for deterministic process marking algorithms in

the disjoint memory framework.
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Notation used in the parallel model with two levels of caches: We

first introduce notation used in the parallel model with two levels caches. We

let k1 and k2 represent the size of the online algorithm’s L1 and L2 cache and

h1 and h2 represent the size of offline algorithm’s L1 and L2 caches respectively.

Effective size of the L2 cache in the parallel model with two levels of

caches: Recall that all process marking algorithms are in fact marking algo-

rithms. Hence the effective size of the L2 cache derived for marking algorithms

in the previous section holds for all the process marking algorithms as well.

Hence the effective size of the L2 cache for rr-proc-mark is k2 when the L2

cache is either inclusive or non-inclusive of the L1 cache and is k1 + k2 when

the L2 cache is exclusive of the L1 cache. These effective cache sizes hold for

rand-proc-mark when a process marking version of the algorithm is used.

5.3.1 Extending to multiple levels of caches

Our results for lru and rr-proc-mark extend from two levels of

caches to multiple levels of caches.

We let the ith levels of cache be represented by Li and let r be the

number of levels of shared caches. The size of the Li cache is represented by

ki for the online algorithm and hi for the offline algorithm.

The Li cache is said to be an inclusive cache if the contents of the Li

cache includes the contents all the lower level caches (L1, L2, . . Li−1) and each

of the lower level cache is inclusive as well. Similarly, the Li cache is said to

be an exclusive cache if the contents of the Li cache are exclusive of all the

lower level caches and each of the lower level cache is exclusive as well. The

Li cache is non-inclusive if neither of these constraints are enforced.

The effective size of the Li cache can be obtained by extended the

proof for effective size of the L2 using induction. The key observation is that a

hierarchy of shared caches can be replaced by single shared cache of size equal

to the effective cache size of the top most cache. Using the effective size of the

Li cache, we can obtain an upper bound on the competitive ratio of lru and

rr-proc-mark.
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Also, note that, the optimal offline algorithm with i levels of shared

caches is an extension of 2-fitf called i-fitf. The optimal offline algorithm

with i levels of shared caches tries to retain the blocks which will be requested

in the recent future at the lowest level caches. Using induction, one can easily

establish that i-fitf is in fact optimal in this model.

In conclusion, the effective size of the top level cache (Lr) when the

cache structure is inclusive or non-inclusive is at most kr for any deterministic

marking algorithm. Further, the effective size of the Lr cache when the cache

structure is exclusive is at most
�

i=1 rkr.

5.4 Case study: Cache architectures in Intel Nehalem
and AMD Shanghai

An in-depth comparison of cache coherent non uniform memory access

(ccNUMA) multiprocessor systems with AMD (Shanghai) and Intel (Nehalem-

EP) quad-core x86-64 processors is presented by Hackenberg et al. [14]. An

overview of the cache structure in these processors is presented below.

Intel 2x Intel Xeon X5570 (Nehalem-EP): Intel’s Nehalem processors

consist of 4 cores connected by point-to-point interconnects. Each of these

cores have an on-chip private L1 and L2 caches. All these cores share a common

L3 cache. Each of the L1 caches are 32 KB and L2 caches are 256 KB. L3 cache

is 8 MB in size and is inclusive of both L1 and L2 caches. Further, the L2

cache is neither inclusive not exclusive of the L1 cache. Nehalem processors

use MESIF protocol in order to maintain cache coherency.

AMD 2x AMD Opteron 2384 (Shanghai): AMD’s Shanghai processors

consist of 4 cores connected by point-to-point interconnects. Each of these

cores have an on-chip private L1 and L2 caches. All these cores share a common

L3 cache. Each of the L1 caches are 64 KB and L2 caches are 512 KB. L3 cache

is 6 MB in size and is non-inclusive of both L1 and L2 caches. Further, the L2

cache is exclusive of the L1 cache. Shanghai processors use MOESI protocol

to maintain cache coherency.
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In Intel Pentium M processors, inclusion was not enforced in the L2

cache since there was not enough difference in the capacities of the L1 and

L2 caches. It can be observed that in case of Nehalem architecture, the size

of L3 cache is nearly 8 times that of all the lower level caches combined. L3

is an off-chip cache and hence inclusion does not consume a lot of useful on-

chip cache memory. Advantages of enforcing non-inclusion over inclusion in

multicore processors with hierarchical caches are discussed by Baer and Wang

[2] and Zahran et al. [30].

Discussion: Our results can be mainly seen as a theoretical backing for

the exclusive caches. We prove that the competitive ratio of marking algo-

rithms like lru is less for an exclusive L2 cache when compared to an inclusive

and non-inclusive L2 cache. The competitive ratio of lru was shown to be
k1+k2

k1+k2−(h1+h2)+1
at an exclusive L2 cache and

k1
k1−(h1+h2)+1

at inclusive and non-

inclusive L2 caches. Observe that k2 ≥ h1 + h2 and hence
k1+k2

k1+k2−(h1+h2)+1
≤

k1
k1−(h1+h2)+1

. Our results validate the experimental findings regarding the su-

periority of exclusive caches [2, 30].

Our results in the parallel disjoint memory (h, k)-paging framework

hold directly for the shared caches in Intel Nehalem and AMD Shanghai pro-

cessors. In this case we assume that each process has full knowledge about its

individual request sequence. The effective cache size the L2 cache was used to

establish bounds on the competitive ratio of rr-proc-mark in this case.

Even though exclusive caches perform better than inclusive and non-

inclusive caches in terms of competitive ratio, the cost involved in maintaining

the exclusivity is usually much higher. Further, in snooping protocol based

caches, the inclusion property makes lower level caches much more effective

by taking care of the cache coherence at higher levels.

96



Table 5.1: Architecture details: Intel-Nehalem and AMD-Shanghai processors

Feature Intel-Nehalem AMD-Shanghai Source
Number of cores 4 4 [14]
Cache Line size 64 Bytes 64 Bytes [14]
L1 cache (private) 32 KB 64 KB [14]
L2 cache (private) 256 KB

non-inclusive of L1

512 KB
exclusive of L1

[14]

L3 cache (shared) 8 MB
inclusive of L1 and
L2

6 MB
non-inclusive of L1

and L2

[14]

Cache coherency pro-
tocol

MESIF MOESI [14]

Does cache line read
into L1 get stored in
L2?

Yes.
The line is first read
into L2 and it is
stored there.

No.
The line is directly
read into L1.

[11] &
[1]

Does cache line read
into L1 get stored in
L3?

Yes.
The line is first read
into L3 and it is
stored there.

No.
The line is directly
read into L1.

[11] &
[1]

Does the evicted
cache line from L1 get
stored in L2?

No. Yes.
Shanghai uses
“victim-caching”.
Evicted line from the
L1 cache is stored in
the L2 cache.

[11] &
[1]

Does the evicted
cache line from L2 get
stored in L3?

No. Depends.
If the evicted line is
being used by others
cores, yes. Else, no.

[11] &
[1]

What happens when a
modified cache line is
requested by another
core?

The cache line is
written back to
the memory and is
marked as shared.

The cache line is
shared without being
written back to the
memory.

[11] &
[1]

What happens when a
modified cache line is
evicted from L1?

The cache line is
written back to the
memory directly.

The cache line is
written back L3 and
then to the memory.

[11] &
[1]

97



Chapter 6

Conclusion and further research

In this thesis, we analyzed cache replacement algorithms at a shared

cache in the multicore setting using the classical competitive analysis. In our

model, we assume that each process has full knowledge about its individual

future request sequence. We also assume that the interleaving of requests

from these processes that reaches the shared cache is assumed to be adver-

sarial for the competitive analysis. In Chapter 4, we established tight bounds

on the competitive ratio of deterministic and randomized cache replacement

algorithms when processes share memory blocks. We also presented a de-

terministic global algorithm called global-maxima which is optimal up to a

constant factor in this framework. The case when processes access disjoint sets

of memory blocks was considered in [8] and [3]. In Chapter 3, we presented

a deterministic algorithm called rr-proc-mark which exactly matched the

lower bound on the competitive ratio of deterministic algorithm when pro-

cesses access disjoint sets of memory blocks. In Chapter 5, we analyzed the

principle of inclusion at a shared L2 cache by computing the competitive ra-

tio of well known cache replacement algorithms. We proved that an exclusive

cache is better than both inclusive and non-inclusive caches; this validates the

experimental findings in the literature.

The algorithm that we proposed in the disjoint memory framework

(rr-proc-mark) is simple and computationally efficient. It is also a fair al-

gorithm since the same number of blocks belonging to each of the participat-

ing process is evicted from the cache during every phase. On the other hand,

global-maxima might be unfair on a few adversarial request sequences. On

a few request sequences, global-maxima evicts blocks requested by some

of the processes more often than the blocks requested by the other processes.

A topic for further research is to develop a fair strategy (along the lines of
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rr-proc-mark) which still remains optimal in the shared memory frame-

work. Other future research problems include the following two problems in

the shared memory framework: closing the gap between the lower bound of
p
2
log 4(k+1)

3p
and the upper bound of 2(p ln ek

p
+ 1) on the competitive ratio

of deterministic algorithms and improving the computational complexity of

global cache replacement algorithms in the shared memory framework. There

is also a gap between the lower and upper bounds on the competitive ratio of

randomized algorithms in both shared and disjoint memory frameworks which

needs to be closed.

On the hierarchical caching front, one can consider extending our results

to a more general hierarchy containing caches in a tree structure. With increase

in number of cores in multicore systems, a natural cache hierarchy consists of

private L1 caches and shared higher level caches where the extent of sharing

increases with the increase in the level of the cache.

The shared memory framework could motivate research on multi-pointer

directed access graphs. The concept of directed access graphs was proposed

in [6] to model the notion of locality of reference in a sequence of instructions

reaching the instruction cache. A topic of further research is to see if we can

apply the concepts developed here to the multi-pointer directed access graph

framework.
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