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Abstract

The k-core of a graph is the maximal induced subgraph with minimum degree k. In this
paper, we �nd conditions under which the k-core of a random graph with a speci�ed degree
sequence almost surely contains a constant fraction of the graph's vertices. This problem has
been studied earlier by Pittel, Spencer and Wormald [10] for the special case of a random graph
drawn from Gn;m.

The existence of a giant k-core in a random graph is related to the probability that the
genealogy tree of a certain branching process contains a perfect in�nite (k � 1)-ary tree. We
provide solutions to both problems in terms of probability generating functions. Our results
apply to random graphs with degree sequences that are smooth and sparse (terms that are
de�ned in the paper), and for which the maximum nonzero degree is o(n1=3), where n is the
number of vertices in the graph.

We apply our main theorem to derive the following results:

� We show that any random graph whose degree sequence satis�es the requirements of our
theorem has a giant 2-core almost surely if and only if it has a giant component.

� We derive some general conditions for distributions with all convergent moments, one
consequence of which is an alternate derivation of a result of Pittel, Spencer, and Wormald
[10] regarding the k-core thresholds for the random graph model Gn;m.

� A degree sequence exhibits a power law if the number of vertices of degree i is proportional
to 1

i�
, for a suitable constant �. Random graphs with power law degree sequences are of

particular interest, since graphs that occur in the real world, including the web graph,
phone-call graphs, networks of molecules, and networks of social interaction, often exhibit
a power law degree sequence. Our �rst result, in conjunction with a result of Aiello, Chung
and Lu [1], establishes that a 2-core exists in a random power law graph if � < 3:47875 : : :.
For k � 3 we show that if 2 < � < 3, a random power law graph almost surely contains
a giant k-core for every constant k � 3, and if � � 3, it almost surely does not contain a
3-core.

This work was supported in part by NSF grant CCR-9988160.
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1 Preliminaries

1.1 Random Graph De�nitions

We begin by providing de�nitions for random graphs with �xed degree sequences (see Molloy and
Reed [8, 9]). A sequence D = fd1; d2; : : : ; dng is graphical if the set 
D of (labelled) graphs with
degree sequence D (i.e. such that the degree of the i'th vertex is di) is nonempty. If D is a graphical
sequence, let G(D) denote a uniformly distributed random element of 
D. Thus G(D) is a random

graph with degree sequence D.
An asymptotic degree sequence D is an in�nite sequenceD1;D2; : : :, where eachDn = fdn;1; : : : ; dn;ng

is a graphical sequence of length n. A random graph with asymptotic degree sequence D, denoted
by G(D), is a sequence of random graphs G(Dn). The random graph G(D) has a property P
asymptotically almost surely (a.a.s.) if the probability that G(Dn) has property P converges to 1
as n ! 1; G(D) has property P with exponentially high probability (w.e.h.p.) if the probability
that G(Dn) has property P is c�
(n

�), for some c > 1 and � > 0.
An asymptotic degree sequence D is smooth if there exists a sequence of real numbers �0; �1; : : :

such that

lim
n!1

jfj : dn;j � igj

n
=
X
j�i

�j (1)

for all i. Note that equation 1 implies that
P

i �i = 1. The sequence �i is the limiting degree

distribution of D. If a degree sequence is smooth then clearly

lim
n!1

jfj : dn;j = igj

n
= �i: (2)

In fact, Molloy and Reed [8] use equation 2 directly as a de�nition of smoothness.
A smooth asymptotic degree sequence is sparse if the limiting degree distribution satis�esX

i

i�i <1 (3)

and if

lim
n!1

Pn
j=1 dn;j

n
=

1X
i=0

i�i: (4)

Throughout this paper, whenever a property of random graph with degree sequence D is described
asymptotically, it is assumed that D is part of a sparse smooth asymptotic degree sequence.

1.2 The Con�guration Model.

It is diÆcult to directly examine random graphs with given degree sequences, so instead we use the
con�guration model (or `CM') introduced by Bollob�as [2]. For a degree sequence D, consider a set
of n vertices and

P
i di endpoints, and assign di endpoints to the vertex vi. Now choose a perfect

matching of the endpoints uniformly at random, and for each pair of matched endpoints, draw an
edge connecting the corresponding vertices.

This procedure generates a graph with degree sequence D; however, the graph may contain
loops and/or multiple edges. We shall abuse notation and refer to such a random (multi-)graph
as a random graph with degree sequence D generated by the con�guration model. De�nitions for
asymptotic degree sequences generalize to the con�guration model in the obvious way.

Under certain circumstances results about random graphs generated by the con�guration model
hold in general for random graphs with the same degree sequence [8, 9]. It is easy to see that every
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simple graph with degree sequence D occurs with the same probability using the con�guration
model. A result of McKay and Wormald [7] implies if the maximum degree of a degree sequence
is o(n1=3) and the average degree is O(1), then a random con�guration produces a simple graph
with probability �(1). In this case, a.a.s. and w.e.h.p. results for the con�guration model clearly
generalize to random graphs in general.

2 The k-core of a Random Graph.

The k-core of a graph G is the unique maximal induced subgraph of G with minimum degree k.
In this section we determine conditions under which a random graph with degree sequence D has
a giant k-core (i.e., a k-core with 
(n) vertices).

Let D be a sparse smooth asymptotic degree sequence with limiting degree distribution f�ig.
We de�ne the residual degree distribution f�jg of D by

�j =
(j + 1)�j+1P1

i=1 i�i
: (5)

Intuitively, if we choose a random endpoint e (working in the con�guration model), then the number
of additional endpoints assigned to the same vertex as e will be a random variable whose distribution
converges to the residual degree distribution. Since D is smooth,

P
i i�i converges, and the residual

degree distribution is well de�ned.
Let

g(q) =
1X
i=0

�iq
i

be the probability generating function [5] for the distribution �i. For r � 0, de�ne

fr(q) =
rX

i=0

(1� q)i

i!
g(i)(q); (6)

where g(i) is the i'th derivative of g, and note that fr(q) is the r'th order Taylor approximation of
g(1) about q, so f0(q) = g(q), f1(q) = g(q) + (1� q)g0(q), and so on.

We now state the main theorem of this paper:

Theorem 2.1 Let D be a sparse smooth asymptotic degree sequence with maximum degree in Dn

being o(n1=3) and with residual degree distribution f�ig. Then

1. If there exists a value q in the interval [0; 1) such that fk�2(q) < q then there exists a constant
C > 0 such that the k-core of G(D) contains at least Cn vertices w.e.h.p.

2. If fk�2(q) > q for all q 2 [0; 1) then for every C > 0, then the k-core of G(D) has less than

Cn vertices w.e.h.p.

The rest of this paper is organized as follows. In subsection 2.1 we present some intuition behind
Theorem 2.1 by appealing to a connection to branching processes (as in [10]); in this subsection we
also present a solution to the related branching process problem. In subsection 2.2 we present the
proof of Theorem 2.1; this proof does not appeal to the result for the branching process, except
for one identity used in that proof. Finally in section 3 we apply Theorem 2.1 to obtain results for
certain types of degree sequences. Due to space constraints, most proofs are sketched and details
are deferred to the Appendix.
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2.1 Random Graphs and Branching Processes.

Intuitively, it is useful to note that a random graph with degree sequence D locally behaves like a
branching process [4] based on the residual distribution f�ig. Pittel, Spencer, and Wormald [10]
noted, using the graph model Gn;m, that a giant k-core in a random graph relates to the probability
of �nding an in�nite (k � 1)-ary subtree of a branching (or genealogy) tree. A similar argument
can be applied to G(D), and details are in the appendix. However, in both cases, this argument is
incomplete and it is not clear that the link to the branching process can be made entirely rigorous.

Nevertheless, the following theorem (complete proof is in the appendix) answers the question
of when a branching process generates a in�nite complete r-ary tree and may be of independent
interest. (This result is tangential to our main result, and is possibly known in the branching
process literature.) In this theorem, the probability distribution f�ig is an arbitrary one, and �i is
the probability that any given node in the branching tree has exactly i children.

Theorem 2.2 Let qr be the smallest �xed point of the function fr (see equation 6) in the inter-
val [0; 1]. Then the probability that a branching process based on the probability distribution f�ig
generates a genealogy tree which contains an in�nite perfect (r + 1)-ary tree is 1� qr.

Proof. (Sketch) Let X be a random variable with distribution f�ig. For any 0 � q � 1, let Zq be
a random variable with distribution

P (Zq = i) =
1X
j=i

�j �

 
j

i

!
qj�i(1� q)i:

Note that P (Zq � r) =
rX

i=0

1X
j=i

�j �

 
j

i

!
qj�i(1� q)i =

rX
i=0

E

" 
X

i

!
qX�i(1� q)i

#
= fr(q):

Now, Z0 has the same distribution as X, hence P (X > r) = 1 � fr(0). From this we derive the

probability of producing an (r + 1)-ary tree of depth d as 1� f
[d]
r (0), where f

[d]
r is the d'th iterate

of fr. Since f 0r(q) � 0 in the interval [0; 1] and fr(1) = 1, it follows that f
[d]
r (0) approaches the

lowest �xed point of fr as d!1.
If we now use the �i as de�ned in equation 5, the informal connection between the existence of

a k-core in G and the existence of an in�nite (k� 1)-ary subtree in the branching process gives an
informal justi�cation of Theorem 2.1.

2.2 Finding the k-core.

In this section we provide a di�erent, more precise argument for the same result as in Theorem 2.2
for the existence of a giant k-core. Since we shall work with the con�guration model, we cannot
guarantee that a given con�guration will produce a simple graph. Nevertheless, the k-core of a
multigraph is well-de�ned as the maximal induced multigraph with minimum degree k.

Our approach is as follows. First, we give describe the CM k-core algorithm, which is a variant
of an algorithm from [10], and which �nds the k-core of a (multi)graph. Then, we determine
the outcome of this algorithm w.e.h.p. under certain conditions. Finally, we conclude that if an
asymptotic degree sequence D is such that the con�guration model produces a simple graph with
probability �(1), then our results will be valid for random simple graphs with degree sequence D.

In order to �nd the k-core of a (multi)graph, the algorithm in [10] chooses a vertex v of degree
less than k, removes all edges incident on v and repeats this procedure until there are no more
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vertices with degree less than k. The remaining edges and vertices will be the (possibly empty)
k-core of the original graph.

We adapt the above algorithm to CM in a natural way. In particular, we shall choose the
random matching used by the CM while the algorithm executes, exposing edges only as they are
needed. When the algorithm terminates, the k-core will remain unexposed, and thus a corollary
to Theorem 2.1 is that the k-core of a random graph with asymptotic degree sequence D is itself a
random graph with a di�erent asymptotic degree sequence and a limiting degree distribution which
can be calculated from the limiting distribution of D.

We �rst de�ne the following random variables to describe the execution of our algorithm. In the
following, t refers to the time step. In each time step, a certain number of endpoints are exposed
and matched. The k-core is found at time step tk. For technical reasons (which will become clear
later) we extend the de�nitions of the random processes past tk.

� G(t) is the state of the graph at time t. The algorithm begins at time 0, and G(0) is a set of
vertices and endpoints according to the degree sequence D.

� An endpoint in G(t) is exposed if it is chosen by the algorithm during a step t0 � t. All of the
endpoints in initial state G(0) are unexposed. (If t � tk, an endpoint is exposed if and only if
its match has been revealed.)

� The unexposed degree of a vertex v in G(t) is the number of unexposed endpoints associated
with v. The unexposed degree of an endpoint is the unexposed degree of its associated vertex.

� Xi(t) denotes the number of vertices of unexposed degree i at time t.

� U(t) = U(0)� 2t. (If t � tk then U(t) is the total number of unexposed endpoints at time t.)

� A vertex is k-light at time t if it has unexposed degree at most k� 1, otherwise it is k-heavy.
An endpoint is k-light or k-heavy if its associated vertex is k-light or k-heavy, respectively.

� H(t) denotes the number of unexposed k-heavy endpoints; H(t) =
P

i�k iXi(t) for all t.

� L(t) = U(t)�H(t). (tk is the �rst time step in which L(tk) becomes zero; if t < tk then L(t)
denotes the number of unexposed k-light endpoints.)

We are now ready to describe our k-core algorithm whose analysis will prove Theorem 2.1.

CM k-core Algorithm

1. If t < tk, we choose a single endpoint e1(t) uniformly at random from the set of all unexposed
k-light endpoints in G(t). We then choose a second endpoint e2(t) uniformly at random from
the set of all unexposed endpoints in G(t), we match e1(t) and e2(t), and we designate the
endpoints e1(t) and e2(t) as exposed. If L(t) = 0 then the k-core has been found.

2. If t � tk, we choose
j

H(t)
U(t)�1

k
unexposed k-heavy endpoints uniformly at random and des-

ignate them as exposed. Then, with probability H(t)
U(t)�1 �

j
H(t)

U(t)�1

k
, we choose another such

endpoint and expose it as well. For simplicity of calculation, these endpoints are chosen with

replacement (if an endpoint is chosen twice in the same time step, it is only exposed once).
Note that endpoints that are exposed in this part of the algorithm are not actually matched,
as they are in part one; once the k-core has been found, designating endpoints as exposed is
merely an accounting tool.
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We now explain the intuition behind the above CM k-core algorithm. The process in part 1 is
clear: for each t < tk, it exposes a match for a k-light endpoint until no k-light endpoint remains.
While t < tk, the following two properties follow directly from the de�nitions:

1. U(t+ 1) = U(t)� 2.

2. Any given unexposed k-heavy endpoint remains unexposed with probability 1� 1
U(t)�1 .

We have extended our random processes beyond time tk in part 2 in such a way that these two
properties continue to hold (approximately). To see this, let tk � t < U(0)=2 (note that since two
endpoints are exposed at each step of part 1, the algorithm can run for at most U(0)=2 steps). In
order to satisfy property 1, we have de�ned U(t) = U(0)� 2t for all t.

For property 2, we would like each k-heavy endpoint to have a 1
U(t)�1 probability of becoming

exposed at time t. If H(t) � Ut�1 this is easy: with probability H(t)
U(t)�1 , we choose a single k-heavy

endpoint uniformly at random and expose it. However, for t � tk it is possible that H(t) � U(t), in

which case we obviously cannot perform any action with probability H(t)
U(t)�1 > 1. However, by �rst

exposing
j

H(t)
U(t)�1

k
k-heavy endpoints, and then, with probability H(t)

U(t)�1 �
j

H(t)
U(t)�1

k
exposing one

additional such endpoint, each k-heavy endpoint becomes exposed with probability approximately
1

U(t)�1 :

2.3 Proof of Theorem 2.1.

We prove Theorem 2.1 as follows. First, we calculate the expected values of the Xi(t) and H(t),
and then we prove that H(t) concentrates around its expectation w.e.h.p. Then, if there exists a t
such that E[H(t)] � E[U(t)] is suÆciently large, H(t) > U(t) must occur w.e.h.p., and the k-core
will have been found by time t (also w.e.h.p.). Finally, we show that these conditions are equivalent
to the conditions we derived informally using the branching process argument.

First, we de�ne p(t) =

�
U(t)

U(0)

�1=2
:

Intuitively, p(t) might be considered the approximate probability that an endpoint remains unex-
posed at time t. However, this is not quite correct, since once an endpoint becomes k-light, it is
much more likely to become exposed. The meaning of p(t) is more clearly expressed in the following
lemma.

Lemma 2.3 For i � k, and for t = O(U(t)),

E

�
Xi(t)

n

�
=

1X
j=i

�j

 
j

i

!
p(t)i(1� p(t))j�i � o(1): (7)

Proof. (Sketch.) Let Pi;j(t) denote the probability that a vertex of original degree j has exactly
i unexposed endpoints at time t. Since vertices of original degree j are initially indistinguishable,
Pi;j is well de�ned, and

E[Xi(t)] =
1X
j=i

Xj(0)Pi;j(t):

We will show that Pi;j(t) =

 
j

i

!
p(t)i(1�p(t))j�i�o(1) (8)
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for every j. Then,

E

�
Xi(t)

n

�
=

1X
j=i

Xj(0)

n

  
j

i

!
p(t)i(1� p(t))j�i � o(1)

!

=
hX
j=i

(�j � o(1))

  
j

i

!
p(t)i(1� p(t))j�i � o(1)

!
+O

0
@ 1X
j=h

Xj(0)

n

1
A

=
1X
j=i

�j

 
j

i

!
p(t)i(1� p(t))j�i � o(1) (see Appendix for details)

To derive equation 8, choose a vertex v of original degree j, choose any i of v's endpoints, and
assume that these i endpoints are unexposed at time t. We shall calculate the probability that they
remain unexposed at time t+ 1.

First, suppose t < tk, so we are in part 1 if the algorithm. Then, at time t, a single light
endpoint is picked and matched to an unexposed endpoint chosen uniformly at random from the
U(t)� 1 remaining unexposed endpoints. Thus the probability that our set of i endpoints remain

unexposed is U(t)�1�i
U(t)�1 :

Next, suppose t � tk. Let r =
j

H(t)
U(t)�1

k
and s = H(t)

U(t)�1 � r, and therefore r+ s = H(t)
U(t)�1 . Recall

that in part 2 of the algorithm, we pick r unexposed k-heavy endpoints uniformly at random (with
replacement) and designate them as exposed, and with probability s we expose an additional such
endpoint. Also, note that since H(t) � U(0) and U(t) = �(U(0)), we have r = O(1).

Now, in order for every one of our given set of i endpoints to remain unexposed, none of the r
uniformly chosen endpoints, nor the additional endpoint chosen with probability s can be a member
of our set. We sample with replacement, so the probability of this occurring is�

H(t)� i

H(t)

�r �H(t)� si

H(t)

�
:

After suitable simpli�cation (see appendix) this probability becomes

�
U(t)� 1� i

U(t)� 1

��
1�O

�
1

U(t)2

��
:

Thus, assuming t = O(U(t)), the probability that the i endpoints remain unexposed through t
steps, written as a function of U(0) and t, is

fi(U(0); t) =
t�1Y
j=0

�
U(j)� 1� i

U(j)� 1

��
1�O

�
1

U(j)2

��

=
(U(0) � 1� i)(U(0) � 3� i) � � � (U(0) � 2t+ 1� i)

(U(0)� 1)(U(0) � 3) � � � (U(0)� 2t+ 1)

�
1�O

�
t

U(t)2

��
:

Note that

fi(U(0); t) � fi(U(0) � 1; t) =
(U(0) � i)(U(0) � 1� i)(U(0) � 2� i)) � � � (U(0) � 2t� i)

(U(0))(U(0) � 1)(U(0) � 2) � � � (U(0) � 2t)
� (1� o(1))

=

�
U(t)

U(0)

�i
� o(1) (since i is constant and U(0) grows with n).

Therefore, fi(U(0); t) =

�
U(t)

U(0)

�i=2
� o(1) = p(t)i � o(1)
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Using inclusion-exclusion, Pi;j =
X

i�i0�j

(�1)i
0�i

 
j

i0

!
p(t)i

0

� o(1) =

 
j

i

!
p(t)i(1� p(t))j�i � o(1)

This establishes equation 8 and hence the lemma is proved.

Lemma 2.4 Fix � > 0. For t < U(0)
2 (1� �), P

�
jH(t)�E[H(t)]j > �(n2=3)

�
< e��(n1=3):

Proof. (Sketch.) For t �xed we de�ne the random process Y (t0) = E[H(t)jG(t0)] for 0 � t0 � t.
Y is a martingale by de�nition, and clearly Y (t) = H(t). We show that Azuma's inequality is
applicable, and the result follows. See appendix for details.

Corollary 2.5 For any � > 0, with probability 1 � e�O(n1=3), jH(t)�E[H(t)]j = o(1) for all

1 � t � U(0)=2(1 � �).

We are now ready to prove Theorem 2.1.
Proof of Theorem 2.1. (Sketch, see appendix for details.) Note that by Lemma 2.3

E[H(t)]

U(0)
=

1

U(0)

1X
i=k

E[iXi(t)] =
n

U(0)

1X
i=k

i
1X
j=i

�j

 
j

i

!
p(t)i(1� p(t))j�i � o(1)

=
n

U(0)

1X
j=k

jX
i=k

j�j

 
j � 1

i� 1

!
p(t)i(1� p(t))j�i � o(1):

Letting B(p; i; j) =
�j
i

�
pi(1� p)j�i; we continue

E[H(t)]

U(0)
=

n

U(0)

1X
j=k

j�jp(t)
jX

i=k

B(p(t); i� 1; j � 1)� o(1)

=
n

U(0)

1X
j0=k�1

(j0 + 1)�j0+1p(t)

 
1�

k�2X
i0=0

B(p(t); i0; j0)

!
� o(1)

Now we substitute �j =
(j+1)�j+1P

i
i�i

, and, noting that
P

i i�i =
U(0)
n (1� o(1)); we proceed

E[H(t)]

U(0)
=

1X
j0=k�1

�j0p(t)

 
1�

k�2X
i0=0

B(p(t); i0; j0)

!
� o(1)

= p(t)

0
@1� k�2X

i0=0

1X
j0=i0

�j0B(p(t); i
0; j0)

1
A� o(1) (see Appendix for details)

Since p(t) = (U(t)=U(O))1=2, we write U(t)=U(0) = p(t)2: Note that if H(t) � U(t), then the
k-core of G has been found, and if H(t) < U(t) for all t then there is no k-core. Due to corollary
2.5, H(t)=U(0) = E[H(t)=U(0)] � o(1) w.e.h.p. Therefore, if there exists a value t such that

p(t)

0
@1� k�2X

i0=0

1X
j0=i0

�j0B(p(t); i
0; j0)

1
A� p(t)2 = �(1) (9)
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then G(D) has a k-core containing at least U(t) endpoints w.e.h.p., and if

p(t)

0
@1� k�2X

i0=0

1X
j0=i0

�j0B(p(t); i
0; j0)

1
A� p(t)2 = ��(1): (10)

for all t � (1� �)U(0)=2, then the k-core of G(D) contains less than U(0)(1� �) endpoints w.e.h.p.
Now, let X be a random variable with distribution f�ig, and recall that g(q) = E[qX ] is the

probability generating function. We set q(t) = 1 � p(t), and the left hand side of equations 9 and
10 becomes

k�2X
i=0

1X
j=i

�jB(q(t); j; i) � q(t) =
k�2X
i=0

1X
j=i

�j

 
j

i

!
q(t)j�i(1� q(t))i � q(t) = fk�2(q(t))� q(t);

(using the identity fk�2(q(t)) =
k�2X
i=0

1X
j=i

�j

 
j

i

!
q(t)j�i(1� q(t))i derived in proof of Theorem 2.2):

Since � can be made arbitrarily small, the conditions established in equations 9 and 10 are equivalent
to the statement of Theorem 2.1.

3 Verifying the k-core Conditions.

Theorem 2.1 gives conditions under which a giant k-core is asymptotically present in a random
graph with �xed degree sequence. Essentially, a k-core is present if the function fk�2 has a non-
critical �xed point in the interval [0; 1). However, determining whether such a �xed point exists
for arbitrary degree distributions can be a non-trivial task. In this section we solve the problem in
certain special cases and we discuss methods for �nding such �xed points in other situations.

3.1 The Giant 2-core.

Theorem 3.1 Let D be a sparse smooth asymptotic degree sequence with maximum degree o(n1=3)
and with residual degree distribution f�ig. Then

1. If
P

i i�i > 1 then there exists a constant C such that the 2-core of G(D) contains � Cn vertices

w.e.h.p.

2. If
P

i i�i � 1 then for every C > 0, the 2-core of G(D) contains less Cn vertices w.e.h.p.

Proof. The conditions necessary for an asymptotic degree sequence to produce a giant 2-core
w.e.h.p. according to theorem 2.1 are that f0(q) = g(q) must have a �xed point in the interval
[0; 1). This is equivalent to the condition that a f�ig branching process survives with positive
probability. Since g has all positive derivatives in [0; 1), and since g(1) = 1 and g(0) � 0, it is well
known that g has such a �xed point if and only if g0(1) =

P
i i�i > 1.

From the results in [8, 9] for the a.a.s. presence of a giant component we can obtain the following.

Corollary 3.2 A random graph G with a sparse smooth degree sequence has a giant 2-core a.a.s.

if and only if it has a giant component a.a.s.

8



3.2 Distributions with All Convergent Moments.

For k > 2 the conditions necessary for a giant k-core are less easily veri�ed, since it is not necessarily
true that fk�2 will have all positive derivatives. Here we consider the case where all of the moments
of the distribution f�ig are convergent. Let X be a random variable with distribution f�ig. By
assumption, g(i)(1) = E[X(X�1) � � � (X� i+1)] = �i, the i'th factorial moment of the distribution
f�ig, is �nite for all i. This allows us to write

g(q) =
1X
i=0

(q � 1)i

i!
g(i)(1) =

1X
i=0

(q � 1)i

i!
�i:

We can now express fr as a power series in (q � 1) (see appendix for details)

fr(q) =
rX

i=0

(1� q)i

i!
g(i)(q) = 1 + (�1)r

1X
j=r+1

(q � 1)j

j!
�j

 
j � 1

r

!
:

We write p = 1 � q, and note that and �nding a �xed point fr(1 � p) = 1� p is equivalent to
solving

1� p = 1 + (�1)r
1X

j=r+1

(�p)j

j!
�j

 
j � 1

r

!
:

In order to ascertain the presence of a giant k-core w.e.h.p., we must �nd a point where fk�2(q) < q,
or

p+ (�1)k
1X

j=k�1

pj
(�1)j

j!
�j

 
j � 1

k � 2

!
< 0: (11)

3.2.1 Application to Gn;m.

As shown by Molloy and Reed [8], the Erdos-Renyi random graph model Gn;m produces a random
graph with a Poisson degree distribution, and thus results derived for random graphs with a speci�ed
Poisson distribution are valid for Gn;m. Since a Poisson distribution has all convergent moments,
we can re-derive some of the results of Pittel, Spencer, and Wormald [10] regarding the k-core of
Gn;m.

Consider a random graph whose limiting degree distribution is a Poisson distribution with
expected value r, so �i =

rie�r

i! . We have

�i =
(i+ 1)�i+1P

i �i
= �i;

i.e., the residual degree distribution is identical to the limiting degree distribution.
Now, the factorial moments of a Poisson distribution are �j = rj. Using equation 11, if

p+ (�1)k
1X

j=k�1

(pr)j
(�1)j

j!

 
j � 1

k � 2

!
< 0

has a solution, then Gn;m with expected degree r has a giant k-core w.e.h.p. Let

Ck(x) = (�1)k+1
1X

j=k�1

xj
(�1)j

j!

 
j � 1

k � 2

!
;

and let x = pr. Then we must solve x=r�Ck(x) < 0 or x=Ck(x) < r. Thus the giant k-core threshold
for the average degree r in Gn;m occurs at min x

Ck(x)
, which is essentially the same condition as in

[10].
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3.3 Power Law Graphs

Several massive graphs that occur in the real-world, including the web graph, have degree sequences
that obey a power law [6], thus there has been considerable interest in understanding the properties
of massive power law graphs. One approach to studying such graphs, introduced by Aiello, Chung,
and Lu [1], is to generate random graphs with power law degree sequences.

A degree sequence obeys a power law if the number of vertices of degree i is proportional to i��

for some �. If � � 2, this degree sequence is not sparse, but for � > 2, this power law graph can
be characterized by a smooth sparse asymptotic degree sequence with

�i =
1

�(�)

1

i�
;

where �(�) =
P1

i=1 i
�� is the Riemann Zeta function. The corresponding residual endpoint distri-

bution is

�i =
1

�(� � 1)

1

(i+ 1)��1
:

Since the number of vertices of degree i is approximately n�i, and �i = �(i��), it might be
natural to consider the largest degree in a random power law graph to be �(n1=�). This is the
assumption made by [1]. The con�guration model and Theorem 2.1 require that the maximum
degree of a degree sequence be o(n1=3), and hence for � < 3, this power-law graph model would
violate the CM maximum degree requirement. However, we may extend our results to the maximum
degree bound in the power law model of [1] by the following mechanism. There are O(n1�Æ) edges
incident on vertices of degree greater than n1=3�� for some Æ > 0 when � > 2. Consider exposing
the edges of such a graph in the con�guration model by �rst placing the edges of these high degree
vertices in any (adversarial) manner while respecting the degree constraints on the other vertices.
Then apply the con�guration model mechanism to the graph represented by the residual degrees of
the remaining vertices. Since only O(n1�Æ) endpoints are a�ected, the resulting degree distribution
is indistinguishable from the starting power-law distribution with respect to smoothness, hence the
result in [7] continues to hold for this residual graph, which implies (from the result in Theorem
3.3 below) that the overall graph continues to have a k-core w.e.h.p.

As in Section 3.1, the a.a.s existence of a giant 2-core in a random power-law graph is equivalent
to the a.a.s. existence of a giant component, which appears if � < 3:47875 : : : [1]. For k � 3, we
have the following theorem.

Theorem 3.3 Let k � 3 be an integer constant.

1. For � � 3, a random power law graph does not have a giant k-core w.e.h.p.

2. For 2 < � < 3, a random power law graph has a giant k-core w.e.h.p.

Proof. (Sketch.) Since fr(q) =
Pr

i=0
(1�q)i

i! g(i)(q), we derive

f 0r(q) =
rX

i=0

(1� q)i

i!
g(i+1)(q)�

rX
i=1

(1� q)(i�1)

(i� 1)!
g(i)(q)

=
1

r!

g(r+1)(q)P1
i=0

�i+r�1
r�1

�
qi

(see appendix for details)
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Figure 1: Plot of the size of k-core as a function of �, for 2 < � < 3 and for k = 3; 4; 5: Here the
y axis is the asymptotic value of p(t) at which the k-core algorithm terminates, and the x-axis is
�. Since the 3-core is the largest, the top curve corresponds to the 3-core, and the bottom curve
corresponds to k = 5.

We show that if � � 3, then f 0r(q) �
1

r�(��1) < 1 for all 0 � q � 1, and since fr(1) = 1, it

follows that fr(q) > q for all q in the interval [0; 1). For � < 3, we show that limq!1 f
0
r(q) = 1,

and thus fr(1� Æ) < 1� Æ for Æ suÆciently small. (See appendix for details).
To determine the presence of a giant k-core, we examine the function fk�2. Hence, for k � 3,

a power law graph with 2 < � < 3 w.e.h.p. has a giant k-core, and a power law graph with � � 3
w.e.h.p. does not have a giant k-core.

For 2 < � < 3, we can also calculate the size of the k-core of a random power law graph. Figure
1 plots the asymptotic value of p(t) at which the k-core algorithm terminates as a function of �, for
k = 3, 4, and 5. The value of p(t) measures the fraction of initially k-heavy vertices which belong
to the k-core.
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APPENDIX

A Details of Section 2.1: Random Graphs and Branching Pro-

cesses.

Intuitively, it is useful to note that a random graph with degree sequence D locally behaves like a
branching process [4] based on the residual distribution f�ig. So see this, choose a single endpoint
s, and de�ne random elements t and v, where t is the endpoint matched to s, and v is the vertex
to which t belongs. Let Xs be the random variable given by Xs = i if the degree of v is i. Since
each vertex of degree j has j chances of matching to s, then Xs asymptotically satis�es

P (Xs = i) =
i�iP
i �i

:

Now, de�ne the residual degree of s to be a the random variable Ys = Xs � 1. The residual
degree of s counts the number of endpoints belonging to v other than t. For any endpoint s, the
residual degree of s asymptotically satis�es

P (Ys = i) =
(i+ 1)�i+1P

i �i
= �i;

where the �i are as de�ned in equation 5.
The residual degrees of the endpoints belonging to v other than t are identically distributed

and almost independent from Ys. So the sum of the residual degrees of all of the endpoints of
v other than t is a random variable given by the sum of Ys almost i.i.d. copies of Ys. As we
grow progressively larger neighborhoods of our initial endpoint s, the conditional residual degree
distributions will eventually change substantially. Nevertheless, it is heuristically useful to imagine
(or hope) that, at least locally, the residual degree distributions of all endpoints are i.i.d. random
variables with distribution f�ig. This allows us to treat the sizes of the neighborhoods of s as a
branching process based on the residual degree distribution.

We now return to the question of a giant k-core in the random graph G(D). Pittel, Spencer, and
Wormald [10] noted, using the graph model Gn;m, that a giant k-core in a random graph relates to
the probability of �nding an in�nite (k�1)-ary subtree of a branching tree. The following informal
argument is taken from [10].

Choose any vertex v in G(D), and let us attempt to determine whether or not v is in the k-core
of G(D). Clearly, v must have degree at least k to be part of the k-core. Furthermore, v must have
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at least k endpoints each of whom have residual degree at least k � 1, and these k � 1 neighbors
must in turn have k endpoints of residual degree at least k�1 and so on. If we assume that residual
degrees are i.i.d. random variables, then in order for v to be in the k-core of G(D), v must have k
endpoints which generate branching trees containing a complete (k � 1)-ary tree.

Of course, this argument is incomplete. As pointed out in [10], it is not clear that the link
to the branching process can be made entirely rigorous; in particular, we have only argued that
producing a complete (k � 1)-ary branching tree with positive probability is necessary for a giant
k-core. We are not aware of an equally simple argument that this condition is suÆcient. Further,
the assumption that the residual degrees are i.i.d. random variables is not accurate. Thus, the
branching process argument should be treated as an intuitive explanation or perhaps as a guess at
the true solution.

Nevertheless, the following theorem answers the question of when a branching process generates
a in�nite complete k-ary tree and may be of independent interest. (This result is tangential to our
main result, and is possibly known in the branching process literature.) In this theorem (only), the
probability distribution f�ig is an arbitrary one, and necessarily the distribution de�ned in equation
5; here �i is the probability that any given node in the branching tree has exactly i children..

Theorem A.1 (Theorem 2.2) Let qr be the smallest �xed point of the function fr in the inter-

val [0; 1]. Then the probability that a branching process based on the probability distribution f�ig
generates a genealogy tree which contains an in�nite perfect (r + 1)-ary tree is 1� qr.

Proof. The argument is similar to the classical result regarding the survival probability of a
branching process [4]. Let X be a random variable with distribution f�ig. For any 0 � q � 1, let
Zq be a random variable with distribution

P (Zq = i) =
1X
j=i

�j �

 
j

i

!
qj�i(1� q)i:

Note that

P (Zq � r) =
rX

i=0

1X
j=i

�j �

 
j

i

!
qj�i(1� q)i

=
rX

i=0

E

" 
X

i

!
qX�i(1� q)i

#

=
rX

i=0

(1� q)i

i!
E

�
X!

(X � i)!
qX�i

�

=
rX

i=0

(1� q)i

i!
g(i)(q)

= fr(q):

Now, consider the genealogy tree of a branching process based on X. First, we calculate the
probability that the root of the genealogy tree has at least r + 1 children. Since Z0 has the same
distribution as X, then P (X > r) = 1� fr(0). In order to produce an (r + 1)-ary tree of depth 2,
then the root must have at least r + 1 children, each of whom produce r + 1 grandchildren. Each
child has probability 1� fr(0) of producing at least (r+1) grandchildren, thus the number of such
children is a random variable with distribution Zfr(0). Accordingly, the probability of producing
an (r + 1)-ary tree of depth 2 is 1� fr(fr(0)).
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In general, producing an (r + 1)-ary tree of depth d is equivalent to having at least (r + 1)
children who produce (r + 1)-ary trees of depth d � 1. Thus, we inductively conclude that the

probability of an (r+1)-ary tree of depth d is 1� f
[d]
r (0), where f

[d]
r is the d'th iterate of fr. Since

fr(q)
0 � 0 in the interval [0; 1] and fr(1) = 1, then f

[d]
r (0) approaches the lowest �xed point of fr

as d!1.

B Details of Section 2.3: Proof of Theorem 2.1.

We prove Theorem 2.1 as follows. First, we calculate the expected values of the Xi(t) and H(t),
and then we prove that H(t) concentrates around its expectation w.e.h.p. Then, if there exists a t
such that E[H(t)] � E[U(t)] is suÆciently large, H(t) > U(t) must occur w.e.h.p., and the k-core
will have been found by time t (also w.e.h.p.). Finally, we show that these conditions are equivalent
to the conditions we derived informally using the branching process argument.

First, we de�ne

p(t) =

�
U(t)

U(0)

�1=2
:

Intuitively, p(t) might be considered the approximate probability that an endpoint remains unex-
posed at time t. However, this is not quite correct, since once such an endpoint becomes k-light,
it is much more likely to become exposed. The meaning or p(t) is more clearly expressed in the
following lemma.

Lemma B.1 (Lemma 2.3) For i � k, and for t = O(U(t)),

E

�
Xi(t)

n

�
=

1X
j=i

�j

 
j

i

!
p(t)i(1� p(t))j�i � o(1): (equation 7)

Proof. Let Pi;j(t) denote the probability that a vertex of original degree j has exactly i unexposed
endpoints at time t. Since vertices of original degree j are initially indistinguishable, Pi;j is well
de�ned, and

E[Xi(t)] =
1X
j=i

Xj(0)Pi;j(t):

We will show that

Pi;j(t) =

 
j

i

!
p(t)i(1� p(t))j�i � o(1) (equation 8)

for every j. Then,

E

�
Xi(t)

n

�
=

1X
j=i

Xj(0)

n

  
j

i

!
p(t)i(1� p(t))j�i � o(1)

!

=
hX
j=i

Xj(0)

n

  
j

i

!
p(t)i(1� p(t))j�i � o(1)

!
+

1X
j=h

Xj(0)

n

  
j

i

!
p(t)i(1� p(t))j�i � o(1)

!

=
hX
j=i

(�j � o(1))

  
j

i

!
p(t)i(1� p(t))j�i � o(1)

!
+O

0
@ 1X
j=h

Xj(0)

n

1
A :
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Since h is constant, we have a constant number of o(1) terms in the left summation, which can be
consolidated. Then, using the smoothness condition, we have

E

�
Xi(t)

n

�
=

hX
j=i

�j

 
j

i

!
p(t)i(1� p(t))j�i � o(1) +O

0
@ 1X
j=h

�j

1
A :

If we let h grow arbitrarily large, the O
�P1

j=h �j
�
term becomes arbitrarily small. Thus, by �rst

choosing h suÆciently large, and then choosing n suÆciently large,������E
�
Xi(t)

n

�
�

1X
j=i

�j

 
j

i

!
p(t)i(1� p(t))j�i

������
can be made arbitrarily small, yielding equation 7.

To derive equation 8, choose a vertex v of original degree j, choose any i of v's endpoints, and
assume that these i endpoints are unexposed at time t. We shall calculate the probability that they
remain unexposed at time t+ 1.

First, suppose t < tk, so we are in part 1 if the algorithm. Then, at time t, a single light
endpoint is picked and matched to an unexposed endpoint chosen uniformly at random from the
U(t)� 1 remaining unexposed endpoints. Thus the probability that our set of i endpoints remain

unexposed is U(t)�1�i
U(t)�1 :

Next, suppose t � tk. Let r =
j

H(t)
U(t)�1

k
and s = H(t)

U(t)�1 � r, and therefore r+ s = H(t)
U(t)�1 . Recall

that in part 2 of the algorithm, we pick r unexposed k-heavy endpoints uniformly at random (with
replacement) and designate them as exposed, and with probability s we expose an additional such
endpoint. Also, note that since H(t) � U(0) and U(t) = �(U(0)), then r = O(1).

Now, in order for every one of our given set of i endpoints to remain unexposed, none of the r
uniformly chosen endpoints, nor the additional endpoint chosen with probability s can be a member
of our set. We sample with replacement, so the probability of this occurring is�

H(t)� i

H(t)

�r �H(t)� si

H(t)

�
:

If H(t) < U(t) then r = 0, and this is simply

H(t)=s� i

H(t)=s
=

U(t)� 1� i

U(t)� 1
:

Otherwise, since r and i are O(1) we calculate�
1�

i

H(t)

�r �
1�

si

H(t)

�
= 1�

(r + s)i

H(t)
�O

�
1

H(t)2

�

=

�
1�

(r + s)i

H(t)

��
1�O

�
1

H(t)2

��

=

�
U(t)� 1� i

U(t)� 1

��
1�O

�
1

H(t)2

��
:

Since H(t) � U(t), then O(H(t)�2) = O(U(t)�2), and this probability can be written�
U(t)� 1� i

U(t)� 1

��
1�O

�
1

U(t)2

��
:
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Assuming t = O(U(t)), the probability that the i endpoints remain unexposed through t steps,
written as a function of U(0) and t, is

fi(U(0); t) =
t�1Y
j=0

�
U(j)� 1� i

U(j)� 1

��
1�O

�
1

U(j)2

��

=
(U(0) � 1� i)(U(1) � 1� i) � � � (U(t� 1)� i)

(U(0) � 1)(U(1) � 1) � � � (U(t� 1)� 1)

�
1�O

�
1

U(t)2

��t

=
(U(0) � 1� i)(U(0) � 3� i) � � � (U(0) � 2t+ 1� i)

(U(0)� 1)(U(0) � 3) � � � (U(0)� 2t+ 1)

�
1�O

�
t

U(t)2

��
:

Note that

fi(U(0); t) � fi(U(0) � 1; t) =
(U(0) � i)(U(0) � 1� i)(U(0) � 2� i)(U(0) � 3� i) � � � (U(0)� 2t� i)

(U(0))(U(0) � 1)(U(0) � 2)(U(0) � 3) � � � (U(0) � 2t)
�

(1� o(1))

=
(U(0)� 2t� 1) � � � (U(0) � 2t� i)

(U(0))(U(0) � 1) � � � (U(0) � i+ 1)
� (1� o(1))

=

�
U(t)

U(0)

�i
� o(1) (since i is constant and U(0) grows with n).

Therefore

fi(U(0); t) =

�
U(t)

U(0)

�i=2
� o(1) = p(t)i � o(1):

Using inclusion-exclusion,

Pi;j =
X

i�i0�j

(�1)i
0�i

 
j

i0

!
p(t)i

0

� o(1) =

 
j

i

!
p(t)i(1� p(t))j�i � o(1):

This establishes equation 8 and hence the lemma is proved.

Lemma B.2 Fix � > 0. For t < U(0)
2 (1� �),

P
�
jH(t)�E[H(t)]j > �(n2=3)

�
< e��(n1=3):

Proof. For t �xed we de�ne the random process

Y (t0) = E[H(t)jG(t0)]

for 0 � t0 � t. Y is a martingale by de�nition, and clearly Y (t) = H(t).
We now establish bounded di�erences for Y . Note that

E[H(t)jG(t0)] =
X
i�k

f(i; t0)iXi(t
0)

where f(i; t0) is the probability that an endpoint with unexposed degree i at time t0 remains both
heavy and unexposed at time t. We claim that jf(i; t0)i� f(i� 1; t0)(i� 1)j = O(1).

By linearity, f(i; t0)i is the expected number of k-heavy endpoints at time t produced by a
vertex of unexposed degree i at time t0. There are two ways an endpoint can fail to be heavy and
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unexposed; accordingly, let a(i; t0) denote the expected number of endpoints from a degree i vertex
which become exposed before time t, and let b(i; t0) denote the probability that a vertex of degree
i at time t0 becomes k-light before time t. Then

f(i; t0)i = i� a(i; t0)� kb(i; t0):

Clearly, ja(i� 1; t0)� a(i; t0)j � 1; so

��f(i; t0)i� f(i� 1; t0)(i� 1)i
�� � i� (i� 1) +

��a(i� 1; t0)� a(i; t0)
��+ k

��b(i� 1; t0)� b(i; t0)
��

= i� (i� 1) + 1 + k;

and since k is constant, this is O(1).
Now, O(1) vertices change unexposed degree at time t0, thus

Y (t0 + 1)� Y (t0) =
X
i�k

(f(i; t0)� f(i; t0 + 1))(iXi(t
0))�O(1);

always. Since E[Y (t0 + 1)� Y (t0)] = 0 it follows that������
X
i�k

(f(i; t0)� f(i; t0 + 1))(Xi(t
0))

������ = O(1):

Hence jY (t0 + 1)� Y (t0)j = O(1).
By Azuma's inequality,

P
�
jY (t)�E[Y (t)]j > �(n2=3)

�
< e��(n4=3=t):

Since t = O(n) and Y (t) = H(t), the proof is complete.

Corollary B.3 2.5 For any � > 0, with probability 1� e�O(n1=3),

jH(t)�E[H(t)]j = o(1)

for all 1 � t � U(0)=2(1 � �).

Proof. This follows immediately since U(0) = O(n), and O(n)e��(n1=3) = e�O(n1=3).
Proof of Theorem 2.1. Note that by Lemma 2.3

E[H(t)] =
1X
i=k

E[iXi(t)]

E[H(t)]

U(0)
=

n

U(0)

1X
i=k

i
1X
j=i

�j

 
j

i

!
p(t)i(1� p(t))j�i � o(1)

=
n

U(0)

1X
i=k

1X
j=i

j�j
(j � 1)!

(i� 1)!(j � i)!
p(t)i(1� p(t))j�i � o(1)

=
n

U(0)

1X
j=k

jX
i=k

j�j

 
j � 1

i� 1

!
p(t)i(1� p(t))j�i � o(1):
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Letting B(p; i; j) =
�j
i

�
pi(1� p)j�i; we continue

E[H(t)]

U(0)
=

n

U(0)

1X
j=k

j�jp(t)
jX

i=k

B(p(t); i� 1; j � 1)� o(1)

=
n

U(0)

1X
j0=k�1

(j0 + 1)�j0+1p(t)
j0X

i0=k�1

B(p(t); i; j0)� o(1)

=
n

U(0)

1X
j0=k�1

(j0 + 1)�j0+1p(t)

 
1�

k�2X
i0=0

B(p(t); i0; j0)

!
� o(1);

with the last substitution resulting from the fact that
Pj0

i0=0B(p(t); i
0; j0) = 1.

Now we substitute �j =
(j+1)�j+1P

i
i�i

, and, noting that
P

i i�i =
U(0)
n (1� o(1)); we proceed

E[H(t)]

U(0)
=

1X
j0=k�1

�j0p(t)

 
1�

k�2X
i0=0

B(p(t); i0; j0)

!
� o(1)

= p(t)

0
@ 1X
j0=k�1

�j0 �
1X

j0=k�1

k�2X
i0=0

�j0B(p(t); i
0; j0)� o(1)

1
A

= p(t)

0
@
0
@1� k�2X

j0=0

�j0

1
A�

1X
j0=k�1

k�2X
i0=0

�j0B(p(t); i
0; j0)

1
A� o(1)

= p(t)

0
@1� k�2X

j0=0

j0X
i0=0

B(p(t); i0; j0)�j0 �
1X

j0=k�1

k�2X
i0=0

�j0B(p(t); i
0; j0)

1
A� o(1)

= p(t)

0
@1� k�2X

i0=0

1X
j0=i0

�j0B(p(t); i
0; j0)

1
A� o(1):

Since p(t) = (U(t)=U(O))1=2, we write U(t)=U(0) = p(t)2: Note that if H(t) � U(t), then the
k-core of G has been found, and if H(t) < U(t) for all t then there is no k-core. Due to corollary
2.5, H(t)=U(0) = E[H(t)=U(0)] � o(1) w.e.h.p. Therefore, if there exists a value t such that

E[H(t)=U(0)] � p(t)2 = �(1);

then G(D) has a k-core containing at least U(t) endpoints w.e.h.p., and if

E[H(t)=U(0)] � p(t)2 = ��(1)

for all t � (1� �)U(0)=2, then the k-core of G(D) contains less than U(0)(1� �) endpoints w.e.h.p.
These �rst condition can be written

p(t)

0
@1� k�2X

i0=0

1X
j0=i0

�j0B(p(t); i
0; j0)

1
A� p(t)2 = �(1) (equation 9)

p(t)

0
@1� k�2X

i0=0

1X
j0=i0

�j0B(p(t); i
0; j0)

1
A� p(t)2 = ��(1): (equation 10)
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Next, set q(t) = 1� p(t), and the left hand side of equations 9 and 10 becomes

k�2X
i=0

1X
j=i

�jB(q(t); j; i) � q(t) =
k�2X
i=0

1X
j=i

�j

 
j

i

!
q(t)j�i(1� q(t))i � q(t)

= fk�2(q(t))� q(t);

using the identity

fk�2(q(t)) =
k�2X
i=0

1X
j=i

�j

 
j

i

!
q(t)j�i(1� q(t))i

which is derived in the proof of theorem 2.2.
Since � can be made arbitrarily small, the conditions established in equations 9 and 10 are

equivalent to the statement of Theorem 2.1.

C Details of Section 3: Verifying the k-core Conditions.

Theorem 2.1 gives conditions under which a giant k-core is asymptotically present in a random
graph with �xed degree sequence. Essentially, a k-core is present if the function fk�2 has a non-
critical �xed point in the interval [0; 1). However, determining whether such a �xed point exists
for arbitrary degree distributions can be a non-trivial task. In this section we solve the problem in
certain special cases and we discuss methods for �nding such �xed points in other situations.

C.1 The Giant 2-core.

Theorem C.1 (Theorem 3.1) Let D be a sparse smooth asymptotic degree sequence with maximum

degree o(n1=3) and with residual degree distribution f�ig. Then

1. If
P

i i�i > 1 then there exists a constant C such that the 2-core of G(D) contains at least Cn
vertices w.e.h.p.

2. If
P

i i�i � 1 then for every C > 0, the 2-core of G(D) contains less Cn vertices w.e.h.p.

Proof. The conditions necessary for an asymptotic degree sequence to produce a giant 2-core
w.e.h.p. according to theorem 2.1 are that f0(q) = g(q) must have a �xed point in the interval
[0; 1). This is equivalent to the condition that a f�ig branching process survives with positive
probability. Since g has all positive derivatives in [0; 1), and since g(1) = 1 and g(0) � 0, it is well
known that g has such a �xed point if and only if g0(1) =

P
i i�i > 1.

The condition for the a.a.s. giant component derived in [8] is
P

i i(i� 2)�i > 0. We derive

1X
i=1

i(i � 2)�i =
1X
i0=0

(i0 + 1)(i0 � 1)�i0+1

=

P1
i0=0 i

0�i0 �
P1

i0=0 �i0P1
i=1 i�i

;

and since
P

i0 �i0 = 1, then
P

i i(i � 2)�i > 0 is equivalent to
P

i0 i
0�i0 � 1 > 0, or

P
i0 i
0�i0 > 1

Thus, in view of the results in [8, 9], we obtain the following corollary.

Corollary C.2 A random graph G with a sparse smooth degree sequence has a giant 2-core a.a.s.

if and only if it has a giant component a.a.s.
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For k > 2 the conditions necessary for a giant k-core are less easily veri�ed, since it is not
necessarily true that fk�2 will have all positive derivatives. In the following we consider some
special cases where we can derive explicit results for k > 2.

C.2 Distributions with all convergent moments.

For k > 2 the conditions necessary for a giant k-core are less easily veri�ed, since it is not necessarily
true that fk�2 will have all positive derivatives. Here we consider the case where all of the moments
of the distribution f�ig are convergent. Let X be a random variable with distribution f�ig. By
assumption, g(i)(1) = E[X(X�1) � � � (X� i+1)] = �i, the i'th factorial moment of the distribution
f�ig, is �nite for all i. This allows us to write

g(q) =
1X
i=0

(q � 1)i

i!
g(i)(1)

=
1X
i=0

(q � 1)i

i!
�i:

We can now express fr as a power series in (q � 1)

fr(q) =
rX

i=0

(1� q)i

i!
g(i)(q)

=
rX

i=0

(1� q)i

i!

1X
j=i

j!

j � i!

(q � 1)j�i

j!
�j

=
1X
j=0

(q � 1)j

j!
�j

rX
i=0

(�1)i
 
j

i

!

= 1 +
1X

j=r+1

(q � 1)j

j!
�j(�1)

r

 
j � 1

r

!
;

where the last step uses the binomial identity
Pr

i=0(�1)
i
�j
i

�
= (�1)r

�j�1
r

�
for j > 0.

Now we write p = 1� q, and note that and �nding a �xed point fr(1� p) = 1� p is equivalent
to solving

1� p = 1 + (�1)r
1X

j=r+1

(�p)j

j!
�j

 
j � 1

r

!

0 = p+ (�1)r
1X

j=r+1

pj
(�1)j

j!
�j

 
j � 1

r

!
:

In order to ascertain the presence of a giant k-core, we must �nd a point where fk�2(q) < q, or

p+ (�1)k
1X

j=k�1

pj
(�1)j

j!
�j

 
j � 1

k � 2

!
< 0: (equation 11)

C.2.1 Application to Gn;m.

As shown by Molloy and Reed [8], the Erdos-Renyi random graph model Gn;m produces a random
graph with a Poisson degree distribution, and thus results derived for random graphs whose limiting
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degree distribution is a Poisson distribution are valid for Gn;m. Since a Poisson distribution has
all convergent moments, we can re-derive some of the results of Pittel, Spencer, and Wormald [10]
regarding the k-core of Gn;m.

Consider a random graph whose limiting degree distribution is a Poisson distribution with
expected value r, so �i =

rie�r

i! . Since

i�i = r
ri�1e�r

(i� 1)!
;

and
P

i�i = r, then

�i =
(i+ 1)�i+1P

i �i
= �i;

the residual degree distribution is identical to the limiting degree distribution.
Now, the factorial moments of a Poisson distribution are �j = rj. Using equation 11 from the

previous discussion, if

p+ (�1)k
1X

j=k�1

(pr)j
(�1)j

j!

 
j � 1

k � 2

!
< 0

has a solution, then Gn;m with expected degree r has a giant k-core w.e.h.p. Let

Ck(x) = (�1)k+1
1X

j=k�1

xj
(�1)j

j!

 
j � 1

k � 2

!
;

and let x = pr. Then we must solve

x=r � Ck(x) < 0

x=Ck(x) < r:

Thus the giant k-core threshold for Gn;m occurs at

min
x

Ck(x)
:

C.3 Power Law Graphs

Several massive graphs that occur in the real-world, including the web graph, have degree sequences
that obey a power law [6], thus there has been c onsiderable interest in understanding the properties
of massive power law graphs. One approach to studying such graphs, introduced by Aiello, Chung,
and Lu [1], is to generate random graphs with power law degree sequences.

A degree sequence obeys a power law if the number of vertices of degree i is proportional to i��

for some �. If � � 2, this degree sequence is not sparse, but for � > 2, this power law graph can
be characterized by a smooth sparse asymptotic degree sequence with

�i =
1

�(�)

1

i�
;

where �(�) =
P1

i=1 i
�� is the Riemann Zeta function. The corresponding residual endpoint distri-

bution is

�i =
1

�(� � 1)

1

(i+ 1)��1
:
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Since the number of vertices of degree i is approximately n�i, and �i = �(i��), it might be
natural to consider the largest degree in a random power law graph to be �(n1=�). This is the
assumption made by [1]. The con�guration model and Theorem 2.1 require that the maximum
degree of a degree sequence be o(n1=3), and hence for � < 3, this power-law graph model would
violate the CM maximum degree requirement. However, we may extend our results to the maximum
degree bound in the power law model of [1] by the following mechanism. There are O(n1�Æ) edges
incident on vertices of degree greater than n1=3�� for some Æ > 0 when � > 2. Consider exposing
the edges of such a graph in the con�guration model by �rst placing the edges of these high degree
vertices in any (adversarial) manner while respecting the degree constraints on the other vertices.
Then apply the con�guration model mechanism to the graph represented by the residual degrees of
the remaining vertices. Since only O(n1�Æ) endpoints are a�ected, the resulting degree distribution
is indistinguishable from the starting power-law distribution with respect to smoothness, hence the
result in [7] continues to hold for this residual graph, which implies (from the result in Theorem
3.3 below) that the overall graph continues to have a k-core w.e.h.p.

As in Section 3.1, the a.a.s existence of a giant 2-core in a random power-law graph is equivalent
to the a.a.s. existence of a giant component, which appears if � < 3:47875 : : : [1]. For k � 3, we
have the following theorem.

Theorem C.3 (Theorem 3.3) Let k � 3 be an integer constant.

1. For � � 3, a random power law graph does not have a giant k-core w.e.h.p.

2. For 2 < � < 3, a random power law graph has a giant k-core w.e.h.p.

Proof. Since fr(q) =
Pr

i=0
(1�q)i

i! g(i)(q), we derive

f 0r(q) =
rX

i=0

(1� q)i

i!
g(i+1)(q)�

rX
i=1

(1� q)(i�1)

(i� 1)!
g(i)(q)

=
(1� q)r

r!
g(r+1)(q):

=
1

r!

g(r+1)(q)P1
i=0

�i+r�1
r�1

�
qi
:

For a power law graph, the probability generating function of the endpoint distribution is given
by

g(q) =
1

�(� � 1)

1X
i=0

qi

(i+ 1)��1
;

and thus

g(r+1)(q) =
1

�(� � 1)

1X
i=0

i(i� 1)(i � 2) � � � (i� r)qi�r�1

(i+ 1)��1
:

Thus, for power law graphs,

f 0r(q) =
1

r!

g(r+1)(q)P1
i=0

�i+r�1
r�1

�
qi
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=
1

r!�(� � 1)

P1
i=0

i(i�1)(i�2)���(i�r)qi�r�1

(i+1)��1P1
i=0

�i+r�1
r�1

�
qi

=
1

r!�(� � 1)

P1
i=r+1

i(i�1)(i�2)���(i�r)qi�r�1

(i+1)��1P1
i=r+1

�i�2
r�1

�
qi�r�1

:

Now, let ai =
i(i�1)(i�2)���(i�r)

(i+1)��1
and let bi = r!

�i�2
r�1

�
, so

f 0r(q) =
1

�(� � 1)

P1
i=r+1 aiq

i�r�1P1
i=r+1 biq

i�r�1
;

and note that

ai
bi

=

i(i�1)(i�2)���(i�r)
(i+1)��1

r!
�i�2
r�1

� =
i(i� 1)

r(i+ 1)��1
:

In particular, if � � 3, then ai > b1 for all i, and if � < 3, then limi!1
ai
bi
=1:

Hence,

lim
q!1

f 0r(q) =

8><
>:
1 if � < 3

1
r�(��1) if � = 3

0 if � > 3.

(12)

It follows that if � � 3, then f 0r(q) �
1

r�(��1) < 1 for all 0 � q � 1, and since fr(1) = 1,

then fr(q) > q for all q in the interval [0; 1). For � < 3, the limit in equation 12 implies that
limq!1 f

0
r(q) =1, and thus fr(1� Æ) < 1� Æ for Æ suÆciently small.

To determine the presence of a giant k-core, we examine the function fk�2. Hence, for k > 3, a
power law graph with 2 � � < 3 a.a.s. has a giant k-core, and a power law graph with � > 3 a.a.s.
does not have a giant k-core.
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