
Betweenness Centrality – Incremental and
Faster ⋆

Meghana Nasre1, Matteo Pontecorvi2, and Vijaya Ramachandran2

1 Indian Institute of Technology Madras, India (meghana@cse.iitm.ac.in)
2 University of Texas at Austin, USA ({cavia, vlr}@cs.utexas.edu)

Abstract. We present an incremental algorithm that updates the be-
tweenness centrality (BC) score of all vertices in a graph G when a new
edge is added to G, or the weight of an existing edge is reduced. Our
incremental algorithm runs in O(ν∗ · n) time, where ν∗ is bounded by
m∗, the number of edges that lie on a shortest path in G. We achieve
the same bound for the more general incremental vertex update problem.
Even for a single edge update, our incremental algorithm is the first algo-
rithm that is provably faster on sparse graphs than recomputing with the
well-known static Brandes algorithm. It is also likely to be much faster
than Brandes on dense graphs since m∗ is often close to linear in n.
Our incremental algorithm is very simple, and we give an efficient cache-
oblivious implementation that incurs O(n ·sort(ν∗)) cache misses, where
sort is a well-known measure for caching efficiency.

1 Introduction

Betweenness centrality (BC) of vertices is a widely-used measure in the analysis
of large complex networks. As a classical measure, BC is widely used in sociology
[6, 22], biology [9], physics [17] and network analysis [32, 34]. BC is also useful
for critical applications such as identifying lethality in biological networks [31],
identifying key actors in terrorist networks [20] and finding attack vulnerability
of complex networks [14]. In recent years, BC also had a wide impact in the
analysis of social networks [11, 33], wireless [25] and mobile networks [4], P2P
networks [18] and more.

In this paper we present incremental BC algorithms that are provably faster
on sparse graphs than current algorithms for the problem. By an incremental
update on edge (u, v) we mean the addition of a new edge (u, v) with finite weight
if (u, v) is not present in the graph, or a decrease in the weight of an existing
edge (u, v); in an incremental vertex update, incremental updates can occur on
any subset of edges incident to v, and this includes adding new edges.

We now define BC, and describe the widely-used Brandes algorithm [3] for
this problem. We then describe our contributions and related work.

Betweenness Centrality (BC) and the Brandes Algorithm. LetG = (V,E)
be a (directed or undirected) graph with positive edge weights w(e), e ∈ E. The

⋆ This work was supported in part by NSF grants CCF-0830737 and CCF-1320675.

distance d(s, t) from s to t is the weight of a shortest path from s to t. Let
σst be the number of shortest paths from s to t in G (with σss = 1) and let
σst(v) be the number of shortest paths from s to t that pass through v. Thus,
σst(v) = σsv · σvt if d(s, t) = d(s, v) + d(v, t), and σst(v) = 0 otherwise.

The pair dependency of s, t on an intermediate vertex v is δst(v) =
σst(v)
σst

[3].
For v ∈ V , the betweenness centrality BC(v) is defined by Freeman [6] as:

BC(v) =
∑

s̸=v,t ̸=v

σst(v)

σst
=

∑
s̸=v,t ̸=v

δst(v) (1)

Let Ps(v) denote the predecessors of v on shortest paths from s. Brandes [3]
defined the dependency of a vertex s on a vertex v as δs•(v) =

∑
t∈V \{v,s} δst(v),

and observed that

δs•(v) =
∑

w:v∈Ps(w)

σsv

σsw
· (1 + δs•(w)) and BC(v) =

∑
s̸=v

δs•(v) (2)

Alg. 1 gives Brandes’ algorithm to compute BC(v) for all v ∈ V . This algo-
rithm runs in O(mn+ n2 logn) time, where |V | = n and |E| = m.

Algorithm 1 Betweenness-centrality(G = (V,E)) (from Brandes [3])

1: for every v ∈ V do BC(v)← 0.
2: for every s ∈ V do
3: Run Dijkstra’s SSSP from s and compute σst and Ps(t),∀ t ∈ V \ {s}.
4: Store the explored nodes in a stack S in non-increasing distance from s.
5: Accumulate dependency of s on all t ∈ S using Eqn. 2.

1.1 Our Contributions

Let E∗ be the set of edges in G that lie on shortest paths, let m∗ = |E∗|, and
let ν∗ be the maximum number of edges that lie on shortest paths through any
single vertex. Here is our main result:

Theorem 1. After an incremental update on an edge or a vertex in a directed
or undirected graph with positive edge weights, the betweenness centrality of all
vertices can be recomputed in:

1. O(ν∗ · n) time using O(ν∗ · n) space;
2. O(m∗ · n) time using O(n2) space.

Since ν∗ ≤ m∗ and m∗ ≤ m, the worst case time for both results is bounded
by O(mn + n2), which is a log n factor improvement over Brandes’ algorithm
on sparse graphs. Our results also have benefits for dense graphs (when m =
ω(n log n)) similar to the Hidden Paths algorithm of Karger et al. [15] for the
all pairs shortest paths (APSP) problem (see also McGeogh [26]), although our
techniques are different. This is through the use of ν∗ or m∗ in place of m, and
we comment more on this below. Our algorithms are simple, and only use stack,

2

queue and linked list data structures. We also give an efficient cache-oblivious
implementation which avoids the high caching cost of Dijkstra’s algorithm that
is present in Alg. 1 (its bound is given in Section 5).

Both ν∗ and m∗ are typically much smaller than m in dense graphs. For
instance, it is known [7, 13, 15, 23] that m∗ = O(n logn) with high probability in
a complete graph where edge weights are chosen from a large class of probability
distributions, including the uniform distribution on integers in [1, n2] or reals in
[0, 1]. For such graphs, both results in Theorem 1 imply anO(n2 log2 n) algorithm
for an incremental update. For the random real weights, the first result would in
fact give O(n2) time and space since shortest paths are unique with probability
1 in this setting, hence ν∗ = O(n).

We observe that Alg. 1 (Brandes) can be made to run faster: In a directed
graph, by using the Pettie [29] or the Hidden Paths algorithm in place of Di-
jkstra in Step 3 of Alg. 1, we can compute BC scores in O(mn + n2 log log n)
or O(m∗n+ n2 log n) time, respectively. In an undirected graph, we can obtain
O(mn · logα(m,n)) time, where α is an inverse-Ackermann function, using [30].
Our incremental bounds are better than any of these bounds for sparse graphs.

There are several results on dynamic BC algorithms and heuristics [10, 12, 19,
21], but our time bounds are better than any of these on sparse graphs. In fact,
ours is the first incremental BC algorithm that gives a provable improvement
over Brandes’ algorithm for sparse graphs, which are the type of graphs that
typically occur in practice. While the space used by our algorithms is higher than
Brandes’, which uses only linear space, our second result matches the best space
bound obtained by any of these other dynamic BC algorithms and heuristics.

We consider only incremental updates in this paper. Computing decremental
and fully dynamic updates efficiently appears to be more challenging (as is the
case for APSP [5]). In recent work [28], we have developed decremental and fully
dynamic BC algorithms that build on techniques in [5], and run in amortized
time O(ν∗2 · polylog(n)).

Organization. In Section 2 we discuss related work on dynamic BC. Since the
algorithm for a single edge update is simpler than that for a vertex update, we
first present our edge update result in Section 3. We describe the O(n · ν∗) al-
gorithm, and then the simple changes needed to obtain the second O(n2) space
result. We present the vertex update result in Section 4. In Section 5 we sketch
our efficient cache-oblivious BC algorithm, and mention some preliminary ex-
perimental results.

Step 5 of Alg. 1: For completeness, Alg. 2 below gives the algorithm for Step 5
in Brandes’ algorithm (Alg. 1). We will use Alg. 2 unchanged for our first result
of Theorem 1, and modified (to eliminate the use of predecessor lists Ps(t)) for
the second result of Theorem 1.

2 Related Work

Approximation and parallel algorithms for BC have been considered in [2, 8], [24]
respectively. More recently, the problem of dynamic betweenness centrality has

3

Algorithm 2 Accumulate-dependency(s, S) (from [3])

Input: For every t ∈ V : σst, Ps(t).
A stack S containing v ∈ V in a suitable order (non-increasing d(s, v) in [3]).

1: for every v ∈ V do δs•(v)← 0.
2: while S ̸= ∅ do
3: w ← pop(S).
4: for v ∈ Ps(w) do δs•(v)← δs•(v) +

σsv
σsw
· (1 + δs•(w)).

5: if w ̸= s then BC(w)← BC(w) + δs•(w).

received attention, and these results for incremental and in some cases, decre-
mental, BC are listed in the table below. All of these results except [16] deal with
unweighted graphs as opposed to our results, which are for the weighted case.
Further, while all give encouraging experimental results or match the Brandes
worst-case time complexity, none prove any worst-case improvement. As men-
tioned in the Introduction, BC is also widely used in weighted networks (see [4,
18, 31, 32]); however, only the heuristic in Kas et al. [16], which has no worst-case
bounds, addresses this version.

Paper Year Space Time Weights Update Type

Brandes static [3] 2001 O(m+ n) O(mn) NO Static Alg.
Lee et al. [21] 2012 O(n2 +m) Heuristic NO Single Edge

Green et al. [12] 2012 O(n2 +mn) O(mn) NO Single Edge
Kourtellis+ [19] 2014 O(n2) O(mn) NO Single Edge
Singh et al. [10] 2013 – Heuristic NO Vertex update

Brandes static [3] 2001 O(m+ n) O(mn+ n2 log n) YES Static Alg.
Kas et al. [16] 2013 O(n2 +mn) Heuristic YES Single Edge
This paper 2014 O(ν∗ · n) O(ν∗ · n) YES Vertex Update
This paper 2014 O(n2) O(m∗ · n) YES Vertex Update

Our first algorithm, which takes time O(ν∗ · n) in a weighted graph even for
a vertex update, improves on all previous results when ν∗ = o(m). By slightly
relaxing the time complexity toO(m∗·n), we are also able to match the best space
complexity in any of the previous results, while matching their time complexities
and improving on all of them when m∗ = o(m).

3 Incremental Edge Update

In this section we present our algorithm to recompute BC scores of all vertices
in a directed graph G = (V,E) after an incremental edge update (i.e., adding an
edge or decreasing the weight of an existing edge). Let G′ = (V,E′) denote the
graph obtained after an edge update to G = (V,E). A path πst from s to t in
G has weight w(πst) =

∑
e∈πst

w(e). Let d(s, t), σst, δs•(t) and DAG(s) denote
the distance from s to t in G, the number of shortest paths from s to t in G,
the dependency of s on t and the SSSP DAG rooted at s in G respectively; let
d′(s, t), σ′

st, δ
′
s•(t) and DAG′(s) denote these parameters in G′.

4

Lemma 1. If weight of edge (u, v) in G is decreased to obtain G′, then for any
x ∈ V , the set of shortest paths from x to u and from v to x is the same in G
and G′, and d′(x, u) = d(x, u), d′(v, x) = d(v, x) ; σ′

xu = σxu, σ
′
vx = σvx.

Proof. Since edge weights are positive, the edge (u, v) cannot lie on a shortest
path to u or from v. The lemma follows. ⊓⊔

By Lemma 1, DAG(v) = DAG′(v) after the decrease of weight on edge (u, v). The
next lemma shows that after the weight of (u, v) is decreased we can efficiently
obtain the updated values d′(s, t) and σ′

st for any s, t ∈ V .

Lemma 2. Let the weight of edge (u, v) be decreased to w′(u, v), and for any
given pair of vertices s, t, let D(s, t) = d(s, u) +w′(u, v) + d(v, t). Then,

1. If d(s, t) < D(s, t), then d′(s, t) = d(s, t) and σ′
st = σst.

The shortest paths from s to t in G′ are the same as in G.
2. If d(s, t) = D(s, t), then d′(s, t) = d(s, t) and σ′

st = σst + (σsu · σvt).
The shortest paths from s to t in G′ are a superset of the shortest paths G.

3. If d(s, t) > D(s, t), then d′(s, t) = D(s, t) and σ′
st = σsu · σvt.

The shortest paths from s to t in G′ are new (shorter distance).

Proof. Case 1 holds because the shortest path distance from s to t remains
unchanged and no new shortest path is created in this case. In case 2, the shortest
path distance from s to t remains unchanged, but there are σsu ·σvt new shortest
paths from s to t created via edge (u, v). In case 3, the shortest path distance
from s to t decreases and all new shortest paths pass through (u, v). ⊓⊔

By Lemma 2, the updated values d′(s, t) and σ′
st can be computed in constant

time for each pair s, t. Once we have the updated d′(·) and σ′
(·) values, we need

the updated predecessors P ′
s(t) for every s, t pair for Alg. 2. The SSSP DAG(s)

rooted at a source s is the union of all the Ps(t), ∀ t ∈ V . Thus, obtaining
DAG′(s) after the edge update is equivalent to computing the P ′

s(t),∀ t ∈ V .
The next section gives a simple algorithm to maintain the SSSP DAGs rooted
at every source s ∈ V , after an incremental edge update.

3.1 Updating an SSSP DAG

For each pair s, t we define flag(s, t) to indicate the specific case of Lemma 2
that is applicable.

flag(s, t) =


UN-changed if d′(s, t) = d(s, t) and σ′

st = σst (Lemma 2-1)

NUM-changed if d′(s, t) = d(s, t) and σ′
st > σst (Lemma 2-2)

WT-changed if d′(s, t) < d(s, t) (Lemma 2-3)

By Lemma 2, flag(s, t) can be computed in constant time for each pair s, t.
Given an input s and the updated edge (u, v), Alg. 3 (Update-DAG) constructs
a set of edges H using these flag values, together with DAG(s) and DAG(v).
We will show that H contains exactly the edges in DAG′(s). The algorithm

5

considers edges in DAG(s) (Steps 3–5) and edges in DAG(v) (Steps 6–8), and
for each edge (a, b) in either DAG, it decides whether to include it in H based
on the value of flag(s, b). For the updated edge (u, v) there is a separate check
(Steps 9–10). The algorithm clearly takes time linear in the size of DAG(s) and
DAG(v), i.e., O(ν∗) time.

Algorithm 3 Update-DAG(s,w′(u, v))

Input: DAG(s), DAG(v), and flag(s, t), ∀t ∈ V .
Output: An edge set H after decrease of weight on edge (u, v), and P ′

s(t),∀t ∈ V −{s}.
1: H ← ∅.
2: for each v ∈ V do P ′

s(v) = ∅.
3: for each edge (a, b) ∈ DAG(s) and (a, b) ̸= (u, v) do
4: if flag(s, b) = UN-changed or flag(s, b) = NUM-changed then
5: H ← H ∪ {(a, b)} and P ′

s(b)← P ′
s(b) ∪ {a}.

6: for each edge (a, b) ∈ DAG(v) do
7: if flag(s, b) = NUM-changed or flag(s, b) = WT-changed then
8: H ← H ∪ {(a, b)} and P ′

s(b)← P ′
s(b) ∪ {a}.

9: if flag(s, v) = NUM-changed or flag(s, v) = WT-changed then
10: H ← H ∪ {(u, v)} and P ′

s(v)← P ′
s(v) ∪ {u}.

Lemma 3. Let H be the set of edges output by Alg. 3. An edge (a, b) ∈ H if
and only if (a, b) ∈ DAG′(s).

Proof. Since the update is an incremental update on edge (u, v), we note that
for any b, a shortest path π′

sb from s to b in G′ can be of two types:
(i) π′

sb is a shortest path in G. Therefore every edge on such a path is present in
DAG(s) and each such edge is added to H in Steps 3–5 of Alg. 3.
(ii) π′

sb is not a shortest path in G. However, since π′
sb is a shortest path in G′,

therefore π′
sb is of the form s ⇝ u → v ⇝ b. Since shortest paths from s to u

in G and G′ are unchanged (by Lemma 1), the edges in the sub-path s⇝ u are
present in DAG(s) and are added to H in Steps 3–5 of Alg. 3. Finally, shortest
paths from v to any b in G and G′ remain unchanged. Thus, the edges in the
sub-path v ⇝ b are present in DAG(v) and are added to H in Steps 6–8 of Alg. 3.

For the other direction, if the edge (a, b) is added to H by Step 5, this implies
that the edge (a, b) ∈ DAG(s). Thus, there exists a shortest path πsb = s ⇝
a → b in G. We execute Step 5 when flag(s, b) = UN-changed or flag(s, b) =
NUM-changed. Thus every shortest path from s to b in G is also shortest path in
G′. Therefore, (a, b) ∈ DAG′(s). If the edge (a, b) is added to H by Step 8, then
the edge (a, b) ∈ DAG(v). Thus, there exists a shortest path πvb = v ⇝ a → b in
G. Since decreasing the weight of the edge (u, v) does not change shortest paths
from v to any other vertex, πvb is in G′. We execute Step 8 when flag(s, b) =
NUM-changed or flag(s, b) = WT-changed. Therefore, there exists at least one
shortest path from s to b in G′ that uses the updated edge (u, v). Hence the path
π′
sb = π′

su ·(u, v) ·πvb is shortest in G′, and this establishes that (a, b) ∈ DAG′(s).
Finally, edge (u, v) is added to H by Step 10 only if flag(s, v) is NUM-changed
or WT-changed, and in either case, there is at least a new shortest path from s
to v through (u, v). Hence (u, v) ∈ DAG′(s). ⊓⊔

6

3.2 Updating Betweenness Centrality Scores

The algorithm for updating the BC scores after an edge update (Alg. 4) is similar
to Alg. 1, but with the following changes: an extended Step 1 also computes, for
every s, t pair, the updated d′(s, t) and σ′

st, as well as flag(s, t). Using Lemma 2,
we spend constant time for each s, t pair, hence O(n2) time for all pairs. In
Step 3, instead of Dijkstra’s algorithm, we run Alg. 3 to obtain the updated
predecessor lists P ′

s(t), for all s, t. This step requires time O(ν∗) for a source
s, and O(ν∗ · n) over all sources. The last difference is in Step 4: we place in
the stack S the vertices in reverse topological order in DAG′(s), instead of non-
increasing distance from s. This requires time linear in the size of the updated
DAG. Thus the time complexity of Edge-Update is O(ν∗ · n).

Algorithm 4 Edge-Update(G = (V,E),w′(u, v))

Input: updated edge with w′(u, v), d(s, t) and σst, ∀ s, t ∈ V ; DAG(s), ∀ s ∈ V .
Output: BC′(v), ∀ v ∈ V ; d′(s, t) and σ′

st ∀ s, t ∈ V ; DAG′(s), ∀ s ∈ V .
1: for every v ∈ V do BC′(v)← 0.

for every s, t ∈ V do compute d′(s, t), σ′
st, flag(s, t). // use Lemma 2

2: for every s ∈ V do
3: Update-DAG(s, (u, v)). // use Alg. 3
4: Stack S ← vertices in V in a reverse topological order in DAG′(s).
5: Accumulate-dependency(s, S). // use Alg. 2

Undirected Graphs. For an undirected G, we construct the corresponding di-
rected graphGD in which every undirected edge is replaced with 2 directed edges.
An incremental update on an undirected edge (u, v) is equivalent to two edge
updates on (u, v) and (v, u) in GD. Thus, Theorem 1 holds for undirected graphs.

Space Efficient Implementation. In order to obtain O(n2) space complexity,
we do not store the SSSP DAGs rooted at every source. Instead, we only store
the edge set E∗. After an incremental update on edge (u, v) we first construct
the updated set E′∗ in O(m∗ · n) time as follows. For each edge (a, b) ∈ E∗, if
d′(s, b) = d(s, a) + w(a, b) for some source s ∈ V , then (a, b) ∈ E′∗. Using the
updated E′∗ we can construct DAG′(s) in O(m∗) time, by using the fact that
an edge (a, b) ∈ E′∗ belongs to DAG′(s) iff d(s, b) = d(s, a) +w(a, b). Since the
construction of each updated DAG takes O(m∗) time and there are n DAGs
to be constructed, the O(m∗ · n) time complexity follows. The space used is
O(m∗ + n2) to store E∗ and d(s, t), σst, for all s, t ∈ V .

4 Incremental Vertex Update

We now consider an incremental update to a vertex v in G = (V,E), which allows
an incremental edge update on any subset of edges incoming to and outgoing
from v. In this algorithm, we use the graph G and the graph GR = (V,ER),
which is obtained by reversing every edge in G, i.e., (a, b) ∈ ER iff (b, a) ∈ E.
Thus, for every s ∈ V , we also maintain DAGR(s), the SSSP DAG rooted at s
in GR. We will obtain the same time bound as in Section 3.

7

4.1 Overview

Let Ei(v) and Eo(v) denote the set of updated edges incoming to v and outgoing
from v respectively. Our algorithm is a natural extension, with some new fea-
tures, of the algorithm for a single edge update, and works as follows. We process
Ei(v) in G in Step 1 to form G′, G′

R, DAG
′(s) and DAG′

R(s); we then process
Eo(v) in G′

R in a complementary Step 2 to obtain the updated G′′, DAG′′(s)
and DAG′′

R(s). Step 1, which processes Ei(v), consists of two phases.

Step 1, Phase 1: Constructing the DAG′(s) for updates in Ei(v).
Since Ei(v) contains updated edges incoming to v, DAG(v) = DAG′(v) (as in the
single edge update case). In order to handle updates to several edges incoming to
v, we strengthen Lemma 2 by introducing σ̂, which keeps track of new shortest
paths from s to v that go through any of the updated edges in Ei(v). This allows
us to efficiently recompute the number of shortest paths from a source to any
node in G′, and thus update all the DAG′(s) using an algorithm similar to Alg. 3.
Parts (A), (B), (C) in Section 4.2 describe Phase 1 in detail.

Step 1, Phase 2: Constructing the DAG′
R(s) for updates in Ei(v).

We present an efficient algorithm to construct the DAG′
R(s) for all s in G′. We

construct these reverse graphs because the edges in Eo(v) are in fact incoming
edges to v in G′

R. Hence our method to maintain DAGs when incoming edges
are updated can be applied to G′

R with Eo to obtain DAG′′
R(s), for every s, in

Phase 1 of Step 2 (and then we can obtain the DAG′′(s) in Phase 2 of Step 2).
Let (t, a) be the first edge on a shortest path from t to v in G′. Then (t, a) is

an outgoing edge from t in DAG′(t), and its reverse (a, t) is on a shortest path
from v to t in G′

R. Further an edge (a, t) is on a new shortest path from v to t in
G′

R if and only if its reverse is on a new shortest path from t to v in G′. These
edges on new shortest paths are the ones we need to keep track of in order to
update the reverse DAGs, and to facilitate this we define a collection of sets Rt,
t ∈ V . The set Rt is the set of (reversed) outgoing edges from t in DAG′(t) that
lie on a shortest path from t to v in G′ (see also Eqn. 5 in the next section).
Thus, if a new shortest path πsb is present in DAG′

R(s) (πsb must pass through
v), its last edge (a, b) is present in Rb. Using the sets Rt, ∀ t ∈ V , it is possible
to quickly build the DAG′

R(t) after Phase 1 as shown in part (D) in section 4.2.

Step 2: After applying Phase 1 and 2 on the initial DAGs using Ei to obtain
the DAG′

R(s) and G′
R, Step 2 re-applies Phase 1 and Phase 2 on these updated

graphs using Eo in order to complete all of the updates to vertex v. We can then
apply Alg. 2 to the DAG′′(s) to obtain the BC scores for the updated graph G′′.

4.2 Vertex Update Algorithm

We now give details of each phase of our algorithm starting with the graph G.

Step 1, Phase 1
(A) Compute d′(s, v) and σ′

sv for any s. We show how to compute in G′

the distance and number of shortest paths to v from any s. Let (uj , v) ∈ Ei(v)

8

and let Dj(s, v) = d(s, uj) +w′(uj , v). Since the updates on edges in Ei(v) are
incremental, it follows that:

d′(s, v) = min{d(s, v), min
j:(uj ,v)∈Ei(v)

{Dj(s, v)}} (3)

Further, if d′(s, v) = d(s, v), we define:

σ̂′
sv = |{π′

sv : π′
sv is a shortest path in G′ and π′

sv uses e ∈ Ei(v)}| (4)

We also need to compute σ′
sv, the number of shortest paths from s to v in G′.

It is straightforward to compute d′(s, v), σ′
sv, and σ̂′

sv in O(|Ei(v)|) time. Alg. 5
gives the details of this step.

Algorithm 5 Dist-to-v (s, Ei(v))

Input: Ei(v) with updated weights w′.
d(s, t) and σst, ∀ s, t ∈ V .

Output: d′(s, v), σ′
sv, σ̂

′
sv.

1: σ̂′
sv ← 0, σ′

sv ← σsv, D
′ ← d(s, v).

2: for each edge (ui, v) ∈ Ei(v) do
3: if D′ = d(s, ui) +w′(ui, v) then
4: σ′

sv ← σ′
sv + σsui .

5: σ̂′
sv ← σ̂′

sv + σsui .
6: else if D′ > d(s, ui)+w′(ui, v) then
7: D′ ← d(s, ui) +w′(ui, v).
8: σ′

sv ← σsui .
9: d′(s, v)← D′.

Algorithm 6 Upd-Rev-DAG(s, Ei(v))

Input: DAGR(s); Rt, f lag(s, t), ∀t ∈ V .
Output: An edge set X after update on

edges in Ei(v).
1: X ← ∅.
2: for each edge (a, b) ∈ DAGR(s) do
3: if flag(b, s) = UN-changed or

flag(b, s) = NUM-changed then
4: X ← X ∪ (a, b) .
5: for each b ∈ V \ {s} do
6: if flag(b, s) = NUM-changed or

flag(b, s) = WT-changed then
7: X ← X ∪Rb .

(B) Compute d′(s, t) and σ′(s, t) for all s, t. After computing d′(s, v), σ′
sv and

σ̂′
sv, we show that the values d′(s, t) and σ′(s, t) can be computed efficiently. We

state Lemma 4 which captures this computation. The proof of this lemma is
similar to Lemma 2 in the edge update case.

Lemma 4. Let Ei(v) be the set of updated edges incoming to v. Let G′ be the
graph obtained by applying the updates in Ei(v) to G. For any s ∈ V and t ∈
V \{v}, let D(s, t) = d′(s, v)+d(v, t), Σst = σst+ σ̂′

sv ·σvt, Σ
′
st = σst+σ′

sv ·σvt.

1. If d(s, t) < D(s, t), then d′(s, t) = d(s, t) and σ′
st = σst.

2. If d(s, t) = D(s, t) and d(s, v) = d′(s, v), then d′(s, t) = d(s, t) and σ′
st = Σst.

3. If d(s, t) = D(s, t) and d(s, v) > d′(s, v), then d′(s, t) = d(s, t) and σ′
st = Σ′

st.
4. If d(s, t) > D(s, t), then d′(s, t) = D(s, t) and σ′

st = σ′
sv · σvt.

The value flag(s, t) for every s, t can be computed using the updated distances
and number of shortest paths (flag(s, t) is UN-changed for 1, NUM-changed for
both 2 and 3, and WT-changed for 4, in Lemma 4).
(C) Compute DAG′(s) for every s. Given d′(s, t) and σ′(s, t) updated for all
s, t ∈ V , the algorithm to compute DAG′(s) for any s ∈ V is similar to Alg. 3
in the edge update case. The only modification we need is in Steps 9–10 where
instead of a single edge (u, v), we consider every edge (u1, v) ∈ Ei(v).

9

Step 1, Phase 2

(D) Compute DAG′
R(s) for every s. We update DAGR(s), for every s, for

which we use Alg. 6. Recall the sets Rt,∀ t ∈ V defined as:

Rt = {(a, t) | (t, a) ∈ DAG′(t) and w′(t, a) + d′(a, v) = d′(t, v)} (5)

The set Rt is the set of (reversed) outgoing edges from t in DAG′(t) that lie on
a shortest path from t to v in G′. Consider an edge e = (a, b) in the updated
DAG′

R(s). If e is in DAGR(s), it is added to DAG′
R(s) by Steps 2–4. If e lies on a

new shortest path present only in G′
R, its reverse must also lie on a shortest path

that goes through v in G′, and it will be added to DAG′
R(s) by the Rb during

Steps 5–7 (Rb could also contain edges on old shortest paths through v already
processed in Steps 2–4, but even in that case each edge is added to DAG′

R(s) at
most twice by Alg. 6). Note that we do not need to process edges (uj , v) in Ei

separately (as with edge (u, v) in Alg. 2), because these edges will be present in
the relevant Ruj . The correctness of Alg. 6 follows from Lemma 5, whose proof
is similar to Lemma 3, and is omitted.

Lemma 5. In Alg. 6, an edge (a, b) is placed in X if and only if (a, b) ∈
DAG′

R(s) after the incremental update of the set Ei(v).

Step 2: To process the updates in Eo(v), we re-apply Phase 1 and 2 over G′
R.

Since we are processing incoming edges in G′
R, our earlier steps apply unchanged,

and we obtain modified values for d′′(·), σ′′
(·), and DAG′′

R(s) for every s. Then,

using Alg. 6 we obtain the DAG′′(s) for every s. Finally, to compute the updated
BC values, we apply Alg. 2.

Performance: Computing d′(s, v), σ′
sv and σ̂′

sv requires time O(|Ei(v)|) = O(n)
for each s, and hence O(n2) time for all sources. Applying Lemma 4 to all pairs of
vertices takes time O(n2). The complexity of modified Alg. 3 applied to all DAGs
is againO(ν∗·n). Creating setRt requires at mostO(E∗ ∩ {outgoing edges of t}),
so the overall complexity for all the sets is O(m∗). Finally, we bound the com-
plexity of Algorithm 6: the algorithm adds (a, b) in a reverse DAG edge set X at
most twice. Since

∑
s∈V |E(DAG′(s))| =

∑
s∈V |E(DAG′

R(s))|, at most O(ν∗ · n)
edges can be inserted into all the sets X when Algorithm 6 is executed over all
sources. Finally, applying the updates in Eo(v) requires a symmetric procedure
starting from the reverse DAGs, the final complexity bound of O(ν∗ · n) follows.

5 Efficient Cache Oblivious Algorithm

We give a cache-oblivious implementation withO(n·sort(ν∗)) cache misses. Here,
for a size M cache that can hold B blocks, sort(r) = r

B · logM r when M ≥ B2;
sort is a measure of good caching performance (even though sort(r) performs
r log r operations, the base of M in the log makes sort(r) preferable to, say,
r cache misses). In contrast, the Brandes algorithm calls Dijkstra’s algorithm,
which is affected by unstructured accesses to adjacency lists that lead to large
caching costs (see, e.g., [27]).

10

We consider the basic edge update algorithm. The main change is in the
cache-oblivious (CO) implementation of Alg. 2, which is the last step of Alg. 4.
Instead of the stack S, we use an optimal CO max-priority queue Z [1], that
is initially empty. Each element in Z has an ordered pair (d′(s, v), v) as its key
value, and also has auxiliary data as described below. Consider the execution of
Step 4 in Alg. 2 for vertices v ∈ Ps(w). Instead of computing the contribution
of w to δs•(v) for each v ∈ Ps(w) when w is processed, we insert an element
into Z with key value (d′(s, v), v) and auxiliary data (w, σsw, δs•(w)). With this
scheme, entries will be extracted from Z in nonincreasing values of d′(s, v), and
all entries for a given v will be extracted consecutively. We compute δs•(v)
as these extractions for v occur from Z, and also update BC(v). Initially, for
each sink t in DAG(s), we insert an element with key value (d′(s, t), t) and NIL
auxiliary data. Using [1], Alg. 2 (which is Step 6 in Alg. 4) takes sort(ν∗) cache
misses for source s, and hence O(n · sort(ν∗)) over all sources. The earlier steps
in Alg. 4 can be performed in O(n · sort(ν∗)) cache misses by suitably storing
and rearranging data for cache-efficiency.

Preliminary experimental results for our basic edge update algorithm (in
Section 3) on random graphs generated using the Erdős-Rényi model give 2 to
15 times speed-up over Brandes’ algorithm for graphs with 256 to 2048 nodes,
with the larger speed-ups on dense graphs.

Acknowledgment: We thank Varun Gangal and Aritra Ghosh at IIT Madras
for implementing the algorithms.

References

1. L. Arge, M. A. Bender, E. D. Demaine, B. Holland-Minkley, and J. I. Munro.
An optimal cache-oblivious priority queue and its application to graph algorithms.
SIAM J. Comput., 36(6):1672–1695, 2007.

2. D. A. Bader, S. Kintali, K. Madduri, and M. Mihail. Approximating betweenness
centrality. In Proc. WAW, pages 124–137, 2007.

3. U. Brandes. A faster algorithm for betweenness centrality. J. of Mathematical
Sociology, 25(2):163–177, 2001.

4. S. Catanese, E. Ferrara, and G. Fiumara. Forensic analysis of phone call networks.
Social Network Analysis and Mining, 3(1):15–33, 2013.

5. C. Demetrescu and G. F. Italiano. A new approach to dynamic all pairs shortest
paths. J. ACM, 51(6):968–992, 2004.

6. L. C. Freeman. A set of measures of centrality based on betweenness. Sociometry,
40(1):35–41, 1977.

7. A. Frieze and G. Grimmett. The shortest-path problem for graphs with random
arc-lengths. Discrete Applied Mathematics, 10(1):57 – 77, 1985.

8. R. Geisberger, P. Sanders, and D. Schultes. Better approximation of betweenness
centrality. In Proc. ALENEX, pages 90–100, 2008.

9. M. Girvan and M. E. J. Newman. Community structure in social and biological
networks. Proc. the National Academy of Sciences, 99(12):7821–7826, 2002.

10. K. Goel, R. R. Singh, S. Iyengar, and Sukrit. A faster algorithm to update be-
tweenness centrality after node alteration. In Proc. WAW, pages 170–184, 2013.

11. K.-I. Goh, E. Oh, B. Kahng, and D. Kim. Betweenness centrality correlation in
social networks. Phys. Rev. E, 67:017101, 2003.

11

12. O. Green, R. McColl, and D. A. Bader. A fast algorithm for streaming betweenness
centrality. In Proc. PASSAT, pages 11–20, 2012.

13. R. Hassin and E. Zemel. On shortest paths in graphs with random weights. Math-
ematics of Operations Research, 10(4):557 – 564, 1985.

14. P. Holme, B. J. Kim, C. N. Yoon, and S. K. Han. Attack vulnerability of complex
networks. Phys. Rev. E, 65:056109, 2002.

15. D. R. Karger, D. Koller, and S. J. Phillips. Finding the hidden path: Time bounds
for all-pairs shortest paths. SIAM J. Comput., 22(6):1199–1217, 1993.

16. M. Kas, M. Wachs, K. M. Carley, and L. R. Carley. Incremental algorithm
for updating betweenness centrality in dynamically growing networks. In Proc.
ASONAM, pages 33–40. ACM, 2013.

17. M. Kitsak, S. Havlin, G. Paul, M. Riccaboni, F. Pammolli, and H. E. Stanley.
Betweenness centrality of fractal and nonfractal scale-free model networks and
tests on real networks. Phys. Rev. E, 75:056115, 2007.

18. N. Kourtellis and A. Iamnitchi. Leveraging peer centrality in the design of socially-
informed peer-to-peer systems. CoRR, abs/1210.6052, 2012.

19. N. Kourtellis, G. D. F. Morales, and F. Bonchi. Scalable online betweenness cen-
trality in evolving graphs. CoRR, abs/1401.6981, 2014.

20. V. Krebs. Mapping networks of terrorist cells. Connections, 24(3):43–52, 2002.
21. M.-J. Lee, J. Lee, J. Y. Park, R. H. Choi, and C.-W. Chung. Qube: a quick

algorithm for updating betweenness centrality. In Proc. WWW, pages 351–360,
2012.

22. L. Leydesdorff. Betweenness centrality as an indicator of the interdisciplinarity of
scientific journals. J. Am. Soc. Inf. Sci. Technol., 58(9):1303–1319, July 2007.

23. M. Luby and P. Ragde. A bidirectional shortest-path algorithm with good average-
case behavior. Algorithmica, 4(1-4):551–567, 1989.

24. K. Madduri, D. Ediger, K. Jiang, D. A. Bader, and D. G. Chavarŕıa-Miranda. A
faster parallel algorithm and efficient multithreaded implementations for evaluating
betweenness centrality on massive datasets. In Proc. IPDPS, pages 1–8, 2009.

25. L. Maglaras and D. Katsaros. New measures for characterizing the significance of
nodes in wireless ad hoc networks via localized path-based neighborhood analysis.
Social Network Analysis and Mining, 2(2):97–106, 2012.

26. C. C. McGeoch. All-pairs shortest paths and the essential subgraph. Algorithmica,
13(5):426–441, 1995.

27. K. Mehlhorn and U. Meyer. External-memory breadth-first search with sublinear
I/O. In Proc. ESA, pages 723–735, 2002.

28. M. Nasre, M. Pontecorvi, and V. Ramachandran. Decremental and fully dynamic
all pairs all shortest paths and betweenness centrality. Manuscript, 2014.

29. S. Pettie. A new approach to all-pairs shortest paths on real-weighted graphs.
Theoretical Computer Science, 312(1):47 – 74, 2004.

30. S. Pettie and V. Ramachandran. A shortest path algorithm for real-weighted
undirected graphs. SIAM J. Comput., 34(6):1398–1431, 2005.

31. J. W. Pinney, G. A. McConkey, and D. R. Westhead. Decomposition of biological
networks using betweenness centrality. In Proc. RECOMB. Poster session, 2005.

32. R. Puzis, Y. Altshuler, Y. Elovici, S. Bekhor, Y. Shiftan, and A. S. Pentland.
Augmented betweenness centrality for environmentally aware traffic monitoring in
transportation networks. J. of Intell. Transpor. Syst., 17(1):91–105, 2013.

33. Ramı́rez. The social networks of academic performance in a student context of
poverty in Mexico. Social Networks, 26(2):175–188, 2004.

34. B. K. Singh and N. Gupte. Congestion and decongestion in a communication
network. Phys. Rev. E, 71:055103, 2005.

12

