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Abstract

Wepresent e�cient parallel algorithms for the problems of �nding a minimal2-edge-connected

spanning subgraph of a 2-edge-connected graph and �nding a minimalbiconnected spanning sub-

graph of a biconnected graph. The parallel algorithms run in polylog time using a linear number

of PRAM processors. We also give linear time sequential algorithms for minimally augmenting

a spanning tree into a 2-edge-connected or biconnected graph.

1 Introduction

In this paper we consider the following two related problems: given a 2-edge-connected (bicon-

nected) graph G, compute a minimal 2-edge-connected (biconnected) spanning subgraph of G,

i.e., a 2-edge-connected (biconnected) subgraph in which the deletion of any edge destroys 2-edge-

connectivity (biconnectivity). We present e�cient parallel algorithms for these problems.

It is known that the corresponding problems of �nding minimum spanning subgraphs with these

properties are NP-hard ([6]). Thus, it is natural to study the simpler problem of computing

minimal spanning subgraphs with respect to these properties. The problems considered here have

applications in the context of network reliability.

Our interest in the parallel complexity of the above problems is prompted by the fact that both prob-

lems admit very simple sequential algorithms that seem hard to parallelize. Thus, new techniques

are required to obtain an e�cient parallel solution for these problems. Several other well-known

problems share this property, e.g., the problem of computing a maximal independent set in a graph

and the problem of computing a depth-�rst search tree in a graph (see [11]). To illustrate this, con-

sider the problem of �nding a minimal 2-edge-connected spanning subgraph. Let the input graph

G have n vertices and m edges. We assume that G is 2-edge-connected. The obvious sequential

algorithm �nds a minimal 2-edge-connected spanning subgraph of G by examining the edges of G

one at a time and removing an edge if the resulting graph is a 2-edge-connected spanning subgraph
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of G. The total time is dominated by m calls to the algorithm for testing 2-edge-connectivity ([21],

[14], [13], [18]), giving a time bound of O(m(n+m)). The time can be brought down to O(m+n2)

by �rst �nding a sparse 2-edge-connected spanning subgraph of G (see section 3). There is a sim-

ilar sequential algorithm with the same time bound for �nding a minimal biconnected spanning

subgraph of G. None of these algorithms lends itself to an e�cient parallel implementation.

In this paper we present fast parallel algorithms for these problems: they both run in time O(log3 n)

with a number of CRCW processors close to (n+m)= logn (for the exact bound, see end of section

3). These algorithms are the �rst e�cient parallel algorithms for these problems. In the outer loop

of both parallel algorithms we �nd a spanning tree in the current subgraph of the input graph that

contains the smallest possible number of redundant edges (i.e., edges that can be removed without

destroying the desired property - 2-edge-connectivity or biconnectivity). A similar step is used in

each iteration of an algorithm of [7] to compute a minimal strongly connected spanning subgraph

of a strongly connected digraph (transitive compaction problem). We augment such a spanning tree

with a minimal set of edges restoring the desired property (2-edge-connectivity or biconnectivity).

We use tree contraction to construct such a minimal augmentation. This part of our algorithm

markedly di�ers from the corresponding step in the transitive compaction algorithm. As in [7] we

show that O(logn) iterations of this procedure yield the desired spanning subgraph.

We also give linear time algorithms for minimally augmenting a spanning tree into a 2-edge-

connected or biconnected graph. If used in the obvious way these procedures yield sequential

algorithms for both problems that run in time O(m+ n logn). In recent work ([9]) the basic algo-

rithms have been re�ned into linear time algorithms for �nding a minimal 2-edge-connected span-

ning subgraph of a 2-edge-connected graph and �nding a minimal biconnected spanning subgraph

of a biconnected graph. These algorithms use the linear time minimal augmentation procedures

described in this paper as subroutines. Similar linear time augmentation procedures have been

found independently by Han and Tarjan ([8]).

Our paper is organized as follows. In the next section we introduce the graph-theoretic terminol-

ogy. In section 3 we present the parallel algorithm for �nding a minimal 2-edge-connected spanning

subgraph and in section 4 we describe our parallel algorithm for �nding a minimal biconnected

spanning subgraph. In section 5 we present linear time sequential algorithms for minimally aug-

menting spanning trees with respect to these properties. In section 6 we summarize our results and

mention some related results.
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2 De�nitions

A graph G = (V;E) consists of a set V of vertices and a set E of edges. We sometimes write V (G)

and E(G) for the set of vertices and edges, respectively, and write n(G) and m(G), respectively, for

their cardinalities. If the edges are ordered pairs (v; w) of distinct vertices, the graph is directed: v

is called the tail and w is called the head of the edge. We also use the term digraph for a directed

graph. The indegree (outdegree) of a vertex in a digraph is the number of edges in the digraph

whose head (tail) is this node. If the edges are unordered pairs of distinct vertices, also denoted by

(v; w), the graph is undirected. In that case v and w are incident with the edge (v; w). If v = w,

then the edge (v; w) is a self-loop. The degree of a vertex is the number of edges incident with it.

If E is a multiset, i.e., if edges may have multiple copies, then G is a multigraph.

Fix a multigraph G = (V;E). A path P in G is a sequence < v0 : : :vk > of vertices of V such that

(vi�1; vi) (1 � i � k) is an edge in E; the nodes v0 and vk are the endpoints of P and v1 : : :vk�1

are the internal vertices of P . We say that vk is reachable from v0. The vertices vi lie on the path

P and the edges (vi�1; vi) are the edges on the path P . The length of a path is the number of edges

on the path. A path is simple if v0 : : :vk�1 are distinct and v1 : : :vk are distinct. A simple path

is a chain if all of its internal vertices have degree 2 in the graph. A cycle in G is a path in G

whose endpoints coincide and all of whose edges are distinct. A simple cycle is a simple path whose

endpoints coincide.

If G = (V;E) and G0 = (V 0; E0) are two graphs such that V 0 � V and E0 � E, then G0 is a subgraph

of G. A subgraph G0 of G is a proper subgraph of G if it is di�erent from G. A subgraph G0 of G

having some property is a maximal subgraph with this property if it is not a proper subgraph of

another subgraph of G with this property. G0 is the subgraph of G induced by the vertices in V 0 if

E0 contains exactly the edges of E between vertices of V 0. G0 is the subgraph of G induced by the

edges in E0 if V 0 = V . A spanning subgraph of G is a subgraph G0 with V 0 = V . If G0 is a spanning

subgraph of G and E00 � E, then G0+E00 denotes the graph with vertex set V 0(= V ) and edge set

E0 [E00 and G0 � E00 denotes the graph with vertex set V 0 and edge set E0 � E00.

An undirected graph G is connected if every vertex in G is reachable from any other vertex in G.

A connected component in G is a maximal connected subgraph of G (i.e., it is connected and it is

not a proper subgraph of a connected subgraph of G).

A tree is a connected (undirected) graph without cycles. A subtree of a tree is a subgraph of a tree

that is a tree. If T is a tree and u and v are two vertices in T , then the graph T + (u; v) contains a

unique (simple) cycle called the fundamental cycle of (u; v) in T . A forest is a graph without cycles

or, equivalently, it is a graph whose connected components are trees. A leaf in a forest is a vertex

of degree at most 1 in the forest.
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A rooted tree is a directed graph whose undirected version is a tree, having one vertex, called the

root, which is the head of no edges, and such that all vertices except the root are the head of exactly

one edge. If (v; w) is an edge in the rooted tree, v is the parent of w and w is the child of v. A

leaf in the rooted tree is a vertex in the tree that does not have a child. A descendant of v is any

node reachable from v in the tree (including v). A vertex w is an ancestor of v if v is a descendant

of w in the tree. A proper descendant (ancestor) of v is a descendant (ancestor) of v other than v.

The depth of a node in a rooted tree is the number of edges on the (unique) simple path from the

root to the node in the tree. The least common ancestor (lca) of two vertices in a rooted tree is the

vertex at maximum depth that is an ancestor of both vertices.

A spanning tree of a graph G is a spanning subgraph of G that is a tree. The tree edges in G are

the edges in G that belong to a given spanning tree; all other edges in G are nontree edges. If each

edge in G has a real weight, the weight of a spanning tree of G is the sum of the weights of its

edges. A minimum spanning tree in G (with respect to these weights) is a spanning tree in G with

minimum weight.

Let G = (V;E) be a graph and let V1; : : : ; Vk be disjoint nonempty subsets of vertices in G. Let

v1; : : : ; vk be k new vertices (that do not belong to V ). De�ne a mapping f from V to V [fv1; : : : ; vkg

by f(v) = vi if v 2 Vi (1 � i � k) and f(v) = v if v does not belong to any Vi. The operation

of collapsing the vertices in V1; : : : ; Vk consists in replacing the vertices in each Vi by vi, replacing

each edge (v; w) in G by the edge (f(v); f(w)) and deleting all self-loops in the resulting graph.

Let G0 denote the resulting graph. The graph G0 is a multigraph. It will often be convenient to

identify each edge (v; w) in G where f(v) 6= f(w) with a unique edge in G0 linking the vertices f(v)

and f(w). In these cases we may pick an arbitrary one-to-one mapping between the edges in G0

connecting any two distinct vertices x and y and the edges (v; w) in G with f(v) = x and f(w) = y

and identify an edge (x; y) with the edge in G to which it is mapped under this one-to-one mapping.

A graph is k-edge-connected (k � 1) if the removal of at most k�1 edges does not disconnect G. An

equivalent condition for a graph to be 2-edge-connected is that every edge lies on a cycle. A 2-edge-

connected component of G is a maximal 2-edge-connected subgraph of G (i.e., a 2-edge-connected

component is not a proper subgraph of a 2-edge-connected subgraph of G). A cutedge in G is an

edge in G whose removal disconnects G. Thus, a graph is 2-edge-connected if it is connected and

does not contain a cutedge.

A graph is k-vertex-connected (k � 1) if at least k vertices have to be removed from the graph

in order to disconnect it or reduce it to a single vertex. A vertex in G is a cutpoint if removing

it together with all incident edges yields a graph that is not connected. A graph G is biconnected

(or 2-vertex-connected) if it has at least 3 vertices and does not contain a cutpoint. A block (or

a biconnected component) of a graph G is either an isolated vertex in G, or a cutedge in G, or a
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Figure 1: (a) A 2-edge-connected graph G and (b) a minimal 2-edge-connected spanning subgraph

of G. Essential and redundant edges are indicated by thick and thin lines, respectively.

maximal biconnected subgraph of G.

An ear decomposition D = [P0; P1; : : : ; Pr�1] of an undirected graph G = (V;E) is a partition of E

into an ordered collection of edge disjoint simple paths P0; : : : ; Pr�1 such that P0 is an edge, P0[P1

is a simple cycle, and each endpoint of Pi, for i > 1, is contained in some Pj , j < i, and none of

the internal vertices of Pi are contained in any Pj , j < i. The paths in D are called ears. D is

an open ear decomposition if none of the Pi is a simple cycle. A trivial ear is an ear other than P0

containing a single edge.

3 Finding a Minimal 2-Edge-Connected Spanning Subgraph

In this section we consider the following problem: given a 2-edge-connected graph G, �nd a minimal

2-edge-connected spanning subgraph of G, i.e., a 2-edge-connected spanning subgraph of G that

does not have a 2-edge-connected spanning subgraph of G as a proper subgraph. Figure 1 shows a

2-edge-connected graph G and a minimal 2-edge-connected spanning subgraph of G.

3.1 The High-Level Algorithm

Our parallel algorithm for computing a minimal 2-edge-connected spanning subgraph makes use of

a partition of the edges of a 2-edge-connected graph into two classes: those that can be removed

without destroying 2-edge-connectivity and those whose removal destroys 2-edge-connectivity. For-

mally, for an arbitrary 2-edge-connected graph H , we say that an edge e is redundant in H if H� e

is 2-edge-connected; edges that are not redundant in H are essential in H . We sometimes shall not

mention the graph H if it is clear from the context. Note that an edge that is essential in H is also
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essential in any 2-edge-connected spanning subgraph of H . Similarly an edge that is redundant

in a 2-edge-connected spanning subgraph of H is also redundant in H . In �gure 1 essential and

redundant edges are indicated by thick and thin lines, respectively. Since the graph in �gure 1(b)

is a minimal 2-edge-connected spanning subgraph of the graph in �gure 1(a), all of its edges are

essential.

Let G = (V;E) be a 2-edge-connected graph with n vertices andm edges. We present our algorithm

for �nding a minimal 2-edge-connected spanning subgraph of G in a top-down fashion. At the

highest level it has the following structure:

Algorithm 1 Finding a minimal 2-edge-connected spanning subgraph of G.

Input 2-edge-connected graph G.

Output Minimal 2-edge-connected spanning subgraph H of G.

(0) Find a 2-edge-connected spanning subgraph H of G with fewer than 2n edges.

(1) While H contains redundant edges, repeat the following two steps:

(1.1) Find a spanning tree in H that contains the smallest possible number of redundant edges

in H . Call this tree TH .

(1.2) Determine a minimal subset B of edges in H such that the graph TH + B is 2-edge-

connected. Let H = TH +B.

The purpose of step (0) is to speed up subsequent iterations of the while-loop by computing a sparse

subgraph of the input graph. In this step we compute an ear decomposition ofG ([14], [13], [18]) and

eliminate all trivial ears. Let H be the resulting graph. H is clearly a 2-edge-connected spanning

subgraph of G. Let m0 denote the number of edges of H and let q be the number of (nontrivial)

ears in the above ear decomposition. A proof by induction over q establishes m0 = n+ q� 2. Since

H contains no trivial ears, we have q � n� 1; hence, m0 � 2n� 3 as required in step (0).

For steps (1) and (1.1) we need to determine the redundant edges in H . A separating pair of edges

for H is a pair (e1; e2) of edges of H such that the graph H � e1 � e2 is not connected. Note that

an edge of H is redundant if and only if it does not occur in any separating pair of edges for H .

Hence, we identify the redundant edges in H by �nding all separating pairs of edges in H . For this

we modify the vertex triconnectivity algorithm in [3], [18] (see also [19]). We now assign weight 0

to essential edges and weight 1 to redundant edges and choose for TH a minimum spanning tree in

this graph. The implementation of step (1.2) will be discussed in the next section.

Note: An alternative (sequential) method developed independently by Han and Tarjan ([8]) for

computing a minimal 2-edge-connected spanning subgraph can be parallelized; the parallel imple-
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mentation is similar to our method but it does not require redundant and essential edges to be

computed explicitly.

The correctness of algorithm 1 follows from these two observations: (1) at the start of any iteration

of the while-loop (step (1) of algorithm 1) the graph H is a spanning 2-edge-connected subgraph

of G; (2) the number of edges in H strictly decreases in each iteration of the while-loop.

The following lemma implies that the number of redundant edges in H decreases quite rapidly.

This results in a O(logn) upper bound on the number of iterations of algorithm 1.

Lemma 1 There is a spanning tree in H that contains at most 2=3 of the redundant edges in H.

Proof. Let Ess denote the set of essential edges in H . Let r denote the number of redundant edges

in H and c the number of connected components of the graph (V (H); Ess). Fix a spanning tree

T in H with the smallest possible number of redundant edges of H . The tree T contains exactly

c� 1 redundant edges of H . Furthermore, if c > 1, then each connected component of (V (H); Ess)

is incident with at least 3 redundant edges in H and hence, c � 2=3 � r. The claim follows. 2

Corollary 1 Algorithm 1 terminates after O(logn) iterations of the while-loop.

Proof. Let H 0 and H 00 represent the graph H at the start of two consecutive iterations of the

while-loop. Note that all edges in H 00 added to the spanning tree TH 0 in step (1.2) of the current

iteration are essential in H 00. Thus, any redundant edge in H 00 is redundant in H 0 and belongs to

TH 0. The previous lemma then implies that the number of redundant edges in H 00 is at most 2=3

times the number of redundant edges in H 0. The claim follows. 2

The main work in algorithm 1 is done in step (1.2) in which we minimally augment the spanning

tree TH into a 2-edge-connected graph. We call the (minimal) set B of edges in H that will be

added to TH a minimal augmentation for TH in H . In the next section we describe how such a

minimal augmentation can be computed e�ciently in parallel.

3.2 Computing a Minimal Augmentation in Parallel

For this section we �x an iteration of the while-loop of algorithm 1. We describe how to compute

a minimal augmentation for the tree TH computed in step (1.1) of the current iteration.

Our method does not use the fact that TH contains a minimum number of redundant edges in

H . We may therefore assume that TH is an arbitrary spanning tree in H . We shall illustrate our

minimal augmentation procedure with the example in �gure 2(a). Figure 2(a) shows a graph H

with a spanning tree TH ; the edges of TH are indicated by solid lines and the nontree edges are
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Figure 2: (a) Graph H with the edges of TH (rooted at a) indicated by solid lines and the non-

tree edges indicated by dashed lines. Vertices with a letter are lca's of nontree edges. (b) The

corresponding tree Tlca.
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indicated by dashed lines. We shall make use of parallel tree contraction to compute such a minimal

augmentation. Tree contraction was �rst introduced by Miller and Reif ([15]). We use a variant of

tree contraction proposed in [17, 16]. This method is based on the operation Shrink which we shall

now describe.

Let T be an arbitrary rooted tree. A leaf chain in T is a sequence < v0; v1; : : : ; vk > of vertices in

T such that vk is a leaf, vi is the unique child of vi�1 for i > 0 and the parent v of v0 is either the

root of T or has at least 2 children. For example consider the tree in �gure 2(b). This tree has one

leaf chain with 6 nodes (< c; d; e; f; g; h >), one leaf chain with 5 nodes (< p; q; r; s; t >), one leaf

chain with 4 nodes (< l;m; n; o >) and one leaf chain with 1 node (< i >).

The operation Shrink reduces a tree by removing the vertices in the leaf chains. Tree contraction

reduces an arbitrary rooted tree to a single vertex by repeatedly applying the Shrink operation to

it. It can be shown ([17, 16]) that O(logn) applications of Shrink contract any tree on n nodes to a

single vertex. Applying Shrink to the tree in �gure 2(b) removes vertices c : : :h; i; l : : : o; p : : :t and

applying it one more time removes vertices b; j; k, thus leaving a tree with the single vertex a.

In the sequel we assume that the spanning tree TH , computed in step (1.1) of algorithm 1, is rooted

at an arbitrary vertex. The tree contraction will be performed on a tree Tlca closely related to the

tree TH . The tree is de�ned as follows: the vertices of Tlca are the least common ancestors (lca's)

in TH of nontree edges in H (i.e., the lca's of the endpoints of those edges). The root of Tlca is the

root of TH . A vertex v is a child of u in Tlca if and only if v is a descendant of u in TH and none

of the internal vertices on the path from u to v in TH is an lca of a nontree edge. For instance,

consider the graph H depicted in �gure 2(a) with the spanning tree TH denoted by the solid edges.

The corresponding tree Tlca is the tree in �gure 2(b).

Let F denote the set of nontree edges in H , i.e., those edges in H that do not belong to the spanning

tree TH . Let T denote the tree Tlca at the current stage of tree contraction. The algorithm for

computing a minimal augmentation for TH works in stages. In each stage the algorithm maintains

the following three sets of nontree edges (subsets of F ): the set IN of edges that have been processed

at an earlier stage and have been chosen for the minimal augmentation; the set C of those nontree

edges whose lca lies on a leaf chain of T ; and the set R of nontree edges that are still to be processed.

At the current stage we add to the augmentation a subset A of C that is minimal with respect to

the property that TH + IN + R+ A is 2-edge-connected. Thus, we add a subset of edges from C

to the augmentation while taking into account those edges that have already been added as well as

those that will be examined at later stages. This will ensure that the resulting set of edges for the

augmentation is indeed minimal. This will be proven formally in lemma 2.

For the example in �gure 2(a) nontree edges with an lca other than a; b; j; k will be processed at the

�rst stage of our algorithm (algorithm 2), those whose lca is b, k or j are processed at the second
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stage, and those with lca a are processed at the third and last stage.

For technical reasons we view the tree consisting of a single vertex as having a leaf chain with no

root vertex; one more iteration of tree contraction will yield the empty tree. The �ne-structure of

step (2.2) will be developed following lemma 2. Note that a stage as explained earlier corresponds

to an iteration of the while-loop.

Algorithm 2 Finding a minimal augmentation for TH .

Input Tree TH , set F of nontree edges.

Output Minimal augmentation IN for TH from edges in F .

(1) Initialize : IN := ;, R := F , and T := Tlca.

(2) While T is non-empty, perform the following actions for all leaf chains of T in parallel:

(2.1) Let C be the subset of edges in R whose lca is a vertex on some leaf chain of T . Let

R := R� C.

(2.2) Find a minimal subset A � C such that TH + IN +R+ A is 2-edge-connected.

(2.3) Let IN := IN [A.

(2.4) Remove the leaf chains from T .

Lemma 2 Upon completion of algorithm 2, IN is a minimal augmentation for TH.

Proof. We claim that the following statement holds before any iteration of step (2):

(*) TH + IN +R is 2-edge-connected and every edge of IN is essential in TH + IN +R.

Upon termination of algorithm 2, R is empty and (*) implies that IN is a minimal augmentation

for TH .

We prove that (*) holds before each iteration of step (2) by induction on the iteration number.

Note that (*) holds before the �rst iteration where R = F and IN = ; since H = TH+F is 2-edge-

connected. Assume that (*) holds before the ith iteration of step (2) (i � 1). Denote by INj and

Rj the sets IN and R, respectively, before the jth iteration for any j � 1. By step (2.2) in the ith

iteration TH + INi + Ri+1 + A is 2-edge-connected, and hence, by step (2.3), TH + INi+1 + Ri+1

is 2-edge-connected. Note that INi+1 [Ri+1 � INi [Ri. Thus, by the inductive assumption , the

edges of INi are essential in TH + INi+1 + Ri+1. By the minimality of the set A constructed in

step (2.2) each edge of INi+1 � INi is essential in TH + INi+1 + Ri+1. This shows that (*) holds

before iteration i+ 1 of step (2). 2
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In the sequel we consider a �xed iteration of the while-loop in algorithm 2. We have reduced the

problem of computing a minimal augmentation for TH to the problem of computing a minimal

augmentation for TH + IN + R from the edges in C, i.e., a minimal set A � C such that TH +

IN + R+ A is 2-edge-connected. At this point it is not clear that this problem is easier than the

original problem of computing a minimal augmentation for TH . We shall see, however, that the

special structure of C, i.e., the fact that all edges in C have their lca on a leaf chain of T , allows for

a fast parallel solution of the modi�ed augmentation problem. Intuitively, this is because nontree

edges whose lca's lie on di�erent leaf chains can be processed independently.

It is helpful to view the minimal augmentation problem in terms of edges in the spanning tree TH

being covered by nontree edges. To make this precise, note that any nontree edge e in H produces

a unique cycle in TH + e, the fundamental cycle of e. We say that edge e covers the edges of TH

that lie on its fundamental cycle. We say that a set D of nontree edges covers a set D0 of tree edges

if each tree edge in D0 is covered by some edge in D. The de�nition of 2-edge-connectivity implies

that A is a minimal augmentation for TH + IN + R if A is a minimal set of nontree edges in C

covering the edges in TH not already covered by an edge in IN [ R.

Since we are only interested in the edges of TH not covered by edges in IN [ R, we would like to

somehow \remove" those edges in TH that are covered by an edge in IN [ R. This motivates the

following de�nition. LetH 0 be a subgraph ofH containing tree TH as a subgraph. The condensation

of graph H 0 is a graph H 00 obtained from H 0 by collapsing the vertex sets of the 2-edge-connected

components of H 0. (The operation of \collapsing" is de�ned formally in section 2.) Note that H 00

is a tree. We root this tree at the vertex into which the root of TH is collapsed.

The following lemma shows that we can reduce the problem of minimally augmenting H 0 to the

problem of minimally augmenting its condensation H 00.

Lemma 3 Let H 0 be a subgraph of H containing TH and let H 00 be the condensation of H 0. For

any B � E(H), H 0 +B is 2-edge-connected i� H 00 +B is 2-edge-connected.

Proof. The edges of H 00 are the cutedges of H 0. Moreover, a cycle in H 0 + B containing a cutedge

of H 0 maps to a cycle in H" + B containing the corresponding edge of H". If H 0 + B is 2-edge-

connected, then every cutedge of H 0 is on a cycle in H 0+B and hence, every edge of H"+B is on

a cycle. Therefore, H" +B is 2-edge-connected.

Conversely, we note that a cycle in H" +B yields a cycle in H 0 +B containing all the cutedges of

H 0 that lie on the cycle of H" + B. Thus, if H" + B is 2-edge-connected, every edge of H" is on

a cycle in H 00 + B and hence, every cutedge of H 0 is on a cycle in H 0 + B. Therefore, H 0 + B is

2-edge-connected. 2
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Figure 3: Condensation T0 of TH + IN + R. The edges of T0 are indicated by solid lines. Thick

solid lines indicate stem edges. Dashed lines correspond to nontree edges in H . Thick dashed lines

represent nontree edges that are put into A1.

Let us return to our original problem. We want to compute a minimal augmentation A � C for

TH + IN + R. Let T0 denote the condensation of TH + IN + R. By lemma 3 we may choose

for A a minimal augmentation for T0. We shall illustrate our method to compute such a minimal

augmentation with the example in �gure 2. Consider the �rst iteration of algorithm 2 on the graph

H depicted in �gure 2(a). In this case IN = ; and R is the set of nontree edges whose lca is in

the set fa; b; j; kg. The condensation T0 of TH + IN +R is indicated in �gure 3 by solid lines. The

dashed lines represent nontree edges in C.

Our method for computing a minimal augmentation for T0 is based on partitioning the edges in

T0 into two classes. Recall that tree T represents Tlca at the current stage of tree contraction

(it will change in step (2.4) at the end of this iteration of the while-loop in algorithm 2). Let

L =< v0; : : : ; vk > be a leaf chain of T . The path in TH from v0 to vk is termed the stem of L. We

call those edges in T0 that belong to a stem of a leaf chain stem edges and refer to the remaining

edges as non-stem edges. In �gure 3 the stem edges are indicated by thick solid lines and nonstem

edges are indicated by thin solid lines.

We build a minimal augmentation for T0 in three stages: in stage 1 we select a minimal subset

A1 � C covering the non-stem edges in T0. In stage 2 we choose a minimal subset A2 � C whose

edges cover all stem edges in T0 not covered in stage 1. The graph T0+A1+A2 is 2-edge-connected.
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Furthermore, by the minimality of A2, all edges of A2 are essential in T0 + A1 + A2. To obtain a

minimal augmentation for T0, we shall remove certain edges of A1 from T0 + A1 + A2 so that the

resulting subgraph of T0+A1+A2 is 2-edge-connected and all remaining nontree edges in A1 [A2

are essential in this subgraph. This is done in the third and �nal stage.

One can show (lemma 4) that a set of nontree edges A1 � C covers all non-stem edges of T0 if and

only if each leaf of T0 is incident with at least one edge of A1. Thus, in stage 1 we need to compute

a minimal set A1 � C such that each leaf of T0 is incident with at least one edge of A1. This is

exactly what algorithm 3 does. In �gure 3 the thick dashed lines represent nontree edges that are

put into A1. Note that the set of these edges is minimal with respect to the property that each leaf

of T0 is incident with an edge in this set.

Algorithm 3 Covering non-stem edges of T0.

Input Tree T0, set C of nontree edges.

Output Minimal subset A1 � C covering the non-stem edges of T0.

(1) Let Gl be the graph whose vertices are the leaves of T0 and whose edges are the edges of C

between them. Find a spanning forest in Gl.

(2) For each tree Tl in this forest do the following:

(2.1) Root the tree at an arbitrary vertex. Determine the depth of each node in Tl. Mark all

edges in Tl that connect a vertex at even depth with a child (at odd depth). Also, for

each leaf in Tl mark the unique incident tree edge (if it is not already marked).

(2.2) A marked edge in the tree is bad if both of its endpoints have at least two marked edges

(including this edge) incident with them. Each node (at even depth) eliminates any bad

edges to its children.

(2.3) If a node at even depth loses all marked edges to its children in the previous step, it

marks a single edge to one of its children in Tl.

(3) Any leaf of T0 that is not yet incident with a marked edge (i.e., it is an isolated vertex of Gl)

marks an arbitrary edge of C incident with it.

Let A1 be the subset of edges in C that are marked.

Lemma 4 A1 covers all non-stem edges of T0 if and only if each leaf of T0 is incident with an edge

of A1.

Proof. Suppose that A1 covers the non-stem edges of T0. Let v be a leaf of T0 and let e be the

edge from v to its parent in T0. To show that an edge of A1 is incident with v, it su�ces to show

13



that e is a non-stem edge in T0. Suppose that e links a node v0 in TH to its parent in TH . By

the de�nition of T0 and R, no edge of R is incident with a descendant of v0 in TH (otherwise the

endpoints of e would have been collapsed into a single vertex of T0). Furthermore, if an lca of an

edge in IN is a descendant of v0, it must be a proper descendant. Hence v = v0 and v is a leaf of

TH . It follows that v is not an lca of an edge in C. Hence, e is a non-stem edge.

Now let each leaf of T0 be incident with an edge of A1. Let e be a non-stem edge of T0 connecting

some vertex v to its parent in T0. Let D be the set of edges in A1 incident with leaves in T0 that

are descendants of v. By our assumption D is nonempty. Moreover, any edge in D has its lca on

a stem in TH ; hence its fundamental cycle must contain edge e. We conclude that each non-stem

edge in T0 is covered by an edge of A1. 2

Lemma 5 A1 is a minimal subset of edges in C covering all non-stem edges of T0.

Proof. By lemma 4 we only need to show that A1 is a minimal set of edges such that each leaf of

T0 is incident with an edge in A1. We �rst show that each leaf of T0 is incident with some edge in

A1. If v is a leaf in tree Tl of the forest, then its unique incident tree edge marked in step (2.1)

will never be unmarked. Now assume that v is not a leaf. If its depth is even, it will certainly be

incident with a marked edge after step (2.3). If its depth is odd, the edge to its parent in Tl can be

unmarked only if one of its children is a leaf. The edge to that child is marked in step (2.1) and will

never be unmarked. Finally, any isolated vertices in Ge (all of whose incident edges of C connect

to nodes that are not leaves of T0) will be incident with a marked edge after step (3). Hence, every

leaf in T0 is incident with an edge of A1.

To establish the minimality of A1, �x an edge in A1. If it was marked in step (3), then only one

endpoint of this edge is a leaf of T0 and this endpoint will lie on a single marked edge. For the

remaining edges of A1, observe that edges that were bad after step (2.1) were removed during step

(2.2) and none of the edges marked in step (2.3) are bad. Hence, every edge of A1 has at least

one endpoint that is a leaf in T0 and that is not incident with another edge of A1. Therefore A1 is

minimal. 2

In stage 1 we covered all non-stem edges of T0 and possibly some stem edges. In the second stage

we proceed to cover stem edges in T0 that have not been covered in stage 1. The algorithm we use

here is similar to an algorithm in [17, 16] for �nding a minimum feedback-vertex-set in a reducible

ow graph.

To compute a minimal subset A2 � C covering the stem edges of T0 not covered by edges of A1, we

appeal again to lemma 3. According to this lemma we may choose for A2 a minimal set of edges

in C covering the edges in the condensation T1 of T0 + A1. Note that T1 is also the condensation

of graph TH + IN +R+A1. The tree T1 has a rather simple structure: any vertex other than the
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Figure 4: (a) Condensation T1 of TH + IN +R+A1. Solid lines correspond to edges in T1. Dashed

lines correspond to nontree edges in H . Thick dashed lines represent edges in A2. On path PL we

have up(vi) = ei. (b) Graph DL corresponding to root-to-leaf path PL in T1. Edges e5, e4 and e2

belong to A2 because they represent vertices on a maximal path in DL starting at e5.

root of T1 has at most one child. Moreover, the edges on any root-to-leaf path in T1 belong to the

stem of a single leaf chain of T . The tree T1 corresponding to the example in �gure 3 is shown in

�gure 4(a).

Let PL denote the root-to-leaf path in T1 containing edges on the stem of leaf chain L of T . We

note that all the nontree edges in C connect vertices on the same path PL for some leaf chain L

(this follows from the de�nition of C). Let CL be the set of edges in C that connect two distinct

vertices on PL. It su�ces to show how to compute a minimal subset of edges in CL that covers the

edges on path PL. For any edge of CL, let the upper endpoint refer to the endpoint that is closer to

the root of T1 and let the lower endpoint be that endpoint that is further away from the root of T1.

The following greedy procedure picks a minimal subset of edges covering the edges on PL: pick as

�rst edge an edge of CL incident with the unique leaf on PL and whose endpoint is closest to the

root of T1. At any point pick as the next edge an edge in CL whose lower endpoint lies between

the endpoints of the edge that was picked last and whose upper point is closest to the root of T1.

We are done once we pick an edge whose upper endpoint is the root of T1. The following algorithm

is a parallel version of this greedy strategy.

Algorithm 4 Covering T1.

Input Tree T1, edge set C � A1.

Output Minimal subset A2 � C � A1 covering the edges in T1.
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In parallel for each leaf chain L, do:

(1) Let CL be the subset of edges in C � A1 that connect two distinct vertices on PL. For each

vertex v on PL let Ev be the set of edges in CL incident with v and whose other endpoint lies

strictly above v on PL (i.e., closer to the root of T1). Each vertex v on PL with Ev 6= ; selects

a single edge in Ev whose upper endpoint is closest to the root of T1. Denote this edge by

up(v) (see �gure 4(a)).

(2) Construct the auxiliary digraph DL de�ned as follows (see �gure 4(b)): the vertex set of DL

is the set fup(v) : v is a vertex on PL and Ev 6= ;g. There is a directed edge in DL from e to

e0 if and only if the lower endpoint of e0 lies between the endpoints of e, possibly coinciding

with the upper endpoint of e, and the upper endpoint of e0 is strictly above that of e (i.e, it

is closer to the root of T1); moreover, among all edges whose lower endpoint lies between the

endpoints of e, the upper endpoint of e0 is closest to the root of T1. (Note: There may be

several such edges e0; in this case pick an arbitrary such edge e0. Hence, each vertex in DL

has outdegree at most 1.)

(3) Starting at up(v), where v is the unique leaf on PL, construct a maximal path in DL, i.e., a

path that ends at a vertex that has outdegree 0 in DL. Let AL be the set of edges in CL that

are represented by vertices on this path.

Let A2 =
S
LA

L
2

Observation 1 The lower endpoints on path PL of edges in AL
2 are all distinct. Furthermore, the

upper endpoints on PL of the edges in AL
2 are all distinct.

Lemma 6 A2 is a minimal set of edges covering the edges of T1.

Proof. As mentioned earlier, edges in C � A1 have their endpoints in T1 on the same path PL

from the root to some leaf of T1. Therefore, it su�ces to show that the edges in AL
2 minimally

cover the edges of PL for an arbitrary leaf chain L of T . We shall �rst prove that each edge in PL

is covered by some edge in AL
2 . Assume for a contradiction that e is the lowest edge on PL not

covered by any edge in AL
2 . Consider the subset S of edges of C � A1 that cover e. Since H is

2-edge-connected, S is nonempty. Let e0 be an edge of S. Since e is the lowest uncovered edge on

PL, the lower endpoint of e0 lies between the endpoints of some edge e00 2 AL
2 (may coincide with

its upper endpoint). The path in DL found in step (3) is maximal. Therefore, e00 has a successor

edge on the path whose upper endpoint is at least as high on the stem as that of e0. Hence, that

edge covers e, contradicting the assumption that e is not covered.
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To see why AL
2 is minimal, let e0 : : : ek be the edges in A

L
2 in the order they occur as vertices on the

maximal path in DL. By observation 1 and the de�nition of DL, the edge from the lowest vertex

(leaf) on PL to its parent in T1 is covered only by e0. Furthermore, the lower endpoint of ei+1 lies

strictly above the upper endpoint of ei�1. It follows that the edges on PL between those endpoints

are covered only by ei. Finally, again by observation 1, the highest edge on PL is covered only by

ek. Hence, the edges of A
L
2 cover the edges of PL minimally. 2

Corollary 2 The graph T0+A1+A2 is 2-edge-connected and the edges in A2 are essential in this

graph.

Proof. By lemma 5 each non-stem edge of T0 is covered by some edge in A1. By lemma 6 each

stem edge of T0 is covered either by an edge of A1 or an edge of A2. Hence, T0 + A1 + A2 is

2-edge-connected. By lemma 6 the set A2 is a minimal set such that T1 +A2 is 2-edge-connected.

By lemma 3 A2 is also a minimal set such that T0+A1+A2 is 2-edge-connected. We conclude that

the edges of A2 are essential in T0 + A1 +A2. 2

Observation 2 Every vertex of PL is incident with at most 2 edges of AL
2 .

The set A1 [ A2 may not be a minimal augmentation for T0. Indeed, an edge of A1 is redundant

in T0 + A1 + A2 if all the tree edges on its fundamental cycle in T0 are covered by other edges in

A1 [A2.

To obtain a minimal augmentation for T0, we shall remove a subset of the edges in A1 from

T0 + A1 + A2 such that the resulting subgraph of T0 + A1 + A2 is 2-edge-connected and all edges

of A1 [ A2 contained in this subgraph are essential in this subgraph.

We note that an edge e in A1 can be removed from T0 + A1 + A2 (without destroying 2-edge-

connectivity) if no edge on the fundamental cycle of e in T0 is a cutedge in the resulting graph.

We may extend this idea to a subset B � A1 with the property that the fundamental cycles of the

edges in B are edge-disjoint: we may remove exactly those edges e in B from T0+A1+A2 with the

property that none of the edges on the fundamental cycle of e in T0 is a cutedge in T0+A1+A2�B.

Note that edges in A1 whose lca's lie on di�erent leaf chains of T (the tree representing Tlca at

the current stage of tree contraction) have edge-disjoint fundamental cycles in T0. Thus, we may

apply the idea from the previous paragraph to process edges of C whose lca's belong to di�erent

leaf chains independently of each other. Let AL
1 contain those edges in A1 whose lca lies on leaf

chain L. It su�ces to show how to remove a maximal subset of edges in AL
1 so that the remaining

edges are essential. Note that edges in AL
1 may have overlapping fundamental cycles in T0. Thus,

it is not su�cient (in general) to remove all the edges in AL
1 from T0 + A1 + A2 at one time and

check the resulting graph for cutedges. Here is where observation 2 comes in: since each vertex on
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PL is incident with at most 2 edges of AL
2 , we only need to look at at most two vertices in each 2-

edge-connected component of T0+A1. We also note that each edge in AL
1 has at least one endpoint

that is a leaf of T0 and that is not incident with another edge of AL
1 . We call such an endpoint

a critical endpoint of an edge of AL
1 . We observe that an edge in AL

1 can only be redundant in

T0+A1+A2 if its critical endpoints are incident with edges in AL
2 . Thus, we only need to examine

an edge of AL
1 if it is the unique edge in AL

1 incident with a leaf in T0 that is an endpoint of an edge

of AL
2 . It follows that we only need to consider at most two edges of AL

1 in each 2-edge-connected

component of T0 + A1. Thus, we may process the edges in AL
1 in two phases. In each phase we

look at edges that lie in di�erent 2-edge-connected components of T0 + A1. These edges certainly

have edge-disjoint cycles in T0. Hence, we may apply the idea described in the previous paragraph

to remove a maximal set of edges in each phase.

The approach we have just outlined is essentially that taken by the following algorithm.

Algorithm 5 Making A1 minimal.

Input Graph T0, edge sets A1 and A2.

Output Subset A0

1 � A1 such that A0

1 [A2 is a minimal augmentation for T0.

(0) Let H� = T0 +A1 + A2.

(1) In parallel for each leaf chain L, do:

(1.1) In parallel for each vertex w on PL incident with at least one edge of AL
2 , do:

(1.1.1) Let Bw be the 2-edge-connected component of T0 +A1 that corresponds to w (pos-

sibly, Bw is a single vertex). Let Vw be the set of endpoints in Bw of the edges of

AL
2 . (By observation 2, we have jVwj � 2.)

(1.1.2) Process the vertices v of Vw sequentially as follows:

(1.1.2.1) If there is a unique edge e in A1 incident with v, remove e from H�.

(1.1.2.2) If an edge on the fundamental cycle of e in T0 is a cutedge in H�, put e back

into H�.

(2) Let A0

1 be the subset of edges in A1 that are contained in H�.

Lemma 7 T0 + A0

1 +A2 is 2-edge-connected and each edge of A0

1 is essential in T0 + A0

1 +A2.

Proof. The graph T0+A0

1+A2 is a spanning subgraph of T0+A1+A2. To see that T0+A0

1+A2 is

2-edge-connected, note that an edge of A1 removed in step (1.1.2.1) is not put back in step (1.1.2.2)

only if in H� the edges of T0 that were covered by e are still covered (by some other edges). It
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follows that all edges of T0 are covered by edges of A0

1 [ A2 and therefore T0 + A0

1 + A2 is indeed

2-edge-connected.

We now show that each edge of A0

1 is essential in T0 +A0

1 +A2. Fix e 2 A1. A critical endpoint of

e 2 A1 is an endpoint of e in T0 that is a leaf in T0 and that is not incident with another edge of

A1. By lemma 4 and lemma 5 each edge in A1 has at least one critical endpoint in T0. Edge e can

only be redundant in T0 + A1 + A2 if its critical endpoints are incident with edges of A2. In that

case e will be removed in step (1.1.2.1). It is put back only if its removal produces a cutedge in

H� among the edges of T0 covered by it. Since di�erent edges removed at one time in step (1.2.1)

cover disjoint sets of edges of T0, e is put back only if it is indeed essential at this point. Since we

do not add edges to H� (the current subgraph of T0 + A1 + A2) after this point, an edge that is

put back in step (1.1.2.2) is essential in T0 +A0

1 + A2. 2

Theorem 1 The set A = A0

1 [A2 is a minimal augmentation for TH + IN +R.

Proof. Since T0+A0

1 +A2 is a spanning subgraph of T0+A1 +A2 and each edge of A2 is essential

in T0+A1+A2 (by corollary 2), the edges in A2 are also essential in T0+A0

1+A2. With lemma 7

we conclude that A0

1[A2 is a minimal augmentation for T0. By lemma 3 (with H 0 = TH + IN +R

and H 00 = T0) it follows that A
0

1 [A2 is also a minimal augmentation for TH + IN + R. 2

3.3 Analysis

We now analyze the processor and time requirements of our algorithm on a PRAM. For the de�ni-

tions of the various PRAM models we refer the reader to the survey paper by Karp and Ramachan-

dran ([11]). One iteration of the while-loop of algorithm 2 can be implemented to run almost

optimally in time O(logn) on an ARBITRARY CRCW PRAM. Only the fact that no optimal

algorithms are currently known for bucket sort and for computing connected components prevents

us from achieving optimal performance. For sorting we use the algorithm of Bhatt et al. ([1])

which sorts n integers in the range 0 : : :nO(1) in time O(logn= log logn) with n(log logn)2= logn

processors on an ARBITRARY CRCW PRAM. We need to compute connected components at sev-

eral places in our algorithm (see below). The most e�cient connectivity algorithm ([2]) computes

the connected components of a graph with n nodes and m edges represented by adjacency lists

in O(logn) time with (m + n)�(m;n)= logn processors of an ARBITRARY PRAM; if the graph

is represented by an unordered list of its edges, we can construct its adjacency list by sorting the

edges lexicographically (using bucket sort in the range 0 : : :nO(1)); this can be done in time O(logn)

with m log logn= logn processors of an ARBITRARY PRAM.

Since more processor-e�cient algorithms for these problems may be developed in the future, we

shall adopt the following conventions: B(n) denotes the number of processors required to sort n
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integers in the range 0 : : :nO(1) in time O(logn); C(n;m) denotes the number of processors needed

to compute connected components of a graph with n nodes and m edges represented by adjacency

lists in time O(logn) ; �nally, A(n;m) stands for maxfB(n); C(n;m)g. As mentioned above we

have currently B(n) = n log log n= logn (on ARBITRARY) and C(n;m) = (n +m)�(m;n)= logn

(on ARBITRARY). A step in our algorithm is A-optimal if it runs in time O(logn) with A(n; 2n)

processors and is C-optimal if it runs in time O(logn) with C(n; 2n) processors. In these de�nitions

we have replaced m by 2n since step (0) of algorithm 1 reduces the number of edges that need to

be processed to less than 2n.

In the following analysis the time and processor bounds that do not specify a particular PRAM

model all hold for the ARBITRARY CRCW PRAM model. We assume that the input graph G is

represented by its adjacency lists. Step (0) of algorithm 1 is executed only once. Its complexity is

dominated by that for �nding an ear decomposition in G. This can be done in time O(logn) using

C(n;m) processors ([14, 13, 18]). As shown earlier (corollary 1), O(logn) iterations of algorithm 1

yield a minimal 2-edge-connected spanning subgraph of G. We analyze the work done in one such

iteration.

We identify redundant edges in H by �nding separating pairs of edges in H . For this we modify

the algorithm for �nding triconnected components given in [3, 18] (see also [19]). Thus, we can

compute separating pairs of edges A-optimally. The complexity of computing TH is the same as

that of computing connected components on a graph with n nodes and at most 2n edges; we thus

compute TH C-optimally.

Algorithm 2 �nds a minimal augmentation for TH using O(logn) levels of tree contraction. We

prepare algorithm 2 by computing the lca's of nontree edges in H and identifying the vertices in

TH that are lca's of nontree edges; this can be done optimally in time O(logn) using the algorithm

of [20]. Next we construct the tree Tlca. We shall not compute an explicit representation of the

tree (in terms of adjacency lists) but rather compute enough information to identify the leaf chains

quickly. Using the Euler tour technique ([22]) on tree TH we compute the following three quantities

for each lca v in TH : the number of lca's in TH that precede v in preorder; the number of lca's on the

unique path from the root of TH to v; the number of descendants of v in TH (including v) that are

lca's of nontree edges. We denote these three quantities by num(v), d(v) and nd(v), respectively.

We call an lca v that has at least two children in Tlca a split vertex. Note that an lca v (other than

the root of TH) belongs to a leaf chain of Tlca i� none of its descendants in TH is a split vertex.

Once we have determined the split vertices in TH , we can check the latter property using one more

application of the Euler tour technique (on tree TH). We compute the split vertices with the help

of the three quantities num(v), d(v) and nd(v) as follows: using the quantities num(v) we write

the lca's in TH in preorder into an auxiliary array A. Note that a vertex v at position nv = num(v)

in A is a split vertex i� the vertex w at position nv + 1 in A satis�es d(w) = d(v) + 1 and it has a
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sibling in Tlca. Note that w has a sibling in Tlca i� the vertex z at position nv + 1 + nd(w) in A

satis�es d(z) = d(w)(= d(v) + 1). We conclude that the asymptotic complexity of computing the

leaf chains in Tlca is the same as that of applying the Euler tour technique to TH , i.e., O(logn)

time with n= logn processors ([22]).

We shall now examine the complexity of one iteration of the while-loop in algorithm 2. In one

such iteration we shall need to compute connected or 2-edge-connected components in various

graphs. Note that we can compute (2-edge-)connected components C-optimally provided we have

the adjacency lists for the graphs. Since many of the graphs are obtained by collapsing subsets of

vertices, it is not clear that we can obtain the adjacency list for the graphs without resorting to

sorting. For that reason we shall only claim that we can compute (2-edge-)connected components

A-optimally (instead of C-optimally). (This will not a�ect the overall complexity of one iteration

of the while-loop in algorithm 2 since we require sorting in algorithm 4.)

To prepare for stage 1 (algorithm 3) we compute the condensation of TH + IN +R. This amounts

to computing the 2-edge-connected components of TH + IN + R, which can be done using an ear

decomposition algorithm ([14], [13], [18]) that is A-optimal. For step (1) assume that each vertex

in Vl is assigned a unique number in the range 1 : : :n. By making each vertex of Vl choose a single

edge of C to a lower numbered vertex in Vl (if there is such an edge) we obtain a spanning forest in

Gl. We compute the adjacency lists for this forest B-optimally. For step (2.1) we apply the Euler

tour technique to each tree in the forest. All remaining steps of algorithm 3 take time O(logn)

with n= logn processors. Thus, stage 1 can be done A-optimally.

We now come to stage 2 (algorithm 4). We compute T1 (condensation of T0 + A1) by determining

the 2-edge-connected components in T0+A1; this can be done C-optimally. The complexity of the

remaining steps is dominated by the construction of DL in step (2). We can reduce the problem of

determining the edges of DL to the following problem: given a sequence of � n numbers determine

the maxima for � 2n (possibly overlapping) intervals of this sequence. This can be done in time

O(logn) on n= logn processors as follows. Suppose a sequence of n numbers is given in an array

A[0 : : :n � 1]. Processor i is assigned the segment A[(i � 1) � logn; : : : ; i � logn � 1]. It computes

the maximum of its segment as well as the maxima of subintervals of its segment of the form

A[(i� 1) � log n; : : : ; r] or A[s; : : : ; i � logn � 1] where (i� 1) � logn � r; s � i � logn � 1. Note that

we can compute these maxima in time O(logn) with n= logn processors. We store the n= logn

maxima of the segments in a second array B[0 : : :n= logn � 1]. For simplicity we assume that

n= logn is of the form 2k for some integer k. We compute the maxima of all intervals in B of the

form B[j � 2i; (j+1) � 2i� 1] for 0 � i � k and 0 � j < n
2i logn . The total number of such intervals is

O(n). It is straightforward to compute the maxima of these intervals in time O(logn) with n= logn

processors. With the above maxima we can answer in constant time each maximum query of the

form maxfA[i]; A[i+ 1]; : : : ; A[j� 1]; A[j]g where i and j belong to di�erent segments. In order to
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answer maximum queries whose endpoints lie in the same segment of A, each processor constructs

in time O(logn) a Cartesian tree for its segment (see [4]) and preprocesses the tree in O(logn)

time so that lca queries can be answered in constant time (using the algorithm of [10]). As shown

in [4] each maximum query whose endpoints lie in the same segment is answered by computing the

lca of the endpoints in the Cartesian tree for this segment; this takes constant time. Altogether

we see that we can answer each maximum query in constant time after a preprocessing phase that

requires O(logn) time with n= logn processors.

To compute a maximal path in DL (step (3) of algorithm 4), transform DL into an undirected

forest rooted at the sinks in DL. We compute the adjacency lists for this forest B-optimally using

bucket sort. We can then compute the maximal path in DL optimally in time O(logn) by applying

the Euler tour technique ([22]) to each tree in the forest. We conclude that one execution of stage

2 can be done B-optimally.

In stage 3 (algorithm 5) we compute the cutedges in H� by determining the 2-edge-connected

components of H�. This can be done A-optimally. Hence algorithm 5 can be implemented A-

optimally.

In summary we see that one iteration of the while-loop of algorithm 2 runs in time O(logn)

with A(n; 2n) ARBITRARY processors (or in time O(log2 n) with A(n; 2n) EREW processors).

Since algorithm 2 terminates after O(logn) iterations (stages of tree contraction) and algorithm

1 makes O(logn) calls to algorithm 2, algorithm 1 runs in time O(log3 n) with C(n;m)= log2 n +

A(n; 2n) processors on an ARBITRARY PRAM (or O(log4 n) time with C(n;m)= log2 n+A(n; 2n)

processors on an EREWPRAM). Thus, the work done by our algorithms (time-processor product) is

C(n;m) logn+A(n; 2n) log3 n on an ARBITRARY PRAM. In [9] a linear time sequential algorithm

for computing a minimal 2-edge-connected spanning subgraph is given. That algorithm can be

parallelized. The parallel version uses our parallel minimal augmentation procedure as a subroutine.

The work done by this modi�ed algorithm is C(n;m) logn+A(n; 2n) log2 n on ARBITRARY (i.e.,

the work is roughly improved by a factor of log n). The same improvement applies to the related

problem of computing a minimal biconnected spanning subgraph (see next section).

4 Finding a Minimal Biconnected Spanning Subgraph in Parallel

The problem considered in this section is: given a biconnected graph G, �nd a minimal biconnected

spanning subgraph of G , i.e., a biconnected spanning subgraph of G that does not have a bicon-

nected spanning subgraph of G as a proper subgraph. There is an obvious similarity between this

problem and the one discussed in the last section. Indeed, some techniques used in the last section

will be applicable here. Several new problems, however, will arise in the context of biconnectivity
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Figure 5: (a) A biconnected graph G and (b) a minimal biconnected spanning subgraph of G.

Essential and redundant edges are indicated by thick and thin lines, respectively.

and will require new techniques. Figure 5 shows a biconnected graph G and a minimal biconnected

spanning subgraph of G.

4.1 The High-Level Algorithm

As in the previous section we start out by de�ning the notions of redundant and essential edges.

Given a biconnected graph H , we say that an edge e of H is redundant in H if H�e is biconnected;

an edge of H is essential in H if it is not redundant in H . As in the last section we shall sometimes

omit H if it is clear from the context. In �gure 5 essential and redundant edges are indicated by

thick and thin lines, respectively. Since the graph in �gure 5(b) is a minimal biconnected spanning

subgraph of the graph in �gure 5(a), all of its edges are essential.

We use the high-level strategy given by algorithm 1 (replace \2-edge-connected" by \biconnected").

We compute a biconnected spanning subgraph H of G with fewer than 2n edges by �nding an open

ear decomposition for G ([3], [18]) and removing all trivial ears. In one iteration of algorithm 1 we

do the following: �rst, we �nd a spanning tree TH in H (the current biconnected spanning subgraph

of G) that includes a minimum number of redundant edges in H ; next, we determine a minimal

augmentation for TH , i.e., a minimal set B of nontree edges in H such that TH +B is biconnected;

�nally, we update H to be the graph TH + B.

To identify the redundant edges in H at each iteration, we construct the graph H 0 from H by

adding a new vertex ve for each edge e in H and replacing e by two edges (u; ve) and (ve; v) where

e = (u; v). A separating pair (of vertices) in H 0 is a pair of vertices in H 0 whose removal disconnects

H 0. We note that an edge e of H is redundant if and only if it does not occur in any separating

pair of H 0 of the form fve; ug for some vertex u of H . An e�cient parallel algorithm for �nding

all separating pairs in H 0 ([3], [18]) can thus be modi�ed to identify all redundant edges e�ciently.
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As for 2-edge-connectivity we remark that an alternative (sequential) method of Han and Tarjan

([8]) for computing a minimal biconnected spanning subgraph can be parallelized; the parallel

implementation is similar to our method but it avoids the explicit computation of redundant and

essential edges.

The proof of lemma 1 carries over to show that there is a spanning tree in H that contains at

most 2/3 of the redundant edges in H . Hence, O(logn) iterations of the while-loop of algorithm 1

(suitably modi�ed) will yield a minimal biconnected spanning subgraph of G.

4.2 Computing a Minimal Augmentation in Parallel

We shall now describe a parallel algorithm for �nding a minimal augmentation for TH (with respect

to biconnectivity). Again, the high-level structure is the same as that given in the previous section

(algorithm 2; replace \2-edge-connected" by \biconnected"). The proof of lemma 2 carries over to

show that the modi�ed version of algorithm 2 does indeed compute a minimal augmentation for

TH (with respect to biconnectivity).

Recall that during the execution of the algorithm the set of nontree edges is partitioned into disjoint

subsets IN , C, and R: IN contains the edges that have already been committed to the minimal

augmentation, C is the set of edges examined during this iteration of tree contraction (i.e., whose lca

lies on a leaf chain of T ), and R contains those edges that are to be considered at future iterations.

Consider one iteration of the while-loop of algorithm 2. Let H0 denote the graph TH + IN + R

after step (2.1) of this iteration. We are left with the problem of �nding a minimal augmentation

for H0, i.e., a minimal subset of edges in C such that its addition to H0 will result in a biconnected

graph (step (2.2) of algorithm 2). We shall de�ne an operation on graphs called block condensation.

It is reminiscent of the condensation of a graph de�ned in the last section. The concept of a block

condensation will be helpful in explaining various steps of our minimal augmentation procedure.

We need the following result.

Lemma 8 Let H 0 be a subgraph of H containing tree TH . The intersection of a block of H 0 with

TH forms a tree.

Proof. It su�ces to show that any two vertices v; w in a block B of H 0 are connected by a path

containing only tree edges (edges of TH) that belong to B. Since B is a connected subgraph of H 0,

v and w are connected by some path P in B, possibly containing nontree edges. Note that if a

nontree edge belongs to B then all the tree edges on its fundamental cycle in TH belong to B as

well. Hence we may replace on path P each nontree edge by a path of tree edges in B, obtaining

a path in B consisting only of tree edges. 2
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Figure 6: (a) The graphH 0; the edges in TH are indicated by solid lines. Vertices numbered i belong

to the core of the block collapsed into the vertex numbered i in H 00. (b) The block condensation

H 00 of H 0.

Let H 0 be a subgraph of H containing tree TH and let B be a block of H 0. By lemma 8 the

intersection of B with TH is a subtree of TH . We call the root of that subtree (i.e., the vertex

closest to the root of TH) the root of B. We call the subset of vertices of B that are di�erent

from the root of B the core of B. As an easy consequence of lemma 8 we see that the cores of

two distinct blocks of H 0 have an empty intersection. The block condensation of H 0 is obtained

by collapsing the core of each block of H 0 into a single vertex (see section 2 for the de�nition of

collapsing) and replacing in the resulting multigraph multiple edges by single edges. Note that the

block condensation of H 0 is a tree. We root the tree at the root of TH . A simple example of a

graph and its block condensation is given in �gure 6.

There is a natural correspondence between an edge e of H that does not belong to H 0 and the edge

e0 linking those vertices in the block condensation of H 0 into which the endpoints of e in H 0 have

been collapsed. We shall usually not di�erentiate between an edge connecting vertices of H 0 and the

corresponding edge connecting vertices in the block condensation of H 0. For instance, we shall say

that an edge of H is incident with a vertex v in the block condensation of H 0 if the corresponding

edge connecting vertices in the block condensation is incident with this vertex.

We shall now describe how to compute a minimal augmentation A � C for H0 = TH+IN+R (step

(2.2) of algorithm 2), where C denotes the set of nontree edges examined at the current iteration

of algorithm 2. As in the previous section, T denotes the tree representing Tlca at the current stage
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of tree contraction and the path in TH corresponding to leaf chain L of T is called the stem of

L (in TH). We shall compute a minimal augmentation for H0 in �ve stages. At each of the �rst

three stages we shall add a set of edges to achieve a certain property. In the �nal two \cleanup

stages" we shall get rid of excess edges to obtain a minimal augmentation. Overall our method is

somewhat similar to that used for 2-edge-connectivity but it is more complicated.

An example is given in �gure 7. Figure 7(a) shows the graph H with the tree TH ; the corresponding

tree Tlca is depicted in �gure 7(b). In this example we consider the second iteration of algorithm 2:

the lca's of nontree edges processed at this iteration are represented by the gray vertices in �gure

7(a) and 7(b). Note that the gray vertices are exactly the vertices on the stems of leaf chains in

TH . The edges in IN , R and C are accordingly marked in �gure 7(a).

In the �rst stage we select a minimal set of edges A1 � C whose addition to H0 results in a graph

all of whose cutpoints lie on stems of leaf chains. The following algorithm accomplishes this. It

makes use of algorithm 3.

Algorithm 6 Eliminating cutpoints that do not lie on a stem.

Input Graph H0 = TH + IN +R, edge set C.

Output Minimal subset A1 of C such that H0 + A1 has all its cutpoints on stems in TH .

(1) Compute the block condensation T0 of H0 (see �gure 7(c)).

(2) Let Vl be the set of leaves of T0 that correspond to the cores of blocks whose root (in TH)

is not a vertex on a stem (in TH). Using the method of algorithm 3 compute a minimal set

A1 � C such that each leaf in Vl (i.e., the core collapsed into this leaf) is incident with at

least one edge in A1.

In �gure 7(c) the square vertices represent the leaves in Vl. The thick dashed lines in �gure 7(a)

represent a minimal set of nontree edges in C such that each leaf in Vl (i.e., a vertex in the

corresponding core) is incident with an edge in this set.

Lemma 9 For any F � C, H0 + F has all its cutpoints on stems i� each vertex in Vl is incident

with at least one edge in F .

Proof. Assume that each vertex in Vl is incident with an edge in F . Consider a block B in H0 whose

root v is a cutpoint of H0 that does not lie on a stem of TH . All leaves of T0 (block condensation

of H0) that are descendants (in T0) of the vertex in T0 corresponding to the core of B belong to

Vl since their roots do not lie on a stem of a leaf chain. Thus these leaves are incident with edges

of F . The fundamental cycles of these edges in F contain v and a vertex on the stem of some leaf

chain. Since this holds for any block of H0 whose root is v, vertex v is not a cutpoint in H0 + F .
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Figure 7: (a) Graph H with spanning tree TH indicated by solid lines. Thick dashed lines represent

edges of C put into A1. The gray vertices are the lca's of nontree edges in C. Vertices with the

same number belong to the core of the same block of TH + IN + R. (b) Tree Tlca. Gray vertices

represent those lca's currently processed. (c) Block condensation T0 of TH + IN + R. The square

vertices are the leaves in Vl. Vertex i represents the core of a block of TH + IN +R whose vertices

are numbered i in (a) (i = 1 : : :9).
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Figure 8: Graph H1 = TH + IN + R + A1. Stem edges are indicated by thick solid lines. The

graph contains three blocks whose core vertices are numbered 1; 2; 3. The core vertices numbered

1 belong to an internal block of H1; the two other blocks are external.

Conversely, if some vertex in Vl is not incident with an edge in F , then this vertex represents the

core of a block in H0+F whose root is a cutpoint in H0+F that does not lie on a stem in TH . 2

The following result is immediate with lemma 9.

Corollary 3 The set A1 is minimal with the property that all cutpoints of H0 + A1 lie on stems

in TH . 2

Let H1 denote the graph H0+A1 (=TH+IN+R+A1). We classify the blocks of H1 into 2 classes.

An external block of H1 is a block whose root lies on some stem in TH but does not include any edge

of this stem; a block is internal if it is not external. Figure 8 shows the graphH1 = T0+IN+R+A1

for the example in �gure 7. The graph H1 in �gure 8 consists of 3 blocks whose core vertices are

numbered 1, 2, and 3. The block whose core vertices are numbered 1 is the only internal block; it

is rooted at the root of TH . The other two blocks are external.

In stage 2 of our minimal augmentation procedure we construct a minimal set of edges A2 � C�A1

such that H1 + A2 has no external blocks. We eliminate external blocks for the following reason:

we want to �nd a (minimal) set of edges whose addition to H1 will yield a biconnected graph. If
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all blocks in H1 are internal, then the removal of a cutpoint v will break up the graph in exactly

two components: one component contains all vertices other than v that lie in blocks whose root is

v or a vertex below v on the stem containing v while the other component contains all remaining

vertices (other than v). In this case augmenting H1 into a biconnected graph amounts to �nding

a set of edges connecting these two components for any cutpoint v { a relatively easy task as we

shall see later. The following algorithm removes external blocks.

Algorithm 7 Eliminating external blocks in H1.

Input Graph H1, edge set C � A1.

Output Minimal set A2 � C �A1 such that all the blocks of H1 +A2 are internal.

(1) Compute the block condensation of H1. Let Vl denote the set of leaves in the block conden-

sation representing the cores of external blocks of H1.

(2) Call an edge of C � A1 external if it links a vertex in the core of some external block B of

H1 with a vertex that lies outside of all the external blocks of H1 that have the same root as

B. Let Ve be the subset of nodes in Vl incident with an external edge. Using the method of

algorithm 3 compute a set A
(1)
2 of external edges in C � A1 that is minimal with respect to

the property that each vertex in Ve is incident with at least one edge in A
(1)
2 .

(3) Consider the graph Q whose vertices are the vertices in Vl and whose edges are the edges of

C � A1 between them.

If Ve = ;, compute a minimal set A
(2)
2 � C �A1 such that the subgraph of Q induced by the

edges in A
(2)
2 is connected.

If Ve 6= ;, compute a minimal set of edges A
(2)
2 � C � A1 such that each vertex in Q is

connected to some vertex in Ve through a path in Q consisting of edges in A
(2)
2 . We compute

such a set of edges by collapsing the nodes of Ve into a single vertex and letting A
(2)
2 be the

set of edges in a spanning tree of the resulting graph.

Let A2 = A
(1)
2 [ A

(2)
2 .

Let H2 be the graph H1+A2. Recall that T represents Tlca at the current stage of tree contraction.

Lemma 10 If T is not reduced to a single node, then all the blocks of H2 are internal.

Proof. Let B be an external block of H1 and let vB denote the vertex of Vl representing the core

of B in the block condensation of H1. Let rB denote the root of block B in TH . By the de�nition

of an external block rB belongs to a stem of a leaf chain. We shall show that B is contained in an

internal block of H2. We consider 2 cases.
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Case 1: vB 2 Ve, i.e., vB is incident with an external edge in the set A
(1)
2 computed in step (2) of

algorithm 7. Let w be the endpoint of e in H1 that does not belong to an external block in H1

having rB as its root. If the fundamental cycle of e in TH contains an edge of a stem, B will be

contained in an internal block of H2. Otherwise the fundamental cycle of e in TH intersects a stem

in TH only in rB. By the de�nition of an external edge this is only possible if w belongs to an

internal block B0 with root rB. Since w 6= rB, the edge in TH from w to its parent belongs to B0

and also lies on the fundamental cycle of e. Again, B will be contained in an internal block of H2.

Case 2: vB 2 Vl � Ve, i.e., vB is not incident with an external edge. First, we claim that there is

a path in Q from vB to a vertex in Ve (and hence Ve 6= ;). Assume for a contradiction that there

is no such path. Then there exists a connected component in Q that does not contain a vertex in

Ve. The nodes in this component represent the cores of external blocks sharing the same root node

rB (since none of them is incident with an external edge). Furthermore, the union of these cores

forms the core of a block in H2 + C rooted at rB. If T is not reduced to a single node, there is at

least one more block in H2 + C (whose root is the root of TH), contradicting the biconnectivity of

H2 + C. Thus, in the subgraph of Q induced by the edges in A
(2)
2 there is a simple path from vB

to a vertex v 2 Ve such that none of the internal vertices on this path belongs to Ve. This path

yields a simple path in H2, not intersecting a stem, from a vertex in the core of B to a vertex in

the core of a block B0 rooted at rB with the property that some vertex in the core of B0 is incident

with an (external) edge in A
(1)
2 . Hence, B and B0 are contained in a larger block B00 of H2. From

the analysis for case 1 we know that B00 is an internal block of H2. 2

In the third stage of the minimal augmentation procedure we shall compute a minimal augmentation

A3 for H2. The following result says something about the interplay between the edges of A2 and

those of A3. It will used in the proof of lemma 15. A critical endpoint of an edge of A
(1)
2 is an

endpoint of that edge in Ve that is not incident with another edge of A
(1)
2 . Note that each edge of

A
(1)
2 has at least one critical endpoint. Recall that an edge of C is external if it links a vertex in

the core of some external block B of H1 with a vertex that lies outside of all the external blocks of

H1 that have the same root as B.

Lemma 11 Let F � C be a minimal augmentation for H2. All edges of A
(2)
2 are essential in

H2 + F . Moreover, the critical endpoints of an edge in A
(1)
2 that is redundant in H2 + F are

incident with edges of F .

Proof. First, we show that an arbitrary edge e 2 A
(2)
2 is essential in H2+F . Consider the spanning

subgraph of Q induced by the edges in A
(2)
2 . By the minimality of A

(2)
2 the removal of e from

this subgraph yields a connected component in the subgraph that does not contain a vertex of Ve

and hence no core of a block in H1 represented by a vertex in this component is incident with

an external edge in A
(1)
1 . Let us call a block of H1 whose core is represented by a vertex in this
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Figure 9: B1 and B2 are internal blocks of H2. The two special blocks (rooted at s) are blocks of

H1 contained in B1. Edge e belongs to A
(2)
2 and edge eF is contained in F .

connected component special. Let s denote the common root in TH of all special blocks. In H2� e

the root s of the special blocks is a cutpoint since any path from a vertex in a special block to a

vertex outside the special blocks passes through s. Thus, if F = ;, our claim is proved. Henceforth,

assume F 6= ;.

If no edge of F is incident with a vertex in a core of a special block, then s is a cutpoint in (H2�e)+F

and hence e is essential in H2+F . Thus, suppose that some edge eF 2 F is incident on a vertex in

a special block (see �gure 9). By the de�nition of a special block no external edge is incident with

the core of a special block. It follows that eF is not external, i.e., it links a vertex in a special block

with a vertex in some other external block of H1 having root s. Since each of these two blocks is

contained in a single internal block of H2, the fundamental cycle of eF in TH contains edges of at

most two internal blocks of H2. Thus, because eF is essential in H2 + F (by the assumption of

the lemma), it contains edges of exactly two internal blocks of H2, say B1 and B2. Both of these

blocks are internal in H2. Hence, one of them, say B1, is rooted at s and the other block is rooted

at a proper ancestor of s in TH . This is illustrated in �gure 9.

Without loss of generality all the special blocks are contained in B1 (the case where they are

contained in B2 is treated similarly). Thus, edge eF connects a vertex in the core of a special

block with a vertex in B2 (see �gure 9). Let V0 be the set of vertices other than s that belong to

B1 but do not belong to a special block or that belong to a block rooted at a proper descendant

of s in TH . We shall show that s is a cutpoint in (H2 � e) + F by establishing that no nontree
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edge in (H2 � e) + F connects a vertex in V0 with a vertex outside V0 other than s. Suppose for

a contradiction that there exists a nontree edge e0 with this property. No edge in H2 � e has this

property. Thus, e0 belongs to F . Note that if e0 has an endpoint in the core of a special block, then

e0 is not an external edge and the other endpoint of e0 is contained in an external block rooted at s

(the root of the special blocks). By the de�nition of V0 this external block is contained in B1. This

contradicts the assumption that e0 is essential in H2 + F . Hence, e0 does not have an endpoint in

the core of a special block . It follows that the fundamental cycle of e0 contains edges from both

B1 and B2. But then eF is redundant in H2 + F , contradicting the minimality of F .

We now prove the second part of lemma 11. Suppose that a critical endpoint v 2 Ve of an edge

e 2 A
(1)
2 is not incident with an edge in F . Consider the spanning subgraph of Q induced by the

edges in A
(2)
2 . Let U be the unique connected component in this subgraph that contains v. Note

that no vertex in U is incident with an external edge in A
(1)
2 � e. By assumption no edge of F is

incident with v. It follows that no external edge in (H2 � e) + F is incident with a vertex in U .

Thus we can use the argument for part 1 of this proof to show that the root of the blocks whose

cores are represented by vertices in U is a cutpoint in (H2� e)+F . Hence e is essential in H2+F .

2

If T is reduced to a single node, every block of H1 is an external block having as root node the root

of TH . Thus Ve = ;, A
(1)
2 = ; and H2 = H1+A

(2)
2 is biconnected because H1+C is biconnected. In

this case, by lemma 11 (with F = ;), all edges in A2 are essential in H2. Thus, we may immediately

proceed to algorithm 10 which removes redundant edges in A1. Henceforth, we shall assume that

T is not reduced to a single node. Thus, there is a unique block, say B0, that has the root of TH

as its root node. We denote the root of B0 by r0.

We shall now describe stage 3 of our minimal augmentation procedure. In this stage we compute

a minimal augmentation for H2, i.e., a minimal set A3 � C such that H2 +A3 is biconnected. For

the following discussion we �x a leaf chain L of T . Number the vertices on the stem of L in TH

that are roots of blocks of H2 consecutively as r1 : : : rk, starting at the root closest to r0. By lemma

8 and lemma 10 no two distinct blocks in H2 have the same root. Denote the block of H2 having

root rj by Bj .

De�ne the range of an edge e = (u; v) of C whose lca lies on L as the integer pair (i; j), i � j, such

that u is a vertex in Bi but is di�erent from ri+1 and v is a vertex in the core of Bj . Note that the

fundamental cycle of an edge with range (i; j) intersects exactly the blocks Bi : : :Bj in at least one

edge. As an immediate consequence of this observation we get the following result.

Lemma 12 Let e be an edge of C whose lca lies on leaf chain L and whose range is (i; j) (i � j).

Then the blocks Bi : : :Bj of H2 are all contained in a single block of H2 + e while the remaining
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blocks of H2 are also blocks of H2 + e. 2

We reduce the problem of computing a minimal augmentation for H2 to the problem of covering

stem edges considered in the previous section (algorithm 4).

Algorithm 8 Augmenting H2 into a biconnected graph.

Input Graph H2, edge set C � A1 � A2.

Output Minimal subset A3 of C � A1 �A2 such that H2 +A3 is biconnected.

In parallel for each leaf chain L, do :

(1) Let PL be the path B0 : : :Bk , i.e., the vertices of PL are the blocks B0 : : :Bk and there is an

edge from Bi�1 to Bi for i = 1; : : : ; k.

(2) If several edges in C�A1�A2 (whose lca's lie on leaf chain L) have the same range, eliminate

all but one edge having this range (for any range (i; j)). Denote the resulting subset of

C � A1 � A2 by C0. By mapping each edge in C0 of range (i; j) to the edge (Bi; Bj), we

obtain a set CL of edges connecting vertices of PL. Compute a minimal subset AL � CL

whose edges cover the edges on PL using the same method as in algorithm 4. Let AL
3 � C0

be the collection of those edges in C0 that are mapped to an edge in AL.

Let A3 =
S
LA

L
3 .

Let H3 be the graph H2 + A3.

Lemma 13 The set A3 is a minimal augmentation for H2, i.e., H3 is biconnected and all edges of

A3 are essential in H3.

Proof. With lemma 12 it follows that H3 is biconnected if and only if each edge of PL is covered

by an edge of AL (i.e., it lies on the fundamental cycle in PL of an edge of AL) for any L. Since

H2+ C is biconnected, the edges in CL cover the edges in PL (for each L). By lemma 6 algorithm

4 produces a minimal subset AL of CL covering the edges of PL. We conclude that
S
LA

L is a

minimal set of edges covering all the PL's and hence A3 is a minimal augmentation for H2. 2

As in the last section we are now faced with the problem that edges chosen at earlier stages may

have become redundant because of edges added during later stages. The procedure for pruning

excess edges is more complicated here than in the last section because we have added edges in three

di�erent stages.

In stage 4 of our minimal augmentation procedure we eliminate redundant edges in A2 by resorting

to a strategy similar to that used in the last section for removing edges of A1 (algorithm 5). By
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lemma 11 only the edges in A
(1)
2 may possibly be removed. The idea is to remove from H3 several

edges in A
(1)
2 at once and check if the blocks of H2 that contain them now contain a cutpoint. We

shall put back only those edges for which the corresponding block does indeed contain a cutpoint.

This strategy will work provided that the fundamental cycles in TH of the edges are vertex disjoint.

To guarantee this, we shall select at each step a subset of edges that do not lie on adjacent blocks

of H2 (i.e., blocks that intersect the same stem and share a common vertex).

The following result (reminiscent of observations 1 and 2) tells us that we only need to look at at

most 4 edges of A
(1)
2 in each block of H2.

Lemma 14 At most 4 vertices of any block of H2 are incident with an edge of AL
3 .

Proof. Fix a vertex Bj on PL. By the de�nition of CL (see algorithm 8, step (2)), an edge of AL
3

can only be incident in H2 with a vertex in block Bj of H2 if the corresponding edge of CL has

its upper endpoint (i.e., the one closer to B0 on PL) at Bj+1 or its lower endpoint at Bj�1 or is

incident with Bj . By observation 2 at most 2 edges of AL are incident with Bj . By observation 1

at most one edge of AL has its upper endpoint at Bj+1 and at most one edge of AL has its lower

endpoint at Bj�1. We conclude that at most 4 edges of AL
3 are incident with vertices in Bj . Since

the two endpoints of an edge of A3 lie in di�erent blocks of H2, the claim follows. 2

Algorithm 9 Removing redundant edges from A2.

Input Biconnected graph H3, edge set A2.

Output Biconnected spanning subgraph H 0

3 of H3 such that every edge of A2 contained in H 0

3 is

essential in H 0

3.

(0) Let H� = H3.

Process the blocks of H2 in two phases: in phase 1 we perform steps (1) and (2) in parallel for

each block B of H2 that is at an even distance from B0 on some PL; in phase 2 we perform

these steps in parallel for each block B that is at an odd distance from B0 on some PL (for

all leaf chains L). (This ensures that in each phase we consider a collection of edges of A
(1)
2

whose fundamental cycles are vertex-disjoint.)

(1) Determine the subset VB of vertices in the block B of H2 that are incident with an edge of

AL
3 . (By lemma 14 we have jVBj � 4.)

(2) Process the vertices v of VB sequentially as follows:

(2.1) If v is a node in the core of an external block of H1 incident with a unique edge of A
(1)
2 ,

remove that edge from the graph H�.
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(2.2) Determine if H� has a cutpoint that belongs to B. If this is the case, put the edge back

into the graph H�.

(3) Let H 0

3 = H�.

Denote by A0

2 the subset of edges in A2 that are contained in H 0

3.

Lemma 15 H 0

3 is a spanning biconnected subgraph of H and each edge of A0

2 is essential in H 0

3.

Proof. We �rst observe a more general fact. Let H 0 be a subgraph of H containing the tree TH .

Let e be a nontree edge in H 0 and let w be a vertex in H 0 not contained on the fundamental cycle

of e in TH . We claim that w is a cutpoint in H 0 if and only if w is a cutpoint in H 0 � e. The

only if part is clear. The if part of the statement follows from the observation that any path in H 0

avoiding w yields such a path in H 0 � e: simply replace each occurrence of e on this path by the

path in TH connecting the endpoints of e.

We put this observation to use as follows: �x an execution of steps (2.1) and (2.2). Let H 0 and

H 00 be the graph H� before and after this execution. Let H 0 be biconnected. Suppose that after

the execution of step (2.1) a vertex of B becomes a cutpoint of H�. By the previous observation

we must have removed an edge e in step (2.1) whose fundamental cycle contains w. Since all

edges removed in step (2.1) belong to nonadjacent blocks of H2, their fundamental cycles in TH are

vertex-disjoint. Hence, in step (2.1) we removed a unique edge e whose fundamental cycle includes

w. Note that e is put back in step (2.2). By the above observation w is a cutpoint of H 00 if and

only if w is a cutpoint in H 0. Since H 0 is biconnected, w is not a cutpoint of H 00. Because this

holds for any vertex w, the graph H 00 is biconnected. Applying the above observation one more

time we see that the graph H 0 � e has w as a cutpoint. Thus, e is essential in H 0. Since H 00 is a

biconnected spanning subgraph of H 0, e is also essential in H 00. By lemma 11 each edge of A2 that

is redundant in H3 will be considered in some execution of step (2.1). The claim follows. 2

Above we have shown how to minimally augment graph H1 into the biconnected graph H 0

3 using

algorithms 7, 8 and 9. The minimal augmentation is based on the fact that graph H1 has all of its

cutpoints on stems of leaf chains in TH . Any spanning subgraph of H containing TH and having

this property can be minimally augmented using algorithms 7, 8, and 9.

In the �fth and �nal stage of the minimal augmentation procedure we remove a subset of edges of

A1 that are redundant in H
0

3. This stage is done roughly as follows: remove from H 0

3 a maximal set

of edges in A1 such that the resulting subgraph has all of its cutpoints on stems. Minimally augment

this subgraph into a biconnected graph using algorithms 7, 8, and 9. Repeat these two steps one

more time. We now give a more detailed description of this stage and establish its correctness.
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Our goal is to remove from H 0

3 a subset of edges in A1 such that the resulting graph is biconnected

and all edges of A1 in this graph are essential. Let Vl, as de�ned in algorithm 6, denote the set of

leaves in the block condensation of H0 = TH + IN + R that represent the cores of blocks whose

root does not lie on a stem in TH . Recall that the set A1 forms a minimal subset in C with the

property that each vertex in Vl is incident with at least one edge of A1. Thus, each edge in A1 has

at least one endpoint in Vl that is not incident with another edge of A1. We call such an endpoint

special.

By lemma 9 an edge e 2 A1 can only be redundant in H 0

3 if each of its special endpoints (it has at

least one) is incident with an edge of A0

2 [ A3. Let B0 � A1 contain all those edges in A1 whose

special endpoints are incident with an edge of A0

2 [A3. All edges of A1 that will be removed from

H 0

3 in stage 5 will belong to B0.

We start by removing the edges in B0 from H 0

3. Let H
(1) denote the resulting graph (i.e., H(1) =

H 0

3 � B0). Note that a vertex v in Vl may not be incident with an edge of C in H(1). In this

case we say that vertex v 2 Vl is exposed in H(1). We take care of this problem by having each

exposed vertex in Vl select a single edge of B0 incident with it. Denote the set of selected edges

by B1 (a subset of B0) and let H(2) denote the graph H 0

3 � B0 + B1. Although no vertex of Vl

is exposed in H(2) (i.e., every vertex in Vl is incident with an edge of C in H(2)), the graph H(2)

may not be biconnected. Since each vertex of Vl is incident with an edge of C in H(2), we may use

algorithms 7, 8 and 9 to compute a minimal augmentation B2 for H
(2). Let H(3) denote the graph

H(2)+B2(= H 0

3�B0 +B1 +B2). By lemmas 13 and 15 the graph H(3) is indeed biconnected and

all edges of B2 are essential in H(3).

We are not done yet since some edges of B1 � A1 may be redundant in H(3). Note that an edge

e 2 B1 can only be redundant in H(3) if both of its endpoints in Vl are incident with some edge

in A0

2 [ A3 [ B2. Let B3 be the subset of those edges in B1 that have this property. Remove

the edges in B3 from H(3) and call the resulting graph H(4) (= H 0

3 � B0 + B1 + B2 � B3). Note

that no vertex of Vl is exposed in H(4). Thus, we can compute a minimal augmentation B4 � B3

for H(4) using algorithms 7, 8 and 9. Let H 00

3 denote the resulting graph, i.e., H 00

3 = H(4) + B4

(= H 0

3�B0+B1+B2�B3+B4). Again by lemmas 13 and 15 the graph H 00

3 is indeed biconnected

and the edges of B4 are essential in H 00

3 . We have to show that all edges of A1 that belong to H 00

3 are

essential in H 00

3 . We observed earlier that the edges of B2 are essential in H(3) = H 0

3�B0+B1+B2.

Since H 00

3 is a biconnected spanning subgraph of H(3), the edges of B2 are also essential in H 00

3 .

Finally, we note that the edges in B1 �B3 all have an endpoint in Vl that is not incident with an

edge of A0

2 [A3 [B2 [B4 and not incident with another edge of B1. Therefore, they are essential

in H 00

3 . We conclude that all edges of A1 are essential in H 00

3 .

The following is a more compact description of the algorithm that we have just outlined.
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Algorithm 10 Pruning A1.

Input Graph H 0

3, edge set A1.

Output Biconnected spanning subgraph H 00

3 of H 0

3 such that each edge of A1 contained in H 00

3 is

essential.

(1) Let B0 be the set of edges of A1 whose special endpoints in Vl are incident with edges of

A0

2 [ A3. Let H
(1) = H 0

3 � B0.

(2) Each exposed vertex of Vl selects a single edge of B0 incident with it. Let B1 � B0 be the set

of edges selected at this step and let H(2) = H(1)+ B1 (= H 0

3 � B0 + B1).

(3) Compute a minimal augmentation B2 � B0 for H(2) using algorithms 7, 8 and 9. Let

H(3) = H(2)+ B2 (= H 0

3 � B0 + B1 +B2).

(4) Let B3 be the set of edges in B1 whose endpoints in Vl are incident with edges of A
0

2[A3[B2.

Let H(4) = H(3) �B3 (= H 0

3 �B0 + B1 + B2 �B3).

(5) Compute a minimal augmentation B4 for H(4) using algorithms 7, 8 and 9.

(6) Let H 00

3 = H(4) +B4 (= H 0

3 �B0 +B1 + B2 � B3 +B4).

Let A0

1 be the set of edges in A1 that are contained in H 00

3 . From the discussion preceding algorithm

10 we get the following result.

Lemma 16 H 00

3 is biconnected and every edge in A0

1 is essential in H 00

3 .

Corollary 4 The set A0

1 [A0

2 [A3 forms a minimal augmentation for H0 = TH + IN + R.

Proof. By lemma 16 the graph H 00

3 is biconnected and the edges of A0

1 are essential in H 00

3 . By

lemma 13 the edges of A3 are essential in H3. Since H 00

3 is a biconnected spanning subgraph of H3,

the edges of A3 are also essential in H 00

3 . Finally, by lemma 15 the edges of A0

2 are essential in H 0

3.

Since H 00

3 is a biconnected spanning subgraph of H 0

3, the edges of A
0

2 are also essential in H 00

3 . 2

An analysis similar to the one done in section 3.3 shows that the algorithm for computing a minimal

biconnected spanning subgraph runs within the same resource bounds as the algorithm for �nding

a minimal 2-edge-connected spanning subgraph.

5 Sequential Algorithms

In this section we give linear time algorithms for minimally augmenting a spanning tree into a 2-

edge-connected graph or into a biconnected graph. Both for 2-edge-connectivity and biconnectivity
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steps (0), (1) and (1.1) of algorithm 1 can be implemented to execute in linear time by making

use of linear time procedures for �nding an ear decomposition and for vertex triconnectivity given

in [18] (see section 3.3). Thus, if we adhere to the high-level structure of algorithm 1, we obtain

algorithms for computing a minimal 2-edge-connected or biconnected spanning subgraph that run

in time O(m + n log n). Recently ([9]), linear time algorithms have been developed for these

problems. These algorithms use the linear time augmentation procedures described in this section

as subroutines. Similar linear time augmentation procedures (as well as linear time algorithms for

�nding minimal spanning subgraphs) have been found independently by [8].

5.1 A Linear Time Algorithm for Computing a Minimal Augmentation for 2-

Edge-Connectivity

We shall �rst describe how to minimally augment a spanning tree with respect to 2-edge-connectivity.

Assume we are given a 2-edge-connected graph H on p vertices and q edges and a spanning tree

TH in H rooted at an arbitrary vertex. We describe how to compute a minimal augmentation for

TH in H , i.e., a minimal set of nontree edges of H whose addition to TH yields a 2-edge-connected

graph. The sequential algorithm for �nding a minimal augmentation for TH is simpler than the

parallel algorithm because it processes in one step a single lca instead of a collection of leaf chains.

In a preprocessing phase we number the vertices of TH in preorder from 1 to p. Henceforth, we

shall identify a vertex with its preorder number. We compute the lca's of nontree edges in H in

linear time using the algorithm of [10]. We sort the nontree edges in H by their lca (in increasing

order), and we compute for each edge e = (x; y) of TH the quantity low(e) (or low(x; y)) de�ned

as follows: low(e) is the smallest lca of a nontree edge in H that covers e. Let (u; v) be an edge in

TH from a vertex u to its child v. The function low satis�es the recurrence:

low(u; v) = min(flow(v; w) : w child of vg [ flca(e) : e is a nontree edge incident with vg).

Thus, we may compute the low-value for each edge of TH in a postorder traversal of TH . Altogether,

the preprocessing requires time O(p+ q) (where p = n(H) and q = m(H)).

The following algorithm computes a minimal augmentation for TH . Its structure is similar to that

of algorithm 2: the main di�erence is that we process a single lca in each stage rather than a

collection of lca's. As in algorithm 2 the set IN denotes the set of nontree edges that have been

committed to the augmentation. The tree Tc represents the condensation of TH + IN (de�ned in

section 3.2), i.e., Tc is obtained by collapsing the 2-edge-connected components in TH + IN .

Algorithm 11 Minimally augmenting TH into a 2-edge-connected graph.

Input 2-edge-connected graph H , spanning tree TH in H .
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Output Minimal subset IN of nontree edges in H s.t. TH + IN is 2-edge-connected.

(1) Initialize: IN := ; and Tc := TH .

(2) For u := n downto 1 do:

(2.1) Let C be the set of nontree edges in H with lca u. If C 6= ;, perform the following two

steps:

(2.2) Let Vl be the set of leaves of Tc such that the edge e from the leaf to its parent in Tc

satis�es low(e) = u. Determine a minimal set A � C such that each vertex in Vl is

incident with an edge in A.

(2.3) Let IN := IN [A and let Tc be the condensation of TH + IN .

Lemma 17 Upon termination of algorithm 11, IN is a minimal augmentation for TH in H.

Proof. First, we show that TH + IN is 2-edge-connected (upon termination of algorithm 11). We

establish this by proving that every edge in TH is covered by an edge of IN . Consider the iteration

of algorithm 11 when some lca u is processed. Assume inductively that all edges of TH with low-

value > u are covered by edges in IN chosen at previous iterations. Fix an edge e from a node

v to its child w in Tc. If low(e) = u, then every leaf of Tc that is a descendant of w is incident

with an edge of C and the edge e0 to its parent in Tc satis�es low(e
0) = u. Hence, all leaves of Tc

that are descendants of w belong to Vl and are incident with an edge in the set A computed at

this iteration. We conclude that all edges of Tc with low-value u will be covered at this iteration.

Therefore, every edge of TH is covered by an edge of IN upon termination of algorithm 11.

To see why IN is minimal, consider the same iteration of algorithm 11. Let e be an edge in A at

this iteration. Since the set A constructed in step (2.2) is minimal with respect to the property that

each node in Vl is incident with an edge of A, at least one endpoint of e in Vl, say y, is incident with

no other edge of A. Moreover, the edge e0 from y to its parent in Tc is covered neither by an edge

of IN whose lca is > u (by the de�nition of Tc) nor by an edge with lca < u (since low(e0) = u).

Hence, e0 is covered only by e. It follows that all the edges in A are essential in the �nal graph

TH + IN . 2

We show how to implement algorithm 11 so that it runs in time O(p + q) (where p = n(H) and

q = m(H)).

The tree Tc is the condensation of TH + IN . Hence, each vertex in Tc represents the set of vertices

of a 2-edge-connected component of TH + IN . We shall describe a method for maintaining Tc that

runs in time O(p+ q). Our technique is similar to methods discovered independently by [23] and

[12]. One result in [23] shows that the 2-edge-connected components of an initially connected graph
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on n vertices can be maintained under m edge insertions in time O(m�(m;n) + n). This bound

is improved to O(m + n) by [12]. Although the bound of [12] matches our bound, we choose to

present our method because it was discovered independently of [12]. Moreover, the presentation of

our technique will be helpful in understanding the more complicated solution for the biconnected

case.

The tree Tc is represented by a partition of the nodes of TH into disjoint nonempty sets. We refer

to a set in this collection as a set of TH . Each set of TH has a name which is a vertex in this set.

Initially, each vertex v of TH is in a singleton set fvg whose name is v. At any point each set of TH

will represent the set of vertices of a 2-edge-connected component of TH + IN . Hence, the vertices

in this set induce a subtree in TH . The name of the set is the root of this subtree. The following

two operations access the sets of TH :

(i) �nd(x): returns the name of the set of TH containing node x of TH ;

(ii) unite(x,y): merges the sets of TH containing x and y into a new set whose name is the name

of the old set containing x.

We incorporate the edges of A into Tc (step (2.3) of algorithm 11) one at a time. Let e = (v; w) be

an edge in A (at the current iteration of algorithm 11) and let u = lca(v; w). The addition of e to

IN in step (2.3) creates a 2-edge-connected component in TH + IN whose vertex set is the union

of the vertex sets of the components in TH+IN�e that contain a vertex on the fundamental cycle

of e in TH . This amounts to creating a new set of TH that is the union of all old sets containing

a node on the fundamental cycle of e in TH . The following sequence of union and �nd operations

creates such a set (p(z) denotes the parent of a node z in TH , e = (v; w) and u = lca(v; w)):

x := find(v);

while x 6= u do begin unite(p(x); x); x := find(p(x)) end;

y := find(w);

while y 6= u do begin unite(p(y); y); y := find(p(y)) end;

All unions are of the form unite(p(z); z) for some vertex z in TH . Hence, we may use the algorithm

of Gabow and Tarjan ([5]) to perform at most q union and �nd operations in time O(p+ q) (with

TH being the union tree). This is also the total time spent in step (2.3) over all iterations of the

for-loop.

In step (2.2) we need to determine whether an endpoint in Tc of an edge in C is a leaf in Tc. To

this end we maintain for each set of TH the number of children of the corresponding vertex in Tc.
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For a set named v we denote this quantity by d(v). For some z in TH let d = d(find(z)) and

d0 = d(find(p(z)). After executing unite(p(z)); z) we update the d-values by setting d(find(z)) =

d + d0 � 1. Thus, the total time to maintain the quantities d(v) is O(p + q). We can determine

in constant time whether an endpoint v in Tc of an edge of C is a leaf of Tc by checking whether

d(v) = 0. We can compute the set A in step (2.2) by eliminating the edges in C one by one, making

sure not to remove all the edges incident with a vertex of Vl. By maintaining for each vertex of Vl

a counter recording the number of edges of C incident with it that have not been eliminated yet,

the set A can be computed in time O(jCj).

In summary we see that algorithm 11 computes a minimal augmentation for TH in H in time

O(p+ q).

5.2 A Linear Time Algorithm for Computing a Minimal Augmentation for Bi-

connectivity

We now describe a linear time sequential algorithm for minimally augmenting a spanning tree into

a biconnected graph. Let H be a biconnected graph on p vertices and q edges and let TH be a

spanning tree in H .

In a preprocessing phase we compute for each vertex in TH the preorder number (henceforth

identifying a vertex with its preorder number), we compute the lca's of nontree edges in H (using

the algorithm of [10]), we sort the nontree edges by their lca, and compute for each lca u a sorted list

L(u) of endpoints in TH of nontree edges with lca u (by traversing TH in preorder). Furthermore,

we compute during a postorder traversal of TH for each vertex v in TH the smallest lca of a nontree

edge incident with a descendant of v (we consider a vertex to be a descendant of itself). We denote

this quantity by low(v). The preprocessing phase requires time O(p+ q).

The following algorithm computes a minimal augmentation for TH with respect to biconnectivity.

As usual the set IN contains those edges that have already been chosen for the augmentation. The

tree Tc represents the block condensation of TH + IN (de�ned in section 4.2). For a node v in Tc

de�ne low(v) to be the minimum low-value of any node in TH that is collapsed into v. Steps (2.2),

(2.3) and (2.4) in the following algorithm are similar to algorithms 6, 7 and 10, respectively.

Algorithm 12 Minimally augmenting TH into a biconnected graph.

Input Biconnected graph H , spanning tree TH .

Output Minimal subset IN of nontree edges in H such that TH + IN is biconnected.

(1) Initialize: IN := ;, Tc := TH .

(2) For u := n downto 1 do:
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(2.1) Let C be the set of nontree edges whose lca is u.

If C 6= ;, perform steps (2.2)-(2.5) below:

(2.2) Let Vl be the set of leaves v of Tc such that low(v) = u and the block of TH + IN

whose core is represented by v has a root di�erent from u in TH . Compute a minimal

set A1 � C such that each vertex in Vl is incident with an edge in A1.

(2.3) De�ne auxiliary graph Gu as follows: the vertices of Gu are the children u1; : : : ; ul of

u in TH . To each edge e of C connecting a descendant of ui to a descendant of uj in

TH corresponds an edge (ui; uj) in Gu. Mark the vertices in Gu whose low-value is less

than u. For B � C let Gu(B) be the subgraph of Gu induced by those edges in Gu that

correspond to edges in B. We say that a set B � C is good for Gu if u = 1 and Gu(B)

is connected or u > 1 and in Gu(B) there is a path from any vertex to some marked

vertex. Compute a minimal subset A2 � C such that A1 [A2 is good for Gu.

(2.4) Eliminate some edges from A1 as follows:

(2.4.1) Let B0 be the subset of edges in A1 whose endpoints in Vl are incident with other

edges in A1 [A2. Let A
(1)
1 = A1 �B0.

(2.4.2) Each vertex in Vl not incident with an edge in A
(1)
1 [ A2 selects a single edge of

B0 incident with it. Let B1 � B0 be the set of edges selected at this step and let

A
(2)
1 = A

(1)
1 [ B1 (= (A1 � B0) [B1).

(2.4.3) Determine a minimal subset B2 � B0 such that A
(2)
1 [ B2 [A2 is good for Gu. Let

A
(3)
1 = A

(2)
1 [ B2 (= (A1 � B0) [B1 [B2).

(2.4.4) Let B3 be the set of edges in B1 whose endpoints in Vl are incident with edges in

B2 [A2. Let A
(4)
1 = A

(3)
1 � B3 (= ((A1 �B0)[ B1 [ B2)� B3).

(2.4.5) Determine a minimal subset B4 � B3 such that A
(4)
1 [B4 [ A2 is good for Gu.

Let A = A
(4)
1 [B4 [ A2 (= (((A1 � B0) [B1 [B2)�B3)[ B4 [A2).

(2.5) Let IN := IN [ A. Let Tc be the block condensation of TH + IN . Update low (see

below).

Lemma 18 Upon termination of algorithm 12, IN is a minimal augmentation for TH .

Proof. Fix an iteration of step (2). Let INu denote the set of edges in IN with lca > u and let Ru

be the set of nontree edges with lca < u. Let H0 be the graph TH + INu + Ru. As in the proof

of lemma 2 it su�ces to establish that A (as de�ned in step (2.4.4)) is a minimal subset of C such

that H0 +A is biconnected.

Assume inductively that H0 + C is biconnected. First, we prove that for any B � C the graph

H0 +B is biconnected if and only if each vertex in Vl is incident with an edge in B and B is good
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for Gu. For the only-if direction we prove the contrapositive. If a vertex of Vl is not incident with

an edge of B, then this vertex represents the core of a block in H0 + B whose root is a proper

descendant of u, implying that H0+B is not biconnected. Also if B is not good for Gu then, in the

graph Gu(B), there exist at least two connected components at least one of which does not contain

a marked vertex. The union of the cores corresponding to vertices in a component that does not

contain a marked vertex forms the core of a block of H0 +B that does not contain all the vertices

of TH , implying again that H0 is not biconnected.

Now we prove the if-part of the above claim. We consider the two cases u = 1 and u > 1. If u = 1

we argue as follows. Since H0 + C is biconnected, the tree Tc has no leaf with a low-value > 1

because the root of the corresponding block in H0 would be a cutpoint in H0 + C. Since all the

vertices in Vl are incident with an edge in B, it follows that there can be no cutpoint in H0 + B

other than u (the root of TH). Since B is good for Gu, Gu(B) is connected and any two vertices

in H0+B other than the root of TH are connected by a path in H0+B not containing the root of

TH . Hence, the root of TH is not a cutpoint of H0 + B and H0 + B is indeed biconnected. Now

consider the case u > 1. As before we observe that no leaf in Tc has a low-value > u. Since any

vertex in Vl is incident with an edge in B, there can be no cutpoint in H0+B other than u. Since

B is good for Gu, there is a path between any two vertices in H0 + B other than u that avoids

vertex u. Hence, u is not a cutpoint in H0 +B. We conclude that H0 + B is biconnected.

We now check that A (as de�ned in step (2.4.5)) is a minimal subset of C such that each vertex in

Vl is incident with an edge in A and A is good for Gu. (The following argument is very similar to

that preceding algorithm 10.) Let us denote these two properties by (P1) and (P2), respectively.

By step (2.4.5) of algorithm 12 the set A satis�es property (P2). We need to verify that each vertex

in Vl is incident with an edge in A (i.e., A satis�es property (P1)). By step (2.4.2) each vertex of

Vl is incident with an edge of A
(2)
1 [ A2 and hence with an edge in A

(3)
1 [ A2. Let e be an edge

in B3. By the de�nition of B1 any edge in B1 has exactly one endpoint that is incident with an

edge of A2. Since B3 � B1, this also holds for edge e. Again by the de�nition of B1 the endpoint

of an edge in B1 that is not incident with an edge of A2 is incident only with this edge of B1. It

then follows from the de�nition of B3 that both endpoints of edge e 2 B3 are incident with edges

in A2 [ B2. Since (A2 [ B2) \ B3 = ;, it follows that each vertex of Vl is incident with an edge in

A.

Let us say that an edge e 2 A is essential for (P1) if A�feg does not satisfy property (P1) and edge

e 2 A is essential for (P2) if A � feg does not satisfy property (P2). We have to show that each

edge A is essential for (P1) or (P2). (Note that an edge may be essential for both properties.) By

step (2.4.5) of algorithm 12 each edge in B4 is essential for (P2). Furthermore, each edge in B1�B3

has one endpoint in Vl that is not incident with another edge in A
(3)
1 [A2. Since A � A

(3)
1 [A2, this

implies that the edges in B1 � B3 are essential for (P1). By step (2.4.3) B2 is a minimal subset of
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B0 such that A
(2)
1 [B2 [A2 is good for Gu. Since A � A

(2)
1 [B2 [A2, the edges in B2 are essential

for (P2). Finally we observe that each edge in A1 �B0 has at least one endpoint in Vl that is not

incident with another edge in A1 [ A2; it is therefore essential for (P1). 2

We show how to implement the various steps so that the running time of algorithm 12 is O(p+ q)

(where p = n(H) and q = m(H)).

We �rst describe how to maintain the block condensation Tc of TH + IN at each step. Some

methods are known (e.g., [23] and [12]) for maintaining the biconnected components of a graph

under edge insertions. These methods however are superlinear in the number of edge insertions.

We shall explain how Tc can be maintained in linear time.

We represent Tc by a partition of the nodes of TH ; as before, we refer to a set in this partition as

a set of TH . Let us �rst assume that each set of TH corresponds to a node of Tc, the tree Tc being

the block condensation of TH + IN . Hence, a set of TH is either the singleton set consisting of the

root of TH or it contains the nodes in the core of a block of TH + IN . Below we shall see that this

requirement needs to be relaxed.

In step (2.5) we compute Tc by incorporating the edges in A one by one. Fix an edge e = (v; w)

of A with lca(e) = u. Adding e to IN in step (2.5) results in a block in TH + IN + e whose root

is u and whose core is the union of the cores in TH + IN containing a vertex other than u on the

fundamental cycle of e in TH . Unfortunately, the unions of the corresponding sets of TH are not

all of the form unite(p(z); z) where p(z) denotes the parent of a node z in TH (unless v = u or

w = u). For instance if u has two children v and w that are both in a set by themselves then the

addition of edge e = (v; w) in step (2.5) amounts to taking the union of sets fvg and fwg; this

union is clearly not of the form unite(p(z); z). Thus, the algorithm of Gabow and Tarjan ([5]) does

not apply directly.

We overcome this problem by deferring some of the union operations to a later point. Inductively,

we assume that the collection of sets of TH has the following two properties: (1) the vertices in a

set of TH induce a subtree of TH ; we take the root of that subtree as the name of the set. (2) The

vertex set of a core of a block in TH + IN is equal to the union of sets of TH whose names are

children of the same node of TH . We implement this by assigning to each set a block number: two

sets have the same block number i� they are contained in the core of a single block of TH + IN .

We choose for the block number the smallest name (w.r.t. preorder numbering) of a set of TH that

is contained in the core of a given block of TH + IN . We maintain for each block number a list of

sets that have this block number (in order to perform the union operations e�ciently).

Let e = (v; w) be an edge of A with lca(e) = u. After adding edge e to IN in step (2.5), we update

the sets of TH as follows (assume v and w are both di�erent from u): we create one new set by
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taking the union of all sets containing a vertex other than u on the path from v to u in TH and

then adding those sets having the same block number as one of these sets; we create another set by

proceeding similarly for the path from w to u. If we do this for every edge of A, we get a collection

of sets whose names are children of u. We determine the block number of each such set using an

auxiliary graph GA. The vertices of GA are the children u1; : : : ; ul of u in TH . There is an edge in

GA from ui to uj if an edge of A connects a descendant of ui with a descendant of uj . Compute

the connected components of GA. All sets whose names are part of the same component receive

the same block number, namely the smallest name in the component. We associate with each block

number i the low-value low(i) of the core of the corresponding block of TH (i.e., the minimum

low-value of any vertex of TH in the core). After we have computed Tc in step (2.5) we update

the quantity low(i) as follows: let Ci be a component of GA that gets assigned block number i.

The quantity low(i) is set to the minimum low-value of any child of u in Ci. All of these steps can

be performed in time O(jCj+ l) where l is the number of children of u in TH . (To construct the

adjacency list for GA, see the implementation of step (2.3) below.)

To see that the sets of TH satisfy the two properties stated above, note that as soon as a set x

becomes part of a larger set y, all sets with the same block number as x are also merged into y.

Furthermore, each new set at the end of the current execution of step (2.5) has a child of u as its

name. It follows that the sets of TH do indeed satisfy the two properties mentioned above. We

conclude that the total number of union and �nd operations is O(p+ q). Since all unions are of the

form unite(p(z); z), we can use the algorithm of Gabow and Tarjan ([5]). This gives us an overall

time bound of O(p+ q) for all executions of step (2.5).

We now describe the implementation of steps (2.2), (2.3), and (2.4) of algorithm 12. In step (2.2)

we need to be able to check quickly whether an edge of C is incident with a leaf in Vl. For this we

maintain, for each block number i, the number of children of the corresponding node in Tc. Let

d(i) denote the number of children of the node in Tc corresponding to block number i. We update

the d-values as follows: recall that we incorporate an edge e = (v; w) with lca u into Tc by taking

the union of sets along the paths from v to u and from w to u. After we execute unite(z; p(z))

where z is a vertex on one of these two paths with block number j and its parent p(z) in TH has

some block number k < j, we set d(k) := d(j) + d(k) � 1. After incorporating all the edges in A

we have a collection of sets of TH whose names are children of u in TH . Let Ci be the connected

component of GA (see above) whose minimum name is i. As described above all sets whose name

is in Ci receive block number i. We set d(i) to the sum of the d-values of the names contained in

component Ci. With the low-values and d-values, we can compute the set A1 in step (2.2) in time

O(jCj).

To construct the adjacency list for Gu in step (2.3), we need to determine for each endpoint other

than u of an edge of C the unique child of u of which it is a descendant in TH . Using the sorted
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sequence L(u) (see preprocessing stage) of endpoints of edges of C in TH and the preorder numbers

of the children of u in TH , this can be done in time O(jCj+ l) where l is the number of children

of u in TH . To compute a minimal set A2 such that A1 [ A2 is good for Gu, we �rst collapse the

vertex set of each connected component in Gu(A1), then collapse all vertices in the resulting graph

corresponding to a component of Gu(A1) that contains a marked vertex into a single new vertex.

In the resulting graph we compute a spanning tree and let A2 be the set of those edges in C that

correspond to an edge of this spanning tree. Thus, we spend O(p+q) time on all executions of step

(2.3). Step (2.4) requires time proportional to the size of Gu, i.e., O(jCj+ l). Using the techniques

we described above we can implement one execution of steps (2.4.1)-(2.4.4) in time O(jCj+ l).

Altogether, we see that algorithm 12 runs in time O(p+ q) as claimed.

6 Concluding Remarks

In this paper we have presented e�cient parallel and sequential algorithms for the problems of

�nding a minimal 2-edge-connected spanning subgraph of a 2-edge-connected graph and �nding a

minimal biconnected spanning subgraph of a biconnected graph.

The algorithms for both problems have a similar high-level structure: repeatedly compute a span-

ning tree of the input graph with the smallest possible number of redundant edges and minimally

augment this tree. This strategy is useful for �nding minimal subgraphs of a graph with respect to

other properties. In particular this approach gives similar algorithms for the problem of �nding a

minimal k-connected subgraph of a graph (for any k), assuming we have a method for augmenting

a spanning tree with respect to these properties.

In [9] we describe re�nements for algorithm 1 that yield linear time sequential algorithms for the

above problems. The algorithms for both problems use the linear time augmentation procedures

described in section 5 as subroutines. These results reduce the parallel work required for these

problems by a factor of �(log n).
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