
In SIAM JOURNAL ON COMPUTING, 1995. Copyright SIAM

Computing Minimal Spanning Subgraphs in Linear Time

Xiaofeng Han� Pierre Kelseny Vijaya Ramachandranz Robert Tarjanx

Abstract

Let P be a property of undirected graphs. We consider the following problem: given a graph

G that has property P , �nd a minimal spanning subgraph of G with property P . We describe

general algorithms for this problem and prove their correctness under fairly weak assumptions

about P . We establish that the worst-case running time of these algorithms is �(m+n log n) for

2-edge-connectivity and biconnectivity where n and m denote the number of vertices and edges,

respectively, in the input graph. By re�ning the basic algorithms we obtain the �rst linear time

algorithms for computing a minimal 2-edge-connected spanning subgraph and for computing a

minimal biconnected spanning subgraph.

We also devise general algorithms for computing a minimal spanning subgraph in directed

graphs. These algorithms allow us to simplify an earlier algorithm of Gibbons, Karp, Ramachan-

dran, Soroker and Tarjan for computing a minimal strongly connected spanning subgraph. We

also provide the �rst tight analysis of the latter algorithm, showing that its worst-case time

complexity is �(m + n logn).

�Current a�liation: Zyga Corporation, 28 West Oak Street, Baskingridge, NJ 07920. Research done while he was

a graduate student at the Department of Computer Science, Princeton University, Princeton, NJ 08544.
yDepartment of Computer Science, University of British Columbia, Vancouver, B.C. CANADAV6N 1Z4. Research

done while he was a graduate student at the Department of Computer Sciences, University of Texas, Austin, TX

78712 and supported in part by NSF grant CCR-89-10707.
zDepartment of Computer Sciences, University of Texas, Austin, TX 78712; supported in part by NSF grant

CCR-89-10707.
xDepartment of Computer Science, Princeton University, Princeton, NJ 08544 and NEC Research Institute, 4

Independence Way, Princeton, NJ 08540. Research at Princeton University partially supported by the National

Science Foundation, Grant No. CCR-8920505, the O�ce of Naval Research, Contract No. N00014-91-J-1463, and

by DIMACS (Center for Discrete Mathematics and Theoretical Computer Science), a National Science Foundation

Science and Technology Center, Grant No. NSF-STC88-09648.

Running head: Computing Minimal Spanning Subgraphs .

Key words: minimal subgraph, biconnectivity, two-edge-connectivity, strong connectivity, linear-

time algorithm, worst case behavior.

AMS subject classi�cations: 05C85, 05C40, 68Q25, 68R10.

Send all correspondence to:

Pierre Kelsen

Department of Computer Science

University of British Columbia

2366 Main Mall

Vancouver, B.C.

CANADA V6T 1Z4

E-mail: kelsen@cs.ubc.ca

2

1 Introduction

Let P be a monotone graph property. In this paper we consider the following problem: given

a graph G having property P , �nd a minimal spanning subgraph of G with property P , i.e., a

spanning subgraph of G with property P in which the deletion of any edge destroys the property.

We are interested in the sequential and parallel complexity of this problem.

The corresponding problem of �nding a minimum spanning subgraph having a given property

has been widely studied. We mention two results: Chung and Graham ([3], [7]) proved that the

problems of �nding a minimum k-vertex-connected or k-edge-connected spanning subgraph are

NP -hard for any �xed k � 2. For the more relaxed problem of �nding sparse but not necessarily

minimal k-edge-connected and k-vertex-connected spanning subgraphs, linear time algorithms are

known ([18]). Yannakakis ([24]; see also [15]) showed that the related problem of deleting aminimum

set of edges so that the resulting graph has a given property isNP -hard for several graph properties

(e.g., planar, outerplanar, transitive digraph).

There is a natural sequential algorithm for �nding a minimal spanning subgraph with property

P : examine the edges of G one at a time; remove an edge if the resulting graph has property

P . This gives a polynomial time algorithm for the problem if the property P can be veri�ed in

polynomial time. However, for most nontrivial properties the running time of the algorithm is at

least quadratic in the input size. Further, this algorithm seems hard to parallelize. Our goal is to

obtain e�cient sequential algorithms that can be parallelized e�ectively.

The problem at hand may be phrased in the very general framework of independence systems

described by Karp, Upfal, and Wigderson ([12]): an independence system is a �nite set together with

a collection of subsets, called independent sets, with the property that any subset of an independent

set is independent. De�ne a subset S of edges in G to be independent if the graph G � S has

property P . Finding a minimal spanning subgraph with property P amounts to �nding a maximal

independent set in the independence system that we have just de�ned. E�cient (deterministic)

parallel algorithms for �nding a maximal independent set in an independence system are known for

the special case where the size of a minimal dependent set is 2 or 3 ([16], [9], [5]). For the problems

that are of interest to us minimal dependent sets may have nonconstant size and hence a di�erent

approach is needed for obtaining fast parallel algorithms.

The minimal spanning subgraph problem has been studied earlier for the property of strong

connectivity (transitive compaction problem [8]) and for 2-edge-connectivity and biconnectivity

1

([13]). For these problems algorithms are given in ([8], [13]) that run in O(m+ n logn) sequential

time and can be implemented as NC algorithms; here n and m represent the number of vertices

and edges in the input graph. Both papers have a similar high-level algorithm that is shown to

terminate in O(logn) stages for the properties considered, and both papers leave open the question

of whether this bound is tight.

In this paper we generalize the high-level algorithm of ([8],[13]) to a large class of graph prop-

erties. We show that for any graph property that implies 2-edge-connectivity the running time of

these algorithms is within a logarithmic factor of the time required for minimally augmenting a

spanning tree to achieve the given property. Because various computations on trees can be per-

formed e�ciently, both sequentially ([22]) and in parallel ([17], [20]), this algorithm provides a

useful paradigm for the sequential and parallel determination of minimal spanning subgraphs with

respect to connectivity properties.

We analyze the worst-case complexity of these algorithms. We show that the algorithms for

2-edge-connectivity and biconnectivity require
(logn) iterations in the worst-case; this implies

that the worst-case time of these algorithms is �(m + n logn), thus settling open questions posed

in [13].

We describe re�nements of the basic algorithms for 2-edge-connectivity and biconnectivity and

obtain the �rst linear time algorithms for these properties. These algorithms still need a logarithmic

number of iterations but by performing certain contractions and transformations on the current

graph they reduce its size by a constant factor greater than 1 in a constant number of iterations.

This result also reduces the work performed by the parallel algorithms for these problems by a

logarithmic factor.

We also describe general algorithms for computing a minimal spanning subgraph in directed

graphs with respect to any monotone property that implies strong connectivity. For the special case

of strong connectivity, we are able to simplify the algorithm of [8] for computing a minimal strongly

connected spanning subgraph. We also provide the �rst tight analysis of the latter algorithm,

showing that its worst-case running time is �(m+ n logn). This answers a question posed in [8].

This paper is organized as follows. The next section de�nes the terms from graph theory used

in this paper. In section 3 we describe and analyze general algorithms for computing minimal

spanning subgraphs in undirected graphs. In section 4 we describe re�nements that yield linear

time algorithms for computing a minimal 2-edge-connected spanning subgraph and for computing

a minimal biconnected spanning subgraph. In section 5 we show that the basic algorithms have

2

a worst-case time complexity of �(m + n logn) if we do not incorporate those re�nements. In

section 6 we develop and analyze general algorithms for computing minimal spanning subgraphs

in directed graphs. In that section we also analyze an algorithm of [8] for computing a minimal

strongly connected spanning subgraph and we provide a simpli�ed algorithm for the problem.

The sequential model of computation that we assume in this paper is the RAM ([1]) with a

word length of O(logn) bits where n is the length of the input (or the number of vertices in the

input graph).

2 De�nitions

We introduce graph terminology similar to that of [2]. A graph is a triple G = (V;E;�G) where

V is a set of vertices, and E, disjoint from V , is a set of edges (both V and E are assumed to

be �nite); the incidence function �G maps edges in E to unordered (ordered) pairs of vertices in

V if the graph is undirected (directed). Note that this de�nition allows for the representation of

multigraphs. We write V (G) and E(G) for the set of vertices and the set of edges, respectively,

of G and use n(G) and m(G) to denote the number of vertices and edges, respectively, in G. We

refer to a directed graph also as a digraph. We write (u; v) both for ordered and unordered pairs.

If (u; v) is an edge in a directed graph, then u is called the tail of this edge and v is called the head

of this edge. If �(e) = (u; v), we say that edge e is incident on the vertices u and v and vertices u

and v are the endpoints of e. The degree of a vertex v in G, denoted by degG(v), is the number of

edges incident on vertex v. If the graph is directed, then the indegree (outdegree) of a vertex v is

the number of edges e 2 E(G) such that �G(e) = (w; v) (�G(e) = (v; w)) for some vertex w.

If every edge in a graph joins two distinct vertices and no two edges join the same pair of

vertices, then we say that the graph is simple. The underlying graph of a digraph G is obtained by

omitting the directions of the edges in the digraph. We say that a digraph G is an orientation of

an undirected graph G0 if G0 is the underlying graph of G.

The following de�nitions apply both to directed and undirected graphs. A path P in G is an

alternating sequence P =< v0; e1; v1; : : :vk�1; ek; vk > of vertices and edges of G such that the

following holds: (1) �G(ei) = (vi�1; vi) for 0 < i � k, (2) v0 : : :vk�1 are distinct and v1 : : :vk are

distinct; the integer k (number of edges) is the length of the path. The path P is a path from v0 to

vk; v0 and vk are the endpoints of P and v1; : : : ; vk�1 are the internal vertices of P . A subpath of

P is a path of the form < vi; ei+1; : : : ; ej ; vj > where 0 � i � j � k. The path P is a chain if it has

3

length at least 2 and its nternal vertices all have degree 2 in G. The path P is a cycle if v0 = vk

and all edges ei of P are distinct.

If G = (V;E;�G) and G0 = (V 0; E 0; �G0) are two graphs such that V 0 � V 0, E0 � E and �G0

is the restriction of �G to E0, then G0 is a subgraph of G; it is a proper subgraph if G0 6= G. If the

graph G is understood, we may represent a subgraph H of G simply by the pair (V (H); E(H)). A

spanning subgraph of G is a subgraph G0 with V (G0) = V . If G0 = (V 0; E0) is a spanning subgraph

of G and E 00 � E, then G0 +E00 denotes the subgraph (V 0; E0 [E00) of G and G0 �E00 denotes the

subgraph (V 0; E0�E00) of G.

An undirected (directed) graph G is connected (strongly connected) if there exists a path from

u to v for all u; v 2 V . A subgraph of G is a maximal subgraph having a given property if it is not

a proper subgraph of another subgraph of G with the same property. A connected component of

an undirected graph G is a maximal connected subgraph of G. A tree in a graph G is a spanning

connected subgraph of G without cycles. A strong component of a directed graph G is a maximal

strongly connected subgraph of G.

All remaining de�nitions apply only to undirected graphs. A cutedge in G is an edge in G whose

removal increases the number of connected components in G. The graph G is 2-edge-connected if

it is connected and has no cutedge or, equivalently, it is connected and every edge of G lies on a

cycle. A 2-edge-connected component of G is a maximal 2-edge-connected subgraph of G. A graph

is k-edge-connected (k > 0) if G� S is connected for every subset S � E(G) of size less than k. A

vertex v in G is a cutpoint if removing v together with all incident edges increases the number of

connected components in G or, equivalently, there exist distinct vertices u and w in G other than

v such that any path from u to w contains v. A graph G is biconnected if it is connected, has at

least three vertices, and does not contain a cutpoint. A block of G is a maximal subgraph of G

with the property that it is connected and has no cutpoint. A graph G is k-vertex-connected if G

has at least k + 1 vertices and G� S is connected for every S � V (G) with jSj < k.

Let G = (V;E;�G) and let V 0 � V . The operation of collapsing the vertices of V 0 in G produces

a graph G0 de�ned as follows: V (G0) = (V � V 0) [fzg where z is a new vertex not in V ; E(G0)

is the subset of those edges in E that have at least one endpoint outside V 0; �G0(e) = �G(e) if no

endpoint of e belongs to V 0 and �G0(e) = (z; v) if �G(e) = (u; v) where u 2 V 0 and v 2 V � V 0.

An ear decomposition ([21]) D = [P0; P1; : : : ; Pr�1] of a graph G is a partition of E(G) into an

ordered collection of edge disjoint paths P0; : : : ; Pr�1 such that P0 is a cycle and the two endpoints

of Pi, for i � 1, are contained in some Pj , j < i, and none of the internal vertices of Pi are contained

4

in any Pj , j < i. The paths in D are called ears. Ear decompositionD is an open ear decomposition

if no Pi with i > 0 is a cycle. A trivial ear is an ear containing a single edge.

3 Finding a Minimal Spanning Subgraph in Undirected Graphs

In this section we describe three closely related algorithms for �nding a minimal spanning subgraph

of a graph for various properties of undirected graphs. Algorithm 1 was �rst described in [14] while

algorithms 2 and 3 are generalizations of algorithms for �nding a minimal 2-edge-connected and a

minimal biconnected spanning subgraph given in [10].

A graph property P is a Boolean-valued function on graphs. If P (G) is true for some graph G,

we say that G has property P or G is a P -graph. A P-subgraph of G is a subgraph of G that has

property P . An edge e of a P -graph G is P -redundant in G if G � e has property P , otherwise

e is P-essential in G. We may not mention G or P if the graph or the property is clear from the

context.

In this paper we concern ourselves with the problem of �nding a minimal spanning P -subgraph

of a P -graph G, i.e., a spanning P -subgraph of G in which every edge is P -essential. Throughout

this paper we shall implicitly assume that property P is decidable, i.e., there is an algorithm that

checks whether a given graph has property P . We restrict our attention to decidable properties

that satisfy conditions C1 and C2 below:

(C1) P is monotone, i.e., the addition of an edge to a P -graph results in a P -graph;

(C2) any P -graph is connected.

As an immediate consequence of condition C1 we make the following basic observation.

Observation 1 Let G be a P -graph and let H be a spanning P -subgraph of G. Any edge that is

P -redundant in H is P -redundant in G.

There is an obvious (sequential) algorithm for computing a minimal spanning P -subgraph of G:

examine the edges of G one at a time; remove an edge if it is redundant in the current graph. By

observation 1 the resulting subgraph is a minimal spanning P -subgraph of G.

The following algorithm is a generalization of algorithms given in [13] and [8] (for �nding a

minimal 2-edge-connected, a minimal biconnected, and a minimal strongly connected spanning

subgraph of a graph) to graph properties satisfying C1 and C2. This algorithm has been shown to

outperform the obvious algorithm on undirected graphs for 2-edge-connectivity and biconnectivity,

5

and we believe that this is true for a number of other properties of undirected graphs. Moreover,

it is inherently easier to parallelize.

Algorithm 1 Computing a minimal spanning P -subgraph of G.

Input P -graph G.

Output Minimal spanning P -subgraph H of G.

(1) H := G;

(2) while H has P -redundant edges, do:

(2.1) compute a spanning tree TH in H with a maximum number of P -essential edges;

(2.2) compute a minimal subset A of edges in H such that TH + A has property P ;

(2.3) H := TH + A.

A spanning tree TH of H containing a maximumnumber of essential edges (constructed in step 2.1)

is called an optimal tree inH and the set A constructed in step 2.2 is called a minimal augmentation

for TH (in H).

Theorem 1 Algorithm 1 computes a minimal spanning P -subgraph of G for any property P sat-

isfying C1 and C2.

Proof. By induction on the number of iterations of the while-loop, one shows that H , as computed

in step 2.3, is always a spanning P -subgraph of G. To prove termination, consider one execution

of the while-loop. Since TH is an optimal tree in H , it does not contain all redundant edges of H .

Furthermore all edges of A are essential in TH + A. Therefore, the number of redundant edges in

H decreases by at least one at each iteration of the while-loop. Thus algorithm 1 terminates. 2

By the proof of theorem 1 the number of iterations of algorithm 1 is bounded by the number of

edges in the input graph G. For several graph properties much sharper bounds hold. In this paper

we are primarily interested in properties P that imply 2-edge-connectivity. The following theorem

shows that for these properties algorithm 1 terminates quickly. We use n to denote the number of

vertices in G.

Theorem 2 If P satis�es C1 and C2 and also implies 2-edge-connectivity, then algorithm 1 ter-

minates after O(logn) iterations of the while-loop.

6

Proof. Fix H at the beginning of an iteration of the while-loop. An essential component of H is

a connected component of the subgraph of H with vertex set V (H) whose edges are the essential

edges in H . Let r denote the number of redundant edges in H and c the number of essential

components of H . Fix an optimal tree T in H and an optimal augmentation A for T . The tree T

contains exactly c� 1 redundant edges of H . Furthermore, if c > 1, then each essential component

of H is incident with at least 3 redundant edges in H and hence c � 2r=3. Since the edges of A are

essential in T +A, less than 2r=3 edges of T +A are redundant and hence the number of redundant

edges goes down by a constant factor greater than 1 in each iteration of the while-loop. The claim

follows. 2

Corollary 1 Algorithm 1 computes a minimal k-vertex-connected and a minimal k-edge-connected

spanning subgraph in O(logn) iterations of the while-loop. 2

One drawback of algorithm 1 is that the redundant edges of H need to be computed at each

iteration. In general, it is not clear whether computing these edges is easier than the original

problem of �nding a minimal spanning P�subgraph. One can avoid this computation by gradually

building up a set of essential edges, as shown in the following algorithm. We We do not need to

assume here that P implies 2-edge-connectivity.

Algorithm 2 Computing a minimal spanning P -subgraph of G.

Input P -graph G.

Output Minimal spanning P -subgraph H of G.

(1) H := G; S := ;;

(2) while S 6= E(H), do:

(2.1) compute a spanning tree TH in H with a maximum number of edges in S;

(2.2) compute a minimal subset A of edges in H such that TH + A has property P ;

(2.3) H := TH + A; S := S [A [fcutedges in Hg;

Theorem 3 Algorithm 2 computes a minimal spanning P -subgraph of G for any property P sat-

isfying C1 and C2.

Proof. By induction on the number of iterations of the while-loop, one shows that at the end of

each iteration H is a spanning P -subgraph of G and the edges in S are essential in H . To prove

7

termination, consider one execution of the while-loop. Let e 2 E(H) � S. If e is a cutedge in

TH+A, then e will be added to S in step 2.3. Otherwise the optimal tree does not contain all edges

of E(H)� S. At least one edge of E(H)� S will thus be added to S in step 2.3 (as an edge of A)

or discarded. In all these cases jE(H)� Sj decreases by at least one in this iteration. Termination

follows. 2

Unlike algorithm 1 algorithm 2 is not guaranteed to terminate quickly if P implies 2-edge-

connectivity. For instance, if P denotes 2-edge-connectivity and G is a cycle on n vertices then

algorithm 2 adds exactly one edge to S in each iteration of the while-loop and thus requires n

iterations.

We overcome this problem as follows. Let S � E(H). An edge of H is called S-critical if it

is one of exactly two edges connecting some connected component of (V (H); S) with the set of

vertices outside this component. Note that any S-critical edge is essential in H provided P implies

2-edge-connectivity. Thus, at each iteration we can add to the current set of essential edges the

edges of A as well as the S-critical edges in H . The following algorithm makes use of this idea.

Algorithm 3 Computing a minimal spanning P -subgraph of G.

Input P -graph G.

Output Minimal spanning P -subgraph H of G.

(1) H := G; S := ;;

(2) while S 6= E(H), do:

(2.1) compute a spanning tree TH in H with a maximum number of edges of S;

(2.2) compute a minimal A � E(H) such that TH + A has property P ;

(2.3) H := TH + A; B := fS-critical edges in Hg; S := S [A [B;

As before we say that TH is an optimal tree in H and A is a minimal augmentation for TH in H .

Theorem 4 Algorithm 3 computes a minimal spanning P -subgraph of G for any property P sat-

isfying C1 and C2 and implying 2-edge-connectivity.

Proof. An induction on the iteration number shows that, at the end of each iteration of the

while-loop, H is a spanning P�subgraph of H and all edges in S are essential in H . Thus, upon

termination H is a minimal spanning P -subgraph of H . To prove termination, �x an iteration

of the while-loop. The tree TH contains a minimum number of edges in E(H)� S. Since H is

8

2-edge-connected, it has no cutedges. Thus there exists a spanning tree in H excluding a single

edge of E(H)�S. It follows that TH does not contain all edges of E(H)�S. Any edge of E(H)�S

that does not belong to TH is either discarded or added to S in step 2.3. Hence, jE(H)� Sj is

strictly decreasing. Termination follows. 2

The proof of theorem 2 suggests that the number of iterations of algorithm3 may be proportional

to the number of edges in the input graph. As was the case for algorithm 1 a much sharper bound

holds for properties implying 2-edge-connectivity.

Theorem 5 Assume property P implies 2-edge-connectivity. Let Ci denote E(H)� S at the be-

ginning of iteration i of the while-loop of algorithm 3. Then, jCi+1j � 3jCij=4 for jCij > 0. Thus

algorithm 3 terminates after O(logn) iterations.

Proof. Let Hi and Si denote H and S at the start of iteration i of the while-loop in algorithm

3. Hence Ci = E(Hi) � Si. The claim certainly holds if the number of edges of Ci in tree THi

(computed in step 2.1) is at most 3jCij=4. Now assume that more than 3jCij=4 edges of Ci belong to

THi
. ConstructH 0 fromHi by collapsing the vertex sets of the connected components of (V (Hi); Si)

in Hi (one at a time). Let a be the number of degree 2 vertices in H 0. Note that a is a lower bound

on the number of edges added to B (and hence to S) in step 2.3. It su�ces to show that a � jCij=4.

We have n(H 0) > 3jCij=4 (*) since we assumed that THi
contains more than 3jCij=4 edges of Ci.

Alsom(H 0) � jCij and therefore, by inequality (*),m(H 0) < 4n(H 0)=3. Hence,
P

v2V (H 0) degH 0(v) <

8n(H 0)=3. Moreover,
P

v2V (H 0) degH 0(v) � 2a+ 3(n(H 0)� a). Thus a > n(H 0)=3. With inequality

(*) we get a > jCij=4. 2

Theorem 6 Assume that P satis�es C1 and C2 and also implies 2-edge-connectivity. If a minimal

augmentation of a spanning tree can be computed in time t(m;n), then a minimal spanning P -

subgraph can be computed using algorithm 3 in time O(t(m;n) logn). In particular this holds for

k-vertex- and k-edge-connectivity for k � 2.

Proof. We claim that all steps in algorithm 3 other than the minimal augmentation step can be done

in linear time and space. We compute an optimal tree TH as follows: we compute spanning trees Ti

for the connected components of (V (H); S). We collapse the connected components of (V (H); S)

in H and let T be a spanning tree in the resulting graph. The edges in [iE(Ti) [E(T) form

an optimal tree in H and can be computed in linear time and space using depth-�rst search. To

compute the S-critical edges, we determine the connected components of (V (H); S) in linear time

9

and space using depth-�rst search. Thus each iteration of the while-loop requires time O(t(m;n)).

By the previous result algorithm 3 terminates after O(logn) iterations of the while-loop. The claim

follows. 2

In [13] linear time algorithms for computing a minimal augmentation for 2-edge-connectivity

and biconnectivity are described. By theorem 6 algorithm 3 computes a minimal 2-edge-connected

and a minimal biconnected spanning subgraph in time O((m + n) logn). In fact the following

stronger bound applies.

Theorem 7 Algorithm 3 runs in time O(m+ n logn) time for 2-edge-connectivity and biconnec-

tivity.

Proof. It su�ces to show that the number of edges in the graph H is O(n) after one iteration of

the while-loop. We prove this by showing that the number of edges in the minimal augmentation

computed in the �rst iteration is O(n). In the remainder of this proof TH and A denote the optimal

tree and its minimal augmentation computed in the �rst iteration of the while-loop of algorithm 3.

For 2-edge-connectivity we argue as follows: since every edge of A is essential in TH +A, for every

edge e 2 A there exists an edge e0 in TH such that e is the only edge in A with the property that

e0 lies on the (unique) cycle of TH + e. Thus jAj � m(TH) = n � 1. For biconnectivity a result

of Plummer ([19]) states that every minimal biconnected graph (i.e., biconnected graph with no

redundant edges) has O(n) edges. Thus jAj = O(n) for biconnectivity as well. 2

Algorithms for the same problems achieving similar time bounds are presented in [13]. Those

algorithms are more complicated than algorithm 3 because they require redundant edges to be

computed explicitly (a fairly involved procedure using ideas from triconnectivity testing). In section

4 we shall prove that the bound given in the last theorem is tight. In the next section we describe

how to modify algorithm 3 so that it runs in linear time for 2-edge-connectivity and biconnectivity.

We obtain a result similar to theorem 6 for the parallel complexity of computing a minimal

spanning P -subgraph. (For a de�nition of the PRAM model see [11].)

Theorem 8 Assume that P satis�es C1 and C2 and also implies 2-edge-connectivity. If a minimal

augmentation of a spanning tree can be computed in time t(m;n) on p(m;n) PRAM processors,

then a minimal spanning P -subgraph can be computed using algorithm 3 in time O((t(m;n) +

c(m;n)) logn) on p(m;n) processors, where c(m;n) is the time required by steps 2.1 and 2.3 of

algorithm 3 on p(m;n) processors. 2

We note that on an ARBITRARY PRAM the complexity of steps 2.1 and 2.3 is dominated by that

10

of �nding connected components, i.e., they can be performed with almost optimal speedup in time

O(logn) using O((m+ n)�(m;n)= logn) processors ([4]), where � denotes the inverse Ackermann

function. The minimal augmentation step can be done in polylogarithmic time on a linear number

of processors as shown in [13] for biconnectivity and 2-edge-connectivity.

4 Linear Time Algorithms

In this section we adapt algorithm3 to computeminimal spanning subgraphs for 2-edge-connectivity

and biconnectivity in linear time. The linear time bound is achieved by combining the linear time

minimal augmentation procedures given in [13] with a method for reducing the size of the current

graph while preserving its 2-edge-connectivity (biconnectivity) structure.

4.1 Finding a Minimal 2-Edge-Connected Spanning Subgraph

We start with a description of two graph operations that preserve the 2-edge-connectivity structure.

Let H be a graph that may not be 2-edge-connected and let S � E(H). An S-component of H

is a 2-edge-connected component of (V (H); S). The operation of shrinking an S-component of H

consists of collapsing the vertex set of this S-component in H . For the second operation de�ne a

chain in H to be a path in H of length at least 2 all of whose internal vertices have degree 2 in H .

Note that the edges in a chain are essential in H . A chain is maximal if it is not a proper subgraph

of another chain in H . The operation of contracting a chain in H consists of collapsing the set of

internal nodes of the chain in H .

If graph Q is obtained from graph H by shrinking all S-components in H and contracting all

maximal chains in the resulting graph, we say that Q is a full contraction of H with respect to S.

The following algorithm is a variant of algorithm 3 in which, at the end of the while-loop, H is

replaced by its full contraction. In step 2.0 we replace H by a sparse 2-edge-connected subgraph to

speed up subsequent steps; this also simpli�es the analysis of algorithm 3. A linear time algorithm

for computing a minimal augmentation for 2-edge-connectivity (step 2.2) is given in [13]. We �nally

note that the intermediate graphs need not be simple even if the input graph G is simple.

Algorithm 4 Computing a minimal 2-edge-connected spanning subgraph of G.

Input 2-edge-connected graph G.

Output Minimal 2-edge-connected spanning subgraph of G.

(1) H := G; S := ;;

11

(2) while E(H) 6� S, do:

(2.0) replace H by an ear decomposition of H ; discard the edges in the trivial ears from H ;

(2.1) compute a spanning tree TH in H with a maximum number of edges of S;

(2.2) compute a minimal A � E(H) such that TH + A is 2-edge-connected;

(2.3) H := TH + A; B := fS-critical edges in Hg; S := S [A [B;

(2.4) replace H by its full contraction with respect to S \ E(H);

(3) return graph (V (G); S).

To prove the correctness of algorithm 3, we �rst need to establish that the two operations of

shrinking S-components and contracting chains preserve the 2-edge-connectivity structure of H .

Lemma 1 Let H be a graph that may not be 2-edge-connected and let S � E(H). If H 0 is obtained

from H by contracting a chain or shrinking an S-component, then H 0 is 2-edge-connected if and

only if H is 2-edge-connected. Thus, a full contraction of H is 2-edge-connected if and only if H is

2-edge-connected.

Proof. The claim for a full contraction follows with a simple inductive argument from the �rst

claim. We now prove the �rst claim. Let H 0 be obtained from a 2-edge-connected graph H by

contracting a chain P . A cycle C in H containing an edge e of E(H 0) (� E(H)) either contains all

edges of P or none. In the latter case C is also a cycle in H 0 containing e. In the former case we

obtain a cycle C0 in H 0 containing e by contracting chain P on cycle C. Now suppose that H 0 is

obtained from 2-edge-connected graph H by collapsing vertex set X � V (H) of an S-component.

An edge e 2 E(H 0) lies on a cycle C in H . Let P be a maximal subpath of C containing e and not

having a vertex of X as an internal vertex. The edges on P form a cycle in H 0 containing e. Since

H 0 is also connected in both cases, we conclude that H 0 is indeed 2-edge-connected.

Now assume that H 0 is 2-edge-connected and obtained fromH by contracting a chain or shrink-

ing an S-component. Again we see that H is connected. Next we note that a cycle C0 in H 0 yields

a cycle C in H that includes all edges on C (and possibly other edges). Since every edge of H 0 lies

on a cycle of H 0, every edge in E(H 0) lies on a cycle in H . If e 2 E(H)� E(H 0), then either e

connects two vertices in the same S-component of H or it lies on a chain in H . In the �rst case it

lies on a cycle whose vertices belong to the S-component. In the second case some other edge on

the same chain in H belongs to E(H 0) and thus lies on a cycle of H ; this cycle must also include

e. We conclude that H is 2-edge-connected. 2

12

Corollary 2 Let H be a 2-edge-connected graph and let H 0 be obtained from H by contracting a

chain or shrinking an S-component (S � E(H)). An edge e 2 E(H 0) is essential in H 0 if and only

if it is essential in H. The same claim holds if H 0 is a full contraction of H.

Proof. As before the claim for the full contraction follows by a straightforward induction from the

�rst claim. To prove the �rst claim, �x e 2 E(H 0). If H 0 is obtained from H by shrinking an

S-component, then H 0� e is obtained from H� e by shrinking the same S-component since e does

not belong to that S-component. The claim of the corollary follows with the previous lemma. If

H 0 is obtained from H by contracting a chain, then e is essential in both H and H 0 if it belongs

to a chain in H 0 (and thus belongs to a chain in H). Otherwise H 0 � e is obtained from H � e by

contracting a chain and the previous lemma implies the claim of the corollary. 2

Theorem 9 Algorithm 4 outputs a minimal 2-edge-connected spanning subgraph of G.

Proof. Replacing H by its full contraction in step 2.4 does not increase jE(H)� Sj. Exactly as in

the proof of theorem 4 one argues that jE(H)� Sj decreases by at least 1 during one iteration of

the while-loop. The termination of algorithm 4 follows.

We number the iterations of the while-loop from 0 to k (in iteration k algorithm 4 �nds that

E(H)� S). Let Hi and Si denote the graph H and the set S at the start of the ith iteration, let Ti

and Ai stand for TH and A in iteration i for i < k, and let H 0

i denote the graph (V (Hi); Sk\E(Hi)).

Lemma 1 implies that each Hi is 2-edge-connected. It su�ces to prove that H
0

i is a minimal 2-edge-

connected spanning subgraph of Hi for 0 � i � k. The claim of the theorem then follows since

H0 = G and H 0

0 is returned in step 3 of algorithm 4.

To prove the claim, we need the following fact:

(*) any edge in E(Hi)\ Si is essential in Hi for 0 � i � k.

We prove (*) by induction on i. Since S0 = ;, (*) holds for i = 0. Suppose it holds for i = j where

j < k. Since E(Hj+1) � E(Hj), every edge in E(Hj+1) \ Sj is essential in Hj and hence essential

in Tj + Aj . Since Hj+1 is a full contraction of Tj + Aj , corollary 2 implies that these edges are

essential in Hj+1 as well. Furthermore, the edges in E(Hj+1)\ (Sj+1�Sj) are essential in Tj +Aj

and thus essential in Hj+1 (by corollary 2). Claim (*) follows.

We now prove that eachH 0

i is a minimal 2-edge-connected spanning subgraph ofHi by induction

on k � i. For the base case i = k we �rst note that Hk = H 0

k is 2-edge-connected. With (*) it also

follows that all edges in Hk are essential since E(Hk) \ Sk = E(Hk). This completes the proof of

the base case.

13

For the induction step assume that H 0

i+1 is a minimal 2-edge-connected spanning subgraph

of Hi+1. In particular H 0

i+1 is 2-edge-connected. By lemma 1 it su�ces to show that H 0

i+1 is

a full contraction of H 0

i in order to establish that H 0

i is 2-edge-connected. Since the edges in

E(Hi) � E(Ti + Ai) are redundant in Hi, (*) implies that they do not belong to Si and hence do

not belong to Sk . Thus E(Hi) \ Sk = E(Ti + Ai) \ Sk. The fact that Hi+1 is a full contraction

of Ti + Ai (with respect to a subset of Sk) implies that H 0

i+1 is a full contraction of the graph

(V (Hi); E(Ti+Ai)\Sk) (with respect to the same subset of Sk). But the latter graph is simplyH 0

i.

Thus H 0

i is 2-edge-connected. Since each edge in H 0

i+1 is essential and H 0

i+1 is a full contraction of

H 0

i, each edge of H 0

i+1 is essential in H
0

i by corollary 2. Furthermore each edge in E(H 0

i)�E(H 0

i+1)

either belongs to a chain in Ti + Ai or belongs to Sk \ E(Ti + Ai). In the former case the edge is

essential in H 0

i because it has an endpoint of degree 2. In the latter case it belongs either to Si, in

which case it is essential by (*), or to Si+1 � Si, in which case it is essential in Ti + Ai and hence

essential in H 0

i. We conclude that H 0

i is a minimal 2-edge-connected spanning subgraph of Hi. 2

The following technical lemma will be used in the analysis of algorithm 4.

Lemma 2 Let F be a forest in which r nodes are marked. Let ni(F) denote the number of degree

i nodes in F . If every chain in F that does not contain a marked node as an internal vertex has

length at most k, then n(F) < n0(F) + k(2n1(F) + r).

Proof. An unmarked chain in F is a chain that does not contain a marked vertex as an internal

node. Construct F 0 by contracting all maximal unmarked chains of F into single edges. Assume

that all nodes in F and hence all nodes in F 0 have degree at least 1. Let n1, n2, and n3 denote

the number of nodes of degree 1, degree 2, and degree � 3, respectively, in F 0. We know that
P

v2V (F 0) degF 0(v) � 2n(F 0) � 2. Since the left-hand side is at least n1 + 2n2 + 3n3 and n(F 0) =

n1 + n2 + n3, we �nd that n3 � n1 � 2 and hence n3 < n1. By the de�nition of F 0 we have n2 � r

and thus n(F 0) < 2n1+ r. By noting that n(F) � n(F 0)+ (k� 1)m(F 0) and hence n(F) < kn(F 0),

it follows that n(F) < k(2n1 + r). Since n1 = n1(F), the claim of the lemma follows. 2

Lemma 3 Let H be a 2-edge-connected graph and let S be a proper subset of E(H). Let Q be a

full contraction of H with respect to S. Then n(Q) < 13jE(H)� Sj.

Proof. Let C denote the set E(H)� S and let Q0 denote the graph (V (Q); S \E(Q)). The graph

Q0 is a forest. We may assume that n(Q) > 1 (otherwise the claim is trivial). Since Q is 2-edge-

connected, each node of degree 0 in Q0 is incident in Q with at least 2 edges of C (since Q is

2-edge-connected) and each node of degree 1 in Q0 is incident in Q with at least one edge of C.

14

Thus, Q0 has at most jCj nodes of degree 0 and at most 2jCj nodes of degree 1. Mark each endpoint

of an edge of C in Q0. Each unmarked chain in Q0 has length at most 2. By applying lemma 2 to

Q0, we get n(Q0) < jCj + 2(4jCj+ 2jCj) and hence n(Q) = n(Q0) < 13jCj as claimed. 2

Corollary 3 Let k denote the number of iterations of the while-loop of algorithm 4. Let Hi denote

the graph H at the start of the ith iteration of the while-loop. Then m(Hi+14) < :83m(Hi) for

i+ 14 � k.

Proof. First, we show that

m(Hi+1) < 2n(Hi) (1)

for i < k. To see this, let H 0 be the subgraph of Hi consisting of the nontrivial ears in the

ear decomposition found in step 2.0 of algorithm 4 and let q denote the number of those ears.

Then m(H 0) � n(H 0) + q and q < n(H 0), hence m(H 0) < 2n(H 0). Since n(H 0) = n(Hi) and

m(Hi+1) � m(H 0), inequality 1 follows.

Let qi denote jE(H)� Sj at the start of the ith iteration of the while-loop of algorithm 4. By

theorem 5 we have qi+1 � 3qi=4 for i < k and hence qi+j � (3=4)jqi for i + j � k. With lemma 3

we obtain

n(Hi+j+1) < 13qi+j = 13(3=4)jqi � 13(3=4)jm(Hi) (2)

for i+ j + 1 � k. Combining (1) and (2) yields

m(Hi+j+2) < 26(3=4)jm(Hi) (3)

for i+ j + 2 � k. Substituting j = 12 yields the claim. 2

Theorem 10 Algorithm 4 computes a minimal 2-edge-connected spanning subgraph of any 2-edge-

connected graph on n vertices and m edges in time and space O(n+m).

Proof. Consider one iteration of the while-loop. We compute an ear decomposition in linear time

and space using the algorithm of [21]. We compute an optimal tree TH and S-critical edges in

linear time and space as described in the proof of theorem 6. We compute a minimal augmentation

in linear time and space using the algorithm of [13]. To compute the S-critical edges, we determine

the connected components of (V (H); S). Finally, the complexity of computing a full contraction

is dominated by the complexity of computing 2-edge-connected components ([22]), i.e., it can be

done in linear time and space. In summary one iteration of algorithm 4 can be performed in linear

time and space. The claim follows with corollary 3. 2

15

Note: An e�cient NC algorithm for this problem is given in [13]. With theorem 10 the work

of this algorithm (time-processor product) can be reduced by a factor of �(logn) using standard

techniques.

4.2 Finding a Minimal Biconnected Spanning Subgraph

The linear time algorithm for computing a minimal 2-edge-connected spanning subgraph makes

use of the two operations of shrinking S-components and contracting chains. In this section we

exhibit a pair of operations on biconnected graphs with similar properties although they are more

complicated. They will be used in the linear time algorithm for computing a minimal biconnected

spanning subgraph.

Let H be biconnected and S � E(H). An S-block of H is a block of the graph (V (H); S).

The graph (V (H); S) need not be connected. Thus, an S-block of H is either an isolated vertex in

(V (H); S), a cutedge in (V (H); S), or a maximal biconnected subgraph of (V (H); S) with at least

3 vertices.

Let B be an S-block ofH with at least 3 vertices. An internal vertex of B is a vertex in B that is

neither a cutpoint in (V (H); S) nor is it incident in H with an edge of E(H)�S; we write I(B) for

the set of internal vertices ofB. The operation of shrinking the S-blockB inH consists of deleting all

edges of B inH as well as all internal vertices of B, connecting the remaining vertices of B into a cy-

cle in arbitrary order, and subdividing each edge of this cycle with a new vertex. Thus, if u1; : : : ; uk

are the non-internal vertices of B, and V 0 = fv1; : : : ; vkg is the set of k new vertices used to subdi-

vide the edges of the cycle, then the resulting graph has vertex set (V (H)�I(B))[V 0 and edge set

(E(H)� E(B)) [CB where CB = f(u1; v1); (v1; u2); : : : ; (uk�1; vk�1); (vk�1; uk); (uk; vk); (vk; u1)g.

The operation is illustrated in �gure 1.

The following results establish that shrinking S-blocks preserves the biconnectivity structure of

a graph.

Lemma 4 Let H be a graph that may not be biconnected and let S � E(H). Construct H 0 from

H by shrinking an S-block B in H. Then H 0 is biconnected if and only if H is biconnected.

Proof. Assume that H is biconnected. Thus, for any three distinct vertices u; v; w in H there exists

a path from u to w avoiding v. Now suppose that H 0 is not biconnected. Let CB denote the cycle

in H 0 that corresponds to S-block B in H . For some distinct u; v; w 2 V (H 0) every path from u to

w in H 0 passes through v. We may assume that u; v; w 2 V (H). To see this, note that if a vertex

16

54

3

2

1

2

1

3

4

5

essential block

Figure 1: Shrinking the essential block containing vertices numbered 1� 5. The dashed edges are

redundant edges.

in fu; v; wg does not belong to H (i.e., it is a vertex of degree 2 on CB), then we may replace it by

one of its neighbors on CB while maintaining the property that any path from u to w goes through

v. If fu; v; wg � V (H), then there exists a path P in H from u to w avoiding v. From P we obtain

a path P 0 in H 0 from u to w by replacing each edge (z; z0) of B on P by a path from z to z0 on CB

avoiding v. Clearly P 0 avoids v. We conclude that H 0 is biconnected.

Now suppose that H 0 is biconnected. To show that H is biconnected, we need to prove that for

any three distinct vertices u, v and w in H there is a path from u to w in H avoiding v. Since H 0

is biconnected, there exists a path P from u to w avoiding v in H 0. If P contains a subpath from

ui to uj on CB , then we can replace each such subpath with a path from ui to uj in B avoiding v

(since B is biconnected). We thus obtain a path P 0 from u to w in H that avoids v. We conclude

that H is biconnected. 2

Corollary 4 Let H be biconnected and let H 0 be obtained from H by shrinking an S-block B in

H. An edge e 2 E(H 0) \E(H) is essential in H 0 if and only if it is essential in H.

Proof. The edge e does not belong to B. Thus B is an S-block in H � e. The graph H 0� e may be

obtained from H � e by shrinking S-block B in H � e and contracting at most two chains on the

cycle CB that replaces the block B of H�e. (The contractions are necessary if B has more internal

vertices in H � e than it has in H . This may happen if e is the only edge in E(H)� S incident on

17

B4

B3

B2

B1c1

c2

c3

c4

c5

c5

u

c1

Figure 2: Contracting block chain c1B1c2B2c3B3c4B4c5. The dashed lines represent edges in

E(H)� S.

some vertex in B.) Since the biconnectivity property is closed under contractions (contractions are

a special case of contracting block chains where each block is an edge), the previous lemma implies

that H � e is biconnected if and only if H 0 � e is biconnected. 2

As before let H be a biconnected graph and S � E(H). The second operation on biconnected

graphs is de�ned on the block structure of (V (H); S). An S-block chain in H is an alternating

sequence c1B1 : : : ckBkck+1, k > 1, of vertices and S-blocks in H with the following properties: (i)

each Bi (1 � i � k) has exactly two cutpoints in (V (H); S), namely ci and ci+1; (ii) for 1 < i < k,

Bi intersects exactly two blocks, namely Bi�1 and Bi+1 in ci and ci+1, respectively; (iii) no vertex

in any Bi except possibly c1 and ck+1 is incident with an edge in E(H)� S. A maximal S-block

chain in H is a block chain in H not properly contained in any other S-block chain of H . If the

set S is understood, we may refer to an S-block chain as a block chain. Figure 2 shows a maximal

S-block chain c1B1c2B2c3B3c4B4c5.

The operation of contracting the S-block chain c1B1 : : : ckBkck+1 in H consists of deleting in H

all vertices in the S-blocks of this sequence except c1 and ck+1, adding a new vertex z and two new

edges (c1; z) and (z; ck+1) (see �gure 2).

Lemma 5 Let H be a graph that may not be biconnected and S � E(H). Construct H 0 by con-

tracting the S-block chain c1B1 : : : ckBkck+1 in H. Then H 0 is biconnected if and only if H is

18

biconnected.

Proof. Assume that H is biconnected. If H 0 is not biconnected, then there exist distinct u; v; w 2

V (H 0) such that any path from u to w in H 0 passes through v. Since H is biconnected, there is

a path from c1 to ck+1 in H avoiding c2, yielding a path in H 0 from c1 to ck+1 avoiding the new

vertex z. Therefore v 6= z. If u = z or w = z, then we can replace either vertex by c1 or ck+1 while

maintaining the property that any path from u to w in H 0 passes through v. We may thus assume

that u; v; w 6= z and hence u; v; w 2 V (H) \ V (H 0). Thus there is a path P in H from u to w

avoiding v. If P does not traverse an edge in any Bi, then it is a path in H 0 from u to w avoiding v.

Otherwise P contains a subpath from c1 to ck+1 (ck+1 to c1). We may replace this subpath by the

path < c1; z; ck+1 > (< ck+1; z; c1 >) in H
0, thus obtaining a path in H 0 from u to w that avoids v.

Hence H 0 is biconnected.

Now let H 0 be biconnected. If H is not biconnected, then for some distinct vertices u; v; w in

H any path from u to w in H goes through v. Since H 0 is biconnected, there is a path in H 0 from

c1 to ck+1 avoiding z, yielding a path in H from c1 to ck+1 none of whose internal vertices belongs

to any Bi. It follows that v is not a vertex in any Bi other than c1 or ck+1. It also implies that

we may assume that neither u nor w is a vertex in any Bi other than c1 or ck+1 while maintaining

the property that any path from u to w in H passes through v. Thus the path in H 0 from u to w

avoiding v yields a path in H from u to w avoiding v. Therefore H is biconnected. 2

Corollary 5 Let H be biconnected and let H 0 be obtained from H by contracting a block chain

c1B1 : : : ckBkck+1 in H. An edge e 2 E(H 0) \E(H) is essential in H 0 if and only if it is essential

in H.

Proof. Since e belongs to H and H 0, it does not belong to any block Bi in the block chain. Thus

c1B1 : : : ckBkck+1 is a block chain in H � e and H 0 � e is obtained from H � e by contracting

this block chain in H � e. By the previous lemma H � e is biconnected if and only if H 0 � e is

biconnected. The claim follows. 2

If the graph Q is obtained from H by �rst shrinking all S-blocks of H and then contracting all

maximal block chains in the resulting graph, we say that Q is a full contraction ofH with respect to

S. The following algorithm is a variation of algorithm 3 in which we replaceH by its full contraction

at the end of each iteration of the while-loop. It is shown in [13] that the minimal augmentation

step (step 2.2) can be done in linear time. We note that the intermediate graph H will always be

simple assuming that the input graph G is simple (the usual assumption for biconnected graphs).

19

Algorithm 5 Computing a minimal biconnected spanning subgraph of G.

Input Biconnected graph G.

Output Minimal biconnected spanning subgraph of G.

(1) H := G; S := ;;

(2) while E(H) 6� S, do:

(2.0) replace H by an open ear decomposition of H ; remove edges in trivial ears from H ;

(2.1) compute a spanning tree TH in H with a maximum number of edges of S;

(2.2) compute a minimal A � E(H) such that TH + A is biconnected;

(2.3) H := TH + A; B := fS-critical edges in Hg; S := S [A [B;

(2.4) replace H by its full contraction with respect to S \ E(H); add new edges to S;

(3) return graph (V (G); E(G)\ S).

Theorem 11 Algorithm 5 outputs a minimal biconnected spanning subgraph of G.

Proof. The proof is very similar to the proof of theorem 9. The termination of the algorithm is

established by showing that jE(H)� Sj is strictly decreasing exactly as in the proof of theorem 9.

Note that newly created edges are added both to E(H) and S and thus do not increase jE(H)�Sj.

Reusing the notation of that proof we need to show that H 0

i is a minimal biconnected spanning

subgraph of Hi. The statement (*) that any edge in E(Hi) \ Si is essential in Hi is still true.

The proof proceeds by induction over j just as in the proof of theorem 9 with the following minor

modi�cation: the edges in E(Hj+1)\ (Sj+1�Sj) are either essential in Tj +Aj (as before) or they

are new edges added by the full contraction. The edges in the �rst class are essential in Hj+1 by

corollaries 4 and 5 since Hj+1 is a full contraction of Tj +Aj . The edges in the second class (new

edges in Hj+1) are essential in Hj+1 since they have an endpoint of degree 2.

One now proves that H 0

i is a minimal biconnected spanning subgraph of Hi as in the proof of

theorem 9. The main di�erence is in the inductive argument that H 0

i is a minimal biconnected

spanning subgraph of Hi: the fact that Hi+1 is a full contraction of Ti + Ai with respect to some

X � Sk implies thatH 0

i+1 = (V (Hi+1); E(Hi+1)\Sk) is obtained from (V (Ti+Ai); E(Ti+Ai)\Sk) =

H 0

i by a full contraction with respect to X possibly followed by contracting chains. With lemma 4

and lemma 5 this implies that H 0

i is 2-edge-connected. By corollaries 4 and 5 (and the induction

assumption) the edges in E(H 0

i) \ E(H 0

i+1) are essential in H 0

i. The edges in E(H 0

i) � E(H 0

i+1)

20

belong either to Si, in which case they are essential in Hi and hence in H 0

i by (*), or they belong

to Si+1 � Si, in which case they are essential in Ti +Ai and hence in H 0

i. 2

The remainder of the proof is the same. 2

The following result is needed for the analysis of algorithm 5.

Lemma 6 Let H be biconnected and let S be a proper subset of E(H). If Q is a full contraction

of H with respect to S, then n(Q) < 60jE(H)� Sj.

Proof. Let C denote the set E(H)� S and let Q0 denote the graph Q � C. To bound n(Q), we

consider the block graph of Q0. Let H 0 be an arbitrary graph. The block graph of H 0 ([23]), denoted

by blk(H 0), is a bipartite graph whose vertices are the cutpoints and blocks of H 0. A block is

connected in blk(H 0) to exactly those cutpoints that it contains in H 0. It is known ([23]) that the

block graph of H 0 is a tree for any connected graph H 0. Thus the graph blk(Q0) is a forest.

Let n0 and n1 denote the number of degree 0 and degree 1 nodes in blk(Q0). If n(blk(Q0)) = 1,

then the graph (V (H); S) has a unique block and this block contains at least 3 vertices. Hence

Q0 is a cycle (obtained by shrinking this block) of even length. Every other vertex on this cycle is

incident with an edge of C(6= ;). Hence n(Q) � 4jCj. If n(blk(Q0)) > 1, then each node of degree 0

in blk(Q0) represents a block in Q0 that is incident with at least 2 edges of C in Q and each node of

degree 1 in blk(Q0) represents a block in Q0 that is incident with at least one edge of C in Q. Thus

n0 � jCj and n1 � 2jCj. Mark a vertex in blk(Q0) representing a cutpoint in Q if it is incident in

Q with an edge of C and mark a vertex in blk(Q0) representing a block of Q0 if a vertex in this

block other than a cutpoint is incident with an edge of C. From the de�nition of a full contraction

it follows that any chain of unmarked nodes in blk(Q0) has length at most 6. By applying lemma

2 we see that blk(Q0) has fewer than jCj + 6(4jCj + 2jCj) = 37jCj vertices. Since there are more

blocks in Q0 than there are cutpoints, Q0 has fewer than 19 � jCj cutpoints.

We partition the vertices of Q0 into 3 classes: class 1 contains the cutpoints in Q0, class 2

includes the endpoints of edges of C (that are not cutpoints), and class 3 comprises the new

vertices used to subdivide cycles when shrinking S-blocks in H . Let p1, p2, and p3 denote the

number of vertices in class 1, class 2, and class 3, respectively. Clearly p2 � 2jCj. Above we have

shown that p1 < 19jCj. Note that the number of class 3 vertices in any block of Q0 is no larger

than the number of vertices in that block that belong to class 1 or class 2. The sum of the latter

number, taken over all blocks of Q0, is an upper bound on p3. This sum is at most 2jCj+m(blk(Q0))

and hence p3 < 2jCj + 37jCj = 39jCj. Altogether we �nd that p1 + p2 + p3 < 60jCj and hence

n(Q0) = n(Q) < 60jCj. 2

21

Corollary 6 Let k denote the number of iterations of the while-loop of algorithm 5. Let Hi denote

the graph H at the start of the ith iteration of the while-loop. Then m(Hi+22) < :77m(Hi) for

i+ 22 � k.

Proof. We �rst argue that

m(Hi+1) < 4n(Hi) (4)

for any i < k. Let H 0 denote the subgraph of Hi consisting of the nontrivial ears in the open

ear decomposition found in step 2.0 of algorithm 5. Just as in the proof of corollary 3 we have

m(H 0) < 2n(H 0) = 2n(Hi). If we shrink a block in Ti + Ai, the number of new edges added is

bounded by the number of vertices in the block, which is at most the number of edges in the block.

It follows that the total increase in the number of edges during the full contraction of Ti+Ai is at

most m(Ti + Ai) � m(H 0). We conclude that m(Hi+1) < 4n(Hi).

Let qi denote jE(H) � Sj at the start of the ith iteration of the while-loop of algorithm 5.

Because any new edge created during the full contraction is also added to S, theorem 5 implies

that qi+1 < 3qi=4 for i < k and hence qi+j � (3=4)jqi for i+ j � k. With lemma 6 we obtain

n(Hi+j+1) < 60qi+j � 60(3=4)jm(Hi) (5)

for j > 0 and i+ j + 1 � k. Combining (4) and (5) yields

m(Hi+j+2) < 240(3=4)jm(Hi) (6)

for j > 0 and i+ j + 2 � k. Substituting j = 20 yields the claim of the corollary. 2

Theorem 12 Algorithm 5 �nds a minimal biconnected spanning subgraph of any biconnected graph

on n vertices and m edges in time and space O(n+m).

Proof. Consider one iteration of the while-loop. We compute an open ear decomposition in linear

time and space using the algorithm of [21]. We compute an optimal tree TH and S-critical edges in

linear time and space as described in the proof of theorem 6. We compute a minimal augmentation

in linear time and space using the algorithm of [13]. Finally, the complexity of computing a full

contraction is dominated by the complexity of computing blocks, i.e., it can be done in linear time

and space ([22]). In summary one iteration of algorithm 5 can be performed in linear time and

space. The claim follows with corollary 6. 2

As was the case for 2-edge-connectivity the last result yields an improvement by a �(logn) factor

in the work of an e�cient NC algorithm described in [13] for computing a minimal biconnected

spanning subgraph.

22

5 Worst-Case Analysis

In this section we prove that algorithm 3 requires �(m + n logn) in the worst case for 2-edge-

connectivity and biconnectivity. This result justi�es the work we invested in the last section to

achieve a linear running time. Because of its simple structure algorithm 1 will be a more convenient

vehicle for proving lower bounds. Fortunately, any lower bound on the number of iterations of

algorithm 1 yields the same lower bound for the number of iterations of algorithm 3.

Lemma 7 Let H be a P -graph, S a subset of the essential edges in H, T a spanning tree in H with

a maximum number of essential edges and A a minimal augmentation for T in H. Then T + A

can be rewritten as T 0 + A0 where T 0 is a spanning tree in H with a maximum number of edges of

S and A0 is a minimal augmentation for T 0 in H.

Proof. An essential component of H is a maximal subgraph of H containing a spanning tree of

essential edges. Let C1; : : : ; Ck be the essential components of H . For each i let Ti be a spanning

tree of essential edges for Ci with a maximum number of edges of S. Let F be the set of edges of

T that are redundant in H . Then the tree T 0 with edge set F [E(T1) [: : :[E(Tk) is a spanning

tree in H . The tree T 0 contains a maximum number of edges of S since the intersection of any

other tree with Ci is a forest that contains no more than jE(T 0) \ E(Ci)j edges of S. We have

E(T 0) � E(T + A). Let A0 = E(T + A) � E(T 0). The graph T 0 + A0 (= T + A) has property P .

Moreover, each edge in A0 is essential in T 0+A0 since T 0 contains all edges of T that are redundant

in H . We conclude that A0 is a minimal augmentation for T 0 in H . 2

A trace of algorithm 1 for P -graph G is a sequence of graphs representing H at the start of

successive iterations of algorithm 1. Formally, H0; H1; : : : ; Hl is a trace of algorithm 1 for P -graph

G if H0 = G, Hi 6= Hi+1 for 0 � i < l, and Hi (0 < i � l) is of the form T + A where T is an

optimal tree in Hi�1 and A is a minimal augmentation for T in Hi�1. The integer l is the length

of the trace. Similarly, we de�ne a trace of algorithm 3 for P -graph G to be a sequence of graphs

representing H at the start of successive iterations of algorithm 3. The sequence H0; H1; : : : ; Hl is

a trace of algorithm 3 for P -graph G if H0 = G, Hi 6= Hi+1 for 0 � i < l, and, for any sequence of

sets E0; E1; : : : ; El�1 such that Ei is a set of essential edges in Hi for 0 � i � l � 1, we can write

Hi as Ti�1+Ai�1 where Ti�1 is a spanning tree in Hi�1 containing a maximum number of edges of

Ei�1 and Ai�1 is a minimal augmentation for Ti�1 in Hi�1. The following result is an immediate

corollary of lemma 7.

Corollary 7 A trace of algorithm 1 for P -graph G is also a trace of algorithm 3 for G. 2

23

By corollary 7 a lower bound on the number of iterations of algorithm 1 implies the same lower

bound for the number of iterations of algorithm 3. Below we make use of this fact: we derive a

tight �(logn) lower bound on the (worst-case) number of iterations of algorithm 1 that also applies

to algorithm 3.

To capture the worst-case behavior of algorithm 1, we de�ne the P-complexity of a graph.

Informally, the P -complexity of a P -graph H is the maximum number of iterations that algorithm

1 may need in order to compute a minimal spanning P -subgraph of H . Formally, we de�ne the

P -complexity of H to be the maximum length of a trace of algorithm 1 for H . If the property P is

clear, we shall use the term \complexity" instead of \P-complexity". We denote the P -complexity

of graph H by cP (H), or c(H) if property P is understood. Note that the notion of P -complexity

corresponds to an adversary choosing, for a given input graph, an optimal tree and a minimal

augmentation in each iteration of the while-loop of algorithm 1 with the goal of maximizing the

number of such iterations. Hence we consider the worst-case behavior of algorithm 1 not only with

respect to di�erent input instances but also with respect to di�erent choices of the algorithm (i.e.,

sequences of trees and augmentations). We call an in�nite sequence of graphs H0; H1; H2; : : : such

that cP (Hi) � i for all i � 0 a sample for P .

We construct a sample for 2-edge-connectivity inductively: F0 has two vertices with two parallel

edges between them. We construct Fi from Fi�1 as follows: we double each essential edge in Fi�1; we

call the resulting graph F 0

i . For each vertex u of degree d in F 0

i , we add d new vertices u1; u2; : : : ; ud

to Fi and connect them in a cycle. We number the edges incident on each vertex in F 0

i as 0; 1; : : :

and, for each edge e = (u; v) in F 0

i that is the ith edge incident on u and the jth edge incident on v,

we add an edge (ui; vj) to Fi. Finally, we subdivide each edge of F 0

i connecting two vertices ui; uj

corresponding to the same vertex u in F 0

i with a new vertex. Note that Fi is uniquely de�ned up

to isomorphism. Figure 3 shows the �rst three graphs in this sequence.

The proof that the Fi's form a sample for 2-edge-connectivity relies on the following property

of 2-edge-connectivity. Let us say that H 0 is an essential contraction of H if H 0 is obtained from H

by shrinking (vertex-disjoint) S-components in H 0 where S is a set of essential edges in H . (The

operation of shrinking an S-component is de�ned in section 4.1.)

Lemma 8 Let H 0 be an essential contraction of a 2-edge-connected graph H and let H 0

0; H
0

1; : : : ; H
0

k

be a trace of algorithm 1 for H 0. Then, there is a trace H0; H1; : : : ; Hk of algorithm 1 for H such

that H 0

i is an essential contraction of Hi for 0 � i � k. Hence c(H 0) � c(H).

24

Proof. Fix a 2-edge-connected graph H . Let H 0 be an essential contraction of H obtained from H

by shrinking S-components in H . By lemma 1 H 0 is 2-edge-connected and its complexity is indeed

well-de�ned. Fix a trace H 0

0; H
0

1; : : : ; H
0

k of algorithm 1 for H 0. We prove the lemma by induction

on k. The base case k = 0 is clear: the graph H constitutes a trace of length 0 for H and H 0 is an

essential contraction of H .

Assume that the claim holds if the trace for H 0 has length at most l. Let H 0

0; H
0

1; : : : ; H
0

l+1

be a trace for H 0. Let H 0

1 = T 0 + A0 where T 0 is an optimal tree in H 0 and A0 is a minimal

augmentation for T 0 in H 0. We may combine T 0 with spanning trees for the S-components in H

to form a spanning tree T of H . By the optimality of T and corollary 2 the tree T contains a

maximum number of essential edges in H that do not belong to S. Since T contains a spanning

tree for each S-component, it also contains a maximum number of essential edges in S. Thus, T

is an optimal tree in H . Let A = A0 [(S � E(T)). By corollary 2 and the fact that all edges in

S are essential it follows that A is a minimal augmentation for T in H . The graph T 0 + A0 is an

essential contraction of T +A. By the induction assumption there exists a trace H1; H2; : : : ; Hl+1

of algorithm 1 for T +A such that H 0

i is an essential contraction of Hi for 1 � i � l+1. The claim

of the lemma follows. 2

Theorem 13 The graphs F0; F1; : : : form a sample for 2-edge-connectivity.

Proof. The graph F 0

i obtained from Fi�1 by doubling the essential edges is certainly 2-edge-

connected if Fi�1 is 2-edge-connected. Moreover F 0

i is an essential contraction of Fi. Thus Fi

is 2-edge-connected if Fi�1 is 2-edge-connected. Since F0 is 2-edge-connected all Fi's are 2-edge-

connected. Hence the complexity of Fi is well de�ned. We prove by induction on i the following

two statements: (1) c(Fi) � i; (2) Fi has a spanning tree containing all redundant edges of Fi.

Statement (1) trivially holds for i = 0. Statement (2) holds for i = 0 since all edges in F0 are

essential. Assume inductively that the claim holds for i = j � 1. Recall that each vertex in Fj�1

corresponds to a cycle in Fj ; we refer to such a cycle in Fj as an Fj-cycle. All edges in Fj-cycles

are essential in Fj since they have an endpoint of degree 2. All other edges in Fj are redundant in

F 0

j . Since F 0

j is an essential contraction of Fj , corollary 2 implies that these edges are redundant

in Fj as well. By the construction of Fj no two redundant edges are incident on the same vertex.

Hence there is a spanning tree in Fj containing all redundant edges of Fj , establishing statement

(2).

To prove (1), �x a spanning tree Tj�1 in Fj�1 containing all redundant edges in Fj�1. Thus,

Fj�1 = Tj�1 + Aj�1 where Aj�1 is a minimal augmentation for Tj�1 in Fj�1. We can combine

25

F0

F1

F2

Figure 3: F0, F1, and F2.

Tj�1 with spanning trees for the Fj -cycles (obtained by deleting an edge in each Fj -cycle) to form

a spanning tree Tj of Fj . The tree Tj is an optimal tree in Fj since it contains a maximum number

of edges in Fj-cycles. Let Aj be the edges in Aj�1 as well as the edges in the Fj-cycles that are

not in Tj. With corollary 2 we see that Aj is a minimal augmentation for Tj in Fj . The graph

Fj�1 is an essential contraction of Tj +Aj . By the induction assumption and the previous lemma

c(Tj +Aj) � j � 1. We conclude that c(Fj) � j. 2

Lemma 9 Let ni,mi, and ei denote the number of vertices, edges, and essential edges, respectively,

in Fi (i � 0). These quantities satisfy the following recurrence relations:

ni+1 = 4(mi + ni);

mi+1 = mi + ei + ni+1;

ei+1 = ni+1;

with initial conditions n0 = m0 = e0 = 2. Thus, ni = 4 � 9i�1 and mi = 5 � 9i�1 for i > 0. 2

26

Corollary 8 For 2-edge-connectivity, there exists a function f(n) =
(logn) such that there is a

graph on n vertices of complexity f(n) for any n � 1.

Proof. To construct a graph of complexity
(logn) with exactly n vertices, start with Fi where i is

the maximum integer such that ni � n and increase the number of vertices in Fi to n by repeatedly

subdividing an essential edge. The resulting graph has the same complexity as Fi, namely
(logn).

2

Let us now turn our attention to biconnectivity. Unfortunately, biconnectivity does not satisfy

a condition similar to lemma 8. We do however have the following result.

Lemma 10 If G is a graph with at least three vertices in which each vertex has degree � 3, then

G is biconnected if and only if G is 2-edge-connected.

Proof. The only-if-part is clear. Assume that G is 2-edge-connected and let u be a cutpoint in G.

Hence, at least 2 blocks share u. Both of these blocks are 2-edge-connected and hence the degree

of u is at least 4, contradicting the assumption that each vertex in G has degree � 3. 2

Let us call a graph in which each vertex has degree � 3 a 3�graph. Let P=\2-edge-connectivity"

and P 0=\biconnectivity".

Corollary 9 If a graph H is a 3� graph, then cP (H) = cP 0(H).

Proof. By induction on cP (H). The induction base is clear with lemma 10. Assume that the claim

holds for cP (H) � k�1. Fix an H with cP (H) = k. Thus, H = T+A with cP (T+A) = k�1 where

T is an optimal tree in H with respect to P and A is a minimal augmentation for T in H (with

respect to P). By lemma 10, an edge inH is P -redundant if and only if it is P 0-redundant. Hence, T

is an optimal tree in H with respect to P 0 and A is a minimal augmentation for T in H with respect

to P 0. Since T +A is a 3� graph the induction hypothesis gives us cP 0(T +A) � k � 1 and hence

cP 0(H) � k = cP (H). Similarly, one proves cP (H) � cP 0(H). We conclude that cP (H) = cP 0(H).

2

Each Fi is a 3-graph. Since n(Fi) � 3 for i � 1, we have cP `(Fi) � i for i � 1 and the sequence

F1; F2; : : : is a sample for biconnectivity. Thus, we get the following result.

Corollary 10 For biconnectivity, there exists a function g(n) =
(logn) such that there is a graph

on n vertices with complexity g(n) for any n � 3.

Proof. Similar to proof of corollary 8. 2

27

Corollaries 8 and 10 establish that algorithm 1 takes
(logn) iterations for 2-edge-connectivity

and biconnectivity in the worst case. Since each iteration of these algorithms takes
(n) time they

require
(m+ n logn) time in the worst case. By corollary 7 the same bound applies to algorithm

3. Because of theorem 7 this bound is tight for algorithm 3. In [13] it is shown that redundant

edges can be determined for 2-edge-connectivity and biconnectivity in linear time by modifying the

linear-time triconnectivity algorithm of [21]. Thus the bound is tight for algorithm 1 as well.

Theorem 14 Algorithm 1 and algorithm 3 require �(m + n logn) operations in the worst case,

both for 2-edge-connectivity and biconnectivity. 2

6 Computing Minimal Spanning Subgraphs in Directed Graphs

In this section we generalize the algorithms for undirected graphs to directed graphs. We provide

general algorithms that compute a minimal spanning P -subgraph in a directed graph for any prop-

erty P that is monotone and implies strong connectivity. For the special case of strong connectivity

we obtain an algorithm that computes a minimal strongly connected spanning subgraph in time

O(m+n logn). This algorithm is simpler (both in the sequential and parallel implementation) than

an earlier algorithm of [8] for this problem because it avoids the explicit computation of redundant

edges. We prove that our algorithms require �(m + n logn) time in the worst case for strong

connectivity. By adapting the analysis we also get a �(m+ n logn) tight bound on the worst-case

running time of an algorithm of [8] for �nding a minimal strongly connected spanning subgraph.

This answers an open question of [8].

6.1 High-Level Algorithm

Let G be a directed graph. A forward branching ([8]) rooted at a vertex x is a spanning subgraph

of G whose underlying graph is a tree and in which x has in-degree zero and all other vertices have

in-degree one. Throughout this section we shall assume that all forward branchings are rooted at

a �xed vertex x of G.

It turns out that the development carried out in section 3 for undirected graph properties

carries over to digraphs with some modi�cations. The de�nitions of digraph property, P -graph,

P -subgraph, and P -redundant and P -essential edges carry over from the undirected case without

change. As for undirected graph properties we shall always assume that the property P is decidable.

28

The following conditions D1 and D2 correspond to conditions C1 and C2 in the undirected case

(see section 3). Note that condition D1 (monotonicity of P) is identical with C1.

(D1) P is monotone, i.e., adding edges preserves property P .

(D2) Any P -graph is strongly connected.

Algorithm 6 computes a minimal spanning P -subgraph of digraph G, i.e., a spanning P -subgraph

of G in which all edges are P -essential. It has a structure similar to that of algorithm 1; instead of

computing a spanning tree in step (2.1), it computes a forward branching TH rooted at a �xed vertex

x of H (and containing a maximum number of P -essential edges). We call TH an optimal branching

in H (rooted at x) and A (see step (2.2) of algorithm 6), as before, a minimal augmentation for TH

in H .

Algorithm 6 Computing a minimal spanning P -subgraph of G.

Input Digraph G with property P .

Output Minimal spanning P -subgraph H of G.

(1) H := G.

(2) While H has P -redundant edges, do:

(2.1) compute a forward branching TH in H , rooted at x, with a maximum number of P -

essential edges;

(2.2) compute a minimal subset A of edges in H such that TH + A has property P ;

(2.3) H := TH + A.

The following result is the analog of theorem 1. The proof is similar.

Theorem 15 Algorithm 6 computes a minimal spanning P -subgraph of G for any digraph property

P satisfying D1 and D2. 2

The following lemma will be needed to establish a logarithmic upper bound on the number of

iterations of algorithm 6. Let H be a digraph that contains a forward branching rooted at x. We

say that an edge e of H is f-redundant in H if H � e contains a forward branching rooted at x; an

edge of H that is not f-redundant is f-essential in H .

Lemma 11 Let B be a set of f-redundant edges in H. There exists a forward branching rooted at

x that contains at most half of the edges in B.

29

Proof. Double the f-essential edges in H to obtain a graph H 0. Let X � V (H) with x 2 X and

X 6= V (H). Then there are at least two edges in H 0 fromX to V (H)�X . By Edmonds' branching

theorem ([6]) H 0 contains two edge-disjoint forward branchings rooted at x. Since no edge in B

has been doubled, at least one of these two forward branchings contains at most half of the edges

in B, yielding a forward branching in H rooted at x with the same property. 2

Theorem 16 If P satis�es D1 and D2, then algorithm 6 terminates after O(logn) iterations of

the while-loop.

Proof. Consider the start of an iteration of the while-loop. Let B denote the set of redundant edges

in H . Each edge e 2 B is f-redundant in H since H � e is strongly connected. By lemma 11 there

exists a forward branching rooted at x containing at most half of the edges in B. Thus an optimal

branching in H contains at most half of the redundant edges in H . Therefore at least half of the

redundant edges in H are discarded or become essential in this iteration of the while-loop. The

claim follows. 2

As for undirected graph properties one can avoid the explicit computation of the P -essential

(or P -redundant) edges by gradually building up a set of essential edges. The following algorithm

uses this idea. We use m to denote the number of edges in G.

Algorithm 7 Computing a minimal spanning P -subgraph of G.

Input Digraph G with property P .

Output Minimal spanning P -subgraph H of G.

(1) H := G; S := ;;

(2) for i = 1 to dlogme+ 1 do:

(2.1) compute forward branching TH in H rooted at x with maximum number of edges of S;

(2.2) compute a minimal A � E(H) such that TH + A has property P ;

(2.3) H := TH + A; S := S [A;

Theorem 17 Algorithm 7 computes a minimal spanning P -subgraph of a digraph G with property

P provided P satis�es D1 and D2.

Proof. A straightforward induction over the iteration number shows that at the end of each iteration

of the while-loop H is a spanning P -subgraph of G and the edges of S are essential in H .

30

We now show that H is minimal upon termination. Fix an iteration i of the while-loop. Let

Hi (Si) denote the graph H (the set S) at the beginning of iteration i and let Ri denote the set

of edges in E(Hi)� Si that are f-redundant in Hi. To prove that the �nal graph H is minimal, it

su�ces to show that jRi+1j �
1
2 jRij. Indeed, after j = dlogme+ 1 iterations we then have Rj = ;,

implying that all edges in E(Hj)�Sj are f-essential in Hj and thus essential in Hj . Since all edges

in Sj are essential as well, the graph Hj is minimal.

Any forward branching T in Hi must contain all edges of E(Hi) � Si that are f-essential in

H . Thus a spanning tree T contains a maximum number of edges of S if and only if it contains a

minimum number of edges in Ri. By lemma 11 (with B = Ri) there exists a forward branching in

Hi that contains at most half of the edges in Ri. We conclude that at least half of the edges in Ri

are discarded or added to S in iteration i. Hence jRi+1j �
1
2 jRij. 2

6.2 Computing a Minimal Strongly Connected Spanning Subgraph

In this subsection we adapt algorithm 7 to strong connectivity. Before we do this we review the

algorithm of [8] for computing a minimal strongly connected spanning subgraph (called transitive

compaction in [8]).

The following de�nitions from [8] will be needed. Let G be a directed graph and x 2 V (G). An

inverse branching rooted at x is a spanning subgraph of G whose underlying graph is a tree and

in which x has out-degree zero and all other vertices have out-degree one. A branching is either a

forward or an inverse branching. We assume that all branchings are rooted at a �xed vertex x of

G. Let H be a subgraph of G. An H-philic (H-phobic) branching in G is one that has the greatest

(smallest) number of edges in common with H over all branchings (rooted at x) in G.

In [8] the following algorithm is given for �nding a minimal strongly connected spanning sub-

graph in a strongly connected digraph.

Algorithm 8 Computing a minimal strongly connected spanning subgraph H of G.

Input Strongly connected digraph G.

Output Minimal strongly connected spanning subgraph H of G.

(1) H := G;

(2) while H has redundant edges, do:

(2.1) R := set of redundant edges in H ;

31

(2.2) F := R-phobic forward branching in H ;

(2.3) I := F -philic inverse branching in H ;

(2.4) H := F [I .

One iteration of the while-loop of algorithm 8 can be performed in linear time (see [8] for details).

Algorithm 8 is a special case of algorithm 6 in the following sense: �rst, F (computed in step 2.2) is

an optimal branching in H ; second, F [I = F [(I�F) and I�F is a minimal augmentation for F

in H . Thus, theorem 16 (or a similar result of [8]) implies that algorithm 8 runs in O(m+ n logn)

time.

We now adapt algorithm 7 for strong connectivity so that it runs in O(m+n logn) time as well.

A spanning tree TH with a maximum number of edges of S is an S-philic forward branching. It can

be computed in linear time using Edmonds' minimum weight branching algorithm as explained in

[8]. To compute a minimal augmentationA for TH , we compute a TH-philic inverse branching I and

set A = E(I)� E(TH). This can again be done in linear time using Edmonds' minimum weight

branching algorithm ([8]). Thus, algorithm 7 computes a minimal strongly connected spanning

subgraph in time �(m+ n logn).

This implementation of algorithm 7 is simpler than algorithm 8 since it does not require the

redundant edges to be computed at each step (this is a fairly involved procedure). These simpli-

�cations are even more apparent in the parallel implementation of algorithm 8. Indeed, most of

[8] is concerned with developing a fairly involved parallel algorithm for computing the redundant

edges. Algorithm 7 can be parallelized just as algorithm 8. It does not require redundant edges

to be computed (resulting in a much simpler implementation) while achieving the same parallel

complexity.

As pointed out in [8] it is conceivable that algorithm 8 terminates in a constant number of

iterations of the while-loop, resulting in a linear worst-case running time. It would then be asymp-

totically faster than algorithm 7 which always runs in time �(m + n logn). In the remainder of

this section we shall rule out this possibility by showing that algorithm 8 requires �(m+ n logn)

time in the worst case, thus answering a question of [8]. Because algorithm 8 is a special case of

algorithm 6 this will imply a similar result for the worst-case time complexity of algorithm 6 (for

strong connectivity).

To analyze the worst-case time complexity of algorithm 8, we �rst observe that this algorithm

chooses a minimum augmentation for F at each step, i.e., a minimal augmentation of smallest size.

32

Lemma 12 Fix an iteration of the while-loop of algorithm 8. The edges of I that are not in F

form a minimum augmentation for F in H. Conversely, if A is a minimum augmentation for an

R-phobic forward branching F in H, then F +A is of the form F [I where I is an F -philic inverse

branching in H.

Proof. The lemma follows routinely from the following two facts: F + A is strongly connected if

and only if it contains an inverse branching (rooted at x) and all branchings in H have the same

number of edges. 2

The previous lemma motivates the following de�nition. For a strongly connected digraph H

a minimum augmentation trace for H with respect to x is a sequence H0; H1; : : : ; Hk such that

H0 = H , Hi 6= Hi+1 for 0 � i < k, and Hi (0 < i � k) is of the form T + A where T is an optimal

branching in Hi�1 (i.e., a forward branching with a minimum number of redundant edges) rooted

at x and A is a minimum augmentation for T in Hi�1. The integer k is the length of the trace. Let

ĉ(H; x) denote the maximum length of a minimum augmentation trace for H with respect to x and

let ĉ(H) stand formaxfĉ(H; x) : x 2 V (H)g. Note that ĉ(H) is the worst-case number of iterations

of algorithm 8 if we let an adversary choose a root and choose in each iteration an R-phobic forward

branching F and an F -philic inverse branching I . A minimum augmentation sample (for strong

connectivity) is a sequence of digraphs F 0

0; F
0

1; : : : such that ĉ(F 0

i) � i.

The procedure for constructing a minimum augmentation sample for strong connectivity is

similar to that for constructing a sample for 2-edge-connectivity although it is more complicated.

Let F 0

0 be a directed cycle of length 2. We use x to denote an arbitrary �xed vertex in F 0

i . We

construct F 0

i+1 from F 0

i as follows:

Algorithm 9 Computing a minimum augmentation sample for strong connectivity.

Input Digraph F 0

i .

Output Digraph F 0

i+1.

(1) Double the essential edges in F 0

i . Call the resulting graph G.

(2) Let T̂ be a forward branching in G rooted at x.

(3) For each vertex v in G of degree d, we add d new vertices v1; : : : ; vd { called the representatives

of v { to F 0

i+1 and connect them into a (directed) cycle; subdivide each edge on this cycle

with a new vertex.

33

(4) For each vertex v in G of degree d, number the representatives of v as follows: �x a path P (v)

that spans the cycle constructed for v in step 3 and that is rooted at a representative vi of v.

Assign labels 1; 2; : : : ; d to the representatives of v in increasing order of their distance from

vi on P (v). (Hence, vi is labeled 1.)

(5) For a vertex v in G of indegree p and outdegree q, label the p + q edges incident on v as

follows: if v 6= x, assign label 1 to the unique incoming edge that belongs to T̂ (constructed in

step 2) ; the outgoing edges receive labels 2 : : :1+ q and the labels 2+ q : : : p+ q are assigned

to the other incoming edges. If v = x, then assign the labels 1 : : : q to the outgoing edges and

the labels 1 + q : : : p+ q to the incoming edges.

(6) For each edge (u; v) in G that has label i at u and label j at v (with respect to the labeling of

step 5), add an edge from the representative of u with label i to the representative of v with

label j in F 0

i+1 (with respect to the labeling de�ned in step 4).

Figure 4 illustrates steps 3-6 of algorithm 7. Figure 5 shows the �rst three graphs in a possible

sample. Note that these graphs are orientations of the corresponding graphs in the sample for

2-edge-connectivity (see �gure 3).

The next two results will be needed to prove that the graphs F 0

i form a minimal augmentation

sample for strong connectivity.

Lemma 13 Let H be a directed graph and S � E(H). Let H 0 be obtained from H by collapsing

in H the vertex sets of the strong components of (V (H); S). Then H is strongly connected if and

only if H 0 is strongly connected. Furthermore, if both graphs are strongly connected, then an edge

e 2 E(H 0) is essential in H 0 if and only if it is essential in H.

Proof. A straightforward adaptation of the proofs of the corresponding claims for shrinking S-

components in a 2-edge-connected graph (see lemma 1 and corollary 2). 2

We say that H 0 is an essential contraction of a strongly connected graph H (with respect to

a subset S of E(H)) if H 0 is obtained from H by collapsing in H the vertex sets of the strong

components of (V (H); S) and the edges in S are essential in H . If v 2 V (H) belongs to a strong

component that is collapsed into a new vertex z, then we say that v is collapsed into z. If v 2

V (H) \ V (H 0) then we say that v is collapsed into v.

Lemma 14 LetH 0 be an essential contraction of a strongly connected graph H and letH 0

0; H
0

1; : : : ; H
0

k

be a minimum augmentation trace for H 0 with respect to a vertex x. Then, there is a minimum

34

e

e

1

(a)

v4

v3

v2

v1

4

3 2

1

2

3

4

(b)

v

Figure 4: (a) Vertex v 6= x in G of degree 4; the edge e belongs to branching T̂ . The labels on the

edges are those assigned in step 5. (b) The cycle through the representatives of v together with

the edges in F 0

i+1 corresponding to the edges labeled 1� 4 in (a). The thick edges are those in the

path P (v) (rooted at v1).

F’0

F’1

F’2

Figure 5: F 0

0, F
0

1, and F 0

2.

35

augmentation trace H0; H1; : : : ; Hk for H with respect to any vertex y that is collapsed into x such

that H 0

i is an essential contraction of Hi for 0 � i � k. Hence ĉ(H 0) � ĉ(H).

Proof. Fix a strongly connected graph H . Let H 0 be an essential contraction of H with respect

to a set S of essential edges in H . By lemma 13 H 0 is strongly connected. We prove the lemma

by induction on k, the length of the trace for H 0. If k = 0, then the minimum augmentation trace

for H 0 consists of H 0 itself. The graph H by itself constitutes a minimum augmentation trace of

length 0 for H (with respect to an arbitrary vertex). The base case follows.

Let H 0

0; H
0

1; : : : ; H
0

k be a minimum augmentation trace for H 0 with respect to a vertex x with

k > 0. Let H 0

1 = T 0 + A0 where T 0 is an optimal branching in H 0

0 = H 0 rooted at x and A0 is a

minimum augmentation for T 0 in H 0. We may combine T 0 with forward branchings for the strong

components of (V (H); S) to form a forward branching T of H rooted at an arbitrary vertex y of

H collapsed into x. By the optimality of T 0 and lemma 13 the forward branching T contains a

maximum number of essential edges in H that do not belong to S (among all forward branchings

in H rooted at y). Since T contains a forward branching for each strong component of (V (H); S),

T also contains a maximum number of edges of S (which are essential in H). Thus, T is an optimal

branching in H rooted at y. Let A = A0 [(S � E(T)). By lemma 13 and the fact that all edges

in S are essential it follows that A is a minimum augmentation for T in H . The graph T 0 + A0 is

an essential contraction of T +A. By the induction assumption there is a minimum augmentation

trace H1; H2; : : : ; Hk for T + A with respect to any vertex z that is collapsed into x such that H 0

i

is an essential contraction of Hi for 1 � i � k. We pre�x this minimum augmentation trace with

H to get a minimum augmentation trace H;H1; : : : ; Hk for H that has the claimed property. 2

Theorem 18 We have ĉ(F 0

i) � i for all i � 0.

Proof. We prove the following stronger statement: for each i � 0 there is a vertex x in F 0

i such that

ĉ(F 0

i ; x) � i and the edge set of F 0

i can be partitioned into a forward branching rooted at x and a

set of essential edges. We show this by induction on i.

The base case clearly holds. Assume the statement holds for F 0

i . Let G be the digraph con-

structed by doubling the essential edges in F 0

i (step 1 of algorithm 9). By the induction assumption

the graph F 0

i is of the form T +A where T is a forward branching in F 0

i rooted at a vertex x and A

is a set of essential edges in F 0

i . Since every edge of G is redundant, T is an optimal branching in

G rooted at x. Furthermore, A is a minimum augmentation for T in G. To see this, �x an edge e

in A. Let e0 be the edge parallel to e in G. By the de�nition of G and the fact that e is essential in

36

F 0

i , it follows that any minimal augmentation for T in G has a nonempty intersection with fe; e0g.

Thus, the set A constitutes a minimum augmentation for T in G. Hence, ĉ(G; x) � i + 1. Note

that G is an essential contraction of F 0

i+1. By lemma 14 we have ĉ(F 0

i+1; y) � i+ 1 for any vertex

y in the subgraph of F 0

i+1 collapsed into x.

We now show that the edge set of F 0

i+1 can be partitioned into a forward branching rooted at

one such vertex y and a set of essential edges. Let y be the root of the path P (x) used in step 4

of algorithm 9, i.e., y is that representative of x that is labeled 1 in step 4 of algorithm 9. Let B

denote the set of edges in F 0

i+1 that also belong to G. By lemma 13 these edges are exactly the

redundant edges in F 0

i+1. It su�ces to show that there exists a forward branching in F 0

i+1 rooted

at y and containing all the edges of B.

For any vertex w 6= y in F 0

i+1 that has no incoming edge in B, de�ne e(w) to be the unique edge

in P (v) whose head is w. Let B0 be the set fe(w) : w 2 V (F 0

i+1), w 6= y and w has no incoming

edge in Bg. We shall now prove that every vertex in F 0

i+1 is reachable from y by edges in B [B0.

Since each vertex in F 0

i+1 other than y has exactly one incoming edge in B [B0 and y has none,

this implies that the edges in B[B0 form a forward branching in F 0

i+1 rooted at y; hence, F
0

i+1 can

be partitioned into a forward branching rooted at y and a set of essential edges.

Let us call a path in F 0

i+1 all of whose edges are in B [B0 a good path. We denote the root of

P (v) by r(v) for any v in G (see step 4 of algorithm 9). We �rst show that there is a good path

from y to the root r(v) of P (v) in F 0

i+1 for any v in G. Let depth(v) denote the depth of v in T̂

(constructed in step 2 of algorithm 9), i.e., the number of edges on the unique path from y to v

in T̂ . We prove the claim by induction on depth(v). If depth(v) = 0, then v = x and r(v) = y;

hence, the base case holds. Assume inductively that the claim holds if depth(v) = k. Now let

depth(v) = k+ 1. Let u be the father of v in T̂ . By the induction assumption there is a good path

from y to the root r(u) of P (u). Let (w; r(v)) be the edge in F 0

i+1 corresponding to edge (u; v) of

T̂ . From steps 4, 5, and 6 of algorithm 9 it follows that there is a good path in P (u) from r(u)

to w. We can assemble the good paths from y to r(u) and from r(u) to w together with the edge

(w; r(v)) into a good path from y to r(v) in F 0

i+1.

Now consider the case where a vertex w in F 0

i+1 lies on the path P (v) of some vertex v in G

but is di�erent from the root of P (v). Vertex w is reachable on P (v), using only edges of B0, either

from the root of P (v) or from a vertex w0 on P (v) that has an incoming edge in B. In the former

case we are done. In the latter case let w00 be the tail of the edge of B in F 0

i+1 whose head is w0.

With the labeling in step 5 of algorithm 9 it follows that w00 is reachable from the root of its path

37

using only edges of B0. We conclude that there is a good path from y to w. 2

Theorem 19 Algorithm 8 requires
(logn) iterations in the worst case. Thus, its worst-case time

complexity is �(m+ n logn).

Proof. The graphs F 0

i are orientations of the graphs Fi in the sample for 2-edge-connectivity and

thus have the same size. With lemma 9 and theorem 18 we have ĉ(F 0

i) =
(logn(F 0

i)). One can

construct for each n > 1 a digraph G on n vertices with ĉ(G) =
(logn) by subdividing edges in

the graph F 0

i where i is the largest integer with n(F 0

i) � n. Since each iteration of algorithm 8

requires time
(n), we infer that algorithm 8 requires
(m+ n logn) time in the worst case. This

bound is tight because it is shown in [8] that the algorithm terminates in time O(m+ n logn). 2

We now turn our attention to algorithm 6. For a strongly connected digraph H a trace for H

with respect to x is a sequence H0; H1; : : : ; Hk such that H0 = H , Hi 6= Hi+1 for 0 � i < k, and

Hi (0 < i � k) is of the form T + A where T is an optimal branching in Hi�1 rooted at x and A

is a minimal augmentation for T in Hi�1. Let c(H) denote the maximum length of a trace for H

(maximum taken over all vertices). Since each minimum augmentation trace for H is also a trace

for H with respect to the same vertex, theorem 18 implies that c(F 0

i) � i. The following theorem

is an easy corollary of this fact.

Theorem 20 Algorithm 6 requires
(logn) iterations in the worst case. Thus, its worst-case time

complexity is �(m+ n logn). 2

7 Concluding Remarks

In this paper we have given linear-time algorithms for computing a minimal biconnected spanning

subgraph and a minimal 2-edge-connected spanning subgraph. We have also provided a general

framework for computing minimal spanning subgraphs with respect to various graph properties.

These results should be useful in deriving algorithms for computing minimal spanning subgraphs

for other graph properties, e.g., k-vertex- or k-edge-connectivity for k > 2.

In the context of directed graphs we leave open the question whether there is a linear time

algorithm for computing a minimal strongly connected spanning subgraph. We have shown in

this paper that several natural algorithms for this problem achieve a worst-case running time of

�(m+ n logn). The results in this paper suggest that it may be possible to achieve linear time by

combining the basic algorithms with various contraction operations (this approach has worked for

38

2-edge-connectivity and biconnectivity). Unfortunately we proved in [14] (using a fairly involved

construction) that this approach will not improve the worst-case running time if we only collapse

cycles and contract chains. A new approach seems necessary.

39

References

[1] A.V. Aho, J.E. Hopcroft AND J.D. Ullman,The Design and Analysis of Computer Algorithms.

Addison-Wesley, Reading, MA, 1974.

[2] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, North-Holland, 1976.

[3] F. Chung AND R.L. Graham, Private communication, 1977; cited in [7].

[4] R. Cole AND U. Vishkin, Approximate and exact parallel scheduling with applications to list,

tree, and graph problems, Proc. 27th Ann. IEEE Symp. on Foundations of Comp. Sci., 1986,

pp.478-491.

[5] E. Dahlhaus, M. Karpinski AND P. Kelsen, An e�cient parallel algorithm for �nding a max-

imal independent set in a hypergraph of dimension 3, Inf. Proc. Letters, vol. 42, pp. 309-313,

1992.

[6] J. Edmonds, Edge-disjoint branchings, in \Combinatorial Algorithms", pp.91-96, Algorithmic

Press, New York, 1973.

[7] M.R. Garey AND D.S. Johnson, Computers and Intractability: a Guide to the Theory of

NP-Completeness, Freeman, San Francisco, CA, 1979.

[8] P. Gibbons, R.M. Karp, V. Ramachandran, D. Soroker, AND R. Tarjan, Transitive compaction

in parallel via branchings, J. Algorithms, vol. 12, 1991, pp. 110-125.

[9] M. Goldberg AND T. Spencer, A new parallel algorithm for the maximal independent set

problem, SIAM J. Computing, vol. 18, 1989, pp.419-427.

[10] X. Han, An algorithmic approach to extremal graph problems, Ph.D. Thesis, June 1991, De-

partment of Computer Sciences, Princeton University, Princeton, NJ.

[11] R.M. Karp and V. Ramachandran, Parallel algorithms for shared-memory machines, in J.

van Leeuwen, editor, Handbook of Theoretical Computer Science, Vol. A, pp. 869-941, MIT

Press/Elsevier, 1990.

[12] R.M. Karp, E. Upfal, AND A. Wigderson, The complexity of parallel search, J.C.S.S., vol. 36,

1988, pp.225-253.

40

[13] P. Kelsen AND V. Ramachandran, On �nding minimal 2-connected subgraphs, Journal of

Algorithms, to appear; extended abstract in Proceedings of the Second ACM-SIAM Symposium

on Discrete Algorithms, San Francisco, 1991, pp. 178-187.

[14] P. Kelsen AND V. Ramachandran, The complexity of �nding minimal spanning subgraphs,

Tech. Report TR-91-17, 1991, Department of Computer Sciences, University of Texas, Austin,

TX 78712.

[15] J.M. Lewis AND M. Yannakakis, The node-deletion problem for hereditary properties is NP -

complete, J. C. S. S., vol. 20, 1980, pp.219-230.

[16] M. Luby, A simple parallel algorithm for the maximal independent set problem, SIAM J. Com-

puting, vol. 15, 1986, pp. 1036-1053.

[17] G. Miller AND J.H. Reif, Parallel tree contraction and its applications, Proc. 26th Ann. Symp.

on Foundations of Comp. Sci., pp.478-489, 1985.

[18] H. Nagamochi AND T. Ibaraki, Linear time algorithms for �nding a sparse k-connected span-

ning subgraph of a k-connected graph, Algorithmica, vol. 7, 1992, pp. 583-596.

[19] M. D. Plummer, On minimal blocks, Trans. Amer. Math. Soc., vol. 134, 1968, pp.85-94.

[20] V. Ramachandran, Fast parallel algorithms for reducible
ow graphs, Concurrent Computa-

tions: Algorithms, Architecture and Technology, S.K. Tewksbury, B.W. Dickinson and S.C.

Schwartz, ed., Plenum press, New York, NY, 1988, pp.117-138; see also Fast and processor-

e�cient parallel algorithms for reducible
ow graphs, Tech. Report ACT-103, November 1988,

Coordinated Science Laboratory, University of Illinois, Urbana, Illinois, IL 61801.

[21] V. Ramachandran, Parallel open ear decomposition with applications to graph biconnectivity

and triconnectivity, in Synthesis of Parallel Algorithms, J. Reif, ed., Morgan-Kaufmann, 1993.

[22] R. Tarjan, Depth �rst search and linear graph algorithms, SIAM J. Computing, vol. 1, 1972,

pp.146-160.

[23] W. Tutte, Graph theory, Addison-Wesley, 1984.

[24] M. Yannakakis, Node- and edge-deletion NP-complete problems, Proc. 10th Ann. ACM Symp.

on Theory of Computing, New York, 1978, pp. 253-264.

41

