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ABSTRACT
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1. Introduction

An open ear decompositigvVh, Lo] of an undirected graph is a partition of its edge set
into an ordered collection of paths calkmtsthat satisfy certain properties. In this paper we pre-
sent an efficient parallel algorithm based on open ear decomposition for testing vertex triconnec-
tivity of an undirected graph and for finding the triconnected components of the graph. Our algo-
rithm runs inO(log?(n + m)) parallel time using(n + m) processors on a CRCW PRAM, where
n is the number of vertices in the graph ands the number of edges. A sequential linear-time
algorithm for the problem is available in Hopcroft & Tarjan [HoTa], but it is based on depth first
search, and is not known to be efficiently parallelizable. Finding triconnected components of a
graph is important in determining the connectivity structure of the graph and is useful in algo-
rithms for determining planarity and for determining if two planar graphs are isomorphic.

Parallel NC algorithms for testing triconnectivity and for finding triconnected components
are reported in Ja'Ja’ & Simon [JaSi] and Miller & Reif [MiRe] but neither match our processor
bound for general graphs. Ja'Ja’ & Simon [JaSi] give an NC algorithm for finding triconnected
components usinyyl(n) processors, wher®l(n) is the number of processors needed to multiply
two nxn matrices in polylogf) time; currentlyM(n) = O(n?>%79. Miller & Reif [MiRe] present
another algorithm for the problem that runiog n) time on a CRCW PRAM witm®® pro-
cessors. In contrast to these results we present an NC algorithm for the problem that uses only a
linear number of processors. In particular, ours is the first efficient parallel algorithm for graph
triconnectivity (see section 2 for the definition of an ‘efficient parallel algorithm’). Our algorithm
uses an efficient parallel algorithm for finding an open ear decomposition that we developed ear-
lier in Miller & Ramachandran [MiRa] (see also [MaScVi]). More recently, building on the
results we present, Ramachandran & Vishkin [RaVi] have obtained an efficient parallel triconnec-
tivity algorithm that runs in logarithmic time. Also, Kanevsky & Ramachandran [KanRa] have
used open ear decomposition to obtain better sequential and parallel algorithms for graph four
connectivity.

The rest of the paper is organized as follows. Section 2 provides a brief overview of the
PRAM model. Section 3 gives graph-theoretic definitions; we warn the reader that there are a
large number of definitions in this section. Section 4 gives a brief description of the main techni-
cal results leading to our triconnectivity algorithm. Section 5 establishes these results and section
6 gives an efficient implementation of the algorithm developed in section 5. Finally, section 7
extends these results to obtain an algorithm for finding the triconnected components of an input
graph.



2. Model of Parallel Computation

The model of parallel computation that we will be using iFtRAMmodel, which consists
of several independent sequential processors, each with its own private memory, communicating
with one another through a global memory. In one unit of time, each processor can read one
global or local memory location, execute a single RAM operation, and write into one global or
local memory location.

PRAMs are classified according to restrictions on global memory access. An EREW PRAM
is a PRAM for which simultaneous access to any memory location by different processors is for-
bidden for both reading and writing. In a CREW PRAM simultaneous reads are allowed but no
simultaneous writes. A CRCW PRAM allows simultaneous reads and writes. In this case we have
to specify how to resolve write conflicts. We will use the ARBITRARY model in which any one
processor participating in a concurrent write may succeed, and the algorithm should work cor-
rectly regardless of which one succeeds. Of the three PRAM models we have listed, the EREW
model is the most restrictive, and the ARBITRARY CRCW model is the most powerful. Any
algorithm for the ARBITRARY CRCW PRAM that runs in parallel tifieusing P processors
can be simulated by an EREW PRAM (and hence by a CREW PRAM) in paralleT togd®
using the same number of processerésee, e.g., [KarRa]).

Let S be a problem which, on an input of sizecan be solved on a PRAM by a parallel
algorithm in parallel time(n) with p(n) processors. The quantity(n) = t(n) Op(n) represents
the work done by the parallel algorithm. Any PRAM algorithm that performs wa() can be
converted into a sequential algorithm running in tin{e) by having a single processor simulate
each parallel step of the PRAM p{n) time units. More generally, a PRAM algorithm that runs
in parallel timet(n) with p(n) processors also represents a PRAM algorithm perfor@(mgn))
work for any processor couRt < p(n).

Define polylog(n) = kI] O(logX n). Let S be a problem for which currently the best sequen-
>0

tial algorithm runs in timd (n). A PRAM algorithmA for S, running in parallel time(n) with
p(n) processors isfficientif

a)t(n) = polylog(n); and
b) the workw(n) = p(n) &(n) is T(n) Cpolylog(n).

An efficient parallel algorithm is one that achieves a high degree of parallelism and comes
to within a polylog factor of optimal speed-up with respect to the current best sequential algo-
rithm. A major goal in the design of parallel algorithms is to find efficient algorithmst (mixtas
small as possible. The simulations between the various PRAM models make the notion of an
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efficient algorithm invariant with respect to the particular PRAM model used.

For the problem of testing triconnectivity and finding the triconnected components of a
graph, the fastest sequential algorithm currently known ru@gnm+ n) time [HoTa], and this is
also the best possible to within a constant factor. Hence the efficient parallel algorithm that we
develop in this paper for this problem is the best possible, to within a polylog factor.

For more on the PRAM model and PRAM algorithms, see [KarRa].

3. Graph-theoretic Definitions

An undirected graph G= (V, E) consists of avertex set Vand anedge set Econtaining
unordered pairs of distinct elements froh A path P in G is a sequence of vertices
<V, -,V >such thaty_4,v;)JE,i =1,---, k. The pathP containsthe verticesyg, - - -, v, and
the edgesvp, V1), - - -, (Vk-1, Vk) and hasndpoints ¥, vy, andinternal vertices vy, - - -, Vy—1. The
pathP is asimple pathf vy, - - -, vi_; are distinct andrq, - - -, v are distinctP is asimple cyclaf
it is a simple path and, = v,.. Verticesv; andv; areadjacenton P if i =j+1orj=i+1and
arenonadjacenbtherwise.

We will sometimes specify a grajh structurally without explicitly defining its vertex and
edge sets. In such cas®¥gG) will denote the vertex set & and E(G) will denote the edge set
of G.

Let P =<V, ---,Vk-1 > be a simple path. The pat(v;,v;),0<i, j <k-1is the simple
path connectingv; and v; in P, ie., the path @V, ---,v;j>, if i<j or the path
<Vj,Vj+1,-+,V; >, if j <i. Analogously, P[v;,v;] consists of the path (segments) obtained
when the edges and internal vertice®6f;, v;) are deleted fron®.

An ear decompositiofLo,Wh] D =[Py, - - -, P,—41] of an undirected grapts = (V,E) is a
partition of E into an ordered collection of edge disjoint simple p&ps - -, P,-, calledears,
such thatPg is a simple cycle and far> 0, P; is a simple path (possibly a simple cycle) with
each endpoint contained in a smaller numbered ear, and with no internal vertices contained in
smaller number earf is anopen ear decompositiaghnone of theP;,i =1,---,r —1is a simple
cycle. Atrivial ear is an ear containing a single edge.

LetD =[Py, -, P,-1] be an ear decomposition for a graph= (V, E). For a vertew in V,
we denote byar(v), the index of the lowest-numbered ear that contaifigr an edgee in E, we
denote byear(e), the index of the unique ear that contagnsA vertexv will belong to Ray-

A graphG' = (V', E') is asubgraphof a graphG = (V, E) if V'OV andE'LIE. The sub-
graph of G induced by Ms the graplG"” = (V', E") whereE" = E N {(Vv;, Vv))|vi,v;V'}.
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An undirected grapl& = (V, E) is connected if there exists a path between every pair of
vertices inV. For a graphG that is not connected, @nnected componenf G is a maximal
induced subgraph @& which is connected.

A vertex V[V is acutpointof a connected undirected grafh= (V, E) if the subgraph
induced by —{v} is not connected.G is biconnectedf it contains no cutpoint. Aiconnected
componendf G is a maximal induced subgraph®@fwhich is biconnected.

Let G = (V, E) be a biconnected undirected graph. A pair of vertiges, [V is aseparat-
ing pair for G if the induced subgraph ovi—{vy, v,} is not connected.G is triconnectedif it
contains no separating pair. We defineonnected componengs the end of this section.

Let G =(V,E) be a biconnected graph, and @tbe a subgraph o6. We define the
bridges of Q in Gas follows (see, e.g., [EV]): L&' be the vertices i — Q, and consider the
partition ofV' into classes such that two vertices are in the same class if and only if there is a path
connecting them which does not use any verteQotEach such clasK defines anontrivial
bridge B= (Vg, Eg) of Q, whereB is the subgraph dB with Vg = K [] {vertices ofQ that are
connected by an edge to a verteXih and Eg containing the edges & incident on a vertex in
K. The vertices o) which are connected by an edge to a verteX are called tha@ttachments
of B on Q; the connecting edges are called #itiachment edgesAn edge ¢, Vv) in G —Q, with
bothu andv in Q, is atrivial bridge of Q, with attachmentsi andv, and attachment edge, (/).
The nontrivial and trivial bridges @ together form théridgesof Q. The operation ofemoving
a bridge B of Q from Gs the removal fronG of all edges and nonattachment vertice8 of

Let G = (V, E) be a biconnected graph, and @be a subgraph @&. We define thdridge
graph of Q, S=(Vs,Es) as follows: Let the bridges o) in G be B;,i =1,---,k. Then
Vg =V(Q) LI{By,--, By} and Es = E(Q) LI{(v, B)IVOV(Q), 1<i < k, andv is an attachment
of BI}

Let G = (V, E) be a biconnected graph with an open ear decompogietiPq, - - -, Py_1].
We will denote the bridge graph of elgy by C;. An internal attachment on jFis an edge of
G - P; that is incident on a vertex & other than its endpoints. Let the bridgespin G that
contain nonattachment vertices belonging to ears numbered lowarlib®,, - - -, B,. We shall
call these theanchor bridgesof P;. For any two verticex, y on P;, we denote by, (X, y), the
internal vertices oP;(X, y), i.e., the vertices i®;(X, y) ={ X, y}; we denote by;[Xx, Y], the ver-
tices inP;[x, y] —{ X, y} together with the nonattachment vertices in the anchor bridges d¥or
ear Py, we pick an edgeu(v) on Py as thebase edg®f Py. For a pair of vertices, b on Py,
Vo(a, b) will be the vertices on the path fraarto b on Py that avoids the base edge\), exclud-
ing verticesa andb, andV[a, b] will be the vertices on the path betwegmandb that contains



(u, v), excludinga andb.
Figure 1 illustrates some of our definitions relating to bridges.

LetG = (V, E) be a graph and IR be a simple path i6. If each bridge oP in G contains
exactly one vertex not oR, then we callG the star graph of Pand denote it byG(P). We
denote the bridges @ (P) by stars,i.e., astaris a connected graph in which at most one vertex
has degree greater than 1. The unique vertex of a star that is not contathisdcialled itscen-
ter. Note that, in a connected gra@h the bridge graph of any simple pathGnis a star graph.
We will sometimes refer to a star grafiP) by G if the pathP is clear from the context.

Two starsS; andS, in a star grapli(P) interlace(see, e.g., [Ev, p. 149]) if one of follow-
ing two hold:

1) There exist four distinct verticesb, ¢, d in increasing order oR such thata andc belong
to S;(S,) andb andd belong toS,(S;); or

2)  There are three distinct vertices@rthat belong to botl$; andS.

The operation o€oalescingwo starsS; and S, is the process of forming a single new star
S from S; and S, by combining the centers & andS,, and deletingS; andS,. Given a star
graphG(P), acoalesced graph Gof G is the graph obtained fro@ by repeatedly coalescing a
pair of interlacing stars in the current graph until no pair of stars interlguagtially coalesced
graphof G is any graph obtained frof@ by performing this repeated coalescing at least once.

A planar embeddingf a graphG is a mapping of each vertex @fto a distinct point on the
plane and each edge @fto a curve connecting its endpoints such that no two edges intersect. A
faceof a planar embedding is a maximal region of the plane that is bounded by edges of the pla-
nar embedding. Theuter faceof a planar embedding is the face with unbounded are&rfen
faceof a planar embedding is a face with finite area.

Let G(P) be a star graph in which no pair of stars interlacd? if not a simple cycle and if
G(P) contains no star that has attachments to the endpoamdy of P, then add a virtual stat
to G(P) with attachments ta andy. Thestar embedding GP) of G(P) is the planar embedding
of (the possibly augmente@(P) with P on the outer face. (A star gra(P) has a planar
embedding withP on the outer face if and only if no pair of stars interlace (see, e.g., [Ev, p.
150]).)

Let G be a biconnected graph with an open ear decompoditieriPy, - - -, P,_1]. Let
B4, - -, B, be the anchor bridges of e@y. Theear graph of R, denoted byG;(P;), is the graph
obtained from the bridge graph Bf by a) coalescing all stars corresponding to anchor bridges;
and b) removing any two-attachment bridge with the endpoints of the ear as attachments. We will



G with open ear decompositionD = [PoP;P,, P3, P4]; Pg=<ab,c,dea>,
P,=<c,g,f,e> P,=<d, f > P3=<g,h, f > P,=<c,i,e>.

Bridges ofP;.

Bridge graph oP;.

Ear graphG;.

figure 1
lllustrating the definitions

call the star obtained by coalescing all anchor bridgesanihoring starof G;(P;). Figure 1
gives an example of an ear graph.
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We conclude our list of definitions by defining ttisonnected components a bicon-
nected graph (see, e.g., [Tu, HoTa2]).mAlltigraph G= (V, E) is an undirected graph in which
there can be several edges between the same pair of vertices. Ap idgemultigraph is
denoted by 4, b, i) to indicate that it is theth edge betweea andb; the third entry in the triplet
may be omitted for one of the edges betwaandb.

A pair of verticesa, b in a multigraphG = (V, E) is a separating pair if and only if there are
two nontrivial bridges, or at least three bridges, one of which is nontriviag,&f {n G. If G
has no separating pairs th@ns triconnected. The pa#, b is anontrivial separating pair if there
are two nontrivial bridges o, b in G.

Let {a, b} be a separating pair for a biconnected multigr&pk (V, E). For any bridgeX
of {a, b}, let X be the induced subgraph @fon (v -V(X))[] {a,b}. Let B be a bridge of
{a, b} such that E(B)| = 2, [E(B)| = 2 and eitheB or B is biconnected. We can applyTatte split
s(a,b,i) to G by forming G; and G, from G, where G; is B[ l{(a,b,i)} and G, is
B[I{(a,b,i)}. The graphsG, andG, are calledsplit graphs of G with respect tq b. The Tutte
component®f G are obtained by successively applying a Tutte split to split graphs until no Tutte
split is possible. Every Tutte component is one of three types: i) a triconnected simple graph; ii) a
simple cycle (golygon);or iii) a pair of vertices with at least three edges between théon@);
the Tutte components of a biconnected multigr@pare the uniquériconnected componentd
G.

4. Brief Overview of Results

In this section we give a high-level description of the results leading to our triconnectivity
algorithm. Given a biconnected graph, our algorithm finds all separating pairs in the graph. The
input graph is triconnected if and only if the algorithm finds no separating pair in the graph.

In the next section we show thatxfy is a separating pair in a biconnected gr&plith an
open ear decompositidD, then there exists an eBy in D that containsx andy as nonadjacent
vertices, and further, every bridge IBf has an empty intersection with eithg(x, y) or V;i[ X, y].
This is the basic property that we use in our algorithm.

We further show that the abe property is not altered by the operation of coalescing inter-
lacing stars in the bridge gragh(P;) and thus applies to the ear graphPpfas well as its coa-
lesced graph. Finally we show that separating pairs satisfying the basic property with respect to
P; are simply those pairs of nonadjacent verticesPpthat lie on a common face in the star
embedding of this coalesced graph.
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The almveresults lead to the following high-level algorithm for finding separating pairs in a
biconnected grap®: Find an open ear decompositibnfor G and for each edp; in D, form the
coalesced graph of its ear graph and extract separating pairs from its star embedding. Section 6
provides an efficient parallel implementation for each step in the algorithm (with the exception of
the construction of an open ear decomposition, for which an efficient parallel algorithm can be
found in Miller & Ramachandran [MiRa] or Maon, Schieber & Vishkin [MaScVi]).

Section 7 builds on these results to give an efficient parallel algorithm to find the tricon-
nected components of a graph. We find the triconnected components using Tutte splits in contrast
to the earlier algorithm based on depth first search [HoTa].

5. Ear Decomposition and Triconnectivity

Lemma 1[Wh] An undirected graph has an open ear decomposition if and only if it is bicon-
nected.

Lemma 2Let D =[Py, - - -, P,_1] be an open ear decomposition of a biconnected géaghd let
x andy be the endpoints of e&;. Then every anchor bridge Bf has attachments onandy.

Proof Let B be an anchor bridge &f; and letH = lj P;. By definition, the nonattachment ver-
j=0

tices in B are the vertices in a connected compor@ntf G —{P;} that contains a vertex in
H —-{x, y}.

The graphd —{x, y}) N P; is empty since none of the internal vertice®phre contained
in ears numbered lower thanHenceC must contain all vertices in one or more connected com-
ponent(s) oH -{x, y}. Let D be one such connected component contain€ BinceH has an
open ear decomposition, it is biconnected by Lemma 1. HBnmentains vertices adjacent xo
andy in H, since otherwise or y would be a cutpoint ofl. But this implies tha€ contains ver-
tices adjacent ta andy in G —{ P;}, i.e., bridgeB of P; has attachments onandy.]]

Lemma 3Let G = (V, E) be a biconnected undirected graph for which vertices\d y form a
separating pair. LdD be an open ear decomposition €@r Then there exists an eBy in D that
containsx andy as nonadjacent vertices, such that every path from a vengfdny) to a vertex
in Vi[x, y] in G passes through eith&ror y.

Proof Sincex andy form a separating pair, the subgrapn@iduced by —{x, y} contains at
least two connected components. Kgtand X, be two such connected components.

Case 1The first ealPy contains no vertex iX, (see figure 2):
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figure 2
Case 1 in the proof of Lemma 3

Consider the lowest-numbered €y, that contains a vertexin X,. Since the endpoints of
P; are distinct and must be contained in ears numbered lowei,tRamqmust containx and y.
Further, all vertices iv(x, y) lie in X,, and none of the vertices W[x, y] lie in X,. Hence
every path from a vertex M (x, y) to a vertex inVv;[x, y] in G passes through eith&ror y. Fur-
ther,x andy are not adjacent oR; sincev lies betweerx andy.

Case 2 B contains a vertex iX:

If P contains no vertex iiXq, then case 1 applies ¥,. OtherwiseP, contains at least one
vertex from X4, and one vertex fronX,. But then, sincé’g is a simple cycle, it must contain
andy, and again (by the argument of Case 1), every path from a veNgkxny) to a vertex in
Vo[ X, y] must contain eithex or y, andx andy are not adjacent oR.[]

We will say that a separating pairy separategarP; if x andy are nonadjacent vertices
on P;, and the vertices i\ (X, y) are disconnected from the verticed/jifix, y] in the subgraph of
G induced by - {x, y}. By Lemma 3, every separating pair@separates some nontrivial ear.
(Note that a separating pair may separate more than one nontrivial ear; for instance, in the graph
G in figure 1, the paic, eis a pair separating eaPs andP,).

Lemma 4 Let G=(V,E) be a biconnected graph with an open ear decomposition
D =[Pg, -+, P;-1]. LetearP; containx andy as nonadjacent vertices. Thery separate®; if

and only if every bridge d®; has an empty intersection with eith&(x, y) or V;i[ X, y].

Proof Let every bridge oP; have an empty intersection with eithg(x, y) or V;[ X, y] and sup-
posex, y does not separate ey. Hence, there exists a path=< a,wy,---,w;, b >in G, with

ain Vi(x,y) andb in V[ x, y], that avoids botkx andy. This implies that there is a subpdhof

P with P' =<w,, - - -, wg > such thatw, is inV;(X, y), ws is in V;[X, y], and none of the interme-
diatew, lie on P;. Hence there is a bridgg of P; containingw, andws, i.e., B has a nonempty
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intersection with both/;(x, y) andV;[x, y], which is not possible by assumption. Hence
must separate e&.

Conversely supposB is a bridge ofP; containing a vertex in V;(x, y) and a vertex in
Vi[X, y]. Then we have a path from a vertexMi{x, y) to a vertex inV;[x, y] that avoids bothx
andy. Hencex, y does not separat .[]

Corollary to Lemma 4 Let x andy be the endpoints of a nontrivial erin an open ear decom-
positionD of a graphG. Thenx, y separate®; if and only if no anchor bridge ¢¥; has an inter-
nal attachment oR;.

ProofLet X, y separatd®;. By Lemma 4, every bridge @&, has an empty intersection with either
Vi(x,y) or Vi[x,y]. Since any anchor bridge & has a nonempty intersection WitR[X, V],
every anchor bridge must have an empty intersection\With y). Hence no anchor bridge can
have an internal attachment Bn

Conversely, suppose no anchor bridgePpthas an internal attachment &. Then every
anchor bridge has an empty intersection Wittx, y). Sincex andy are endpoints oP;, every
nonanchor bridge has an empty intersection Wjflx, y]. Hence by Lemma 4x,y separates

Pi.ll

We will call a pair of verticeg, y on an ealP; acandidate pair for Rif x,y is a pair sepa-
rating P; or (X, y) is an edge irP; or x andy are endpoints dP; (i > 0). Clearly, if we can deter-
mine the set of candidate pairs 8y, we can extract from it the pairs separatijgoy deleting
pairs that are endpoints of an edgd’jnand checking if the endpoints Bf form a pair separat-
ing P; using the criterion in the alve Corollary.

More generally, leGG(P) be a star graph. A pair of nonadjacent vertiggg on P will be
called apair separating Pif the vertices inP(x, y) —{ x, y} are separated from the vertices in
P[x,y] -{x, y} when x andy are deleted fronts. A pair of verticesx, y on P will be called a
candidate pairfor P in G if X,y is a pair separating, or x andy are endpoints oP, or (x, y) is
an edge irP.

The proof of the following claim is similar to the proof of Lemma 4 and is omitted.

Claim 1 Let G(P) be a star graph. A pax, y separate® in G(P) if and only if every bridge oP
in G(P) has an empty intersection with eith&(x, y) —{ x, y} or P[x, y] ={ X, y}.

We now relate candidate pairs fBr in G with candidate pairs foP; in its bridge graph
Ci(Py).
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Observation 1 Let G=(V,E) be a biconnected graph with an open ear decomposition
D =[Pg,---,Pi-1]. Thenx,y is a candidate pair fd?; in G if and only if it is a candidate pair
for P; in the bridge grapk;(P;).

Proof If (X, y) is an edge irP; or if x andy are endpoints oP;, thenx, y is a candidate pair for

P; in bothG andC;(P;). So in the following we assume thaty separate®; andx andy are not
both endpoints oP;.

Let x, y separate?; in G. By Lemma 4 every bridge d?; in G has an empty intersection
either with V;(x,y) -- and hence withP;(x,y) —{x, y} -- or with V;[x,y] -- and hence with
Pi[x,y] ={x, y}. By construction this implies that every bridge Bf in C;(P;) has an empty
intersection either withP;(x, y) ={x, y} or with P;[X, y] ={X, y}. Hence by Claim 1x,y sepa-
ratesP; in C;(P;).

Conversely, letx, y separateP; in C;j(P;). By Claim 1, every bridge d®; in C;(P;) has an
empty intersection either witR;(x, y) ={ x, y} or with P;[x,y] {x,y}. Let Bq,---, By be the
bridges ofP; in C;(P;) corresponding to the anchor bridges?in G. By Lemma 2, eaclB; has
attachments to the two endpoimstand f of P; and by assumption eitheror f is distinct fromx
and y. Assume without loss of generality thats different fromx andy. The vertexe is in
Pi[x, y] -{x, y} and eachB;, j = 1,- - -, k has an attachment @Hence eacl3; has a nonempty
intersection with Pi[x,y] -{x,y} and therefore must have an empty intersection with
Pi(x,y) ={x, y}.

The alove implies that every anchor bridge & in G has an empty intersection with
Vi(x,y) and every nonanchor bridge has an empty intersection either\iithy) or with
Vi[X, y]. Hence, by Lemma 4, y separate®; in G.[]

By the almve Observation we can work with the bridge graph of each ear in order to find the
candidate pairs for that ear@ We now develop results that will lead to an efficient algorithm to
find candidate pairs in a star graph.

Lemma 5Let G(P) be a star graph with sta&, ---, §,. Forj =1,---,k let H; be the subgraph
of G consisting ofP [ ] S; and IetHj* be the star embedding bf;. Then a pair of vertices, y
on P is a candidate pair fd? if and only if eitherx andy are the endpoints & or x andy lie on
a common inner face in eaehj*, j=1,---,k

ProofLet x, y be a candidate pair fé. If x andy are the endpoints & then the result follows.
If (x,Y) is an edge orP thenx andy must lie on a common inner face in e&fth*. Otherwise,
by Claim 1, eacl$; has an empty intersection with eithi&(x, y) —{ x, y} or P[X, y] -{X, y}.

If S; has an empty intersection wiRx, y] ={ %, y} then x andy belong to the unique inner

face ofH]f that contains the endpointsBf If S; has an empty intersection wi(x, y) —{ x, y},
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let <ay,---,a > be the attachments @‘j on P in the order that they are encounteredrofiom
one endpoint of to the other. The vertices andy must lie betweera, and a1, for some
1< p<k.Thenx andy lie on the unique inner face bl‘j* containinga, andap,.

If X,y is not a candidate pair fd?, then by Claim 1 there exists a sgrwith an attach-
menta in P[X, y] ={x, y} and an attachmert in P(x, y) ={ X, y}. Then, one ofx andy, sayXx,
lies in P(a, b) —{ a, b} and the othery, lies in P[a, b] —{a, b}. Then x lies on the unique inner

face containinga andb in H? andy does not lies on this face.[]

Corollary to Lemma 5 If G is the star embedding &(P), then a pair of vertices, y on P is a
candidate pair foP if and only if eitherx andy are the endpoints d? or x andy lie on a com-
mon inner face G

In general, this corollary may not apply, beca@®) need not be planar. We now intro-
duce the star coalescing property: namely, we establish that if we enforce the planarity required in
the corollary by forming a coalesced graphof G(P) then the corollary applies t8..

We observe here that the coalesced g@aglr) of a star grapt(P) is unique. We omit the
proof of this result because it is fairly straightforward but tedious. Further we do not exploit this
uniqueness in the following except that we refeGtoas ‘the’ coalesced graph &f (rather than
‘any’ coalesced graph @).

Theorem 1Let G(P) be a star graph and I&;(P) be obtained fron(P) by coalescing a pair of
interlacing starSandT. Then a pairx, y on P is a candidate pair fagg(P) if and only if it is a
candidate pair foG(P).

ProofLet R be the star ilt51(P) formed by coalescin§ andT.

If (x,Yy) is an edge orP or if x andy are endpoints oP thenx, y is a candidate pair for
bothG(P) andG4(P).

Let x,y separateP in G(P). HenceS and T have an empty intersection with either
P(x,y) ={x,y} or P[x,y] ={x,y}. SinceSandT interlace, either both have empty intersection
with P(x, y) ={ x, y} or both have empty intersection witP[x, y] —{ X, y}. Hence R, which con-
tains the union of the attachments ®fand T must have an empty intersection with either
P(x,y) ={x, y} or with P[x, y] ={X, y}. Hence by Claim 1x, y separate® in G,(P).

Conversely supposg, y separates® in G1(P) and letR have an empty intersection with
P(x,y)={x,y} (P[X,y]={x,y}). Then both S and T have an empty intersection with
P(x,y) ={x, y} (P[x,y] ={ X, y}) and hencex, y separate® in G(P) by Claim 1.[]
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Corollary to Theorem 1 Let G(P) be a star graph.

a) LetG'(P) be any partially coalesced graph@¢P). Thenx, y is a candidate pair faB(P)
if and only if it is a candidate pair f@'(P).

b) A pairx,yis a candidate pair fdg(P) if and only if it is a candidate pair for the coalesced
graphG.(P).

Let G(P) be a star graph and |6 (P) be its coalesced graph. Since no pair of bridgd® of
interlace inG.(P), Lemma 5 and its Corollary apply to this graph. Let us refer to the set of ver-
tices onP that lie on a common inner face®, as acandidate set for PA pair of vertices is a
candidate pair foP if and only if it lies in a candidate set fBr A candidate se® for earP is a
nontrivial candidate sdft it contains a pair separatirig

Let G be a biconnected graph with an open ear decompoditieriPy, - - -, P,_1]. Since
every separating pair f@ is a candidate pair for some nontrivial éar(Lemma 3), any algo-
rithm that determines the candidate sets for all nontrivial ears is an algorithm that finds all sepa-
rating pairs for a graph. By the results we have proved above, we can find all candidat&sets in
by forming the bridge graph for each nontrivial ear, and then extracting the nontrivial candidate
sets from the coalesced graph of the bridge graph.

In order to obtain an efficient implementation of this algorithm, we will not use the bridge
graph of each ear, but instead the closely related ear graph which we defined in section 3.

Lemma 6 A pair of verticesx, y separates ed?; in G if and only if it separate®; in the ear
graphG;(P;).

Proof By Claim 1, x,y separates edp; in G if and only if it separate®; in the bridge graph
Ci(Pi).

Now consider the ear grajiy (P;). The ear grapks;(P;) is obtained from the bridge graph
Ci(P;) by coalescing all anchor bridges, and deleting multiple two-attachment bridges with the
endpoints of the ear as attachments.

Deleting a star with attachments only to the endpoints of an ear can neither create nor
destroy candidate pairs. L&{(P;) = C;(P;) —{2-attachment bridges with endpoints Bf as
attachments}.

By Lemma 2, every anchor bridge Bf has the two endpoints é&¥; as attachments, and
hence every pair of anchor bridges with an internal attachmem; onust interlace. Hence
G;(P;) is the graph derived froi@; (P;) by coalescing some interlacing stars. The lemma now fol-
lows from the Corollary to Theorem 1.[]
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Lemma 7 Let G=(V,E) be a biconnected graph with an open ear decomposition
D =[Pq,---,P-1], and let¥| = n and E| = m. Then the total size of the ear graphs of all non-
trivial ears inD is O(m).

Proof Each ear graph consists of a nontrivial Batogether with a collection of stars ). The
size of all of theP; is O(m). So we only need to bound the size of all of the stars in all of the ear
graphs.

Consider an edgau(v) in G. This edge appears as an internal attachment edge in at most
two ear graphs: once for the g,y and once for eaPcyy,). Thus the number of internal
attachment edges in all of the stars is no more than 2

We now bound the number of attachment edges to endpoints of ears. Since we delete all
stars with only the endpoints of an ear as attachments, every star in an eds;@Papivith an
attachment to an endpoint Bf also has an internal attachment®in A star can contain at most
two attachments to endpoints of an ear. Hence for each star that contains attachments to end-
points of its ear, we charge these attachments to an internal attachment. Since the number of inter-
nal attachment edges is no more tham the number of attachment edges to endpoints of ears is
no more than d. Hence the total size of all of the ear grapl3(is).[]

The aloveresults establish the validity of the following algorithm to find the nontrivial can-
didate sets in a biconnected graph.

Algorithm 1 Finding the Nontrivial Candidate Sets
Input A biconnected grap® = (V, E).

1. Find an open ear decompositidrn= [Py, - - -, P,_4] for G.
2. For each nontrivial eaP; do

A) Construct the ear gragh; (P;).

B) Coalesce all interlacing stars @}(P;) to form the coalesced gra@y_. Construct the star
embedding ojS* of G;_, and identify each set of vertices B on a common inner face
in this embedding as a candidate set.

C) If j >0 let the endpoints oP; be u andv elselet (u,v) be the base edge &%. If the
anchoring star oP; has an internal attachment &, or if j = 0 then delete the candidate
set {u, v}, if it exists.

D) Delete any doubleton candidate setfgrthat contains the endpoints of an edg® jn
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rof;

Let M|=nand E| = m. Step 1 has a®(logm) time parallel algorithm witlfO(m) proces-
sors on a CRCW PRAM [MaScVi, MiRa]. In the next section, we givO@ng® m) time paral-
lel algorithm on a CRCW PRAM with a linear number of processors for steps 2A and 2B. Clearly
steps 2C and 2D are trivial to implement. Finally in section 7, we show how to obtain the tricon-
nected components of a biconnected graph, given the nontrivial candidate sets.

6. Finding Candidate Sets

Let G = (V, E) be a biconnected graph with an open ear decompogtioiPg, - - -, P,_1].
Let M|=n and E| =m. In this section we give efficient parallel algorithms to implement steps
2A and 2B in Algorithm 1.

6.1. Forming the Ear Graphs

We give a divide and conquer algorithm for finding the ear graph for each nontrivial ear.
Roughly speaking, the algorithm works as follows. Assunsea power of 2. The algorithm has
logr stages. In the first stage the algorithm computes the ‘ear graph’ of the subgfauoref
sisting of the first/2 ears and also the the ‘ear graph’ of the 1&&tears. In general in théh
stage the algorithm computes the ‘ear graph’ of each subgrd@plearisisting of thgth block of
r/2 ears,j =1, - .,2". Thus, in the final stage the algorithm computes the ear graph of each ear.

In section 3 we defined ‘ear graph’ only with respect to a single ear. We now extend this
definition to a collection of ears of the foiffy, P;.4,-- -, P;. GivenG = (V, E) with an open ear
decompositiorD =[Py, - - -, P;_1], we defineG; ;, the (, j) ear graph of G, for k j, as follows:

Let P = |j Py, and letU; ; be the set of vertices iR; ; that are contained in ears numbered
k=i

lower thani (these are some of the endpointsPpfPi,q, -+, Pj). LetS,,---, S be the bridges
of P; ; whose attachments are allly ;, and among the remaining bridgesRyf; let Ry, -+, R,
be the bridges that either contain a nonattachment vertex on an ear numbered lowyer t@m
tain at least 3 distinct attachments Wy), (the anchor bridgesof P; ;). Let C;; be the bridge
graph ofP; ;. ThenG,; j is the graplC; ; with the bridges corresponding Ry, - - -, R coalesced
(theanchoring star of ¢;), and with the bridge$,, - - -, S¢ deleted. Note tha; ; is simply the
ear graplG;, andGy,_; is the input grapi®.

Let G ; be a graph consisting &% ;, together with a collection of stars with attachments on
Pi j, of which a subsetRy, k=1, 2,---,1} are ‘marked’. Ther(5{ ; is apartial ear graph of P;
if the graph obtained by coalescing tRg, k=1,2,---,1 is the ear grapl®; j, excluding the
attachments of the anchoring star to verticed;in In our algorithm for finding the ear graphs
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we will mark stars that correspond to anchor bridges formed in the intermediate stages of the
algorithm.

The following algorithm constructs the ear graph of each ear in parallel using the divide and
conquer approach we outlined earlier. The construction proceeds in stages. In each stage the algo-
rithm constructs a partial ear gra@; for a collection ofP; j’s. Finally, after having obtained
Gi; for eachi, the algorithm coalesces all of the marked sta(s; jrand provides attachments for
this coalesced star to the two endpoint®gfto form the ear grapG;.

Algorithm 2A Forming the Ear GraplG; = (V;, E;),i =0,---,r = 1.

Input: Undirected biconnected graptG =(V,E) with an open ear decomposition
D =[Po, -+, Pra].

0.Gp,-1 « G.
1. Fori=1,---, togrdo

for j = 0 (step 2o 2' - 2 pardo

ir j+2)rQ j+2)yd
Ietaz%gbzgJ > ) gczéh > ) O
| 0 | 0

a) FormGj p-; from G; -1 as follows:
i) Delete the subgraph induced By -, from G .—;. Call the resulting graphly c—;.
ii) Find connected components ity ..
iii) Mark any connected component that contains a vertex that was previously marked.

iv) Mark any connected component containing a vertex on an ear numbered lower than
(these will be some of the endpoints of ear®jn_;) or containing 3 distinct attachments
onUg,p-1.

v) Collapse each connected component into a single vertex.

vi) RestoreP, -, together with all edges incident on it. Reve multiple copies of any
edge in this graph, and delete all vertices not connecteglq.

vii) Removethe bridges oP,,-; with attachments only to verticeslh, ;.

viii) Remove anyedge connecting a marked vertex to a vertédjg-;.
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b) FormGy, -1 from G} .; in a similar manner.
rof
rof;

2. For each, coalesce all marked bridges@j; to form anchoring sta®, and introduce attach-
ments fromS to the two endpoints d¥;.

Lemma 81n step 1 of Algorithm 2A, for each the size of all of th&’ , present in this step is
Oo(m).

Proof The analysis is similar to that in Lemma 7. Note that the size of all db'theexcluding
attachments to the correspondldg is O(n + m), since any edge @& appears at most twice in
this collection. We now bound the number of attachment edgék; pin G over all j, k for
fixedi.

ConsiderG/j x, wherej = y [ andk = (y + 1) (2, for somej. First observe that in step vii
we removeall bridges with attachments only d&h; , and for any marked vertex G we
removeall attachments t0J;  in step viii. So we only need to consider bridges that a) contain
nonattachment vertices belonging only to ears numbered highek;tbamave at most 2 attach-
ments onJ; ; and c¢) have at least 1 internal attachmenGyn. For each such bridge, we can
charge its £ 2) attachments obJ; to an internal attachment and hence the total number of
attachments on all of thg;  is O(n + m).[]

Lemma 9 Algorithm 2A correctly finds the ear graph of each ear.

Proof It is clear that Algorithm 2A without parts iii), iv), vii) and viii) in steps 1a and 1b, con-
structs the bridge graph of each ear. (Note that in this case every vertex will be connected to
Pap-1 in step vi).) In the following we show that the algorithm as specified constructs the ear
graph of each ear.

We establish this by showing by induction that in ittheiteration of the main step, each
G k formed is a partial ear graph of the corresponéing.

Base i=1: Let b = [m/2[] Wheni =1 the algorithm constructs two graplgp-; and G, 3.
Since the bridge graphy,-; of Pop-1 contains no anchor bridges, step 1a of Algorithm 2A con-
structsCy -1, Which is clearly a partial ear graphf,_; .

The bridge graplty, .-, of Py, ., contains only anchor bridges and all of these bridges have
attachments only to,,_;. Hence any partial ear graph Bf,_; contains no bridges. Algorithm
2A removes all bridges d?,,_; in step 1b vii) and hence the graph constructed by the algorithm
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is a partial ear graph &f, ;.

Induction stepAssume that the result is true until the-()st iteration, and consider iteration
Let G, p-1 be constructed in step la fradj .-, in theith stage.

First we show that any attachmewnton P,,_; of an anchor bridge oP,.; is also an
attachment of an anchor bridgeRf,-;. Let the attachment edge be\{).

Case 1: Vertew is an attachment of a bridge Bf, .-, that has a nonattachment vertexn an
ear numbered lower than The vertexv continues to be an attachment of a bridg® of ; that
containsu. But sinceear(u) < a, v is an attachment of an anchor bridgd gf,-;.

Case 2: Vertex is an attachment oR, ;,; of a bridge ofP, ._; that has at least 3 distinct attach-
mentsX, Y,z onU,._1; we allow the possibility that is one ofx, y, z. In this casex, y, z and
edge ¢, w) belong to a single bridge &f, ;. If X,y andz are inU,,-; then the same property
holds inP, ;. Otherwise assumeis not inU, ,; (note thatx cannot bev). Then sincex is in

U, -1, We haveear(x) < a and hence the bridge &%, ,-; that contains edger(w) is an anchor
bridge ofP,4p-1.

Now we show that every internal attachment of the anchoring stag pf; (i.e., all attach-
ments except those id, 1) is contained in one of the marked starsGyf,—;. Letv be an
attachment vertex of the anchoring staPgf,-; in G. If vis also an attachment of the anchoring
star of P, -1 in G then by the induction hypothesis there is a marked st&#, in; that has an
attachment tow. The connected component containing this marked star is marked in step 1a iii) of
Algorithm 2A and hence is an attachment of a marked staGRy-;. If v is not an attachment
of an anchoring star d?,.-; in G then in order fowv to be an attachment edge of an anchoring
star inC, -, either it must be connected to an anchoring stét,@f; through internal vertices
in Ppc-1 Or it must be connected through internal vertice®jin_, to a vertex inUy.—; that
belongs to an ear numbered lower tl@anin the former case the corresponding connected com-
ponent is marked in step 1a iii) of Algorithm 2A and in the latter case it is marked in step 1a iv)
of Algorithm 2A.

If an attachment does not belong to an anchoring stag gf; or G, .—; then we claim that
it cannot be an attachment of a marked staBip-, or G, .-;. This is so since the algorithm
only deletes edges from the graph, and hence never induces a path between two vertices in a sub-
graph ofGj , if a path did not exist in the subgraph@®fnduced by (G y).

Finally we note that every non-anchor bridgePgf,-; in G appears as a non-anchor bridge
in G, p-1 as constructed by Algorithm 2A. This is because steps 1a vii) and viii) and steps 1b vii)
and viii) delete only edges incident on vertices belonging to ears numbered lowerahdib
respectively, and hence none of the edges in non-anchor bridges are removed.
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A similar argument holds fdBy, 1.
This establishes the induction step and the lemma is proved.]]

The major computation in each parallel step of the algorithm involves finding connected
components in subgraphs of 16¢;'s. Since by Lemma 8, the total size of the graphs present at
any given step i©(m), each parallel step can be implemented(iog m) time on a CRCW
PRAM with O(m) processors [ShVi]. Finally since the algorithm hasrtogarallel stages, it runs
on a CRCW PRAM iO(log® m) time with O(m) processors.

6.2. Forming the Coalesced Graph

We now turn to step 2B, which finds the coalesced gfplof a star graplG(P), and
determines from it, the candidate set&0oP).

Our parallel algorithm to coalesce all interlacing stars in a star @éPhruns inO(log? q)
time usingO(q) processors, wherg is the number of edges in the stars and in the path. We can
consider the star embedding of a star graph with no interlacing stars to consist of embedding the
pathP as a horizontal line, and all the stars and their edgaged#ie line in a well nested fashion
with no two edges crossing. Each face in this embedding, ignoring the exterior face, lies directly
below exactly one star and every star wktkedges sits directly above- 1 faces. Thus, associ-
ated with the embedded stars is an ordered rooted tree: one vertex for each star and one for each
face, which we calktar-vertexand face-vertexrespectively. The root of this tree is the exterior
face. The children of a star-vertex are its faces in order and the children of a face-vertex are the
stars that lie directly below it in order. We call this tree fdee-star tree.The face-star tree is the
main data structure that we use for the parallel star coalescing algorithm.

We distinguish between distinct and nondistinct attachments of the stars. In figure 3 we
show a star embedding of a star gr&(tP) together with its face-star tree for the case of distinct
attachments, i.e., each vertex®ms common to at most one star. As one can see from the exam-
ple, the face-star tree is any rooted and ordered tree such that 1) the root is labeled a face, and
each level of vertices is labeled alternately as faces and stars, and 2) each leaf is labeled as a face.
The last condition just requires that all leaves are of even depth.

The face-star tree gives us most of the information we need about the star embedding. We
show how to extract the information that is in the embedded star graph from the face-star tree. We
start with a definition. Th&uler tourof an ordered rooted tréeis the cycle starting at the root
that traces the tree in a counter-clockwise order. In our example from figure 3 the Euler tour is
<AaB,acC,cD,cC,d,EdC,a ADbF,bG,eH,eG,f, I, J,f,Gb A> where
face vertices are labeled by upper case letters and star vertices by lower case letterst &f
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an Euler tour <wvq,---,Vvy > is any triple ¥;—1,V;, Vi+1) Of successive vertices on the tour. The
triple is a corner of star (face)vf is a star (face). Note that each attachment is defined by a cor-
ner of the star it belongs to, with the two face vertices in the corner corresponding to the faces
bounding the attachment edge.

Star embedding

Face-star tree

figure 3
A star embedding with distinct attachments
and its face-star tree

The general case of nondistinct attachments is slightly more complicated. We assume, with-
out loss of generality, thaB(P) has no multiple two-attachment stars with the same pair of
attachments, since otherwise we could delete the multiple copies without altering the candidate
sets forP; for the same reason we also assume @{&) has no two-attachment star with the
same span as another star with three or more attachments. Hence any star graph with a star
embedding that is derived fro@(P) by coalescing stars has a unique embedding. Each attach-
ment vertex corresponds to a consecutive set of star corners in the Euler tour of the face-star tree
of such an embedding. For instance in figure 4 we exhibit a star embedding in which the attach-
ments are not all distinct. Here the attachmewbrresponds to the corners, ¢, B), (B, a, A),

(A,d,G) and G, e, 1). Thus, since our algorithm will maintain the face-star tree and not the star
graph, we need to maintain a list of corners that determine the beginning and end of each
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attachment vertex.

figure 4
A general star embedding with its face-star tree

Our parallel star coalescing algorithm is a divide-and-conquer algorithm that divides the set
of stars in half and recursively and in parallel finds the face-star tree for the coalesced graph in
each half, and then combines the two trees udiege-Treethe heart of the algorithm. We give
anO(log p) time p processor algorithm to merge the face-star trees of the two halves, pvisere
the total number of attachments in the two two coalesced graphs. This gi@¢egig) time q
processor algorithm for star coalescing.

The procedure Merge-Tree is substantially simplified if we first sort the original stars as fol-
lows. For a sta6 let left(S) andright(S) be the first and last attachmentsSdn P and letspan
of S be the closed intervaldft(S), right(S)]. We say a vertex on P is less than another vertex
on P if u appears beforg on P. We say that staf is before stalS' in the Euler orderif (1)
left(S) < left(S) or (2) left(S) = left(S) andright(S) > right(S). Note that in the star embedding,
the Euler order gives the sequence in which the stars first appear on the Euler tour.

We first sort the stars iIB(P) with respect to the Euler order @(log g) time usingq pro-
cessors [Co] (as a preprocessing step we coalesce all stars with the same span, -- note that any
such pair must interlace). By the following observation it is relatively easy to maintain the stars
in order even if they are being coalesced: If interlacing stars are coalesced, then the Euler order on
the new stars is obtained from the old Euler order by taking each interlacing class of stars and
associating it with the minimum numbered star in its class. Thus we can maintain the Euler order
throughout the computation without sorting.

The main procedure Merge-Tree has as input the face-starTreesl T' respectively, of
two star embedding&” (P) and G'*(P). By presorting, as defined above, we may also assume
that there is a poird such that every star iB(P) has a point of attachmentabr to its left, and
every star inG'(P) has all of its attachments ator to its right. The procedure returns with the
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face-star tree of the star embedding of the coalesced gr&ptPpf | G'(P). The procedure has
four steps which may be combined in a slightly more efficient algorithm, but for clarity, are best
viewed separately:

1) Determine which stars ih (T') interlace with the same starTn (T).
2) Coalesce all stars ih(T') that interlace with the same starTih(T).

3) For each pair of interlacing sté8sS, with SCIT andS [T, add the attachments 8fto the
right of ¢ to those ofS.

4)  Splice the tred@’ into the treeT.

To implement step 1 we start by determining those stars ihat interlace with the same
star inT. We use the fact that every s&mn T has an attachment ator to its left. Note that i§
is a star ifl’ that interlaces witts, thenS interlaces with the parent star 8f if it exists. Thus, if
S, -+, S are the stars that are the children of the rodt'p&ndS is a descendant &, thenS
must interlace with every star on the path fr8hto S in T'. Thus it suffices to find, for each
attachment of each st&rin T, the lowest level star ifi’ with which it interlaces. We can find this
star by determining in which corner ®f the attachment lies. We do this by merging the attach-
ments ofG(P) with those ofG'(P), either by sorting the points or by using a relatively simple
pointer jumping scheme. This step can be preformed in logarithmic time with a linear number of
processors.

To find the set of stars @f that interlace with a given star i, we note that the stars of
that interlace with some star T all lie on the rightmost path, sayin T, i.e., the path that starts
from the root and ends at the rightmost leaf. EachSstar T' interlaces with exactly those stars
in T that have an attachment in the spargofexcluding the endpoints; this corresponds to stars
on a single segment of Thus each star i’ can determine this segmentofn constant time
given our preprocessing.

We now have the set of starsTirthat must be coalesced and the set of stars that must
be coalesced. We do this coalescing in step 2. Clearly we can coalesce two neighboring stars in
constant time, since one star must be the parent of the other, or the two stars must be siblings.
Thus this step can be done@flog p) time with O(p) processors using either parallel tree con-
traction [MiRe] or the Euler tour technique on trees [TaVi].

At this point at most one star i can interlace with a given star Thand at most one star
in T can interlace with a star ifi". Let us call a star that currently interlaces with a star in the
other half, annterlacing star. The only interlacing stars ifi lie on the patfr, and the only inter-
lacing stars inT' are children of the root. In step 3 we add the attachments to the rightfof
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each interlacing star if to its mate inl" so that the interlacing stars T have their own attach-
ments as well as the attachments (to the righ)) of their mate inr .

Finally in step 4 we replace all subtrees to the rigld fofr each interlacing steé8in T with
all the subtrees of its magy in T'. This can be performed in constant time. On the other hand, if
S is a star inT' that does not interlace with any starTinthen it must lie in one of the faces
defined byT. In this case we attach the subtre&db this face.

This concludes the description of the algorithm to coalesce all interlacing stars in a star
graph withq edges imD(log? g) time usingO(q) processors. Since the total size of the ear graphs
of all nontrivial ears i$D(m) this gives an algorithm to find the coalesced graphs of all ear graphs

of G in O(log? n) time usingO(m) processors.

The face-star tree data structure now allows us to extract the candidate sets efficiently. For
each face vertex, the information available at its parent in the tree gives the leftmost Jertex
and rightmost vertex on P that belong to the facé. Similarly, the information at each child
vertexc gives an open interval. on P between andr that does not belong to fade The can-
didate set defined b is the set of vertices in the intervalf] excluding the vertices in the inter-
vals s;, wherec ranges over the children dfin the face-star tree. Thus the vertices on each face
in the star embedding of the coalesced graph can be obtained as a circular linked list in constant
time by having a processor at each vertex in the face-star tree. This gives the candidat® sets for

7. Finding Triconnected Components

We start by defining a special type of split, calleceansplit,on a biconnected graph with
an open ear decomposition. L&t be a biconnected graph with an open ear decomposition
D =[Pg,---,P,_1]. Leta,bbe a pair separating eBy. Let By, - - -, By be the bridges oP; with

an attachment iN;(a, b), and letT;(a, b) = (ﬁ Bj) [1 Pi(a, b). Itis easy to see thai(a,b) is a
=1

bridge of a,b. Then theear split €a,b,i) consists of forming theupper split graph
G; = Ti(a,b) L] {(a b,i)} and thelower split graph G = T;(a, b) L 1{(a, b,i)}. Note that the ear
splite(a, b, i) is a Tutte split if one o6, —{(a, b,i)} or G, —{(a, b,i)} is biconnected.

Let Sbe a nontrivial candidate set for @t A pair u, v in Sis anadjacent separating pair
for P; if u,v is a pair separatin; and S contains no vertex iv;(u,v). A paira,bin Sis an
extremal separating pair for;Hf Scontains no vertex iN;[a, b].

We now provehe following theorem.

Theorem 2 Let G=(V,E) be a biconnected graph with an open ear decomposition
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D =[Pq,---,P-1]. Let a, b be an adjacent (extremal) separating paifoin G, and letG; and
G, be, respectively, the upper and lower split graphs obtained by the eafait). Then,

a) G;-{(ab,i)}(G,—-{(a,b,i)}) is biconnected.

b) The ear decompositidn, induced byD on G, by replacingP; by the simple cycle formed
by P;(a, b) followed by the newly added edde, &,i) is a valid open ear decomposition for
Gy; likewise, the ear decompositidd, induced byD on G, by replacingP;(a, b) by the
newly added edgea(b, i) is a valid open ear decomposition &5.

c) Letc,d be a pair separating sorfe,0< j <r -1inG. If { c,d}#{a, b} or i#] thenc and
d lie in one ofG; or G,, andc, d is a separating pair fd?; in the split graph in which
P;,c, andd lie.

d) Every separating pair i@, or in G, is a separating pair iG.
Proof

a) Leta, b be an adjacent separating pair By If G — {(a, b,i)} is not biconnected then let
be a cutpoint in the graph. The vertegannot lie orP;(a, b) since this would imply that it is part
of the candidate set for which b is an adjacent separating pair. Butannot lie on a bridge of
P;(a, b) since therc would be a cutpoint d& and this would imply thab is not biconnected.

Similarly G, — {(a, b, i)} is biconnected ifa, b is an extremal separating pair.

b) We establish by induction on ear numbpefor j > i, that the grapliPy ; = m P\ satisfies the
k=0
property in part b) of the Theorem. The details are straightforward and are omitted.

c and d) Ifi#z] let P lie in G (wherek =1 or 2). We note that the ear graphRyfin Gy is the
same as the ear graphRfin G. Hencec, d is a pair separating; in G if and only if it is a pair
separating?; in Gy.

If i = j we note that irG, the bridges oP; are precisely those bridges®fin G that have
attachments on an internal vertexfa, b). Hence ifc andd lie on P;(a, b) thenc, d separates
P; in G if and only if it separateB;(a, b) in G;. An analogous argument holds 8 in the case
whenc andd lie on P;[a, b].[]

We now present the algorithm for finding triconnected components.

Algorithm 3 Finding Triconnected Components
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Input A biconnected grapls = (V, E) with an open ear decompositi@ =[Py, -- -, P,_4], and
the nontrivial candidate sets for each ear.
OutputThe triconnected components@f

1. For each nontrivial eaP; do
for each nontrivial candidate sgfor P; do

a) For each adjacent separating paiv in S form the upper split grapB8, for the ear split
e(u, v,i) and replacé& by the lower split grapks, for the ear splie(u, v,i). ReplaceD by
the ear decompositioD, for the lower split grapks, and form the open ear decomposition
D, for the upper split grapB, as in part b) of Theorem 2.

b) If |S] > 2,thenform the upper split grap, and replacés by the lower split grapks,

for the extremal separating pairv in S. Form the open ear decompositiddg and D, as
in Theorem 2 and replad2 by D,. (If i =0 and (1, v) is the base edge &f, then perform
this ear split only if there are at least two edges betwesTv.)

rof
rof;

2. Split off multiple edges in the remaining split graphs to form the bonds.

Lemma 10Algorithm 3 generates the Tutte component& of
Proof By Theorem 2, each split performed in Algorithm 3 is a Tutte split, and at termination there
is no separating pair in any of the generated graphs.[]

We now consider a parallel implementation of Algorithm 3. First consider one iteration of
the outer for loop in step 1: the algorithm performs all of the ear splits for a givéh isasuch
an iteration. By Theorem 2 these ear splits can be performed in any order. Consider a listing
L =[<ay, by >,---, <@, by >] of the adjacent pairs separatiRg with eacha; < b;, and with
the pairs sorted in nondecreasing order ofahéies being resolved in decreasing order oftthe
We number the corresponding ear splits in order as k. Each of these splits creates a new
connected graph, and hence after processing all of these splits we wilk kdveonnected
graphs. Let5; be the graph obtained from the upper split graph formed athtisglit (with possi-
bly some upper split graphs split off from it by later spliGy;is the initial graph with all of the
upper split graphs split off from it.

To determine the end result of performing step 1a on all nontrivial candidate set$pitear
suffices to determine for each edge incident on a vert&,ithe graphG; that contains it. For
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this we compute the bridges Bf. For each bridg® (it suffices to consider only bridges with an
internal attachment oR;) we compute its spara[b]. If there is no pair <,y >in L with x < a

andy = b then we assigB to Gy. Otherwise we associate wiBha pair <x,y > in L as follows.

If B has three or more attachments we find the last pajy<> in L with the propertyx < a and

y = b. If B has exactly two attachments therx,/ > is the last pair irL with the property that
eitherx<aandy=bor x<aandy>b. Let <x,y > be thejth pair inL. We assign the edges

in bridgeB to G;. A similar computation assigns each edgePpito the appropriat&; (we use

the criterion for bridges with 3 or more attachments). Using the definition of an ear split it is
straightforward to see that this computation assigns each edge to the @prréatally we place
virtual edges between adjacent separating pairs in@ackll of this computation can be per-
formed in logarithmic time with a linear number of processors using parallel algorithms for graph
connectivity [CV] and sorting [Co]. Step 1b can be performed with similar bounds in the same
manner.

In order to fully parallelize Algorithm 3 we need to perform thevattomputation in paral-
lel for several nontrivial ears. Since we need to look at the edges incident on each ear that we are
working with, we do not attempt to perform this computation for all ears in parallel, since an edge
could be incident on several ears. Instead we break up the computati@(logo) stages as
shown below.

In the first stage of the parallel algorithm we locate the meatitime ear, call itP;, where
anactive earis an ear having a nontrivial candidate set. Then we find the briddas ef(the
union of earsPy to P;_1), and in each bridge we locate the smallest-numbered active ear. Let
P

these ears b®; = P -+, P;,. We compute the bridges of these ears by computing the

igr gy’

bridges ofH = m Pi;.
j=0

Let Lo be the lower split graph that remains when all of the ear splits for the ears
Pi,, j =0,---,1 have been performed. The grapfcontains the grapRy;_;. Since each of the
Pi, lies in a different bridge oPg;_; it follows that any bridge oH that has an internal attach-
ment on more than one of tlﬁej must be contained ihy. Hence, in order to perform the paral-
lel implementation of step 1 o, we only need to work with those edges incident on a vertex
contained inP;, that either lie orP;, or belong to a bridge dfl that contains internal attachments
only on Pi;. We perform this computation in parallel for eaarjn, j=0,---,1. At this point we
have a collection of split graphs, and by Theorem 2, the number of active ears in any of them is at
most half the number of active ears in the original graph. We now recursively apply the above
step in each of the split graphs, and inflagages we will be done. This gives@log? m) time
algorithm withO(m) processors to find the triconnected components.
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We also note that Algorithm 3 can be easily modified to obtain the tree of 3-connected com-
ponents (or ‘auxiliary graph’ [HoTa2]) with the same time and processor bounds. For this we
construct the tree of triconnected components by introducing a vertex for each copy of edge
(a,b,i) added at a split and we place an edge between each pair of vertices whose edges were
added at the same ear split. At the end of the algorithm, we identify, for each vertex in this auxil-
iary graph, the triconnected component in which it lies and we replace all vertices corresponding
to the same triconnected component by a single vertex representing that component.
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