
In COMBINATORICA, vol. 12, 1992, pp. 53-76. (Figures not yet included in this file.)

A New Graph Triconnectivity Algorithm and Its Parallelization*

Gary L. Miller†

University of Southern California, Los Angeles, CA 90089

Vijaya Ramachandran‡

University of Texas, Austin, TX 78712

(Revised November 1990)

ABSTRACT

We present a new algorithm for finding the triconnected components of an

undirected graph. The algorithm is based on a method of searching graphs called

‘open ear decomposition’. A parallel implementation of the algorithm on a

CRCW PRAM runs inO(log2 n) parallel time usingO(n + m) processors, where

n is the number of vertices andm is the number of edges in the graph.

*A preliminary version of this paper was presented at the19th Annual ACM Symposium on Theory of Computing,New
York, NY, May 1987.
† Supported by NSF Grant DCR 8514961.
‡ Supported by NSF Grant ECS 8404866 and the Semiconductor Research Corporation Grant 86-12-109.

- 2 -

1. Introduction

An open ear decomposition[Wh, Lo] of an undirected graph is a partition of its edge set

into an ordered collection of paths calledearsthat satisfy certain properties. In this paper we pre-

sent an efficient parallel algorithm based on open ear decomposition for testing vertex triconnec-

tivity of an undirected graph and for finding the triconnected components of the graph. Our algo-

rithm runs inO(log2(n + m)) parallel time usingO(n + m) processors on a CRCW PRAM, where

n is the number of vertices in the graph andm is the number of edges. A sequential linear-time

algorithm for the problem is available in Hopcroft & Tarjan [HoTa], but it is based on depth first

search, and is not known to be efficiently parallelizable. Finding triconnected components of a

graph is important in determining the connectivity structure of the graph and is useful in algo-

rithms for determining planarity and for determining if two planar graphs are isomorphic.

Parallel NC algorithms for testing triconnectivity and for finding triconnected components

are reported in Ja’Ja’ & Simon [JaSi] and Miller & Reif [MiRe] but neither match our processor

bound for general graphs. Ja’Ja’ & Simon [JaSi] give an NC algorithm for finding triconnected

components usingM(n) processors, whereM(n) is the number of processors needed to multiply

two nxn matrices in polylog(n) time; currentlyM(n) = O(n2.376). Miller & Reif [MiRe] present

another algorithm for the problem that runs inO(log n) time on a CRCW PRAM withnO(1) pro-

cessors. In contrast to these results we present an NC algorithm for the problem that uses only a

linear number of processors. In particular, ours is the first efficient parallel algorithm for graph

triconnectivity (see section 2 for the definition of an ‘efficient parallel algorithm’). Our algorithm

uses an efficient parallel algorithm for finding an open ear decomposition that we developed ear-

lier in Miller & Ramachandran [MiRa] (see also [MaScVi]). More recently, building on the

results we present, Ramachandran & Vishkin [RaVi] have obtained an efficient parallel triconnec-

tivity algorithm that runs in logarithmic time. Also, Kanevsky & Ramachandran [KanRa] have

used open ear decomposition to obtain better sequential and parallel algorithms for graph four

connectivity.

The rest of the paper is organized as follows. Section 2 provides a brief overview of the

PRAM model. Section 3 gives graph-theoretic definitions; we warn the reader that there are a

large number of definitions in this section. Section 4 gives a brief description of the main techni-

cal results leading to our triconnectivity algorithm. Section 5 establishes these results and section

6 giv es an efficient implementation of the algorithm developed in section 5. Finally, section 7

extends these results to obtain an algorithm for finding the triconnected components of an input

graph.

- 3 -

2. Model of Parallel Computation

The model of parallel computation that we will be using is thePRAMmodel, which consists

of several independent sequential processors, each with its own private memory, communicating

with one another through a global memory. In one unit of time, each processor can read one

global or local memory location, execute a single RAM operation, and write into one global or

local memory location.

PRAMs are classified according to restrictions on global memory access. An EREW PRAM

is a PRAM for which simultaneous access to any memory location by different processors is for-

bidden for both reading and writing. In a CREW PRAM simultaneous reads are allowed but no

simultaneous writes. A CRCW PRAM allows simultaneous reads and writes. In this case we have

to specify how to resolve write conflicts. We will use the ARBITRARY model in which any one

processor participating in a concurrent write may succeed, and the algorithm should work cor-

rectly regardless of which one succeeds. Of the three PRAM models we have listed, the EREW

model is the most restrictive, and the ARBITRARY CRCW model is the most powerful. Any

algorithm for the ARBITRARY CRCW PRAM that runs in parallel timeT using P processors

can be simulated by an EREW PRAM (and hence by a CREW PRAM) in parallel timeT log P

using the same number of processors,P (see, e.g., [KarRa]).

Let S be a problem which, on an input of sizen, can be solved on a PRAM by a parallel

algorithm in parallel timet(n) with p(n) processors. The quantityw(n) = t(n) ⋅ p(n) represents

the work done by the parallel algorithm. Any PRAM algorithm that performs workw(n) can be

converted into a sequential algorithm running in timew(n) by having a single processor simulate

each parallel step of the PRAM inp(n) time units. More generally, a PRAM algorithm that runs

in parallel timet(n) with p(n) processors also represents a PRAM algorithm performingO(w(n))

work for any processor countP < p(n).

Define polylog(n) =
k>0
∪ O(logk n). Let S be a problem for which currently the best sequen-

tial algorithm runs in timeT(n). A PRAM algorithmA for S, running in parallel timet(n) with

p(n) processors isefficientif

a) t(n) = polylog(n); and

b) the workw(n) = p(n) ⋅ t(n) is T(n) ⋅ polylog(n).

An efficient parallel algorithm is one that achieves a high degree of parallelism and comes

to within a polylog factor of optimal speed-up with respect to the current best sequential algo-

rithm. A major goal in the design of parallel algorithms is to find efficient algorithms witht(n) as

small as possible. The simulations between the various PRAM models make the notion of an

- 4 -

efficient algorithm invariant with respect to the particular PRAM model used.

For the problem of testing triconnectivity and finding the triconnected components of a

graph, the fastest sequential algorithm currently known runs inO(m + n) time [HoTa], and this is

also the best possible to within a constant factor. Hence the efficient parallel algorithm that we

develop in this paper for this problem is the best possible, to within a polylog factor.

For more on the PRAM model and PRAM algorithms, see [KarRa].

3. Graph-theoretic Definitions

An undirected graph G= (V, E) consists of avertex set Vand anedge set Econtaining

unordered pairs of distinct elements fromV. A path P in G is a sequence of vertices

< v0, . . . , vk > such that (vi−1, vi)∈E, i = 1,. . . , k. The pathP containsthe verticesv0, . . . , vk and

the edges (v0, v1), . . . , (vk−1, vk) and hasendpoints v0, vk, andinternal vertices v1, . . . , vk−1. The

pathP is asimple pathif v0, . . . , vk−1 are distinct andv1, . . . , vk are distinct.P is asimple cycleif

it is a simple path andv0 = vk. Verticesvi andv j areadjacenton P if i = j + 1 or j = i + 1 and

arenonadjacentotherwise.

We will sometimes specify a graphG structurally without explicitly defining its vertex and

edge sets. In such cases,V(G) will denote the vertex set ofG andE(G) will denote the edge set

of G.

Let P =< v0, . . . , vk−1 > be a simple path. The pathP(vi , v j), 0 ≤ i , j ≤ k − 1 is the simple

path connectingvi and v j in P, i.e., the path <vi , vi+1, . . . , v j >, if i ≤ j or the path

< v j , v j+1, . . . , vi >, if j < i . Analogously, P[vi , v j] consists of the path (segments) obtained

when the edges and internal vertices ofP(vi , v j) are deleted fromP.

An ear decomposition[Lo,Wh] D = [P0, . . . , Pr−1] of an undirected graphG = (V, E) is a

partition of E into an ordered collection of edge disjoint simple pathsP0, . . . , Pr−1 calledears,

such thatP0 is a simple cycle and fori > 0, Pi is a simple path (possibly a simple cycle) with

each endpoint contained in a smaller numbered ear, and with no internal vertices contained in

smaller number ears.D is anopen ear decompositionif none of thePi , i = 1,. . . , r − 1 is a simple

cycle. Atrivial ear is an ear containing a single edge.

Let D = [P0, . . . , Pr−1] be an ear decomposition for a graphG = (V, E). For a vertexv in V,

we denote byear(v), the index of the lowest-numbered ear that containsv; for an edgee in E, we

denote byear(e), the index of the unique ear that containse. A vertexv will belong to Pear(v).

A graphG′ = (V′, E′) is a subgraphof a graphG = (V, E) if V′⊆V and E′⊆E. The sub-

graph of G induced by V′ is the graphG′′ = (V′, E′′) whereE′′ = E ∩ {(vi , v j)|vi , v j ∈V′}.

- 5 -

An undirected graphG = (V, E) is connected if there exists a path between every pair of

vertices inV. For a graphG that is not connected, aconnected componentof G is a maximal

induced subgraph ofG which is connected.

A vertex v∈V is a cutpoint of a connected undirected graphG = (V, E) if the subgraph

induced byV −{ v} is not connected.G is biconnectedif it contains no cutpoint. Abiconnected

componentof G is a maximal induced subgraph ofG which is biconnected.

Let G = (V, E) be a biconnected undirected graph. A pair of verticesv1, v2∈V is aseparat-

ing pair for G if the induced subgraph onV −{ v1, v2} is not connected.G is triconnectedif it

contains no separating pair. We definetriconnected componentsat the end of this section.

Let G = (V, E) be a biconnected graph, and letQ be a subgraph ofG. We define the

bridges of Q in Gas follows (see, e.g., [Ev]): LetV′ be the vertices inG − Q, and consider the

partition ofV′ into classes such that two vertices are in the same class if and only if there is a path

connecting them which does not use any vertex ofQ. Each such classK defines anontrivial

bridge B= (VB, EB) of Q, whereB is the subgraph ofG with VB = K ∪ {vertices ofQ that are

connected by an edge to a vertex inK }, and EB containing the edges ofG incident on a vertex in

K . The vertices ofQ which are connected by an edge to a vertex inK are called theattachments

of B on Q; the connecting edges are called theattachment edges.An edge (u, v) in G − Q, with

bothu andv in Q, is a trivial bridge of Q, with attachmentsu andv, and attachment edge (u, v).

The nontrivial and trivial bridges ofQ together form thebridgesof Q. The operation ofremoving

a bridge B of Q from Gis the removal fromG of all edges and nonattachment vertices ofB.

Let G = (V, E) be a biconnected graph, and letQ be a subgraph ofG. We define thebridge

graph of Q, S= (VS, ES) as follows: Let the bridges ofQ in G be Bi , i = 1,. . . , k. Then

VS = V(Q) ∪{ B1, . . . , Bk} and ES = E(Q) ∪{(v, Bi)|v∈V(Q), 1 ≤ i ≤ k, andv is an attachment

of Bi }.

Let G = (V, E) be a biconnected graph with an open ear decompositionD = [P0, . . . , Pr−1].

We will denote the bridge graph of earPi by Ci . An internal attachment on Pi is an edge of

G − Pi that is incident on a vertex ofPi other than its endpoints. Let the bridges ofPi in G that

contain nonattachment vertices belonging to ears numbered lower thani be B1, . . . , Bl . We shall

call these theanchor bridgesof Pi . For any two verticesx, y on Pi , we denote byVi (x, y), the

internal vertices ofPi (x, y), i.e., the vertices inPi (x, y) −{ x, y}; we denote byVi [x, y], the ver-

tices inPi [x, y] −{ x, y} together with the nonattachment vertices in the anchor bridges ofPi . For

ear P0, we pick an edge (u, v) on P0 as thebase edgeof P0. For a pair of verticesa, b on P0,

V0(a, b) will be the vertices on the path froma to b on P0 that avoids the base edge (u, v), exclud-

ing verticesa andb, andV0[a, b] will be the vertices on the path betweena andb that contains

- 6 -

(u, v), excludinga andb.

Figure 1 illustrates some of our definitions relating to bridges.

Let G = (V, E) be a graph and letP be a simple path inG. If each bridge ofP in G contains

exactly one vertex not onP, then we callG the star graph of Pand denote it byG(P). We

denote the bridges ofG(P) by stars,i.e., astar is a connected graph in which at most one vertex

has degree greater than 1. The unique vertex of a star that is not contained inP is called itscen-

ter. Note that, in a connected graphG, the bridge graph of any simple path inG is a star graph.

We will sometimes refer to a star graphG(P) by G if the pathP is clear from the context.

Tw o starsSj andSk in a star graphG(P) interlace(see, e.g., [Ev, p. 149]) if one of follow-

ing two hold:

1) There exist four distinct verticesa, b, c, d in increasing order onP such thata andc belong

to Sj (Sk) andb andd belong toSk(Sj); or

2) There are three distinct vertices onP that belong to bothSj andSk.

The operation ofcoalescingtwo starsSj andSk is the process of forming a single new star

Sl from Sj andSk by combining the centers ofSj andSk, and deletingSj andSk. Giv en a star

graphG(P), acoalesced graph Gc of G is the graph obtained fromG by repeatedly coalescing a

pair of interlacing stars in the current graph until no pair of stars interlace; apartially coalesced

graphof G is any graph obtained fromG by performing this repeated coalescing at least once.

A planar embeddingof a graphG is a mapping of each vertex ofG to a distinct point on the

plane and each edge ofG to a curve connecting its endpoints such that no two edges intersect. A

faceof a planar embedding is a maximal region of the plane that is bounded by edges of the pla-

nar embedding. Theouter faceof a planar embedding is the face with unbounded area. Aninner

faceof a planar embedding is a face with finite area.

Let G(P) be a star graph in which no pair of stars interlace. IfP is not a simple cycle and if

G(P) contains no star that has attachments to the endpointsx andy of P, then add a virtual starX

to G(P) with attachments tox andy. Thestar embedding G* (P) of G(P) is the planar embedding

of (the possibly augmented)G(P) with P on the outer face. (A star graphG(P) has a planar

embedding withP on the outer face if and only if no pair of stars interlace (see, e.g., [Ev, p.

150]).)

Let G be a biconnected graph with an open ear decompositionD = [P0, . . . , Pr−1]. Let

B1, . . . , Bl be the anchor bridges of earPi . Theear graph of Pi , denoted byGi (Pi), is the graph

obtained from the bridge graph ofPi by a) coalescing all stars corresponding to anchor bridges;

and b) removing any two-attachment bridge with the endpoints of the ear as attachments. We will

- 7 -

G with open ear decompositionD = [P0,P1,P2, P3, P4]; P0 =< a, b, c, d, e, a >,

P1 =< c, g, f , e >, P2 = < d, f >, P3 =< g, h, f >, P4 =< c, i , e >.

Bridges ofP1.

Bridge graph ofP1.

Ear graphG1.

figure 1

Illustrating the definitions

call the star obtained by coalescing all anchor bridges, theanchoring starof Gi (Pi). Figure 1

gives an example of an ear graph.

- 8 -

We conclude our list of definitions by defining thetriconnected componentsof a bicon-

nected graph (see, e.g., [Tu, HoTa2]). Amultigraph G= (V, E) is an undirected graph in which

there can be several edges between the same pair of vertices. An edgee in a multigraph is

denoted by (a, b, i) to indicate that it is thei th edge betweena andb; the third entry in the triplet

may be omitted for one of the edges betweena andb.

A pair of verticesa, b in a multigraphG = (V, E) is a separating pair if and only if there are

two nontrivial bridges, or at least three bridges, one of which is nontrivial, of {a, b} in G. If G

has no separating pairs thenG is triconnected. The paira, b is anontrivial separating pair if there

are two nontrivial bridges ofa, b in G.

Let {a, b} be a separating pair for a biconnected multigraphG = (V, E). For any bridgeX

of { a, b}, let X be the induced subgraph ofG on (V − V(X)) ∪ { a, b}. Let B be a bridge of

{ a, b} such that |E(B)| ≥ 2, |E(B)| ≥ 2 and eitherB or B is biconnected. We can apply aTutte split

s(a, b, i) to G by forming G1 and G2 from G, where G1 is B∪{(a, b, i)} and G2 is

B∪{(a, b, i)}. The graphsG1 andG2 are calledsplit graphs of G with respect to a, b. TheTutte

componentsof G are obtained by successively applying a Tutte split to split graphs until no Tutte

split is possible. Every Tutte component is one of three types: i) a triconnected simple graph; ii) a

simple cycle (apolygon);or iii) a pair of vertices with at least three edges between them (abond);

the Tutte components of a biconnected multigraphG are the uniquetriconnected componentsof

G.

4. Brief Overview of Results

In this section we give a high-level description of the results leading to our triconnectivity

algorithm. Given a biconnected graph, our algorithm finds all separating pairs in the graph. The

input graph is triconnected if and only if the algorithm finds no separating pair in the graph.

In the next section we show that ifx, y is a separating pair in a biconnected graphG with an

open ear decompositionD, then there exists an earPi in D that containsx and y as nonadjacent

vertices, and further, every bridge ofPi has an empty intersection with eitherVi (x, y) or Vi [x, y].

This is the basic property that we use in our algorithm.

We further show that the above property is not altered by the operation of coalescing inter-

lacing stars in the bridge graphCi (Pi) and thus applies to the ear graph ofPi as well as its coa-

lesced graph. Finally we show that separating pairs satisfying the basic property with respect to

Pi are simply those pairs of nonadjacent vertices onPi that lie on a common face in the star

embedding of this coalesced graph.

- 9 -

The above results lead to the following high-level algorithm for finding separating pairs in a

biconnected graphG: Find an open ear decompositionD for G and for each earPi in D, form the

coalesced graph of its ear graph and extract separating pairs from its star embedding. Section 6

provides an efficient parallel implementation for each step in the algorithm (with the exception of

the construction of an open ear decomposition, for which an efficient parallel algorithm can be

found in Miller & Ramachandran [MiRa] or Maon, Schieber & Vishkin [MaScVi]).

Section 7 builds on these results to give an efficient parallel algorithm to find the tricon-

nected components of a graph. We find the triconnected components using Tutte splits in contrast

to the earlier algorithm based on depth first search [HoTa].

5. Ear Decomposition and Triconnectivity

Lemma 1 [Wh] An undirected graph has an open ear decomposition if and only if it is bicon-

nected.

Lemma 2Let D = [P0, . . . , Pr−1] be an open ear decomposition of a biconnected graphG and let

x andy be the endpoints of earPi . Then every anchor bridge ofPi has attachments onx andy.

Proof Let B be an anchor bridge ofPi and letH =
i−1

j=0
∪ Pj . By definition, the nonattachment ver-

tices in B are the vertices in a connected componentC of G −{ Pi } that contains a vertex in

H −{ x, y}.

The graph (H −{ x, y}) ∩ Pi is empty since none of the internal vertices ofPi are contained

in ears numbered lower thani . HenceC must contain all vertices in one or more connected com-

ponent(s) ofH −{ x, y}. Let D be one such connected component contained inC. SinceH has an

open ear decomposition, it is biconnected by Lemma 1. HenceD contains vertices adjacent tox

andy in H , since otherwisex or y would be a cutpoint ofH . But this implies thatC contains ver-

tices adjacent tox andy in G −{ Pi }, i.e., bridgeB of Pi has attachments onx andy.[]

Lemma 3 Let G = (V, E) be a biconnected undirected graph for which verticesx and y form a

separating pair. LetD be an open ear decomposition forG. Then there exists an earPi in D that

containsx andy as nonadjacent vertices, such that every path from a vertex inVi (x, y) to a vertex

in Vi [x, y] in G passes through eitherx or y.

Proof Sincex and y form a separating pair, the subgraph ofG induced byV −{ x, y} contains at

least two connected components. LetX1 andX2 be two such connected components.

Case 1The first earP0 contains no vertex inX2 (see figure 2):

- 10 -

figure 2

Case 1 in the proof of Lemma 3

Consider the lowest-numbered ear,Pi , that contains a vertexv in X2. Since the endpoints of

Pi are distinct and must be contained in ears numbered lower thani , Pi must containx and y.

Further, all vertices inVi (x, y) lie in X2, and none of the vertices inVi [x, y] lie in X2. Hence

ev ery path from a vertex inVi (x, y) to a vertex inVi [x, y] in G passes through eitherx or y. Fur-

ther,x andy are not adjacent onPi sincev lies betweenx andy.

Case 2 P0 contains a vertex inX2:

If P0 contains no vertex inX1, then case 1 applies toX1. OtherwiseP0 contains at least one

vertex fromX1, and one vertex fromX2. But then, sinceP0 is a simple cycle, it must containx

and y, and again (by the argument of Case 1), every path from a vertex inV0(x, y) to a vertex in

V0[x, y] must contain eitherx or y, andx andy are not adjacent onP0.[]

We will say that a separating pairx, y separatesearPi if x and y are nonadjacent vertices

on Pi , and the vertices inVi (x, y) are disconnected from the vertices inVi [x, y] in the subgraph of

G induced byV − { x, y}. By Lemma 3, every separating pair inG separates some nontrivial ear.

(Note that a separating pair may separate more than one nontrivial ear; for instance, in the graph

G in figure 1, the pairc, e is a pair separating earsP0 andP4).

Lemma 4 Let G = (V, E) be a biconnected graph with an open ear decomposition

D = [P0, . . . , Pr−1]. Let earPi containx andy as nonadjacent vertices. Thenx, y separatesPi if

and only if every bridge ofPi has an empty intersection with eitherVi (x, y) or Vi [x, y].

Proof Let every bridge ofPi have an empty intersection with eitherVi (x, y) or Vi [x, y] and sup-

posex, y does not separate earPi . Hence, there exists a pathP =< a, w1, . . . , wl , b > in G, with

a in Vi (x, y) andb in Vi [x, y], that avoids bothx andy. This implies that there is a subpathP′ of

P with P′ =< wr , . . . , ws > such thatwr is in Vi (x, y), ws is in Vi [x, y], and none of the interme-

diatewk lie on Pi . Hence there is a bridgeB of Pi containingwr andws, i.e., B has a nonempty

- 11 -

intersection with bothVi (x, y) and Vi [x, y], which is not possible by assumption. Hencex, y

must separate earPi .

Conversely supposeB is a bridge ofPi containing a vertexa in Vi (x, y) and a vertexb in

Vi [x, y]. Then we have a path from a vertex inVi (x, y) to a vertex inVi [x, y] that avoids bothx

andy. Hencex, y does not separatePi .[]

Corollary to Lemma 4 Let x andy be the endpoints of a nontrivial earPi in an open ear decom-

positionD of a graphG. Thenx, y separatesPi if and only if no anchor bridge ofPi has an inter-

nal attachment onPi .

Proof Let x, y separatePi . By Lemma 4, every bridge ofPi has an empty intersection with either

Vi (x, y) or Vi [x, y]. Since any anchor bridge ofPi has a nonempty intersection withVi [x, y],

ev ery anchor bridge must have an empty intersection withVi (x, y). Hence no anchor bridge can

have an internal attachment onPi .

Conversely, suppose no anchor bridge ofPi has an internal attachment onPi . Then every

anchor bridge has an empty intersection withVi (x, y). Sincex and y are endpoints ofPi , every

nonanchor bridge has an empty intersection withVi [x, y]. Hence by Lemma 4,x, y separates

Pi .[]

We will call a pair of verticesx, y on an earPi a candidate pair for Pi if x, y is a pair sepa-

rating Pi or (x, y) is an edge inPi or x andy are endpoints ofPi (i > 0). Clearly, if we can deter-

mine the set of candidate pairs forPi , we can extract from it the pairs separatingPi by deleting

pairs that are endpoints of an edge inPi , and checking if the endpoints ofPi form a pair separat-

ing Pi using the criterion in the above Corollary.

More generally, letG(P) be a star graph. A pair of nonadjacent verticesx, y on P will be

called apair separating Pif the vertices inP(x, y) −{ x, y} are separated from the vertices in

P[x, y] −{ x, y} when x and y are deleted fromG. A pair of verticesx, y on P will be called a

candidate pairfor P in G if x, y is a pair separatingP, or x andy are endpoints ofP, or (x, y) is

an edge inP.

The proof of the following claim is similar to the proof of Lemma 4 and is omitted.

Claim 1 Let G(P) be a star graph. A pairx, y separatesP in G(P) if and only if every bridge ofP

in G(P) has an empty intersection with eitherP(x, y) −{ x, y} or P[x, y] −{ x, y}.

We now relate candidate pairs forPi in G with candidate pairs forPi in its bridge graph

Ci (Pi).

- 12 -

Observation 1 Let G = (V, E) be a biconnected graph with an open ear decomposition

D = [P0, . . . , Pr−1]. Then x, y is a candidate pair forPi in G if and only if it is a candidate pair

for Pi in the bridge graphCi (Pi).

Proof If (x, y) is an edge inPi or if x and y are endpoints ofPi , thenx, y is a candidate pair for

Pi in bothG andCi (Pi). So in the following we assume thatx, y separatesPi andx andy are not

both endpoints ofPi .

Let x, y separatePi in G. By Lemma 4 every bridge ofPi in G has an empty intersection

either with Vi (x, y) -- and hence withPi (x, y) −{ x, y} -- or with Vi [x, y] -- and hence with

Pi [x, y] −{ x, y}. By construction this implies that every bridge ofPi in Ci (Pi) has an empty

intersection either withPi (x, y) −{ x, y} or with Pi [x, y] −{ x, y}. Hence by Claim 1,x, y sepa-

ratesPi in Ci (Pi).

Conversely, letx, y separatePi in Ci (Pi). By Claim 1, every bridge ofPi in Ci (Pi) has an

empty intersection either withPi (x, y) −{ x, y} or with Pi [x, y] −{ x, y}. Let B1, . . . , Bk be the

bridges ofPi in Ci (Pi) corresponding to the anchor bridges ofPi in G. By Lemma 2, eachBj has

attachments to the two endpointse and f of Pi and by assumption eithere or f is distinct fromx

and y. Assume without loss of generality thate is different fromx and y. The vertexe is in

Pi [x, y] −{ x, y} and eachBj , j = 1,. . . , k has an attachment one. Hence eachBj has a nonempty

intersection with Pi [x, y] −{ x, y} and therefore must have an empty intersection with

Pi (x, y) −{ x, y}.

The above implies that every anchor bridge ofPi in G has an empty intersection with

Vi (x, y) and every nonanchor bridge has an empty intersection either withVi (x, y) or with

Vi [x, y]. Hence, by Lemma 4,x, y separatesPi in G.[]

By the above Observation we can work with the bridge graph of each ear in order to find the

candidate pairs for that ear inG. We now dev elop results that will lead to an efficient algorithm to

find candidate pairs in a star graph.

Lemma 5Let G(P) be a star graph with starsS1, . . . , Sk. For j = 1,. . . , k let H j be the subgraph

of G consisting ofP∪ Sj and letH j
* be the star embedding ofH j . Then a pair of verticesx, y

on P is a candidate pair forP if and only if eitherx andy are the endpoints ofP or x andy lie on

a common inner face in eachH j
* , j = 1,. . . , k.

Proof Let x, y be a candidate pair forP. If x andy are the endpoints ofP then the result follows.

If (x, y) is an edge onP then x and y must lie on a common inner face in eachH j
* . Otherwise,

by Claim 1, eachSj has an empty intersection with eitherP(x, y) −{ x, y} or P[x, y] −{ x, y}.

If Sj has an empty intersection withP[x, y] −{ x, y} then x andy belong to the unique inner

face ofH *
j that contains the endpoints ofP. If Sj has an empty intersection withP(x, y) −{ x, y},

- 13 -

let < a1, . . . , al > be the attachments ofSj on P in the order that they are encountered onP from

one endpoint ofP to the other. The verticesx and y must lie betweenap and ap+1, for some

1 ≤ p < k. Thenx andy lie on the unique inner face ofH j
* containingap andap+1.

If x, y is not a candidate pair forP, then by Claim 1 there exists a starSj with an attach-

ment a in P[x, y] −{ x, y} and an attachmentb in P(x, y) −{ x, y}. Then, one ofx and y, say x,

lies in P(a, b) −{ a, b} and the other,y, lies in P[a, b] −{ a, b}. Then x lies on the unique inner

face containinga andb in H *
j andy does not lies on this face.[]

Corollary to Lemma 5 If G* is the star embedding ofG(P), then a pair of verticesx, y on P is a

candidate pair forP if and only if eitherx and y are the endpoints ofP or x and y lie on a com-

mon inner face inG* .

In general, this corollary may not apply, becauseG(P) need not be planar. We now intro-

duce the star coalescing property: namely, we establish that if we enforce the planarity required in

the corollary by forming a coalesced graphGc of G(P) then the corollary applies toGc.

We observe here that the coalesced graphGc(P) of a star graphG(P) is unique. We omit the

proof of this result because it is fairly straightforward but tedious. Further we do not exploit this

uniqueness in the following except that we refer toGc as ‘the’ coalesced graph ofG (rather than

‘any’ coalesced graph ofG).

Theorem 1Let G(P) be a star graph and letG1(P) be obtained fromG(P) by coalescing a pair of

interlacing starsS andT. Then a pairx, y on P is a candidate pair forG(P) if and only if it is a

candidate pair forG1(P).

ProofLet R be the star inG1(P) formed by coalescingS andT.

If (x, y) is an edge onP or if x and y are endpoints ofP then x, y is a candidate pair for

bothG(P) andG1(P).

Let x, y separateP in G(P). Hence S and T have an empty intersection with either

P(x, y) −{ x, y} or P[x, y] −{ x, y}. Since S andT interlace, either both have empty intersection

with P(x, y) −{ x, y} or both have empty intersection withP[x, y] −{ x, y}. HenceR, which con-

tains the union of the attachments ofS and T must have an empty intersection with either

P(x, y) −{ x, y} or with P[x, y] −{ x, y}. Hence by Claim 1,x, y separatesP in G1(P).

Conversely supposex, y separatesP in G1(P) and letR have an empty intersection with

P(x, y) −{ x, y} (P[x, y] −{ x, y}). Then both S and T have an empty intersection with

P(x, y) −{ x, y} (P[x, y] −{ x, y}) and hencex, y separatesP in G(P) by Claim 1.[]

- 14 -

Corollary to Theorem 1 Let G(P) be a star graph.

a) LetG′(P) be any partially coalesced graph ofG(P). Thenx, y is a candidate pair forG(P)

if and only if it is a candidate pair forG′(P).

b) A pair x, y is a candidate pair forG(P) if and only if it is a candidate pair for the coalesced

graphGc(P).

Let G(P) be a star graph and letGc(P) be its coalesced graph. Since no pair of bridges ofP

interlace inGc(P), Lemma 5 and its Corollary apply to this graph. Let us refer to the set of ver-

tices onP that lie on a common inner face inGc
* as acandidate set for P. A pair of vertices is a

candidate pair forP if and only if it lies in a candidate set forP. A candidate setS for earP is a

nontrivial candidate setif it contains a pair separatingP.

Let G be a biconnected graph with an open ear decompositionD = [P0, . . . , Pr−1]. Since

ev ery separating pair forG is a candidate pair for some nontrivial earPi (Lemma 3), any algo-

rithm that determines the candidate sets for all nontrivial ears is an algorithm that finds all sepa-

rating pairs for a graph. By the results we have proved above, we can find all candidate sets inG

by forming the bridge graph for each nontrivial ear, and then extracting the nontrivial candidate

sets from the coalesced graph of the bridge graph.

In order to obtain an efficient implementation of this algorithm, we will not use the bridge

graph of each ear, but instead the closely related ear graph which we defined in section 3.

Lemma 6 A pair of verticesx, y separates earPi in G if and only if it separatesPi in the ear

graphGi (Pi).

Proof By Claim 1, x, y separates earPi in G if and only if it separatesPi in the bridge graph

Ci (Pi).

Now consider the ear graphGi (Pi). The ear graphGi (Pi) is obtained from the bridge graph

Ci (Pi) by coalescing all anchor bridges, and deleting multiple two-attachment bridges with the

endpoints of the ear as attachments.

Deleting a star with attachments only to the endpoints of an ear can neither create nor

destroy candidate pairs. LetC′i (Pi) = Ci (Pi) −{2-attachment bridges with endpoints ofPi as

attachments}.

By Lemma 2, every anchor bridge ofPi has the two endpoints ofPi as attachments, and

hence every pair of anchor bridges with an internal attachment onPi must interlace. Hence

Gi (Pi) is the graph derived fromC′i (Pi) by coalescing some interlacing stars. The lemma now fol-

lows from the Corollary to Theorem 1.[]

- 15 -

Lemma 7 Let G = (V, E) be a biconnected graph with an open ear decomposition

D = [P0, . . . , Pr−1], and let |V| = n and |E| = m. Then the total size of the ear graphs of all non-

trivial ears inD is O(m).

Proof Each ear graph consists of a nontrivial earPi together with a collection of stars onPi . The

size of all of thePi is O(m). So we only need to bound the size of all of the stars in all of the ear

graphs.

Consider an edge (u, v) in G. This edge appears as an internal attachment edge in at most

two ear graphs: once for the earPear(u) and once for earPear(v). Thus the number of internal

attachment edges in all of the stars is no more than 2m.

We now bound the number of attachment edges to endpoints of ears. Since we delete all

stars with only the endpoints of an ear as attachments, every star in an ear graphGi (Pi) with an

attachment to an endpoint ofPi also has an internal attachment inPi . A star can contain at most

two attachments to endpoints of an ear. Hence for each star that contains attachments to end-

points of its ear, we charge these attachments to an internal attachment. Since the number of inter-

nal attachment edges is no more than 2m, the number of attachment edges to endpoints of ears is

no more than 4m. Hence the total size of all of the ear graphs isO(m).[]

The above results establish the validity of the following algorithm to find the nontrivial can-

didate sets in a biconnected graph.

Algorithm 1 Finding the Nontrivial Candidate Sets

InputA biconnected graphG = (V, E).

1. Find an open ear decompositionD = [P0, . . . , Pr−1] for G.

2. For each nontrivial earPj do

A) Construct the ear graphGj (Pj).

B) Coalesce all interlacing stars onGj (Pj) to form the coalesced graphGjc
. Construct the star

embedding ofGjc

* of Gjc
, and identify each set of vertices onPj on a common inner face

in this embedding as a candidate set.

C) If j > 0 let the endpoints ofPj be u and v elselet (u, v) be the base edge ofP0. If the

anchoring star ofPj has an internal attachment onPj , or if j = 0 then delete the candidate

set {u, v}, if it exists.

D) Delete any doubleton candidate set forPj that contains the endpoints of an edge inPj .

- 16 -

rof;

Let |V| = n and |E| = m. Step 1 has anO(log m) time parallel algorithm withO(m) proces-

sors on a CRCW PRAM [MaScVi, MiRa]. In the next section, we give anO(log2 m) time paral-

lel algorithm on a CRCW PRAM with a linear number of processors for steps 2A and 2B. Clearly

steps 2C and 2D are trivial to implement. Finally in section 7, we show how to obtain the tricon-

nected components of a biconnected graph, given the nontrivial candidate sets.

6. Finding Candidate Sets

Let G = (V, E) be a biconnected graph with an open ear decompositionD = [P0, . . . , Pr−1].

Let |V| = n and |E| = m. In this section we give efficient parallel algorithms to implement steps

2A and 2B in Algorithm 1.

6.1. Forming the Ear Graphs

We giv e a divide and conquer algorithm for finding the ear graph for each nontrivial ear.

Roughly speaking, the algorithm works as follows. Assumer is a power of 2. The algorithm has

log r stages. In the first stage the algorithm computes the ‘ear graph’ of the subgraph ofG con-

sisting of the firstr /2 ears and also the the ‘ear graph’ of the lastr /2 ears. In general in thei th

stage the algorithm computes the ‘ear graph’ of each subgraph ofG consisting of thej th block of

r /2i ears,j = 1,. . . , 2i . Thus, in the final stage the algorithm computes the ear graph of each ear.

In section 3 we defined ‘ear graph’ only with respect to a single ear. We now extend this

definition to a collection of ears of the formPi , Pi+1, . . . , Pj . Giv enG = (V, E) with an open ear

decompositionD = [P0, . . . , Pr−1], we defineGi , j , the (i , j) ear graph of G, for i< j, as follows:

Let Pi , j =
j

k=i
∪ Pk, and letUi , j be the set of vertices inPi , j that are contained in ears numbered

lower thani (these are some of the endpoints ofPi , Pi+1, . . . , Pj). Let S1, . . . , Sk be the bridges

of Pi , j whose attachments are all inUi , j , and among the remaining bridges ofPi , j let R1, . . . , Rl

be the bridges that either contain a nonattachment vertex on an ear numbered lower thani , or con-

tain at least 3 distinct attachments onUi , j (the anchor bridgesof Pi , j). Let Ci , j be the bridge

graph ofPi , j . ThenGi , j is the graphCi , j with the bridges corresponding toR1, . . . , Rl coalesced

(the anchoring star of Ci , j), and with the bridgesS1, . . . , Sk deleted. Note thatGi ,i is simply the

ear graphGi , andG0,r−1 is the input graphG.

Let G′i , j be a graph consisting ofPi , j , together with a collection of stars with attachments on

Pi , j , of which a subset {Rk, k = 1, 2,. . . , l } are ‘marked’. ThenG′i , j is apartial ear graph of Pi , j

if the graph obtained by coalescing theRk, k = 1, 2,. . . , l is the ear graphGi , j , excluding the

attachments of the anchoring star to vertices inUi , j . In our algorithm for finding the ear graphs

- 17 -

we will mark stars that correspond to anchor bridges formed in the intermediate stages of the

algorithm.

The following algorithm constructs the ear graph of each ear in parallel using the divide and

conquer approach we outlined earlier. The construction proceeds in stages. In each stage the algo-

rithm constructs a partial ear graphG′i , j for a collection ofPi , j ’s. Finally, after having obtained

G′i ,i for eachi , the algorithm coalesces all of the marked stars inG′i ,i and provides attachments for

this coalesced star to the two endpoints ofPi , to form the ear graphGi .

Algorithm 2A Forming the Ear GraphsGi = (Vi , Ei), i = 0,. . . , r − 1.

Input: Undirected biconnected graphG = (V, E) with an open ear decomposition

D = [P0, . . . , Pr−1].

0. G′0,r−1 ← G.

1. For i = 1,. . . , log r do

for j = 0 (step 2)to 2i − 2 pardo

let a =

jr

2i

, b =

(j + 1)r

2i

, c =

(j + 2)r

2i

.

a) FormG′a,b−1 from G′a,c−1 as follows:

i) Delete the subgraph induced byPa,b−1 from G′a,c−1. Call the resulting graphHb,c−1.

ii) Find connected components inHb,c−1.

iii) Mark any connected component that contains a vertex that was previously marked.

iv) Mark any connected component containing a vertex on an ear numbered lower thana

(these will be some of the endpoints of ears inPb,c−1) or containing 3 distinct attachments

onUa,b−1.

v) Collapse each connected component into a single vertex.

vi) RestorePa,b−1 together with all edges incident on it. Remove multiple copies of any

edge in this graph, and delete all vertices not connected toPa,b−1.

vii) Remove the bridges ofPa,b−1 with attachments only to vertices inUa,b−1.

viii) Remove any edge connecting a marked vertex to a vertex inUa,b−1.

- 18 -

b) FormG′b,c−1 from G′a,c−1 in a similar manner.

rof

rof;

2. For eachi , coalesce all marked bridges inG′i ,i to form anchoring starSi , and introduce attach-

ments fromSi to the two endpoints ofPi .

Lemma 8 In step 1 of Algorithm 2A, for eachi , the size of all of theG′j ,k present in this step is

O(m).

Proof The analysis is similar to that in Lemma 7. Note that the size of all of theG′j ,k excluding

attachments to the correspondingU j ,k is O(n + m), since any edge ofG appears at most twice in

this collection. We now bound the number of attachment edges onU j ,k in G′j ,k over all j , k for

fixed i .

ConsiderG′j ,k, where j = y ⋅ 2i andk = (y + 1) ⋅ 2i , for somej . First observe that in step vii

we remove all bridges with attachments only onU j ,k, and for any marked vertex inG′j ,k we

remove all attachments toU j ,k in step viii. So we only need to consider bridges that a) contain

nonattachment vertices belonging only to ears numbered higher thank; b) hav e at most 2 attach-

ments onU j ,k; and c) have at least 1 internal attachment onG′j ,k. For each such bridge, we can

charge its (≤ 2) attachments onU j ,k to an internal attachment and hence the total number of

attachments on all of theU j ,k is O(n + m).[]

Lemma 9Algorithm 2A correctly finds the ear graph of each ear.

Proof It is clear that Algorithm 2A without parts iii), iv), vii) and viii) in steps 1a and 1b, con-

structs the bridge graph of each ear. (Note that in this case every vertex will be connected to

Pa,b−1 in step vi).) In the following we show that the algorithm as specified constructs the ear

graph of each ear.

We establish this by showing by induction that in thei th iteration of the main step, each

G′j ,k formed is a partial ear graph of the correspondingPj ,k.

Base i= 1: Let b = r /2. When i = 1 the algorithm constructs two graphsG′0,b−1 and G′b,r−1.

Since the bridge graphC0,b−1 of P0,b−1 contains no anchor bridges, step 1a of Algorithm 2A con-

structsC0,b−1, which is clearly a partial ear graph ofP0,b−1.

The bridge graphCb,r−1 of Pb,r−1 contains only anchor bridges and all of these bridges have

attachments only toUb,r−1. Hence any partial ear graph ofPb,r−1 contains no bridges. Algorithm

2A removes all bridges ofPb,r−1 in step 1b vii) and hence the graph constructed by the algorithm

- 19 -

is a partial ear graph ofPb,r−1.

Induction stepAssume that the result is true until the (i − 1)st iteration, and consider iterationi .

Let G′a,b−1 be constructed in step 1a fromG′a,c−1 in thei th stage.

First we show that any attachmentv on Pa,b−1 of an anchor bridge ofPa,c−1 is also an

attachment of an anchor bridge ofPa,b−1. Let the attachment edge be (v, w).

Case 1: Vertexv is an attachment of a bridge ofPa,c−1 that has a nonattachment vertexu on an

ear numbered lower thana. The vertexv continues to be an attachment of a bridge ofPa,b−1 that

containsu. But sinceear(u) < a, v is an attachment of an anchor bridge ofPa,b−1.

Case 2: Vertexv is an attachment onPa,b−1 of a bridge ofPa,c−1 that has at least 3 distinct attach-

mentsx, y, z on Ua,c−1; we allow the possibility thatv is one ofx, y, z. In this casex, y, z and

edge (v, w) belong to a single bridge ofPa,b−1. If x, y andz are inUa,b−1 then the same property

holds inPa,b−1. Otherwise assumex is not inUa,b−1 (note thatx cannot bev). Then sincex is in

Ua,c−1, we hav eear(x) < a and hence the bridge ofPa,b−1 that contains edge (v, w) is an anchor

bridge ofPa,b−1.

Now we show that every internal attachment of the anchoring star ofGa,b−1 (i.e., all attach-

ments except those inUa,b−1) is contained in one of the marked stars ofG′a,b−1. Let v be an

attachment vertex of the anchoring star ofPa,b−1 in G. If v is also an attachment of the anchoring

star ofPa,c−1 in G then by the induction hypothesis there is a marked star inG′a,c−1 that has an

attachment tov. The connected component containing this marked star is marked in step 1a iii) of

Algorithm 2A and hencev is an attachment of a marked star inG′a,b−1. If v is not an attachment

of an anchoring star ofPa,c−1 in G then in order forv to be an attachment edge of an anchoring

star inCa,b−1, either it must be connected to an anchoring star ofPa,c−1 through internal vertices

in Pb,c−1 or it must be connected through internal vertices inPb,c−1 to a vertex inUb,c−1 that

belongs to an ear numbered lower thana. In the former case the corresponding connected com-

ponent is marked in step 1a iii) of Algorithm 2A and in the latter case it is marked in step 1a iv)

of Algorithm 2A.

If an attachment does not belong to an anchoring star ofGa,b−1 or Gb,c−1 then we claim that

it cannot be an attachment of a marked star inG′a,b−1 or G′b,c−1. This is so since the algorithm

only deletes edges from the graph, and hence never induces a path between two vertices in a sub-

graph ofG′x,y if a path did not exist in the subgraph ofG induced byV(G′x,y).

Finally we note that every non-anchor bridge ofPa,b−1 in G appears as a non-anchor bridge

in G′a,b−1 as constructed by Algorithm 2A. This is because steps 1a vii) and viii) and steps 1b vii)

and viii) delete only edges incident on vertices belonging to ears numbered lower thana and b

respectively, and hence none of the edges in non-anchor bridges are removed.

- 20 -

A similar argument holds forGb,c−1.

This establishes the induction step and the lemma is proved.[]

The major computation in each parallel step of the algorithm involves finding connected

components in subgraphs of theG′i , j ’s. Since by Lemma 8, the total size of the graphs present at

any giv en step isO(m), each parallel step can be implemented inO(log m) time on a CRCW

PRAM with O(m) processors [ShVi]. Finally since the algorithm has logm parallel stages, it runs

on a CRCW PRAM inO(log2 m) time withO(m) processors.

6.2. Forming the Coalesced Graph

We now turn to step 2B, which finds the coalesced graphGc of a star graphG(P), and

determines from it, the candidate sets ofG(P).

Our parallel algorithm to coalesce all interlacing stars in a star graphG(P) runs inO(log2 q)

time usingO(q) processors, whereq is the number of edges in the stars and in the path. We can

consider the star embedding of a star graph with no interlacing stars to consist of embedding the

pathP as a horizontal line, and all the stars and their edges above the line in a well nested fashion

with no two edges crossing. Each face in this embedding, ignoring the exterior face, lies directly

below exactly one star and every star withk edges sits directly abovek − 1 faces. Thus, associ-

ated with the embedded stars is an ordered rooted tree: one vertex for each star and one for each

face, which we callstar-vertexand face-vertexrespectively. The root of this tree is the exterior

face. The children of a star-vertex are its faces in order and the children of a face-vertex are the

stars that lie directly below it in order. We call this tree theface-star tree.The face-star tree is the

main data structure that we use for the parallel star coalescing algorithm.

We distinguish between distinct and nondistinct attachments of the stars. In figure 3 we

show a star embedding of a star graphG(P) together with its face-star tree for the case of distinct

attachments, i.e., each vertex onP is common to at most one star. As one can see from the exam-

ple, the face-star tree is any rooted and ordered tree such that 1) the root is labeled a face, and

each level of vertices is labeled alternately as faces and stars, and 2) each leaf is labeled as a face.

The last condition just requires that all leaves are of even depth.

The face-star tree gives us most of the information we need about the star embedding. We

show how to extract the information that is in the embedded star graph from the face-star tree. We

start with a definition. TheEuler tourof an ordered rooted treeT is the cycle starting at the root

that traces the tree in a counter-clockwise order. In our example from figure 3 the Euler tour is

< A, a, B, a,C, c, D, c,C, d, E, d,C, a, A, b, F , b, G, e, H , e, G, f , I , f , J, f , G, b, A >, where

face vertices are labeled by upper case letters and star vertices by lower case letters. Acornerof

- 21 -

an Euler tour <v1, . . . , vk > is any triple (vi−1, vi , vi+1) of successive vertices on the tour. The

triple is a corner of star (face) ifvi is a star (face). Note that each attachment is defined by a cor-

ner of the star it belongs to, with the two face vertices in the corner corresponding to the faces

bounding the attachment edge.

Star embedding

Face-star tree

figure 3

A star embedding with distinct attachments

and its face-star tree

The general case of nondistinct attachments is slightly more complicated. We assume, with-

out loss of generality, thatG(P) has no multiple two-attachment stars with the same pair of

attachments, since otherwise we could delete the multiple copies without altering the candidate

sets forP; for the same reason we also assume thatG(P) has no two-attachment star with the

same span as another star with three or more attachments. Hence any star graph with a star

embedding that is derived fromG(P) by coalescing stars has a unique embedding. Each attach-

ment vertex corresponds to a consecutive set of star corners in the Euler tour of the face-star tree

of such an embedding. For instance in figure 4 we exhibit a star embedding in which the attach-

ments are not all distinct. Here the attachmentx corresponds to the corners (F , c, B), (B, a, A),

(A, d, G) and (G, e, I). Thus, since our algorithm will maintain the face-star tree and not the star

graph, we need to maintain a list of corners that determine the beginning and end of each

- 22 -

attachment vertex.

figure 4

A general star embedding with its face-star tree

Our parallel star coalescing algorithm is a divide-and-conquer algorithm that divides the set

of stars in half and recursively and in parallel finds the face-star tree for the coalesced graph in

each half, and then combines the two trees usingMerge-Tree,the heart of the algorithm. We giv e

anO(log p) time p processor algorithm to merge the face-star trees of the two halves, wherep is

the total number of attachments in the two two coalesced graphs. This gives anO(log2 q) time q

processor algorithm for star coalescing.

The procedure Merge-Tree is substantially simplified if we first sort the original stars as fol-

lows. For a starS let left(S) andright(S) be the first and last attachments ofS on P and letspan

of S be the closed interval [left(S), right(S)]. We say a vertexu on P is less than another vertexv

on P if u appears beforev on P. We say that starS is before starS′ in the Euler order if (1)

left(S) < left(S′) or (2) left(S) = left(S′) andright(S) > right(S′). Note that in the star embedding,

the Euler order gives the sequence in which the stars first appear on the Euler tour.

We first sort the stars inG(P) with respect to the Euler order inO(logq) time usingq pro-

cessors [Co] (as a preprocessing step we coalesce all stars with the same span, -- note that any

such pair must interlace). By the following observation it is relatively easy to maintain the stars

in order even if they are being coalesced: If interlacing stars are coalesced, then the Euler order on

the new stars is obtained from the old Euler order by taking each interlacing class of stars and

associating it with the minimum numbered star in its class. Thus we can maintain the Euler order

throughout the computation without sorting.

The main procedure Merge-Tree has as input the face-star trees,T andT′ respectively, of

two star embeddingsG* (P) andG′* (P). By presorting, as defined above, we may also assume

that there is a pointδ such that every star inG(P) has a point of attachment atδ or to its left, and

ev ery star inG′(P) has all of its attachments atδ or to its right. The procedure returns with the

- 23 -

face-star tree of the star embedding of the coalesced graph ofG(P) ∪ G′(P). The procedure has

four steps which may be combined in a slightly more efficient algorithm, but for clarity, are best

viewed separately:

1) Determine which stars inT (T′) interlace with the same star inT′ (T).

2) Coalesce all stars inT (T′) that interlace with the same star inT′ (T).

3) For each pair of interlacing starsS, S′, with S∈T andS′∈T′, add the attachments ofS to the

right of δ to those ofS′.

4) Splice the treeT′ into the treeT.

To implement step 1 we start by determining those stars inT′ that interlace with the same

star inT. We use the fact that every starS in T has an attachment atδ or to its left. Note that ifS′

is a star inT′ that interlaces withS, thenS interlaces with the parent star ofS′, if it exists. Thus, if

S′1, . . . , S′k are the stars that are the children of the root ofT′, andS′ is a descendant ofS′i , thenS

must interlace with every star on the path fromS′ to S′i in T′. Thus it suffices to find, for each

attachment of each starS in T, the lowest level star inT′ with which it interlaces. We can find this

star by determining in which corner ofT′ the attachment lies. We do this by merging the attach-

ments ofG(P) with those ofG′(P), either by sorting the points or by using a relatively simple

pointer jumping scheme. This step can be preformed in logarithmic time with a linear number of

processors.

To find the set of stars ofT that interlace with a given star inT′, we note that the stars ofT

that interlace with some star inT′ all lie on the rightmost path, sayτ , in T, i.e., the path that starts

from the root and ends at the rightmost leaf. Each starS′ in T′ interlaces with exactly those stars

in T that have an attachment in the span ofS′, excluding the endpoints; this corresponds to stars

on a single segment ofτ . Thus each star inT′ can determine this segment ofτ in constant time

given our preprocessing.

We now hav e the set of stars inT that must be coalesced and the set of stars inT′ that must

be coalesced. We do this coalescing in step 2. Clearly we can coalesce two neighboring stars in

constant time, since one star must be the parent of the other, or the two stars must be siblings.

Thus this step can be done inO(log p) time with O(p) processors using either parallel tree con-

traction [MiRe] or the Euler tour technique on trees [TaVi].

At this point at most one star inT′ can interlace with a given star inT and at most one star

in T can interlace with a star inT′. Let us call a star that currently interlaces with a star in the

other half, aninterlacing star. The only interlacing stars inT lie on the pathτ , and the only inter-

lacing stars inT′ are children of the root. In step 3 we add the attachments to the right ofδ of

- 24 -

each interlacing star inT to its mate inT′ so that the interlacing stars inT′ have their own attach-

ments as well as the attachments (to the right ofδ) of their mate inT.

Finally in step 4 we replace all subtrees to the right ofδ for each interlacing starS in T with

all the subtrees of its mateS′j in T′. This can be performed in constant time. On the other hand, if

S′i is a star inT′ that does not interlace with any star inT then it must lie in one of the faces

defined byT. In this case we attach the subtree atS′i to this face.

This concludes the description of the algorithm to coalesce all interlacing stars in a star

graph withq edges inO(log2 q) time usingO(q) processors. Since the total size of the ear graphs

of all nontrivial ears isO(m) this gives an algorithm to find the coalesced graphs of all ear graphs

of G in O(log2 n) time usingO(m) processors.

The face-star tree data structure now allows us to extract the candidate sets efficiently. For

each face vertexf , the information available at its parent in the tree gives the leftmost vertexl

and rightmost vertexr on P that belong to the facef . Similarly, the information at each child

vertexc gives an open intervalsc on P betweenl andr that does not belong to facef . The can-

didate set defined byf is the set of vertices in the interval [l , r] excluding the vertices in the inter-

vals sc, wherec ranges over the children off in the face-star tree. Thus the vertices on each face

in the star embedding of the coalesced graph can be obtained as a circular linked list in constant

time by having a processor at each vertex in the face-star tree. This gives the candidate sets forP.

7. Finding Triconnected Components

We start by defining a special type of split, called anear split,on a biconnected graph with

an open ear decomposition. LetG be a biconnected graph with an open ear decomposition

D = [P0, . . . , Pr−1]. Let a, b be a pair separating earPi . Let B1, . . . , Bk be the bridges ofPi with

an attachment inVi (a, b), and letTi (a, b) = (
k

j=1
∪ Bj) ∪ Pi (a, b). It is easy to see thatTi (a, b) is a

bridge of a, b. Then the ear split e(a, b, i) consists of forming theupper split graph

G1 = Ti (a, b) ∪ {(a, b, i)} and thelower split graph G2 = Ti (a, b) ∪{(a, b, i)}. Note that the ear

split e(a, b, i) is a Tutte split if one ofG1 −{(a, b, i)} or G2 − {(a, b, i)} is biconnected.

Let S be a nontrivial candidate set for earPi . A pair u, v in S is anadjacent separating pair

for Pi if u, v is a pair separatingPi and S contains no vertex inVi (u, v). A pair a, b in S is an

extremal separating pair for Pi if S contains no vertex inVi [a, b].

We now prove the following theorem.

Theorem 2 Let G = (V, E) be a biconnected graph with an open ear decomposition

- 25 -

D = [P0, . . . , Pr−1]. Let a, b be an adjacent (extremal) separating pair forPi in G, and letG1 and

G2 be, respectively, the upper and lower split graphs obtained by the ear splite(a, b, i). Then,

a) G1 −{(a, b, i)} (G2 −{(a, b, i)}) is biconnected.

b) The ear decompositionD1 induced byD on G1 by replacingPi by the simple cycle formed

by Pi (a, b) followed by the newly added edge (b, a, i) is a valid open ear decomposition for

G1; likewise, the ear decompositionD2 induced byD on G2 by replacingPi (a, b) by the

newly added edge (a, b, i) is a valid open ear decomposition forG2.

c) Let c, d be a pair separating somePj , 0 ≤ j ≤ r − 1 in G. If { c, d} ≠{ a, b} or i≠ j thenc and

d lie in one ofG1 or G2, andc, d is a separating pair forPj in the split graph in which

Pj , c, andd lie.

d) Every separating pair inG1 or in G2 is a separating pair inG.

Proof

a) Let a, b be an adjacent separating pair forPi . If G1 − {(a, b, i)} is not biconnected then letc

be a cutpoint in the graph. The vertexc cannot lie onPi (a, b) since this would imply that it is part

of the candidate set for whicha, b is an adjacent separating pair. Butc cannot lie on a bridge of

Pi (a, b) since thenc would be a cutpoint ofG and this would imply thatG is not biconnected.

Similarly G2 − {(a, b, i)} is biconnected ifa, b is an extremal separating pair.

b) We establish by induction on ear numberj , for j ≥ i , that the graphP0, j =
j

k=0
∪ Pk satisfies the

property in part b) of the Theorem. The details are straightforward and are omitted.

c and d) Ifi≠ j let Pj lie in Gk (wherek =1 or 2). We note that the ear graph ofPj in Gk is the

same as the ear graph ofPj in G. Hencec, d is a pair separatingPj in G if and only if it is a pair

separatingPj in Gk.

If i = j we note that inG1 the bridges ofPi are precisely those bridges ofPi in G that have

attachments on an internal vertex ofPi (a, b). Hence ifc andd lie on Pi (a, b) thenc, d separates

Pi in G if and only if it separatesPi (a, b) in G1. An analogous argument holds forG2 in the case

whenc andd lie on Pi [a, b].[]

We now present the algorithm for finding triconnected components.

Algorithm 3 Finding Triconnected Components

- 26 -

Input A biconnected graphG = (V, E) with an open ear decompositionD = [P0, . . . , Pr−1], and

the nontrivial candidate sets for each ear.

OutputThe triconnected components ofG.

1. For each nontrivial earPi do

for each nontrivial candidate setS for Pi do

a) For each adjacent separating pairu, v in S form the upper split graphG1 for the ear split

e(u, v, i) and replaceG by the lower split graphG2 for the ear splite(u, v, i). ReplaceD by

the ear decompositionD2 for the lower split graphG2 and form the open ear decomposition

D1 for the upper split graphG1 as in part b) of Theorem 2.

b) If |S| > 2, then form the upper split graphG1 and replaceG by the lower split graphG2

for the extremal separating pairu, v in S. Form the open ear decompositionsD1 andD2 as

in Theorem 2 and replaceD by D2. (If i = 0 and (u, v) is the base edge ofP0 then perform

this ear split only if there are at least two edges betweenu andv.)

rof

rof;

2. Split off multiple edges in the remaining split graphs to form the bonds.

Lemma 10Algorithm 3 generates the Tutte components ofG.

Proof By Theorem 2, each split performed in Algorithm 3 is a Tutte split, and at termination there

is no separating pair in any of the generated graphs.[]

We now consider a parallel implementation of Algorithm 3. First consider one iteration of

the outer for loop in step 1: the algorithm performs all of the ear splits for a given earPi in such

an iteration. By Theorem 2 these ear splits can be performed in any order. Consider a listing

L = [< a1, b1 > , . . . , < ak, bk >] of the adjacent pairs separatingPi , with eachai < bi , and with

the pairs sorted in nondecreasing order of theai , ties being resolved in decreasing order of thebi .

We number the corresponding ear splits in order as 1,. . . , k. Each of these splits creates a new

connected graph, and hence after processing all of these splits we will havek + 1 connected

graphs. LetGi be the graph obtained from the upper split graph formed at thei th split (with possi-

bly some upper split graphs split off from it by later splits);G0 is the initial graph with all of the

upper split graphs split off from it.

To determine the end result of performing step 1a on all nontrivial candidate sets of earPi it

suffices to determine for each edge incident on a vertex inPi , the graphGi that contains it. For

- 27 -

this we compute the bridges ofPi . For each bridgeB (it suffices to consider only bridges with an

internal attachment onPi) we compute its span [a, b]. If there is no pair <x, y > in L with x ≤ a

andy ≥ b then we assignB to G0. Otherwise we associate withB a pair <x, y > in L as follows.

If B has three or more attachments we find the last pair <x, y > in L with the propertyx ≤ a and

y ≥ b. If B has exactly two attachments then <x, y > is the last pair inL with the property that

either x < a and y ≥ b or x ≤ a and y > b. Let < x, y > be the j th pair inL. We assign the edges

in bridgeB to Gj . A similar computation assigns each edge onPi to the appropriateGj (we use

the criterion for bridges with 3 or more attachments). Using the definition of an ear split it is

straightforward to see that this computation assigns each edge to the correctGj . Finally we place

virtual edges between adjacent separating pairs in eachGj . All of this computation can be per-

formed in logarithmic time with a linear number of processors using parallel algorithms for graph

connectivity [CV] and sorting [Co]. Step 1b can be performed with similar bounds in the same

manner.

In order to fully parallelize Algorithm 3 we need to perform the above computation in paral-

lel for several nontrivial ears. Since we need to look at the edges incident on each ear that we are

working with, we do not attempt to perform this computation for all ears in parallel, since an edge

could be incident on several ears. Instead we break up the computation intoO(log r) stages as

shown below.

In the first stage of the parallel algorithm we locate the medianactiveear, call itPi , where

an active earis an ear having a nontrivial candidate set. Then we find the bridges ofP0,i−1 (the

union of earsP0 to Pi−1), and in each bridge we locate the smallest-numbered active ear. Let

these ears bePi = Pi0, Pi1,
. . . , Pil . We compute the bridges of these ears by computing the

bridges ofH =
l

j=0
∪ Pi j

.

Let L0 be the lower split graph that remains when all of the ear splits for the ears

Pi j
, j = 0,. . . , l have been performed. The graphL0 contains the graphP0,i−1. Since each of the

Pi j
lies in a different bridge ofP0,i−1 it follows that any bridge ofH that has an internal attach-

ment on more than one of thePi j
must be contained inL0. Hence, in order to perform the paral-

lel implementation of step 1 onPi j
we only need to work with those edges incident on a vertex

contained inPi j
that either lie onPi j

or belong to a bridge ofH that contains internal attachments

only on Pi j
. We perform this computation in parallel for eachPi j

, j = 0,. . . , l . At this point we

have a collection of split graphs, and by Theorem 2, the number of active ears in any of them is at

most half the number of active ears in the original graph. We now recursively apply the above

step in each of the split graphs, and in logr stages we will be done. This gives anO(log2 m) time

algorithm withO(m) processors to find the triconnected components.

- 28 -

We also note that Algorithm 3 can be easily modified to obtain the tree of 3-connected com-

ponents (or ‘auxiliary graph’ [HoTa2]) with the same time and processor bounds. For this we

construct the tree of triconnected components by introducing a vertex for each copy of edge

(a, b, i) added at a split and we place an edge between each pair of vertices whose edges were

added at the same ear split. At the end of the algorithm, we identify, for each vertex in this auxil-

iary graph, the triconnected component in which it lies and we replace all vertices corresponding

to the same triconnected component by a single vertex representing that component.

REFERENCES

[Co] R. Cole, "Parallel merge sort,"SIAM J. Comput.,vol. 17, 1988, pp. 770-785.

[CV] R. Cole, U. Vishkin, "Approximate and exact parallel scheduling with applications to list,

tree and graph problems,"Proc. 27th Ann. IEEE Symp. on Foundations of Comp. Sci.,1986, pp.

478-491.

[Ev] S. Even,Graph Algorithms,Computer Science Press, Rockville, MD, 1979.

[HoTa] J. E. Hopcroft, R. E. Tarjan, "Dividing a graph into triconnected components,"SIAM J.

Comput.,1973, pp. 135-158.

[HoTa2] J. E. Hopcroft, R. E. Tarjan, "Finding the triconnected components of a graph," TR

72-140, Computer Science Department, Cornell University, Ithaca, NY, 1972.

[JaSi] J. Ja’Ja, J. Simon, "Parallel algorithms in graph theory: planarity testing,"SIAM J. Com-

put.,11, 1982, pp. 314-328.

[KanRa] A. Kanevsky, V. Ramachandran, "Improved algorithms for graph four-connectivity,"

Proc. 28th IEEE Symp. on Foundations of Comp. Sci,1987, pp. 252-259;Jour. Comput. Syst. Sci.,

to appear.

[KarRa] R. M . Karp, V. Ramachandran, "Parallel algorithms for shared memory machines,"

Handbook of Theoretical Computer Science,J. Van Leeuwen, ed., North Holland, 1990, pp.

869-941.

[Lo] L. Lovasz,"Computing ears and branchings in parallel,"Proc. 26th IEEE Ann. Symp. on

Foundations of Comp. Sci.,1985, pp. 464-467.

[MaScVi] Y. Maon, B. Schieber, U. Vishkin, "Parallel ear decomposition search (EDS) and st-

numbering in graphs,"Theoretical Comput. Sci.,vol. 47, 1986, pp. 277-298.

[MiRa] G. L. Miller, V. Ramachandran, "Efficient parallel ear decomposition with applications,"

unpublished manuscript, MSRI, Berkeley, CA, January 1986.

- 29 -

[MiRa2] G. L. Miller, V. Ramachandran, "A new graph triconnectivity algorithm and its paral-

lelization,"Proc. 19th Annual ACM Symp. on Theory of Computing,1987, pp. 254-263.

[MiRe] G. L. Miller, J. H. Reif, "Parallel tree contraction and its applications,"Proc. 26th IEEE

Symp. on Foundations of Comp. Sci,1985, pp. 478-489.

[RaVi] V. Ramachandran, U. Vishkin, "Efficient parallel triconnectivity in logarithmic time,"

VLSI Algorithms and Architectures,Springer Verlag LNCS 319, 1988, pp. 33-42.

[TaVi] R. E. Tarjan, U. Vishkin, "Finding biconnected components and computing tree functions

in logarithmic parallel time,"SIAM J. Comput.,vol. 14, 1985, pp. 862-874.

[Tu] W. T. Tutte,Connectivity in Graphs,University of Toronto Press, 1966.

[Wh] H. Whitney, "Non-separable and planar graphs,"Tr ans. Amer. Math. Soc.34, 1932, pp.

339-362.

