An Extended Abstract appearsin Proc. ISAAC’ 97, LNCS 1350, pp. 212-222.

A Randomized Linear Work EREW PRAM
Algorithm to Find a Minimum Spanning Forest*

Chung Keung Poon! and Vijaya Ramachandran?

! Department of Computer Science, City University of Hong Kong, 83 Tat Chee
Avenue, Kowloon, Hong Kong. Email: ckpoon@cs.cityu.edu.hk.
? Department of Computer Sciences, The University of Texas at Austin, Austin, TX
78712, USA. Email: vlr@cs.utexas.edu.

Abstract. We present a randomized EREW PRAM algorithm to find
a minimum spanning forest in a weighted undirected graph. On an n-
vertex graph the algorithm runs in o((log n)'*¢) expected time for any
€ > 0 and performs linear expected work. This is the first linear work,
polylog time algorithm on the EREW PRAM for this problem. This
also gives parallel algorithms that perform expected linear work on two
general-purpose models of parallel computation — the QSM and the BSP.

1 Introduction

The design of efficient algorithms to find a minimum spanning forest (MSF) in
a weighted undirected graph is a fundamental problem that has received much
attention. There have been many algorithms designed for the MSF problem that
run in close to linear time (see, e.g., [CLR91]). Recently a randomized linear-
time algorithm for this problem was presented in [KKT95]. Based on this work
[CKT94] presented a randomized parallel algorithm on the CRCW PRAM which
runs in O(2'°¢” " log n) expected time while performing linear work. The expected
time was later improved to logarithmic by [CKT96].

In this paper we consider the design of a linear-work parallel algorithm on
a more restricted model of parallel computation — the EREW PRAM. A major
motivation for considering the EREW PRAM is the adaptability of an algorithm
developed on this model to more realistic parallel computation models. In partic-
ular, the EREW PRAM (and the more powerful QRQW PRAM [GMR94]) are
special cases of the Queuing Shared Memory (QSM) model [GMRI7], which is
a general-purpose shared-memory model of parallel computation. It is shown in
[GMRY7] that the QSM (and hence the EREW PRAM) has a randomized work-
preserving emulation with small slow-down on the Bulk Synchronous Parallel
(BSP) computer [Val90], which is a general-purpose distributed-memory model
of parallel computation. However, these results are not known to hold for the
CRCW PRAM. Thus algorithms designed on an EREW PRAM (or the QRQW
PRAM) have more applicability than CRCW PRAM algorithms.

* This research was supported in part by NSF grant CCR/GER-90-23059 and Texas
Advanced Research Program Grant 003658386.

We present a randomized algorithm to find a minimum spanning forest on
an EREW PRAM that performs linear expected work and runs in expected
time O(logn - loglogn - 2log") Here n is the number of vertices in the input
graph. This is the first parallel algorithm for this problem on the EREW PRAM
that performs linear work. The running time of our algorithm is only slightly
super-logarithmic — by a factor that is o((loglogn)*€), for any € > 0. We also
present a refinement of this result that gives a time, edge-density trade-off while
maintaining linear work, and we describe the results obtained by mapping our
algorithm on to the QSM and the BSP.

Prior to our work, the best results known for the EREW PRAM were a
deterministic algorithm by Chong [Cho96] which runs in O(lognloglogn) time
and performs O(mlognloglogn) work, and a randomized algorithm reported
in [Kar95] which, with high probability, runs in O(logn) time and performs
O(m + n'*¢) work for any constant € > 0.

2 Outline of the algorithm

Let G be a graph with n vertices and m edges. We assume that edges in G have
distinct weights, so the graph has a unique minimum spanning forest (MSF). We
also assume that G does not contain isolated vertices, so we have m > [n/2].
Our algorithm can be viewed as a parallelization of [KKT95] and has a re-
cursive structure similar to that of [CKT94]. As in these two algorithms, our
algorithm makes use of the following well known properties (see [Tar83]).

Cycle Property: For any cycle C' in a graph, the heaviest edge in C does not
appear in the MSF.

Cut Property: For any proper nonempty subset X of the vertices, the lightest
edge with exactly one endpoint in X belongs to the MSF.

To find the MSF of G, the algorithm first identifies a set, E, of edges that belong
to the MSF of G. It then contracts each component induced by F into a single
vertex. This reduces the number of (non-isolated) vertices by a suitable factor
k. The algorithm then computes the MSF in the contracted graph G.. By the
cut property, the set E together with the MSF of G, will form the MSF of G.
Although the number of vertices in the contracted graph G, is reduced by a
factor k, the number of edges may not be reduced significantly, even if internal
and parallel edges are removed. We can reduce the number of edges in G, by a
factor A = vk by using a random sampling technique first employed for the MSF
problem by [Kar93, KKT95]. This method samples the edges in G, independently
with probability p = 1/A and then recursively computes the MSF, F, of the
sampled graph, which has on average O(mp) = O(m/)) edges. This is the first
recursive call. Although F' is probably not the MSF of G., it can be used to
identify some edges in G, that are not in the MSF of G.. Following [KKT95],
an edge in G, is said to be F-heavy if it forms a cycle when added to F' and is
heavier than every edge in that cycle. Edges in GG, which are not F-heavy are
said to be F-light. By the cycle property, F-heavy edges cannot be in the MSF

of G.. Thus, to compute the MSF we need to consider only the F-light edges. By
the sampling lemma (Lemma 2.1) of [KKT95], the expected number of F-light
edges in G, is at most O((n/k)/p) = O(n/A).

By filtering G. with F, i.e., removing the F-heavy edges in G., we obtain
a graph G' that has O(n/k) vertices and O(n/vk) edges. The algorithm then
recursively computes the MSF of G'. This is the second recursive call. Since G’
depends on the output, F', of the first recursive call, it does not seem possible
to execute the two calls in parallel. Consequently, the above algorithm runs in
2(2%) time where [is the number of recursion levels — even if the maximum time
spent in the local computation of each recursive call is constant.

By setting & to a sufficiently large constant and recursing until the size of the
graph is reduced to a constant, one can obtain a linear work algorithm [KKT95].
However, there will be [= ©(log;, n) = O(logn) levels of recursion and hence the
parallel running time is £2(n€) for some € > 0. In [CKT94] a linear-work CRCW
PRAM algorithm was presented by setting the reduction factor of a recursive
call to the exponential of that of its parent call. With this reduction factor, the
number of recursion levels was reduced to O(log™ m). The algorithm in [CKT94]
requires a randomized CRCW PRAM in order to achieve logarithmic time in
the local computation of each recursive call, and has an overall running time of
O(logn - 218" ™),

In this paper we present a randomized linear-work parallel algorithm on
the more restricted EREW PRAM model. As in [CKT94] our algorithm has
O(log™ m) levels of recursion, but we perform each recursive call on an EREW
PRAM in O(lognloglogn) time, by designing an appropriate contraction proce-
dure, and by using the O(log n) time, linear work EREW algorithm of [KPRS97]
for the filtering step that detects F-heavy edges. Moreover, we stop the recur-
sion when the size of the graph is reduced to a polylog factor of the original
one. At this point, we switch to the deterministic algorithm of Chong [Cho96)
which runs in O(log n' loglogn') time and O(m’logn'loglogn’) work on a graph
with n' vertices and m' edges. Since we apply Chong’s algorithm on a sufficiently
small input, we show that the work on all recursive calls to Chong’s algorithm re-
mains linear with respect to m, the size of the input graph GG. Consequently, our
overall algorithm has linear work. The expected running time of our algorithm is
O(log n-log log n-21°8" ™) We also present a refinement of our algorithm that runs
in expected time O(logn-loglogn-21°8" f), where f = 1+ (lognloglogn-\/n/m),
while performing linear expected work. Finally, we describe the adaptation of
our algorithm to the QSM and the BSP.

3 Detailed Algorithm and Analysis

We first introduce some notations. Denote by |H| the number of edges in a graph
H. Define log* z as the minimum ¢ such that log(i) x < 2 where log(o) x =z and
log™ z = log(log"* Y &) for integer i > 1. Given a graph G and an edge e = (u, v)
in G, the contraction of e in G results in the graph H that is obtained from G by
deleting edge e, combining v and v into a single vertex, and removing isolated

vertices and internal edges, while allowing multiple edges to remain. Given a
subset of edges S in G, the contraction of G with respect to S is the graph
obtained through the contraction of each edge in S.

Here are several parameters used by our algorithm. Recall that our input
graph G has n vertices and m edges. We define the integer parameters [and
ki, ko, ...,k as follows. Set ky = [logm], k; = |logk;_1]| for 1 < ¢ < [and
l as the smallest integer such that k; < 2. The proof of the following claim is
straightforward.

Claim1. Let | and k;,1 < ¢ < be as defined above. Then, for m sufficiently
large,

1. I <log*m;

2. logki—1 <ki+1 for2<i<lI;

3 ki >2 for1<i<lI.

The pseudo-code for our algorithm, FindMSF(), is shown below. To find the
MSF of G, we will call FindMSF(G,1, F) where [is set as above and F' is the
output (i.e., the edges in the MSF of G).

Algorithm FindMSF(H,i, F)
var H., H,, Fs, H', F'
1 ifi=1 then
apply Chong’s algorithm on H, and
set F' to be the set of edges found
else
call Contract(H,k¢ |, H., F)
sample the edges in H, with probability 1/k? ; to form the graph H,
call FindMSF(Hg,i — 1, Fy)
call Filter(H., F, H')
call FindMSF(H',1 —1,F")
F:=FUF'

~ O U W N

Data structure for graph representation :

We will represent the input graph G and the output F' using the adjacency
lists data structure. More precisely, each vertex u in G has a doubly-linked list
containing one record for each of its incident edges. The record for edge e = (u,v)
in the adjacency list of vertex u contains the following 6 fields:

1. weight(e) : edge weight

2. endptl(e) : the vertex name of itself (i.e., u)

3. endpt2(e) : the vertex name of the other endpoint (i.e., v)

4. endpt2_ptr(e) : a pointer to the edge record of e = (u,v) on the adjacency
list of v

5. mark(e)

6. oldgraph_ptr(e)

The first 4 fields are for storing the input graph G. The fifth field is used to
store which edges are in F' when the algorithm finished. By standard techniques
(using prefix sums), one can convert F' in such a representation into one in the
adjacency lists representation in O(logn) time and O(|G|) work.

We now explain the use of the last field. In addition to the input graph, there
are other graphs generated during subsequent subroutine calls or recursive calls.
They will also be represented using the above adjacency lists data structure.
The last field in each edge record of such a graph contains a pointer to the
corresponding edge record in the graph from which it is generated. This facilitates
the passing of results from recursive calls.

The algorithm makes calls to two procedures:

— The procedure Contract(). The procedure call Contract(H,k,H., F) pro-
duces a set of edges F' and a multi-graph H, which is the contraction of H
with respect to F' such that (1) F' is a subset of the MSF of H, and (2) H,
has at most (1/k) times the number of vertices in H. The set F' is repre-
sented by marking the mark field on the adjacency lists of H. Note that H,
is a multi-graph without any isolated vertices. The algorithm for Contract
is given in the next section, together with an analysis that shows that it
runs in O(lognlogk) time and O(|H|log k) work on a deterministic EREW
PRAM.

— The procedure Filter(). The procedure call Filter(H, F,H'), in which F is
a forest of multi-graph H, returns a subgraph H' of H which contains the
vertex set of H and the F-light edges in H. It runs in O(logn) time and
O(]H|) work on a deterministic EREW PRAM. The filtering step is described
in section 5.

The algorithm also makes recursive calls to itself. Note that the input graphs
for the recursive calls may be multigraphs, i.e., may contain multiple edges. The
following lemma gives bounds on the expected number of vertices and edges
in these graphs in terms of n and m, the number of vertices and edges in the
original input G.

Claim 2. For any integer i where 1 < i < I, any call to FindMSF(H,i, F)
resulting from the initial call to FindMSF(G,1, F') satisfies the following: (1) the
expected number of vertices in H is at most O(n/kf) and (2) the expected number
of edges in H is at most O(m/k}).

Proof. We will prove the claim by induction on ¢.

(Base Case) The claim is true for i = [since 1 < k; < 2 by the definition of
[and by Claim 1.

(Induction Step) Assume that the claim is true for ¢ = j and consider the
call FindMSF(H, j, F). After contraction in step 2, the number of vertices in H.,
is O(n/k?_l) by Claim 5. Note that H, may contain multiple edges. However,
the total number of edges in H, is no more than that in H. Hence the sampling
in step 3 produces a graph H; with O(m/ k?fl) expected edges. Consequently,
the recursive call to FindMSF(Hg,j — 1,F) in step 4 will satisfy the claim.

By Lemma 2.1 in [KKT95] and Claim 7, expected number of edges in H' is
O((n/k§_ 1) x k3 1) = O(m/k}_;). Again, this bound is true even though H.
may contain multiple edges. Hence the recursive call to FindMSF(H',j — 1, F)
in step 6 also satisfies the claim. This completes the induction step and also the
proof of the claim. O

Claim 3. The call FindMSF(G,1, F) runs in O(2'-logn-loglogn) expected time
and O(m) expected work on a randomized EREW PRAM.

Proof. We assume there are m/(2'lognloglogn) processors available. We first
analyze the total expected time required. The initial call to FindMSF(G,I, F)
will generate 2 recursive calls to Find MSF(H,1—1, F), 22 calls to FindMSF(H,|—
2, F), 23 calls to FindMSF(H,l—3,F), ..., and 2!=! calls to FindMSF(H,1,F).
Since the local computations in these recursive calls are performed in sequential
order, the running time of FindMSF(G, !, F) is the sum of the time for the local
computation in each recursive call.

Consider each call to FindMSF(H,1,F). By Claim 2, the expected num-
ber of edges in H is |[H| = O(m/k3?) =0(m/(logm)?). Applying Chong’s al-
gorithm with |H| < m/(2'lognloglogn) processors takes O(lognloglogn) ex-
pected time. Hence O(2'lognloglogn) expected time suffices for all recursive
calls to FindMSF(H,1, F) in total.

Consider the local computation in a call to Find MSF(H, i, F') for which i > 1.
By Claim 2, [H| = O(m/k?). Suppose there are O(|H|/logn) = O(m/ (k3 logn))
processors. By Claim 6 and 7, the expected time required by Contract and Fil-
ter (in step 2 and 5 respectively) is O(lognlogk;—1 +logn) = O(lognlogk;—1).
In step 3, sampling the edges in H. and compacting the sampled edges to
form H, requires O(logn) time. Since we have m/(2 lognloglogn) processors,

the expected time is O(lognlogk;_ - [%]) = O(lognlogk;_1 -

[2’105%1). By Claim 1logk;—1 < k;+1 and k; > 2!=¢. Hence for i > 3, the ex-

pected time for Contract and Filteris O((2!/k?)lognloglogn) = O(2%~!lognloglogn).
For i = 2, the number of processors available,
m/(2 lognloglogn), is 2(m/(k2*logn)), and the expected time thus is clearly
O(lognloglogn). Hence the total expected time required locally in all the calls to
FindMSF(H, i, F') for which i > 1is O(Y'_, 2!=7.22"!log nloglog n+2'~2log n
loglogn) = O(2! log nloglogn). Consequently Find MSF(G,1, F) takes O(2!-logn
loglogn) expected time and hence O(m) expected work. O

Claim4. The algorithm FindMSF(H,l, F') correctly computes the MSF of H.

Proof. We will prove the correctness by induction on .
(Base Case) When [= 1, Chong’s algorithm computes the MSF of H.
(Induction Step) When [> 1, the procedure Contract identifies a subset of
edges in the MSF of H by Claim 5. By induction hypothesis, the recursive call
FindMSF(Hg,l — 1, F) returns the MSF F of the sampled graph, Hg, of H,.
By Claim 7 and the cycle property, Filter only removes edges of H, which are
not in the MSF of H.. By the induction hypothesis again, the recursive call

FindMSF(H',l — 1, F') returns the MSF of H' which is the same as the MSF of
H.. Finally, by the cut property the combined set of edges obtained in steps 2
and 6 forms the MSF of H. O

4 The Contraction Procedure

The purpose of the procedure call Contract(H,k, H., F) is to identify a set of
edges F' and to produce H., the contracted graph of H with respect to F' such
that (1) F is a subset of the edges in the MSF of H, and (2) H. has at most
(1/k) times the number of vertices in H. We assume H to have distinct edge
weights but allow multiple edges.

The pseudo-code of Contract() is shown below. The procedure allocates two
local variables, status[u] and parent[u], for each vertex u in H. For each edge e
in F, mark(e) is set to 1 in the algorithm below.

Procedure Contract(H,k,H., F)
var status[], parent]]
0 set H.:=H
set oldgraph_ptr of each edge in H, to the corresponding edge in H.
(Remark: All the operations below are applied on H, unless otherwise stated.)
1 pfor each vertex u do
if u is isolated then
status[u] := done
else
status(u] := active
parentlu] :==u
2 repeat logk times
a) pfor each active vertex u do
find its minimum weight incident edge e = (u,v)
set parent[u] := v
broadcast parent[u] to all incident edges of u
if parent[v] = u and u < v then
status[u] := root
else
set mark(e) := 1 for the edge e = (u,v)
on u’s and v’s adjacency lists in H
b) pfor each active vertex u do
plug its adjacency list into parent[u]’s adjacency list
status[u] := done
c) pfor each root vertex u do
set endptl(e) = u for each incident edge e on u’s adjacency list
set endpt2(e) = u for each edge e = (u,v) on
v’s adjacency list
remove internal edges
if u is isolated then

status|u) := done
else
statuslu) := active
3 Remove all done vertices in H,
4 Place all edges e with mark(e) =1in F

Claim 5. Let k be a positive integer, and H be a multi-graph with distinct edge
weights. The procedure call Contract(H,k,H., F) produces a set of edges F' and
a multi-graph H. which is the contraction of H with respect to F' such that

1. F is a subset of the MSF of H, and
2. H. has at most n/k vertices, where n is the number of vertices in H.

Proof. In each iteration of step 2a, the graph formed by the parent pointers is
a collection of rooted directed trees in which the edges in each tree point from
children to their parent, and with an outgoing edge from the root to one of its
children. Thus, after each iteration of step 2, each root contains the concatenation
of the adjacency lists of all vertices in its tree, with edges internal to the tree
removed, and all remaining edges re-labeled to reflect their new endpoints (the
roots of the two trees containing their original endpoints).

In each iteration of step 2, the parent pointers are set using a Boruvka step
[Bor26], and by the cut property, the corresponding edges are in the MSF for H
[KKT95]. Thus F'is a subset of the MSF for H. In each iteration of step 2a, each
active vertex will hook to another active vertex. Done vertices are either isolated
vertices or have given up all their edges to their roots in the previous iteration.
Hence each rooted directed tree defined by the parent pointers in the current
graph contains at least two active vertices and at most one of them remains
active at the end of step 2c. This means the number of active vertices reduces
by a factor of at least two in each iteration of step 2. After log & iterations the
number of active vertices is reduced by a factor of at least k. Since the vertex
set of H, is the set of active vertices at the end of step 2, the number of vertices
in H, is at most n/k. |

Claim 6. The procedure call Contract(H,k, Hc, F') runs in time O(lognlogk)
and performs O(|H|log k) work on a deterministic EREW PRAM.

Proof. Step 1 requires O(1) time and O(|H|) work. In each iteration of step 2,
step 2a takes O(log n) time and O(]|H|) work, step 2b takes O(1) time and O(|H|)
work using the edge plugging technique of Johnson and Metaxes [JM97], and step
2¢ takes O(log |H|) = O(logn) time and O(|H|) work (this step is performed by
broadcasting the name of the root to all elements in the newly-formed adjacency
list, relabeling each edge by its new endpoints and then removing those edges
whose two endpoints are the same). Thus over all iterations, step 2 requires
O(lognlogk) time and O(|H|log k) work. Step 3 takes constant time and O(|H|)
work. Hence the whole procedure requires O(lognlogk) time and O(]H|logk)
work. O

5 The Filtering Procedure

Given a multi-graph H with distinct edge weights and a forest F' for H, the
procedure Filter(H, F, H') removes all F-heavy edges in H, i.e., it removes each
edge e = (u,v) in H whose weight is greater than the weight of any edge on the
path between u and v in F', and returns the ‘filtered’ graph in H'.

We adapt the MSF verification algorithm in [KPRS97] to identify and remove
the F-heavy edges. One method used to avoid concurrent reads in the algorithm
in [KPRS97] is to convert the graph so that all endpoints of nontree edges are
distinct. This is done using a scheme of [Ram96] that transforms each rooted
tree in F' by appending a chain to each vertex, with one copy of the vertex for
each nontree edge incident on it. It is not difficult to see that the least common
ancestor of an edge is unaltered by this transformation. The same scheme when
applied to the multigraph H will convert it into a simple graph in which all
nontree edges have distinct endpoints.

The algorithm in [KPRS97] can now be adapted in a straightforward way
to identify F-heavy edges. Although that algorithm only determines whether or
not there is an F-heavy edge in the graph, it is straightforward to modify it to
identify all F-heavy edges within the same time and work bounds. This leads to
the following claim:

Claim 7. Let F be a forest of a multi-graph H with distinct edge weights. The
procedure call Filter(H, F, H') returns a graph H' in which the F'-heavy edges of
H are deleted and it runs in O(logn) time and O(|H|) work on a deterministic
EREW PRAM.

6 Some Extensions

In this section, we describe another algorithm which computes the MSF in
0(2°¢" f lognloglogn) expected time and O(m) expected work on an EREW
PRAM, where f = 1 + (logn - loglogn - y/n/m). Note that if m =
2(n(lognloglogn)?), then f = O(1). Otherwise, f = O(lognloglogn). When
m = 2(n(lognloglogn)?), this algorithm has the same performance as an al-
gorithm in [Kar95] for the CREW PRAM, and it matches the time of (and
performs less work than) Chong’s algorithm. For m not much smaller than
n(lognloglogn)?, this algorithm runs faster than FindMSF, and it is no worse
than it in any case. For all edge densities this algorithm performs linear work.

We first describe a randomized EREW PRAM algorithm which computes
the MSF in expected time O(lognloglogn) and expected work O(mf). The
algorithm can be viewed as a combination (and generalization) of a CREW
PRAM MSF algorithm in [Kar95] and the EREW PRAM MSF verification al-
gorithm in [KPRS97]. Hence we will call it the K-KPRS algorithm. The general-
ization of the CREW PRAM algorithm of [Kar95] lies in the sampling probabil-
ity used in K-KPRS — f/(lognloglogn) — in place of 1/(logn loglogn) used in
[Kar95] (which is independent of the edge density). Algorithm K-KPRS requires
mf/(lognloglogn) processors and has the following steps.

1. Sample the edges in G independently with probability f/(lognloglogn). We
expect the sampled graph G to have mf/(lognloglogn) edges.

2. Compute the MSF, F, of G, using Chong’s algorithm. This takes
O(lognloglogn) time.

3. Apply filteron G and F'. This takes O(log n[loglogn/f]) = O(log nloglogn)
time. Let G’ be the filtered graph.

4. Compute the MSF of G' using Chong’s algorithm. The expected number of
edges in G' is nlognloglogn/f. One can easily check that this is
O(mf/(lognloglogn)) by considering the two cases: m = 2(n(lognloglogn)?)
and m = o(n(lognloglogn)?).

Hence the K-KPRS algorithm spends O(lognloglogn) expected time which in
turn implies that it performs at most O(mf) expected work.

Now we use algorithm K-KPRS in place of Chong’s algorithm in the base
case of our FindMSF algorithm and call with parameter log* f instead of log"™ m.
Hence the new algorithm has the stated time and work bounds as given in the
claim below.

Claim 8. The MSF of an n-vertex, m-edge, weighted graph can be computed
in O(2°8" flognloglogn) expected time and O(m) expected work on an EREW
PRAM, where f = 1+ (lognloglogn - y/n/m). If m = 2(n(lognloglogn)?)
the MSF can be computed in O(lognloglogn) expected time and O(m) expected
work on an EREW PRAM.

7 Adaptation to QSM and BSP Models

The QSM model [GMRI7] and the BSP model [Val90] are general-purpose mod-
els of parallel computation that take into account some of the important features
of real parallel machines that are not reflected in the PRAM model. The QSM
is a shared-memory model with a gap parameter g for access to global memory.
The BSP is a distributed memory model that consists of processor-memory units
interconnected by a general-purpose interconnection network whose performance
is parameterized by a gap parameter g as well as a periodicity parameter L. For
a precise definition of the two models, see [Val90, GMR97].

It is straightforward to see ([GMR97]) that any EREW PRAM algorithm
that runs in time ¢ and work w is a QSM algorithm that runs in time g - ¢ and
work g-w. Also, it is shown in [GMR97] that any QSM algorithm that needs to
access 1 distinct memory locations must perform work 2(g - r).

Let T'(n,m) = O(lognloglogn2'°8" 1), where f = 1+ (lognloglogn-+/n/m).
Thus T'(n,m) is the expected running time of FindM SF(G,!, F) on an EREW
PRAM, when G is a graph with n nodes and m edges. Based on the results
stated above on mapping an EREW PRAM algorithm on to the QSM we have
the following Claim.

Claim9. Let G = (V,E) be a graph on n vertices and m nodes with distinct
weights on edges. A minimum spanning forest for G can be computed on the

QSM in expected time O(g-T(n,m)) and expected work O(g-(n+m)). The work
bound is optimal.

A randomized work-preserving emulation of the QSM on the BSP is presented
in [GMRI7] (see also [Ram97]) with the following performance.

Claim 10. ([GMRY7]) An algorithm that runs in time t' on a p'-processor QSM
with gap parameter g can be emulated on a p-processor BSP with gap parameter
g and periodicity parameter L in time t = O(t' - (p'/p)) w.h.p. provided p <

(L/g)iw, and t' is bounded by a polynomial in p.

Using the above two claims, we obtain the following result.

Claim11. Let G = (V, E) be a graph on n vertices and m nodes with distinct
weights on edges. A minimum spanning forest for G can be computed on a BSP
with expected work O(g-(n+m)) and expected time O(g-T(n,m)-((L/g)+glogp)).

Proof. Let E[Tgsp] be the expected running time of the MSF algorithm on the
BSP with p = T(n,m)-(?l—j_/rg)—l—glogp) processors. By Claim 9 and 10 E[Tggsp] is
bounded by E[Tpsp] < (1 —1/n°)-O0(g-T(n,m)-((L/g) + glogp)) + (1/n°)-
(g + L) - O(mlogn) where ¢ is a constant under our control. In deriving the
above expression it was assumed that if the algorithm exceeds the time bound
in Claim 11, the MSF is computed sequentially on one BSP processor using a

standard sequential algorithm such as Kruskal’s algorithm (see, e.g., [CLR91]).

By choosing c sufficiently large (¢ > 2+ W should suffice) the second term

log
can be made smaller than the first term, resulting in the desired result. O

Soon after hearing of our result, [DJR97] announced some results for finding
an MSF on the BSP. We have also been informed of recent independent work
by [DG97] on BSP algorithms for the MSF problem. Both of these results are
for minimizing the number of ‘supersteps’ in the BSP computation, and they
perform super-linear work on a general input graph. In contrast, our parallel
algorithms for finding an MSF on the QSM and the BSP perform expected
linear work (i.e., O(g - (n +m)) work) on any input graph.

A cknowledgment

The authors would like to thank Santanu Sinha for discussions on this problem.

References

[Bor26] O. Boruvka. O jistem problemu minimalnim. Praca Moravske
Prirodovedecke Spolecnosti, 3:37-58, 1926. In Czech.

[Cho96] K. W. Chong. Finding minimum spanning trees on the EREW PRAM. In
Proceedings of the 1996 International Conference on Algorithms, pages 7-14,
Taiwan, 1996.

[CKT94] R. Cole, P.N. Klein, and R.E. Tarjan. A linear-work parallel algorithm for
finding minimum spanning trees. In Proceedings of the 199/ ACM Sympo-
stum on Parallel Algorithms and Architectures, pages 11-15, 1994.

[CKT96] R. Cole, P.N. Klein, and R.E. Tarjan. Finding minimum spanning trees in
logarithmic time and linear work using random sampling. In Proceedings of
the 1996 ACM Symposium on Parallel Algorithms and Architectures, pages
213-219, 1996.

[CLR91] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms.
MIT Press, 1991.

[DG97] F. Dehne and S. Gotz. Efficient parallel minimum spanning algorithms for
coarse grained multicomputers and BSP, June 1997. Manuscript, Carleton
University, Ottawa, Canada.

[DJR97] W. Dittrich, B. Juurlink, and I. Rieping, June 1997. Private communication
by Ingo Rieping.

[GMR94] P.B. Gibbons, Y. Matias, and V. Ramachandran. The QRQW PRAM: Ac-
counting for contention in parallel algorithms. In Proceedings of the Fifth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 638648,
1994.

[GMRY7] P. B. Gibbons, Y. Matias, and V. Ramachandran. Can a shared-memory
model serve as a bridging model for parallel computation? In Proceedings of
the 1997 ACM Symposium on Parallel Algorithms and Architectures, pages
72-83, 1997.

[HZ96] S. Halperin and U. Zwick. Optimal randomized EREW PRAM algorithms
for finding spanning forests and for other basic graph connectivity prob-
lems. In Proceedings of the Seventh ACM-SIAM Symposium on Discrete
Algorithms, pages 438-447, 1996.

[J]M97] D. B. Johnson and P. Metaxas. Connected components in O(log®/? n) par-
allel time for CREW PRAM. Journal of Computer and System Sciences,
54:227-242, 1997.

[Kar93] D. R. Karger. Random sampling in matroids, with applications to graph
connectivity and minimum spanning trees. In 34th Annual Symposium on
Foundations of Computer Science, pages 84-93, 1993.

[Kar95] D. R. Karger. Random Sampling in Graph Optimization Problems. PhD
thesis, Department of Computer Science, Stanford University, 1995.

[KKT95] D.R. Karger, P. N. Klein, and R. E. Tarjan. A randomized linear-time
algorithm to find minimum spanning trees. Journal of the ACM, 42:321—
328, 1995.

[KPRS97] V. King, C. K. Poon, V. Ramachandran, and S. Sinha. An optimal EREW
PRAM algorithm for minimum spanning tree verification. Information Pro-
cessing Letters, 62(3):153-159, 1997.

[Ram96] V. Ramachandran. Private communication to Uri Zwick, January, 1996. To
be included in journal version of [HZ96].

[Ram97] V. Ramachandran. A general purpose shared-memory model for parallel
computation. Technical Report TR97-16, Univ. of Texas at Austin, 1997.

[Tar83] R. E. Tarjan. Data Structures and Network Algorithms. Society for Indus-
trial and Applied Mathematics, 1983.

[Val90] L. G. Valiant. A bridging model for parallel computation. Communications
of the ACM, 33(8):103-111, 1990.

This article was processed using the ITEX macro package with LLNCS style

