
A Randomized Time-Work Optimal Parallel Algorithm for Finding

a Minimum Spanning Forest�

Seth Pettie and Vijaya Ramachandran

Department of Computer Sciences

The University of Texas at Austin

Austin, TX 78712

seth@cs.utexas.edu, vlr@cs.utexas.edu

April 19, 2000

Abstract

We present a randomized algorithm to �nd a minimum spanning forest (MSF) in an undi-
rected graph. With high probability, the algorithm runs in logarithmic time and linear work on
an EREW PRAM. This result is optimal with respect to both work and parallel time, and is
the �rst provably optimal parallel algorithm for this problem under both measures.

1 Introduction

We present a randomized parallel algorithm to �nd a minimum spanning forest (MSF) in an edge-
weighted, undirected graph. On an EREW PRAM [KR90] our algorithm runs in expected loga-
rithmic time and linear work in the size of the input; these bounds also hold with high probability
in the size of the input. This result is optimal with respect to both work and parallel time, and is
the �rst provably optimal parallel algorithm for this problem under both measures.

Here is a brief summary of related results. Following the linear-time sequential MSF algorithm
of Karger, Klein and Tarjan [KKT95] (and building on it) came linear-work parallel MST algorithms
for the CRCW PRAM [CKT94, CKT96] and the EREW PRAM [PR97]. The best CRCW PRAM
algorithm known to date [CKT96] runs in logarithmic time and linear work, but the time bound
is not known to be optimal. The best EREW PRAM algorithm known prior to our work is the
result of Poon and Ramachandran which runs in O(logn log logn2log

� n) time and linear work.
All of these algorithms are randomized. Recently Chong, Han and Lam [CHL99] presented a
deterministic EREW PRAM algorithm for MSF, which runs in logarithmic time with a linear
number of processors, and hence with work O((m + n) logn), where n and m are the number of
vertices and edges in the input graph. It was observed by Poon and Ramachandran [PR98] that
the algorithm in [PR97] could be speeded up to run in O(log n � 2log� n) time and linear work by
using the algorithm in [CHL99] as a subroutine (and by modifying the `Contract' subroutine in
[PR97]).

In this paper we improve on the running time of the algorithm in [PR97, PR98] to O(log n),
which is the best possible, and we improve on the algorithm in [CKT96] by achieving the logarithmic
time bound on the less powerful EREW PRAM.

�Part of this work was supported by Texas Advanced Research Program Grant 003658-0029-1999. Seth Pettie

was also supported by an MCD Fellowship.

1

Our algorithm has a simple 2-phase structure. It makes subroutine calls to the Chong-Han-
Lam algorithm [CHL99], which is fairly complex. But outside of these subroutine calls (which are
made to the simplest version of the algorithm in [CHL99]), the steps in our algorithm are quite
straightforward.

In addition to being the �rst time-work optimal parallel algorithm for MSF, our algorithm can
be used as a simpler alternative to several other parallel algorithms:

1. For the CRCW PRAM we can replace the calls to the CHL algorithm by calls to a simple
logarithmic time, linear-processor CRCW algorithm such as the one in [AS87]. The resulting
algorithm runs in logarithmic time and linear work and is considerably simpler than the MSF
algorithm in [CKT96].

2. As modi�ed for the CRCW PRAM, our algorithm is simpler than the linear-work logarithmic-
time CRCW algorithm for connected components given in [Gaz91].

3. Our algorithm improves on the EREW connectivity and spanning tree algorithms in [HZ94,
HZ96] since we compute a minimum spanning tree within the same time and work bounds.
Our algorithm is simpler than the algorithms in [HZ94, HZ96].

In the following we use the notation S+T to denote union of sets S and T , and we use S+ e to
denote the set formed by adding the element e to the set S. We say that a result holds with high
probability (or w.h.p.) in n if the probability that it fails to hold is less than 1=nc, for any constant
c > 0.

The rest of this paper describes and analyzes our algorithm, and is organized as follows. Section
2 gives a high-level description of our algorithm, which works in two phases. Section 3 describes the
details of Phase 1 of our algorithm; the main procedure of Phase 1 is Find-k-Min, which is given
in section 3.4. Section 4 gives Phase 2, whose main procedure is Find-MSF. Section 5 gives the
proof that our algorithm runs in expected logarithmic time and linear work, and section 6 extends
this result to high-probability bounds. Section 7 addresses the issue of processor allocation in the
various steps of our algorithm. Section 8 discusses the adaptability of our algorithm to realistic
parallel models like the BSP [Val90] and QSM [GMR97] and the paper concludes with section 9.

2 The High-Level Algorithm

Our algorithm is divided into two phases along the lines of the CRCWPRAM algorithm of [CKT96].
In Phase 1, the algorithm reduces the number of vertices in the graph from n to n=k vertices, where
n is the number of vertices in the input graph, and k = (log(2) n)2.y To perform this reduction
the algorithm uses the familiar recursion tree of depth log� n [CKT94, CKT96, PR97], which gives
rise to O(2log

� n) recursive calls, but the time needed per invocation in our algorithm is well below
O(log n=2log

� n). Thus the total time for Phase 1 is O(log n). We accomplish this by requiring
Phase 1 to �nd only a subset of the MSF. By contracting this subset of the MSF we obtain a graph
with O(n=k) vertices. Phase 2 then uses an algorithm similar to the one in [PR97], but needs no
recursion due to the reduced number of vertices in the graph. Thus Phase 2 is able to �nd the MSF
of the contracted graph in O(log n) time and linear work.

We assume that edge weights are unique. As always, uniqueness can be forced by ordering the
vertices, then ordering identically weighted edges by their end points.

Here is a high-level description of our algorithm.

yWe use log(r) n to denote the log function iterated r times, and log� n to denote the minimum r s.t. log(r) n � 1.

2

High-Level(G)
(Phase 1) Gt := For all v 2 G, retain the lightest k edges in edge-list(v)

M := Find-k-Min(Gt; log
� n)

G0:=Contract all edges in G appearing in M

(Phase 2) Gs:=Sample edges of G0 with prob. 1=
p
k = 1= log(2) n

Fs :=Find-MSF(Gs)
Gf := Filter(G0; Fs)
F :=Find-MSF(Gf)
Return(M + F)

Theorem 2.1 With high probability, High-Level(G) returns the MSF of G in O(log n) time using
(m+ n)= log n processors.

In the following sections we describe and analyze the algorithms for Phase 1 and Phase 2, and
then present the proof of the main theorem for the expected running time. We then obtain a
high probability bound for the running time and work. When analyzing the performance of the
algorithms in Phase 1 and Phase 2, we use a time-work framework, assuming perfect processor
allocation. This can be achieved with high probability to within a constant factor, using the load-
balancing scheme in [HZ94], which requires superlinear space, or the linear-space scheme claimed
in [HZ96]. We discuss processor allocation in Section 7 where we point out that a simple scheme
similar to the one in [HZ94] takes only linear space on the QRQW PRAM [GMR94], which is
a slightly stronger model than the EREW PRAM. The usefulness of the QRQW PRAM lies in
the fact the algorithms designed on that model map on to general-purpose models such as QSM
[GMR97] and BSP [Val90] just as well as the EREW PRAM. We then describe the performance of
our MSF algorithm on the QSM and BSP.

3 Phase 1

In Phase 1, our goal is to contract the input graph G into a graph with O(n=k) vertices. We do this
by identifying certain edges in the minimum spanning forest of G and contracting the connected
components formed by these edges. The challenge here is to identify these edges in logarithmic
time and linear work.

Phase 1 achieves the desired reduction in the number of vertices by constructing a k-Min forest
(de�ned below). This is similar to the algorithm in [CKT96]. However, our algorithm is considerably
simpler. We show that a k-Min forest satis�es certain properties, and we exploit these properties to
design a procedure Bor�uvka-A, which keeps the sizes of the trees contracted in the various stages of
Phase 1 to be very small so that the total time needed for contracting and processing edges in these
trees is o(log n=2log

� n). Phase 1 also needs a Filter subroutine, which removes `k-min heavy' edges.
For this, we show that we can use an MSF veri�cation algorithm on the small trees we construct
to perform this step. The overall algorithm for Phase 1, Find-k-Min uses these two subroutines to
achieve the stated reduction in the number of vertices within the desired time and work bounds.

3.1 k-Min Forest

Phase 1 uses the familiar `sample, contract and discard edges' framework of earlier randomized
algorithms for the MSF problem [KKT95, CKT94, CKT96, PR97]. However, instead of computing

3

a minimum spanning forest, we will construct the k-Min tree [CKT96] of each vertex (where k =
(log(2) n)2). Contracting the edges in these k-Min trees will produce a graph with O(n=k) vertices.

To understand what a k-Min tree is, consider the Dijkstra-Jarnik-Prim minimum spanning tree
algorithm:

Dijkstra-Jarnik-Prim(G)
S := fvg (choose an arbitrary starting vertex v)
T := ;
Repeat until T contains the MST of G

Choose minimum weight edge (a; b) s.t a 2 S, b 62 S
T := T + (a; b)
S := S + b

The edge set k-Min(v) consists of the �rst k edges chosen by this algorithm, when started at
vertex v. A forest F is a k-Min forest of G if F � MSF(G) and for all v 2 G; k-Min(v) � F .

Let PT (x; y) be the set of edges on the path from x to y in tree T , and let maxweightfAg be
the maximum weight in a set of edges A.

For any forest F inG, de�ne an edge (a; b) inG to be F -heavy ifweight(a; b) > maxweightfPF (a; b)g
and to be F -light otherwise. If a and b are not in the same tree in F then (a; b) is F-light.

LetM be the k-Min tree of v. We de�ne weightv(w) to bemaxweightfPM (v; w)g if w appears in
k-Min(v), otherwise weightv(w) = maxweightfk-Min(v)g. De�ne an edge (a; b) to be k-Min-heavy
if weight(a; b) > maxfweighta(b);weightb(a)g, and to be k-Min-light otherwise.

Claim 3.1 Let the measure weightv(w) be de�ned with respect to any k in the range [1..n]. Then
weightv(w) � maxweightfPMSF (v; w)g.
Proof: There are two cases, when w falls inside the k-Min tree of v, and when it falls outside. If w is
inside k-Min(v), then weightv(w) is the same as maxweightfPMSF (v; w)g since k-Min(v) �MSF .
Now suppose that w falls outside k-Min(v) and weightv(w) > maxweightfPMSF (v; w)g. There
must be a path from v to w in the MSF consisting of edges lighter than maxweightfk-Min(v)g.
However, at each step in the Dijkstra-Jarnik-Prim algorithm, at least one edge in PMSF is eligible
to be chosen in that step. Since w 62 k-Min(v), the edge with weight maxweightfk-Min(v)g is
never chosen. Contradiction. 2

LetK be a vector of n values, each in the range [1::n]. Each vertex u is associated with a value of
K, denoted ku. De�ne an edge (u; v) to beK-Min-light ifweight(u; v) < maxfweightu(v); weightv(u)g,
where weightu(v) and weightv(u) are de�ned with respect to ku and kv respectively.

Lemma 3.1 Let H be a graph formed by sampling each edge in graph G with probability p. The
expected number of edges in G that are K-Min-light in H is less than n=p, for any K.

Proof: We show that any edge that is K-Min-light in G is also F -light where F is the MSF of
H. The lemma then follows from the sampling lemma of [KKT95] which states that the expected
number of F -light edges in G is less than n=p. Let us look at any K-Min-light edge (v; w). By
Claim 3.1, weightv(w) � maxweightfPMSF (v; w)g, the measure used to determine F -lightness.
Thus the criterion for K-Min-lightness, maxfweightv(w); weightw(v)g, must also be less than or
equal to maxweightfPMSF (v; w)g. Restating this, if (v; w) is K-Min-light, it must be F -light as
well. 2

We will use the above property of a k-Min forest to develop a procedure Find-k-Min(G; l). It
takes as input the graph G and a suitable positive integer l, and returns a k-Min forest of G. For

4

l = log� n, it runs in logarithmic time and linear work. In the next few sections we describe some
basic steps and procedures used in Find-k-Min, and then present and analyze this main procedure
of Phase 1.

Since Phase 1 is concerned only with the k-Min tree of each vertex, it su�ces to retain only the
lightest k edges incident on each vertex. Hence as stated in the �rst step of Phase 1 in algorithm
High-Level in Section 2 we will discard all but the lightest k edges incident on each vertex since we
will not need them until Phase 2. This step can be performed in logarithmic time and linear work
by a simple randomized algorithm that selects a sample of size

pjLj from each adjacency list L,
sorts this sample, and then uses this sorted list to narrow the search for the kth smallest element
to a list of size O(jLj3=4).

3.2 Bor�uvka-A Steps

In a basic Bor�uvka step [Bor26], each vertex chooses its minimum weight incident edge, inducing
a number of disjoint trees. All such trees are then contracted into single vertices, and useless
edges discarded. We will call edges connecting two vertices in the same tree internal and all others
external. All internal edges are useless, and if multiple external edges join the same two trees, all
but the lightest are useless.

Our algorithm for Phase 1 uses a modi�ed Bor�uvka step in order to reduce the time bound to
o(log n) per step. All vertices are classi�ed as being either live or dead. After a modi�ed Bor�uvka
step, vertex v's parent pointer is p(v) = w, where (v; w) is the edge of minimum weight incident on
v. In addition, each vertex has a threshold which keeps the weight of the lightest discarded edge
adjacent to v. The algorithm discards edges known not to be in the k-Min tree of any vertex. The
threshold variable guards against vertices choosing edges which may not be in the MSF. A dead
vertex v has the useful property (shown below) that for any edge (a; b) in k-Min(v), weight(a; b) �
weight(v; p(v)), thus dead vertices need not participate in any more Bor�uvka steps.

It is well-known that a Bor�uvka step generates a forest of pseudo-trees, where each pseudo-tree
is a tree together with one extra edge that forms a cycle of length 2. In our algorithm we will assume
that a Bor�uvka step also removes one of the edges in the cycle so that it generates a collection of
rooted trees.

The following three claims refer to any tree resulting from a modi�ed Bor�uvka step. Their
proofs are straightforward and are omitted.

Claim 3.2 The sequence of edge weights encountered on a path from v to root(v) is monotonically
decreasing.

Claim 3.3 If depth(v) = d then d-Min(v) consists of the edges in the path from v to root(v).
Furthermore, the weight of (v; p(v)) is greater than any other edge in d-Min(v).

Claim 3.4 If the minimum-weight incident edge of u is (u; v), k-Min(u) � (k-Min(v) + (u; v)).

Claim 3.5 Let T be a tree induced by a Bor�uvka step, and let T 0 be a subtree of T . If e is the
minimum weight incident edge on T , then the minimum weight incident edge on T 0 is either e or
an edge of T .

Proof: Suppose, on the contrary that the minimum weight incident edge on T 0 is e0 62 T , and
let v and v0 be the end points of e and e0 which are inside T . Consider the paths P (P 0) from v
(v0) to the root of T . By Claim 3.2, the edge weights encountered on P and P 0 are monotonically

5

decreasing. There are two cases. If T 0 contains some, but not all of P 0, then e0 must lie along P 0.
Contradiction. If T 0 contains all of P 0, but only some of P , then some edge e00 2 P is adjacent to
T 0. Then w(e0) < w(e00) < w(e), also a contradiction. 2

The procedure Bor�uvka-A(H; l; F) given below returns a contracted version of H with the
number of live vertices reduced by a factor of l. Edges designated as parent pointers, which are
guaranteed to be in the MSF of H, are returned in F . Initially F = ;.

Bor�uvka-A(H; l; F)
Repeat log l times: (log l modi�ed Bor�uvka steps)

F 0 := ;
For each live vertex v

Choose min. weight edge (v; w)
(1) If weight(v; w) > threshold(v), v becomes dead, stop else

p(v) := w
F 0 := F 0 + (v;p(v))

Each tree T induced by edges of F 0 is one of two types:
If root of T is dead, then

(2) Every vertex in T becomes dead (Claim 3.4)
If T contains only live vertices

(3) If depth(v) � k, v becomes dead (Claim 3.3)
Contract the subtree of T made up of live vertices
The resulting vertex is live, has no parent pointer, and
keeps the smallest threshold of its constituent vertices

F := F + F 0

Lemma 3.2 If Bor�uvka-A designates a vertex as dead, its k-Min tree has already been found.

Proof: Vertices make the transition from live to dead only at the lines indicated by a number. By
our assumption that we only discard edges that cannot be in the k-Min tree of any vertex, if the
lightest edge adjacent to any vertex has been discarded, we know its k-Min tree has already been
found. This covers line (1). The correctness of line (2) follows from Claim 3.4. Since (v; p(v)) is
the lightest incident edge on v, k-Min(v) � k-Min(p(v)) + (v; p(v)). If p(v) is dead, then v can also
be called dead. Since the root of a tree is dead, vertices at depth one are dead, implying vertices at
depth two are dead, and so on. The validity of line (3) follows directly from Claim 3.3. If a vertex
�nds itself at depth � k, its k-Min tree lies along the path from the vertex to its root. 2

Lemma 3.3 After a call to Bor�uvka-A(H; k + 1; F), the k-Min tree of each vertex is a subset of
F .

Proof: By Lemma 3.2, dead vertices already satisfy the lemma. After a single modi�ed Bor�uvka
step, the set of parent pointers associated with live vertices induce a number of trees. Let T (v)
be the tree containing v. We assume inductively that after dlog ie modi�ed Bor�uvka steps, the
(i� 1)-Min tree of each vertex in the original graph has been found (this is clearly true for i = 1).
For any live vertex v let (x; y) be the minimum weight edge s.t. x 2 T (v); y 62 T (v). By the
inductive hypothesis, the (i�1)-Min trees of v and y are subsets of T (v) and T (y) respectively. By
Claim 3.5, (x; y) is the �rst external edge of T (v) chosen by the Dijkstra-Jarnik-Prim algorithm,
starting at v. As every edge in (i�1)-Min(y) is lighter than (x; y), (2(i�1)+1)-Min(v) is a subset

6

of T (v) [f(x; y)g [T (y). Since edge (x; y) is chosen in the (dlog ie + 1)th modi�ed Bor�uvka step,
(2i � 1)-Min(v) is a subset of T (v) after dlog ie + 1 = dlog 2ie modi�ed Bor�uvka steps. Thus after
log(k + 1) steps, the k-Min tree of each vertex has been found. 2

Lemma 3.4 After b modi�ed Bor�uvka steps, the length of any edge list is bounded by kk
b

.

Proof: This is true for b = 0. Assuming the lemma holds for b � 1 modi�ed Bor�uvka steps, the
length of any edge list after that many steps is � kk

b�1
. Since we only contract trees of height < k,

the length of any edge list after b steps is < (kk
b�1

)k = kk
b

. 2
It is shown in the next section that our algorithm only deals with graphs that are the result of

O(log k) modi�ed Bor�uvka steps. Hence the maximum length edge list is kk
O(log k)

.

The costliest step in Bor�uvka-A is calculating the depth of each vertex. After the minimum
weight edge selection process, the root of each induced tree will broadcast its depth to all depth
1 vertices, which in turn broadcast to depth 2 vertices, etc. Once a vertex knows it is at depth
k � 1, it may stop, letting all its descendents infer that they are at depth � k. Interleaved with
each round of broadcasting is a processor allocation step. We account for this cost separately in
section 7.

Lemma 3.5 Let G1 have m1 edges. Then a call to Bor�uvka-A(G1; l; F) can be executed in time
O(kO(log k) + log l � logn � (m1=m)) with (m+ n)= log n processors.

Proof: Let G1 be the result of b modi�ed Bor�uvka steps. By Lemma 3.4, the maximum degree of
any vertex after the ith modi�ed Bor�uvka step in the current call to Bor�uvka-A is kk

b+i
. Let us now

look at the required time of the ith modi�ed Bor�uvka step. Selecting the minimum cost incident edge
takes time log kk

b+i
, while the time to determine the depth of each vertex is k � log kkb+i . Summing

over the log l modi�ed Bor�uvka steps, the total time is bounded by
Plog l

i kO(b+i) = kO(b+log l). As
noted above, the algorithm performs O(log k) modi�ed Bor�uvka steps on any graph, hence the time
is kO(log k).

The work performed in each modi�ed Bor�uvka step is linear in the number of edges. Summing
over log l such steps and dividing by the number of processors, we arrive at the second term in the
stated running time. 2

3.3 The Filtering Step

The Filter Forest

Concurrent with each modi�ed Bor�uvka step, we will maintain a Filter forest, a structure
that records which vertices merged together at what time, and the edge weights involved. (This
structure appeared �rst in [King97]). If v is a vertex of the original graph, or a new vertex
resulting from contracting a set of edges, there is a corresponding vertex �(v) in the Filter for-
est. During a Bor�uvka step, if a vertex v becomes dead, a new vertex w is added to the Filter
forest, as well as a directed edge (�(v); w) having the same weight as (v; p(v)). If live vertices
v1; v2; : : : ; vj are contracted into a live vertex v, a vertex �(v) is added to the Filter forest in ad-
dition to directed edges (�(v1); �(v)); (�(v2); �(v)); : : : ; (�(vj); �(v)), having the weights of edges
(v1;p(v1)); (v2;p(v2)); : : : ; (vj ;p(vj)), respectively.

It is shown in [King97] that the heaviest weight in the path from u to v in the MSF is the same
as the heaviest weight in the path from �(u) to �(v) in the Filter forest (if there is such a path).

7

Hence the measures weightv(w) can be easily computed in the following way. Let Pf (x; y) be the
path from x to y in the Filter forest. If �(v) and �(w) are not in the same Filter tree, then

weightv(w) = maxweightfPf (�(v); root(�(v)))g and
weightw(v) = maxweightfPf (�(w); root(�(w)))g

If v and w are in the same Filter tree, let LCA = LCA(�(v); �(w)), then

weightv(w) = weightw(v) = maxfmaxweightfPf (�(v);LCA)g;maxweightfPf (�(w);LCA)g

Claim 3.6 The maximum weight on the path from �(v) to root(�(v)) is the same as the maximum
weight edge in r-Min(v), for some r.

Proof: If root(�(v)) is at height h, then it is the result of h Bor�uvka steps. Assume that the
claim holds for the �rst i < h Bor�uvka steps. After a number of contractions, vertex v of the
original graph is now represented in the current graph by vc. Let Tvc be the tree induced by the
ith Bor�uvka step which contains vc, and let e be the minimum weight incident edge on Tvc . By
the inductive hypothesis, maxweightfPf (�(v); �(Tvc))g = maxweightfr0-Min(v)g for some r0. As
was shown in the proof of Claim 3.5, all edges on the path from vc to edge e have weight at most
maxfweight(vc; p(vc)); weight(e)g. Each of the edges (vc; p(vc)) and e has a corresponding edge in
the Filter forest, namely (�(vc); p(�(vc))) and (�(Tvc); p(�(Tvc))). Since both these edges are on the
path from �(v) to p(�(Tvc)), maxweightfPf (�(v); p(�(Tvc)))g = maxweightfr-Min(v)g for some
r � r0. Thus the claim holds after i+ 1 Bor�uvka steps. 2

The Filter Step

In a call to Filter(H;F) in Find-k-Min, we examine each edge e = (x; y) in H � F , and delete
e from H if weight(e) > maxfweightv(w); weightw(v)g In order to carry out this test we can
use the O(log n) time, O(m) work MSF veri�cation algorithm of [KPRS97], where we modify the
algorithm for the case when x and y are not in the same tree to test the pairs (�(x); root(�(x))
and (�(y); root(�(y)), and we delete e if both of these pairs are identi�ed to be deleted. This
computation will take time O(log r) where r is the size of the largest tree formed.

The procedure Filter discards edges that cannot be in the k-Min tree of any vertex. When it
discards an edge (a; b), it updates the threshold variables of both a and b, so that threshold(a) is
the weight of the lightest discarded edge adjacent to a. If a's minimum weight edge is ever heavier
than threshold(a), k-Min(a) has already been found, and a becomes dead.

Claim 3.7 Let H 0 be a graph formed by sampling each edge in H with probability p, and F be a
k-Min forest of H 0. The call to Filter(H;F) returns a graph containing a k-Min forest of H, whose
expected number of edges is n=p.

Proof: For each vertex v, Claim 3.6 states thatmaxweightfPf (�(v); root(�(v)))g = maxweightfkv-
Min(v) for some value kv. By building a vector K of such values, one for each vertex, we are able
to check for K-Min-lightness using the Filter forest. It follows from Lemma 3.1 that the expected
number of K-Min-light edges in H is less than n=p. Now we need only show that a k-Min-light
edge of H is not removed in the Filter step. Suppose that edge (u; v) is in the k-Min tree of u in
H, but is removed by Filter. If v is in the ku-Min tree of u (w.r.t. H 0), then edge (u; v) was the
heaviest edge in a cycle and could not have been in the MSF, much less any k-Min tree. If v was
not in the ku-Min tree of u (w.r.t. H 0), then weight(u; v) > maxweightfku-Min(u)g, meaning edge
(u; v) could not have been picked in the �rst k steps of the Dijkstra-Jarnik-Prim algorithm. 2

8

3.4 Finding a k-Min Forest

We are now ready to present the main procedure of Phase 1, Find-k-Min. (Recall that the initial
call { given in Section 2 { is Find-k-Min(Gt; log

� n), where Gt is the graph obtained from G by
removing all but the k lightest edges on each adjacency list.)

Find-k-Min(H; i)
Hc := Bor�uvka-A(H; (log(i�1) n)4; F)
if i = 3, return(F)
Hs := sample edges of Hc with prob. 1=(log(i�1) n)2

Fs := Find-k-Min(Hs; i� 1)
Hf := Filter(Hc; Fs)
F 0 := Find-k-Min(Hf ; i� 1)
Return(F + F 0)

H is a graph with some vertices possibly marked as dead; i is a parameter that indicates the
level of recursion (which determines the number of Bor�uvka steps to be performed and the sampling
probability).

Lemma 3.6 The call Find-k-Min(Gt; log
� n) returns a set of edges that includes the k-Min tree of

each vertex in Gt.

Proof: The proof is by induction on i.
Base: i = 3. Then Find-k-Min(H; 3) returns F , which by Lemma 3.3 contains the k-min tree of
each vertex.
Induction Step: Assume inductively that Find-k-Min(H; i�1) returns the k-min tree ofH. Consider
the call Find-k-Min(H; i). By the induction assumption the call to Find-k-Min(Hs; i � 1) returns
the k-min tree of each vertex in Hs. By Claim 3.7 the call to Filter(Hc; Fs) returns in Hf a set of
edges that contains the k-Min trees of all vertices in Hc. Finally, by the inductive assumption, the
set of edges returned by the call to Find-k-min(Hf ; i� 1) contains the k-Min trees of all vertices in

Hf . Since F
0 contains the (log(i�1) n)-Min tree of each vertex in H, and Find-k-Min(H; i) returns

F + F 0, it returns the edges in the k-Min tree of each vertex in H. 2

Claim 3.8 The following invariants are maintained at each call to Find-k-min. The number of
live vertices in H � n=(log(i) n)4, and the expected number of edges in H � m=(log(i) n)2, where m
and n are the number of edges and vertices in the original graph.

Proof: These clearly hold for the initial call, when i = log� n. By Lemma 3.3, the contracted
graph Hc has no more than n=(log(i�1) n)4 live vertices. Since Hs is derived by sampling edges with
probability 1=(log(i�1) n)2, the expected number of edges in Hs is � m=(log(i�1) n)2, maintaining
the invariants for the �rst recursive call.

By Lemma 3.1, the expected number of edges in Hf � n(log(i�1) n)2

(log(i�1) n)4
= n=(log(i�1) n)2. Since Hf

has the same number of vertices as Hc, both invariants are maintained for the second recursive call.
2

3.5 Performance of Find-k-Min

Lemma 3.7 Find-k-min(Gt; log
� n) runs in expected time O(log n) and work O(m+ n).

9

Proof: Since recursive calls to Find-k-min proceed in a sequential fashion, the total running time
is the sum of the local computation performed in each invocation. Aside from randomly sampling
the edges, which takes constant time and work linear in the number of edges, the local computation
consists of calls to Filter and Bor�uvka-A.

In a given invocation of Find-k-min, the number of Bor�uvka steps performed on graph H is the
sum of all Bor�uvka steps performed in all ancestral invocations of Find-k-min, i.e.

Plog� n
i=3 O(log(i) n),

which is O(log(3) n). >From our bound on the maximum length of edge lists (Lemma 3.4), we can

infer that the size of any tree in the Filter forest is kk
O(log(3) n)

, thus the time needed for each mod-

i�ed Bor�uvka step and each Filter step is kO(log(3) n). Summing over all such steps, the total time
required is o(log n).

The work required by the Filter procedure and each Bor�uvka step is linear in the number of
edges. As the number of edges in any given invocation is O(m=(log(i) n)2), and there are O(log(i) n)
Bor�uvka steps performed in this invocation, the work required in each invocation is O(m= log(i) n)
(recall that the i parameter indicates the depth of recursion). Since there are 2log

� n�i invocations

with depth parameter i, the total work is given by
Plog� n

i=3 2log
� n�iO(m= log(i) n), which is O(m).

2

4 Phase 2

Recall the Phase 2 portion of our overall algorithm High-Level:

(the number of vertices in Gs is � n=k)
Gs :=Sample edges of G0 with prob. 1=

p
k = 1= log(2) n

Fs :=Find-MSF(Gs)
Gf := Filter(G0; Fs)
F := Find-MSF(Gf)

The procedure Filter(G;F) ([KPRS97]) returns the F -light edges of G. The procedure Find-
MSF(G1), described below, �nds the MSF of G1 in time O((m1=m) log n log(2) n), where m1 is the
number of edges in G1.

The graphs Gs and Gf each have expected m=
p
k = m= log(2) n edges since Gs is derived by

sampling each edge with probability 1=
p
k, and by the sampling lemma of [KKT95], the expected

number of edges in Gf is (m=k)=(1=
p
k) = m=

p
k. Because we call Find-MSF on graphs having

expected size O(m= log(2) n), each call takes O(log n) time.

4.1 The Find-MSF Procedure

The procedure Find-MSF(H) is similar to previous randomized parallel algorithms, except it uses
no recursion. Instead, a separate base case algorithm is used in place of recursive calls. We also
use slightly di�erent Bor�uvka steps, in order to reduce the work. These modi�cations are inspired
by [PR97] and [PR98] respectively.

As its Base-case, we use the simplest version of the algorithm of Chong et al. [CHL99], which
takes time O(logn) using (m+n) log n processors. By guaranteeing that it is only called on graphs
of expected size O(m= log2 n), the running time remains O(log n) with (m+ n)= log n processors.

10

Find-MSF(H)
Hc := Bor�uvka-B(H; log4 n; F)
Hs := Sample edges of Hc with prob. p = 1= log2 n
Fs := BaseCase(Hs)
Hf := Filter(Hc; Fs)
F 0 := BaseCase(Hf)
Return(F + F 0)

After the call to Bor�uvka-B, the graph Hc has < m= log4 n vertices. Since Hs is derived by
sampling the edges of Hc with probability 1= log2 n, the expected number of edges to the �rst
BaseCase call is O(m= log2 n). By the sampling lemma of [KKT95], the expected number of edges
to the second BaseCase call is < (m= log4 n)=(1= log2 n), thus the total time spent in these subcalls
is O(log n). Assuming the size of H conforms to its expectation of O(m= log(2) n), the calls to Filter
and Bor�uvka-B also take O(log n) time, as described below.

The Bor�uvka-B(H; l; F) procedure returns a contracted version of H with O(m=l) vertices. It
uses a simple growth control schedule, designating vertices as inactive if their degree exceeds l. We
can determine if a vertex is inactive by performing list ranking on its edge list for log l time steps.
If the computation has not stopped after this much time, then its edge list has length > l.

Bor�uvka-B(G; l; F)
Repeat log l times

For each vertex, let it be inactive if its edge list
has more than l edges, and active otherwise.
For each active vertex v

choose min. weight incident edge e
F = F + e

Using the edge-plugging technique, build a
single edge list for each induced tree (O(1) time)

Contract all trees of inactive vertices

The last step takes O(log n) time; all other steps take O(log l) time, as they deal with edge lists
of length O(l). Consequently, the total running time is O(logn+ log2 l). For each iteration of the
main loop, the work is linear in the number of edges. Assuming the graph conforms to its expected
size of O(m= log(2) n), the total work is linear. The edge-plugging technique as well as the idea of
a growth control schedule were introduced by Johnson & Metaxas [JM92].

5 Proof of Main Theorem

Proof: (Of Theorem 2.1) The set of edges M returned by Find-k-Min is a subset of the MSF of G.
By contracting the edges of M to produce G0, the MSF of G is given by the edges of M together
with the MSF of G0. The call to Filter produces graph Gf by removing from G0 edges known not
to be in the MSF. Thus the MSF of Gf is the same as the MSF of G0. Assuming the correctness
of Find-MSF, the set of edges F constitutes the MSF of Gf , thus M + F is the MSF of G.

Earlier we have shown that each step of High-Level requires O(log n) time and work linear in
the number of edges. In the next two sections we show that w.h.p, the number of edges encountered
in all graphs during the algorithm is linear in the size of the original graph. 2

11

6 High Probability Bounds

Consider a single invocation of Find-k-min(H; i), where H has m0 edges and n0 vertices. We want
to place likely bounds on the number of edges in each recursive call to Find-k-min, in terms of m0

and i.
For the �rst recursive call, the edges ofH are sampled independently with probability 1=(log(i�1) n)2.

Call the sampled graph H1. By applying a Cherno� bound, the probability that the size of H1 is
less than twice its expectation is 1� exp(�
(m0=(log(i�1) n)2)).

Before analyzing the second recursive call, we recall the sampling lemma of [KKT95] which states
that the number of F -light edges conforms to the negative binomial distribution with parameters
n0 and p, where p is the sampling probability, and F is the MSF of H1. As we saw in the proof of
Lemma 3.1, every k-Min-light edge must also be F -light. Using this observation, we will analyze
the size of the second recursive call in terms of F -light edges, and conclude that any bounds we
attain apply equally to k-Min-light edges.

We now bound the likelihood that more than twice the expected number of edges are F -light.
This is the probability that in a sequence of more than 2n0=p ips of a coin, with probability p of
heads, the coin comes up heads less than n0 times (since each edge selected by a coin toss of heads
goes into the MSF of the sampled graph). By applying a Cherno� bound, this is exp(�
(n0)).
In this particular instance of Find-k-min, n0 � m=(log(i�1) n)4 and p = 1=(log(i�1) n)2, so the
probability that fewer than 2m=(log(i�1) n)2 edges are F -light is 1� exp(�
(m=(log(i�1) n)4)).

Given a single invocation of Find-k-min(H; i), we can bound the probability that H has more
than 2log

� n�im=(log(i) n)2 edges by exp(�
(m=(log(i) n)4)). This follows from applying the ar-
gument used above to each invocation of Find-k-min from the initial call to the current call
at depth log� n � i. Summing over all recursive calls to Find-k-min, the total number of edges
(and thus the total work) is bounded by

Plog� n
i=3 22 log

� n�2im=(log(i) n)2 = O(m) with probability
1� exp(�
(m=(log(3) n)4)).

The probability that Phase 2 uses O(m) work is 1� exp(�
(m= log2 n)). We omit the analysis
as it is similar to the analysis for Phase 1.

The probability that our bounds on the time and total work performed by the algorithm fail to
hold is exponentially small in the input size. However, this assumes perfect processor allocation.
In the next section we show that the probability that work fails to be distributed evenly among
the processors is less than 1=m!(1). Thus the overall probability of failure is very small, and the
algorithm runs in logarithmic time and linear work w.h.p.

7 Processor Allocation

As stated in Section 2, the processor allocation needed for our algorithm can be performed by
a fairly simple algorithm given in [HZ94] that takes logarithmic time and linear work but uses
super-linear space, or by a more involved algorithm claimed in [HZ96] that runs in logarithmic
time and linear work and space. We show here that a simple algorithm similar in spirit to the one
in [HZ94] runs in logarithmic time and linear work and space on the QRQW PRAM [GMR94]. The
QRQW PRAM is intermediate in power between the EREW and CRCW PRAM in that it allows
concurrent memory accesses, but the time taken by such accesses is equal to the largest number of
processors accessing any single memory location.

We assume that the total size of our input is n, and that we have q = n= log n processors.
We group the q processors into q=r groups of size r = log n and we make an initial assignment of
O(r logn) elements to each group. This initial assignment is made by having each element choose

12

a group randomly. The expected number of elements in each group is r logn and by a Cherno�
bound, w.h.p. there are O(r logn) elements in each group. Vertices assigned to each group can be
collected together in an array for that group in O(log n) time and O(n) work and space by using
the QRQW PRAM algorithm for multiple compaction given in [GMR96], which runs in logarithmic
time and linear work with high probability. (We do not need the full power of the algorithm in
[GMR96] since we know ahead of time that each group has � c log2 n elements w.h.p., for a suitable
constant c. Hence it su�ces to use the heavy multiple compaction algorithm in [GMR96] to achieve
the bounds of logarithmic time and linear work and space.)

A simple analysis using Cherno� bounds shows that on each new graph encountered during the
computation each group receives either < log n elements, or within a constant factor of its expected
number of elements w.h.p. Hence in O(log log n) EREW PRAM steps each processor within a group
can be assigned 1=(log n) of the elements in its group. This processor re-allocation scheme takes
O(log logn) time per stage and linear space overall, and with high probability, achieves perfect
balance to within a constant factor. The total number of processor re-allocation steps needed by
our algorithm is O(2log

� n � k log k) = O(log n= log logn), hence the time needed to perform all of
the processor allocation steps is O(log n) w.h.p.

We note that the probability that processors are allocated optimally (to within a constant
factor) can be increased to 1�n�!(1) by increasing the group size r. Since we perform o((log(2) n)3)

processor allocation steps, r can be set as high as n1=(log
(2) n)3 without increasing the overall O(log n)

running time. Thus the high probability bound on the number of items in each group being
O(r logn) becomes 1�n�!(1). It is shown in [GMR96] that the heavy multiple compaction algorithm
runs in time O(log� n logm= log logm) time w.h.p. in m, for any m > 0. By choosing m =
nlog log n= log

� n, we obtain O(log n) running time for this initial step with probability 1 � n�!(1),
which is also the overall probability bound for processor allocation.

8 Adaptations to other Practical Parallel Models

Our results imply good MSF algorithms for the QSM [GMR97] and BSP [Val90] models, which
are more realistic models of parallel computation than the PRAM models. Theorem 8.1 given
below follows directly from results mapping EREW and QRQW computations on to QSM given in
[GMR97]. Theorem 8.2 follows from the QSM to BSP emulation given in [GMR97] in conjunction
with the observation that the slowdown in that emulation due to hashing does not occur for our
algorithm since the assignment of vertices and edges to processors made by our processor allocation
scheme achieves the same e�ect.

Theorem 8.1 An MSF of an edge-weighted graph on n nodes and m edges can be found in
O(g log n) time and O(g(m + n)) work w.h.p, using O(m + n) space on the QSM with a simple
processor allocation scheme, where g is the gap parameter of the QSM.

Theorem 8.2 An MSF of an edge-weighted graph on n nodes and m edges can be found on the
BSP in O((L + g) log n) time w.h.p., using (m + n)= log n processors and O(m + n) space with a
simple processor allocation scheme, where g and L are the gap and periodicity parameters of the
BSP.

13

9 Conclusion

We have presented a randomized algorithm for MSF on the EREWPRAMwhich is provably optimal
both in time and work. Our algorithm works within the stated bounds with high probability in the
input size, and has good performance in other popular parallel models.

An important open question that remains is to obtain a deterministic parallel MSF algorithm
that is provably optimal in time and work. Recently an optimal deterministic sequential algorithm
for MSF was presented in [PR00]; an intriguing aspect of this algorithm is that the function
describing its running time is not known at present, although it is proven in [PR00] that the
algorithm runs within a small constant factor of the best possible. Parallelizing this optimal
sequential algorithm is a topic worth investigating.

References

[AS87] B. Awerbuch, Y. Shiloach. New connectivity and MSF algorithms for shu�e-exchange networks
and PRAM. IEEE Trans. Computers, vol. C-36, 1987, pp. 1258-1263.

[Bor26] O. Bor�uvka . O jist�em probl�emu minima�aln�im. Moravsk�e P�r�irodov�edeck�e Spole�cnosti 3, (1926), pp.
37-58. (In Czech).

[CHL99] K. W. Chong, Y. Han and T. W. Lam. On the parallel time complexity of undirected connectivity
and minimum spanning trees. In Proc. SODA 1999, pp. 225-234.

[CKT94] R. Cole, P.N. Klein, and R.E. Tarjan. A linear-work parallel algorithm for �nding minimum
spanning trees. In Proc. SPAA, 1994, pp. 11{15.

[CKT96] R. Cole, P.N. Klein, and R.E. Tarjan. Finding minimum spanning trees in logarithmic time and
linear work using random sampling. In Proc. SPAA, 1996, pp. 213{219.

[Dij59] E.W. Dijkstra. A note on two problems in connexion with graphs. Numer. Math., 1 (1959), pp.
269-271.

[Gaz91] H. Gazit An optimal randomized parallel algorithm for �nding connected components in a graph.
SIAM J. Comput., vol. 20, 1991, pp. 1046-1067.

[GMR94] P.B. Gibbons, Y. Matias, and V. Ramachandran. The QRQW PRAM: Accounting for contention
in parallel algorithms. SIAM J. Comput., vol. 28, no. 2, 1999, pp. 733-769.

[GMR96] P. B. Gibbons, Y. Matias, and V. Ramachandran. E�cient low-contention parallel algorithms.
Jour. Comput. Systems Sciences, vol. 53, 1996, pp. 395-416.

[GMR97] P. B. Gibbons, Y. Matias, and V. Ramachandran. Can a shared-memory model serve as a bridging
model for parallel computation? Theory of Computing Systems, Vol. 32, no. 2, 1999, pp. 327-359.

[HZ94] S. Halperin and U. Zwick. An optimal randomized logarithmic time connectivity algorithm for the
EREW PRAM. In Proc. SPAA, 1994, pp. 1-10.

[HZ96] S. Halperin and U. Zwick. Optimal randomized EREW PRAM algorithms for �nding spanning
forests and for other basic graph connectivity problems. In Proc. SODA, 1996, pp. 438{447.

[Jar30] V. Jarn�ik. O jist�em probl�emu minima�aln�im. Moravsk�e P�r�irodov�edeck�e Spole�cnosti 6, 1930, pp.
57-63. (In Czech).

[JM92] D. B. Johnson and P. Metaxas. Connected components in O(log3=2 n) parallel time for CREW
PRAM. Jour. Comput. Sys. Sciences, vol. 54, 1997, pp. 227{242.

14

[King97] V. King. A simpler minimum spanning tree veri�cation algorithm. Algorithmica, vol. 18, 1997, pp.
263-270.

[KKT95] D. R. Karger, P. N. Klein, and R. E. Tarjan. A randomized linear-time algorithm to �nd minimum
spanning trees. Journal of the ACM, 42:321{328, 1995.

[KPRS97] V. King, C. K. Poon, V. Ramachandran, and S. Sinha. An optimal EREW PRAM algorithm for
minimum spanning tree veri�cation. Information Processing Letters, 62(3):153{159, 1997.

[KR90] R.M. Karp and V. Ramachandran. Parallel algorithms for shared-memory machines. In Handbook

of Theoretical Computer Science, Vol. A, 1990, pp. 869-941. Elsevier Science, The Netherlands.

[PR97] C. K. Poon, V. Ramachandran. A randomized linear work EREW PRAM algorithm to �nd a
minimum spanning forest. In Proc ISAAC, 1997, pp. 212.-222.

[PR98] C. K. Poon, V. Ramachandran. Private communication, 1998.

[PR00] S. Pettie, V. Ramachandran. An optimal minimum spanning tree algorithm. In Proc. ICALP, 2000,
to appear.

[Val90] L. G. Valiant. A bridging model for parallel computation. Communications of the ACM, 33(8):103{
111, 1990.

[Prim57] R.C. Prim. Shortest connection networks and some generalizations. Bell System Technical Journal,
36:1389-1401.

15

