
DIMACS Series in Discrete Mathematics
and Theoretical Computer Science
Volume 00, 0000

Implementation of Parallel Graph Algorithms
on the MasPar
(Preprint)y

TSAN-SHENG HSU, VIJAYA RAMACHANDRAN,

AND NATHANIEL DEAN

July 22, 1993

Abstract. Graphs play an important role in modeling the underlying
structure of many real world problems. Over the past couple of decades,
e�cient sequential algorithms have been developed for several graph prob-
lems and have been implemented on sequential machines. The NETPAD
system at Bellcore is a general tool for graph manipulations and algorithm
design that facilitates such implementations. More recently, several re-
search results on e�cient parallel algorithms have been developed, but not
much implementation has been done.

We have implemented some of the parallel algorithms for basic graph
problems on the massively parallel machineMasPar, and we have interfaced
these algorithms with NETPAD. In this paper, we give a description of our
implementation togetherwith some performancedata. We also describe the
interface that we have built between our library of parallel graph algorithms
and the NETPAD system.

1. Introduction

This paper summarizes a project we undertook at Bellcore during the summer

of 1991 for implementing parallel graph algorithms. In this project, we imple-

1991 Mathematics Subject Classi�cation. 68-04; Secondary 05-04, 05C85, 68Q22.
Key words and phrases. parallel algorithms, graph algorithms, implementation, MasPar.
The work reported here was performed while the �rst two authors were visiting Bellcore.
The �rst two authors were supported in part by NSF Grants CCR-89-10707 and CCR-90-

23059 and Texas Advanced Research Projects Grant 003658480.
This paper is in �nal form and no version of it will be submitted for publication elsewhere.
yThis paper appears in DIMACS Series in Discrete Mathematics and Theoretical Computer

Science, American Mathematical Society, volume 15, 1994, pp. 165{198.

c0000 American Mathematical Society
0000-0000/00 $1.00 + $.25 per page

1

2 HSU, RAMACHANDRAN, AND DEAN

mented e�cient parallel algorithms for solving several undirected graph problems

using the massively parallel computer MasPar [13] at Bellcore. In addition, we

also built an interface between the graph algorithm design package developed at

Bellcore called NETPAD [3, 14, 15, 16] and our parallel programs. Our pur-

pose was to experiment and set up programming environments for implementing

parallel algorithms on massively parallel computers.

The organization of the paper is as follows. Section 2 gives an introduction

to e�cient parallel graph algorithms. Section 3 describes the machine architec-

ture of the parallel computer MasPar that we used to implement our parallel

algorithms, implementation strategies and an interface that we have built be-

tween NETPAD and our parallel programs. Section 4 describes implementation

details of our parallel algorithms. Section 5 gives speed-up data of our paral-

lel implementations and analyses of their performance. Finally, Section 6 gives

conclusions and directions for further research.

2. Parallel Graph Algorithms

In designing sequential graph algorithms, depth-�rst search and breadth-�rst

search have been used as basic search strategies for solving various graph prob-

lems [22]. Unfortunately, at present no e�cient parallel algorithms are known

for these two search techniques [7]. Hence we are unable to obtain e�cient paral-

lel algorithms by parallelizing sequential algorithms based on depth-�rst search

or breadth-�rst search. Instead, an alternative search technique called ear de-

composition has proved to be a very useful tool for designing parallel graph

algorithms [7, 6, 10, 17, 20, 19]. Combined with an e�cient parallel routine

for �nding connected components [1] and the Euler tour technique [24], we have

e�cient parallel algorithms for several important graph problems which include

various connectivity problems [6, 17, 19], st-numbering [10], planarity testing

and embedding [20], �nding a strong orientation and �nding a minimum cost

spanning forestz. Figure 1 illustrates the building blocks for designing paral-

lel graph algorithms using ear decomposition, the Euler tour technique and the

routine for �nding connected components.

Our parallel implementations followed this approach. We �rst built a kernel

which consists of commonly used routines in parallel graph algorithms. Then we

implemented e�cient parallel graph algorithms developed on the PRAM model

by calling routines in the kernel.

3. Implementation Environment

In this section we describe the environment in which we implemented sev-

eral e�cient PRAM graph algorithms. In Section 3.1, we �rst describe the

architecture of the MasPar machine [13]. Section 3.2 discusses the general is-

zIn this paper, a spanning forest of a graph G is a maximal subgraph of G (w.r.t. the edges
in G) that is a forest.

IMPLEMENTATION OF PARALLEL GRAPH ALGORITHMS 3

ear

decomposition

Euler tour

technique

connected
components

tree

functions

spanning
forest

minimum-cost

spanning forest

3-edge
connected
components

strong

orientation
s-t

numbering

triconnected

components

2-edge
connected
components

planarity

ear
decomposition
open

four-vertex

connectivity

biconnected

components

Figure 1. Parallel graph algorithms based on algorithms for

connected components, the Euler tour technique and ear decom-

position.

4 HSU, RAMACHANDRAN, AND DEAN

sues involved in implementing PRAM algorithms on the MasPar. Our parallel

implementations are integrated with a graph algorithm design package called

NETPAD [14, 15, 16]. Section 3.3 describes the NETPAD software and our

interface between it and our parallel programs.

3.1. The Parallel Machine MasPar. The MasPar computer [13] is a �ne-

grained massively parallel single-instruction-multiple-data (SIMD) computer. All

of its parallel processors synchronously execute the same instruction at the same

time. A simpli�ed version of its architecture is shown in Figure 2.

The MasPar has a front end processor running the Unix operating system

[21] and a Data Parallel Unit (DPU) for execution of parallel programs. The

front end machine is a micro-VAX workstation. The DPU consists of an Array

Control Unit (ACU) and 16384 Processor Elements (PE's). The ACU is a special

purpose processor for controlling the execution of all of the PE's. Programs are

stored in one special local memory bank of ACU and broadcast to each PE

simultaneously. The architecture of MasPar allows very e�cient broadcasting

operation from the ACU to all PE's. Since the ACU is about 10 times faster

than each individual PE [13], the other purpose of the ACU is to perform simple

local computations and broadcast the results to all PE's. Since the ACU is a

special processor that is designed for load and save operations, it might not be

very e�cient to do complex arithmetic operations on it. For performing global

arithmetic operations, it appears that the preferred method is to perform the

computations on the front end processor and have the front end transfer the

results back to the ACU.

All of the PE's are organized as a two-dimensional matrix. In Figure 2,

nxproc = 128 and nproc = 16384 for our machine, but these numbers may

be di�erent at other installations. Each PE consists of a special processor and

a bank of local memory (about 64 K bytes in our system). Upon receiving

an instruction from the ACU, the processor will execute the instruction on its

own local data. Each PE is connected to its 8 neighbors (toroidal wrapped)

in a connection scheme called XNET. All PE's are also connected via a global

router. Local data inside each PE can be exchanged through the global router

as well as the local XNET. The XNET con�guration is faster, but requires all

PE's getting their needed data from the same direction. For transmitting a 32-

bit data through distance 1, the XNET communication is slightly less than 100

times faster than the time needed to go through the global router [12]. During

the computation, it might be necessary for the PE's to access the local memory

of the ACU (about 1 M bytes). Such I/O requests are sequentialized and carried

out one at a time. This process is very time-consuming.

The MasPar system provides a fast way of transferring data between the local

memory of the front end and the local memory of the ACU. It also provides a

fast way of transferring data between the local memory of the front end and the

local memory banks of the PE's. In order to perform the latter transfer, the set

IMPLEMENTATION OF PARALLEL GRAPH ALGORITHMS 5

Global Router

ACU-PE I/O bus interface

ACU

Front End Processor

local memory
(Array Control Unit)

Sequentialize I/O request from PE
Broadcast from ACU

local memory

local memory

local memory local memory

local memorylocal memorylocal memory

local memory

PE 0
PE 1 PE nxproc-1

PE nxproc
PE nxproc+1 PE

2*nxproc-1

PE nproc-1

Xnet connections

DPU

Figure 2. System architecture for the MasPar computer.

6 HSU, RAMACHANDRAN, AND DEAN

of PE's to receive data from the front end must form a rectangular block. More

details are described in Section 3.3.

We used the MasPar Parallel Language (MPL) [11, 12] to implement our

algorithms. MPL is an extension of the C language described in [8]. In addition

to all of the standard C language features, it allows the user program a set of

PE's to execute the same instruction on their own local data. MPL leaves the

responsibility of processor allocation to the programmer. During the execution

of the MPL program, the programmer must specify the set of PE's that are to

execute the current instruction. MPL also allows the user to instruct the ACU to

do local computations. MPL takes two kinds of input �les. The �rst is a program

�le with a su�x \.c" which indicates that it is a pure C language program. MPL

compiles this program and generates executable code that can be run on the front

end. The second �le is a program �le with a su�x \.m" which indicates that it

is a C language program that includes extended features for doing operations on

the PE's. MPL compiles the program and generates executable code that can

be run on the DPU. In the \.m" program, one can allocate local data on each

PE by adding the keyword plural to a C data declaration statement. Variables

declared without the plural keyword are allocated on the ACU. Any expression

that involves a plural variable is computed on each active PE. An expression

that contains no plural variables is computed on the ACU.

Using the MPL programming language, each PE can perform operations on

32-bit words and also on 64-bit words. (A 64-bit word can be declared by using

the MPL command long long.)

3.2. Implementation Strategies for PRAM Algorithms. In this sec-

tion, we describe the PRAM model and the strategies we used to map algorithms

designed on a PRAM onto the MasPar architecture.

PRAM Models

A PRAM machine [7] consists of a pool of random access machines (RAM) and a

global memory. Each random access machine has a processor with a reasonable

set of instructions and a local memory. Each RAM has an unique ID numbered

from 1 to the number of processors in the PRAM machine. During each step of

the computation, each processor synchronously executes the same instruction,

but with possibly di�erent operands. During each time cycle, a process can read

a global memory cell, perform some local computations on its local data and

write data into a global memory cell. A schematic diagram of a PRAM is shown

in Figure 3.

The PRAM model assumes that each instruction takes constant time no mat-

ter how many processors want to access the global memory. Depending on the

type of global memory access allowed, the PRAM model can be further clas-

si�ed into the following models: EREW PRAM, CREW PRAM and CRCW

PRAM. The EREW (exclusive read exclusive write) PRAM model requires that

no two processors read or write into the same global memory location at any

IMPLEMENTATION OF PARALLEL GRAPH ALGORITHMS 7

PE

local
memory

0

Global Memory

PE

local
memory

p-1PE

local
memory

1

a Random Access Machine

Figure 3. Schematic diagram for the PRAM model.

given time. The CREW (concurrent read exclusive write) PRAM model allows

concurrent access to the same global memory location by more than one pro-

cessor for reading, but disallows more than one processor write into the same

memory location at the same time. CRCW (concurrent read concurrent write)

PRAM models allow di�erent processors to read and write into the same global

memory location at the same time. In the case of writing di�erent data into the

same global memory location at a given time, we must de�ne the result of the

concurrent write. The COMMON CRCW model requires data that are written

into a common global memory location by di�erent processors to be the same

at any given time. In the PRIORITY CRCW model, if several processors try to

write di�erent data in the same global memory location at any given time, the

data sent by the processor with the least ID is written into the memory location.

There are various other CRCW models. For details, see [7].

Mapping of the PRAM Model onto the MasPar Architecture

We map part of the local memory in each PE and the local memory of the

ACU onto the PRAM global memory. The major di�erence between the PRAM

model and the MasPar architecture is on the issue of global memory access. The

MasPar allows constant time broadcasting of a constant amount of local memory

contents from the ACU to all PE's. However, it takes O(P) time for P PE's to

access the local memory of the ACU. Hence it is not e�cient to map the global

memory in the PRAM model to the local memory of the ACU. In addition to

the problem of e�cient memory access, the size of the local memory of the ACU

is not large enough to put all the global data we need. Instead, we partition the

local memory bank of each PE into two halves. One of them, which we call the

global data bank of each PE, is mapped onto part of the global memory bank

and the other half, which is called the local data bank of each PE, is used for

storing local data for local computations. The entire local memory of the ACU

will be part of the global memory of the PRAM model. When implementing a

8 HSU, RAMACHANDRAN, AND DEAN

PE PE PE ACU

local memory of

the ACU

local memory

of each PE

global memory for the PRAM

a Random Access Machine for the PRAM

Figure 4. Mapping from the MasPar architecture to the

PRAM model.

PRAM algorithm on the MasPar architecture, we put information that is most

frequently used by a certain RAM into the global data bank of that particular

PE. We put common data used by all the PE's into the local memory bank of

the ACU and arrange for the ACU to broadcast the needed data to all PE's. We

illustrate the mapping in Figure 4.

Mapping E�cient PRAM Algorithms for Graph Problems

Since the MPL programming language requires that the user takes care of the

processor allocation problem, we use the simple strategy of allocating one PE for

a node and an edge in our implementation. Hence our implementation can only

handle graphs of size less than or equal to the number of PE's in the MasPar.

We place data generated for each node or each edge into the global data bank of

the PE that is in charge of the node or the edge. Global variables (for example,

the total number of nodes and the total number of edges) are put into the local

memory of the ACU. Each PE can access its global data bank e�ciently under

the mapping; however, global memory accesses to global data banks of other

PE's will require going through the global router to get the data. In Section 3.1,

we mentioned that a faster way of getting data from the other PE is by going

through the XNET con�guration. We can use the XNET con�guration if PEi

wants to read the global data bank of PEi+c, for all processor elements PEi,

where c is a constant. Some of the global memory accesses required by the

PRAM algorithm fall into this category as in the case when each PE wants to

obtain the data from the PE with an ID that is one greater than itself. In our

implementation, we always try to take advantage of the XNET con�guration

whenever possible.

IMPLEMENTATION OF PARALLEL GRAPH ALGORITHMS 9

List Ranking on the MasPar

One problem that we often face in mapping PRAM graph algorithms onto the

MasPar architecture comes from the fact that we usually de�ne the graph using

the edge list data structure (an edge list of an undirected graph G is a list of

all the edges in G). The PRAM algorithms often link all the edges or all the

nodes in a special ordered linked list and perform list processing computations

such as list ranking [7] (a list ranking on a linked list requires each element in

the list to compute the su�x sum of all the elements in front of it; the sum

could be any associative operator). The list ranking problem on a list of length

n can be solved by a sequence of O(logn) global memory accesses on a PRAM.

These global memory accesses can be implemented only as requests to the global

router, since elements in a list are not structurally allocated such that we can

use the XNET con�guration.

An operation on an array of elements called pre�x sums [9] (or scan [2, 11])

is to compute the pre�x sum of all the elements before each array element; the

pre�x sum operator can be any associative operator. This computation is similar

to list ranking, except that the input is in an array rather than a linked list. The

pre�x sums problem can be solved by a sequence of O(logn) global memory

access on a PRAM. In implementing the PRAM pre�x sums algorithm on the

MasPar, if we put the ith element of the array into the ith PE, then global

memory accesses can be structured in a way that we can make use of the XNET

connection. There is already such a routine called scan which is implemented in

MasPar system library [11]. The scan operation is very fast compared to the list

ranking algorithm we implemented. Note that a linked list can be converted into

an array by �rst performing a list ranking computation and then rearranging the

list elements into an array using a global memory write. Since the list ranking

operation is one of the most commonly used subroutines in PRAM undirected

graph algorithms, we convert a linked list to an array if several list ranking

operations are to be performed on the list. Figure 5 compares the relative speed-

up of the list ranking program and the scan (pre�x sums) operation.

Concurrent Global Memory Access on the MasPar

Some of the PRAM algorithms that we have implemented are based on concur-

rent read and/or concurrent write PRAM models. If a PRAM global memory

concurrent read request is sent to the global router, the global router will auto-

matically satisfy all concurrent read requests. To understand the behavior of the

concurrent read operation executed by the global router, we implemented a rou-

tine to transform concurrent read requests to exclusive read requests using the

standard simulation algorithm (see, e.g., [7]). We found that the performance

of our parallel algorithms when using the global router and using our simulated

concurrent read routines is very similar.

For concurrent write, the global router does not allow more than one PE to

write into the global memory bank of any particular PE. It also does not allow

any concurrent write into the local memory bank of the ACU. However, the

10 HSU, RAMACHANDRAN, AND DEAN

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

S
e
c
o
n
d
s

List Size

EREW List Ranking
Prefix Sum (Scan)

Sequential List Ranking on the ACU (* 1/10)
CREW List Ranking (* 1/10)

Figure 5. Relative performances of sequential list ranking on

the ACU, parallel CREW list ranking, parallel EREW list rank-

ing and the pre�x sums (scan) operation. In order to �t all

data on the same chart, the data for sequential list ranking and

CREW list ranking has been divided by 10. The ACU is about

10 times more powerful than each individual PE. Thus on an

input list of size 16384, pre�x sums on an array gains a speed-up

factor of about 4000, while EREW list ranking has a speed-up

factor of about 380. The pre�x sums operation is more than 10

times faster than the EREW list ranking.

IMPLEMENTATION OF PARALLEL GRAPH ALGORITHMS 11

system library routine sendwith [11] can be used to implement concurrent write.

The sendwith routine allows each PE to send data to the global memory bank

of any PE. If there is more than one PE trying to send data to any one PE at a

given time, all of these data are collected and an associative operator speci�ed

by the routine is performed to compute the result which is then given to the

destination PE. For example, a sendwithMax32(item,destination) command tells

each active PE to send the 32-bit variable item in its own local memory to the

PE with the ID equal to its local variable destination. If there are several PE's

trying to write into any one PE, the result is the maximum value of all variables

sent. The sendwith operation uses a sorting routine, several non-conict (EREW)

global memory accesses and a scan operation. The sendwith operation can be

performed in O(logP) time on a EREW PRAM model with P processors.

In our implementation of PRIORITY CRCW algorithms, we used the global

router to satisfy concurrent read requests and the sendwith operations to imple-

ment concurrent write requests.

3.3. NETPAD Interface. The NETPAD software [14, 15, 16] is a general

tool for graph manipulations and graph algorithm design. It uses the X-window

system [18], and one can edit graphs and display them easily. The NETPAD

system also provides a rich set of basic graph manipulation operations. By calling

these operations in one's own program (preferably written in C [8]), users can

implement their own graph algorithms easily.

NETPAD was used in the following ways to support the design of our parallel

graph algorithm packages. It provided routines for generating test graphs. We

also used it as a standard interface to input graphs generated by other packages.

Most important of all, we used it to display the outputs of our parallel graph al-

gorithms. Since NETPAD has been designed primarily for supporting sequential

computations, it was necessary to build an interface between it and the parallel

programs that we implemented on the MasPar. We describe the interface in the

following paragraphs. Figure 6 gives a schematic diagram of this interface.

For each MasPar routine that we implemented, we wrote a NETPAD external

program in C language (with a su�x \.c" in its �lename) and included it in one

of the NETPAD pop-out menus. While running NETPAD software in the front

end, this external program would be invoked through the NETPAD system. The

NETPAD system uses the Unix fork system call to create another process in the

front end to run the external program. The graph in the current window is saved

into a �le and the name of that �le is passed to the forked process. The external

program �rst uses NETPAD system routines to retrieve the input graph from

the input �le. NETPAD system routines are also used to collect the edge list

for the graph and store it in an array inside the local memory bank of the front

end. (The external program that we wrote can also be executed independently

from the NETPAD system. As long as we have a �le that describes the input

graph using the NETPAD format, we can run the external program under the

12 HSU, RAMACHANDRAN, AND DEAN

running on the Front End

NETPAD ear.c

fork

the input graph

is contained in a file

callrequest

edge list contained

in the arguments

perform the
computation

running on the DPU

callear.m earsub.m

procedure call
normal

copyInuse

or blockIn
to get data
from the front end

convert the input
file into an edge list

in the local memory

the function call structure for invoking MasPar routines from the NETPAD

(transfer of data)

(transfer of control)
return

return

exit

the output graph
is contained in a file

convert the result

in the local memory

into a NETPAD file

use

or blockOut
to transfer data
to the Front End

copyOut

function return

values

the function call return structure after the execution of the MasPar routines

transfer
of
control

transfer
of
data

Figure 6. Interface for calling the MasPar routines for execut-

ing the ear decomposition algorithm from NETPAD.

IMPLEMENTATION OF PARALLEL GRAPH ALGORITHMS 13

Unix system without going through the NETPAD system.)

After the external program collects the edge list, we can request a MasPar

MPL program (with a su�x \.m" in its �lename) to be executed in the DPU using

a special MasPar system call named callrequest. An interfacing MPL program

must be written for each MasPar routine that we want to use. This routine is

invoked by the external program running on the front end by using callrequest

with arguments describing memory addresses (of the front end) that will be used

by the DPU. The MPL program �rst uses the system routine copyIn to copy the

contents of any consecutive block of memory in the front end to the local memory

of the ACU. Then it uses the system routine blockIn to copy the contents of any

consecutive block of memory in the front end to each PE. Routine blockIn takes

two sets of parameters. The �rst set describes the starting location of the front

end memory to be copied and the size of each memory cell. The second set of

parameters describes the rectangular block of PE's that are to receive data. The

routine puts the ith cell into the ith PE within the block. The MPL routine

then calls the MasPar library that we have implemented to perform the actual

computations for the parallel graph algorithms.

After completing the MasPar computations, the MPL interfacing program

uses the system routine copyOut to copy any data in the local memory of the

ACU to the local memory of the front end. A similar routine blockOut transfers

data from a rectangular block of PE's to a consecutive block of memory locations

in the front end. After the termination of the MPL interfacing routine, the

external program running on the front end takes the output graph in its local

memory and writes the output graph into a �le using the NETPAD format.

The external program exits and sends a signal to the NETPAD system. The

NETPAD system gets the output �le and displays the graph on the drawing

window.

In Figure 6, we illustrate this interface by using an example of calling a MasPar

routine to perform ear decomposition [19] from NETPAD.

4. Our Implementation of Parallel Graph Algorithms

In this section, we describe the parallel graph algorithms we have implemented.

In Section 4.1, we describe the data structures used in implementing the algo-

rithms. Then we give the structure of the library of programs we have imple-

mented with a brief description of techniques used for �ne tuning each program

in Section 4.2.

4.1. Data Structures.

Array and Linked List

We map a global memory array used in a PRAM algorithm onto the MasPar by

putting the ith element of the array into the ith PE. We map a linear linked list

used in a PRAM algorithm by putting each element in the list into a di�erent

PE. Pointers in PRAM are replaced by the ID's of PE's.

14 HSU, RAMACHANDRAN, AND DEAN

Tree

We represent an edge in an undirected tree by two directed edges of opposite

directions. A tree is represented by a list of directed edges. In implementing the

tree data structure on the MasPar, we put one directed edge in one PE with the

requirement that the set of edges that are incoming to the same vertex have to

be allocated on a consecutive segment of PE's. Using this representation, we can

use the XNET con�guration to perform interprocess communications needed for

computing an Euler tour on a tree. Since computing an Euler tour is one of the

most commonly used routines for performing tree-based parallel computations,

we save time by using this type of mapping.

Undirected Graph

A general undirected graph is also represented by a list of edges. Each edge has

two copies with the two end points interchanged. On the MasPar, we put an

edge on a PE with the requirement that the two copies of the edge have to be

located on adjacent PE's.

Let the input graph contain n vertices and m edges. We number vertices

from 1 to n. Since we have to take care of processor allocation when using the

MPL programming language, we use the followingmethod to allocate processors.

The PE with ID equal to i takes care of computations for the ith vertex in the

PRAM algorithm. Although the MasPar numbers PE's from 0, we do not use

the PE with the ID 0 for convenience of programming. Each edge has two

copies which have consecutive ID's. The PE with an ID equal to i takes care of

computations for the ith edge in the PRAM algorithm. Under this scheme, our

current implementation can handle graphs with P � 1 vertices and bP�1
2

c edges

where P is the number of PE's on the MasPar.

4.2. The ParallelGraphAlgorithmLibrary. To build our parallel graph

algorithm library, we �rst wrote a kernel that includes all of the commonly used

subroutines for designing parallel graph algorithms. Then we built our graph

application programs by calling routines in the kernel. The structure of the

whole library is shown in Figure 7. We �rst describe routines in the kernel.

Routines in the Kernel

All of these routines are based on PRAM algorithms that run in O(logn) time

using n processors for an input of size n. These are not optimal algorithms,

but they are within an O(logn) factor of optimality, and they are very simple.

Our implementations were only for input of size less than 16384, so the overall

optimality was not a serious problem.

(i) List ranking. We implemented EREW PRAM list ranking routines

that compute the rank of each element in a list, where each element in

the list is stored in a di�erent PE with a pointer that points to the ID of

the PE that stores the next element in the list. These routines require

O(logn) global memory accesses on a list of n elements.

(ii) Rotation. These routines rotate the data stored in PE with ID i to

IMPLEMENTATION OF PARALLEL GRAPH ALGORITHMS 15

rotation routines list ranking

query routine for
range minimum

build table for
range minimum

segmented rotation

least common
ancestor

preorder numbering

build
Euler tour

connected components

spanning forest minimum−cost
spanning forest

ear decomposition

strong orientationfinding all
cut edges

commonly used subroutines

graph application routines

(kernel)

ear decomposition
open

Figure 7. The structure of the routines we built for the parallel

graph algorithm library: The kernel of the library will be used

by the application routines. An arrow from one node to another

node means the routine at the tail of the arrow (upper) will be

used by the routine at the head of the arrow (lower).

16 HSU, RAMACHANDRAN, AND DEAN

the PE with ID (i + d) mod P , where d is a constant and P is the

number of PE's in the system. The rotation routines make use of the

mesh-connected XNET connection and are faster than implementing the

same functions using the global router. These routines require 2 XNET

communications.

(iii) Segmented rotation. We store data in each PE and partition PE's into

sequences of consecutive segments. These routines rotate the data stored

in each PE within each segment. Data within each segment are rotated

in a way similar to the rotation routines described in (ii). These rou-

tines use a constant number of XNET communications and non-conict

(EREW) global memory accesses.

(iv) Range minimum. Let v be a local variable stored in each PE. We

want to build a table such that given a starting ID si and an ending ID

ei in each PE, we can compute the minimum value of all v's from PE si

to PE ei using only one global memory access. For this, we implemented

the O(logn)-time O(n)-processor PRAM algorithm in [24] for solving

the range minimum problem on n elements. In this algorithm, the n

elements are stored in an array A. We are required to build a two-

dimensional array W [i; j], such that W [i; j] = min2
j�1

k=0 A[i + k], for all

0 � j � dlogne and 1 � i � n�2j+1. We construct the two-dimensional

array by storing all elements of fW [i; j] j 0 � j � dlogneg in the ith PE.

Thus each PE has a one-dimensional local array. Because each global

memory access is very structured in the algorithm for building the table,

we can use XNET communications to implement it. Let ki be the least

integer such that 2ki is greater than or equal to ei�si+1
2

. To process each

query, a PE with ID i reads W [si; ki] and W [ei�2ki +1; ki] through the

global router and returns the minimum of the two values.

(v) Euler tour construction [24]. Given a tree represented by an adja-

cency list, we store each edge in the adjacency list in a di�erent PE.

Edges that are adjacent to a vertex are stored in consecutive PE's. By

replacing each undirected edge between two vertices with two directed

edges of opposite directions, the algorithm returns an Euler tour for the

input tree by building a linear linked list. The routine uses the seg-

mented rotation routines, list ranking routines, rotation routines and

one global memory access.

(vi) Preorder numbering. Given a tree, we assign a consecutive preorder

numbering for its vertices starting from 1. To implement this, we have

to use list ranking and a constant number of global memory accesses.

(vii) Least common ancestor. This routine �nds the preorder number of

the least common ancestor for any given pairs of vertices in a rooted tree.

Each PE stores two vertex ID's of the tree. For each PE, the routine

returns the vertex which is the least common ancestor of the two vertices

in the input rooted tree. The routine uses the range minimum queries

IMPLEMENTATION OF PARALLEL GRAPH ALGORITHMS 17

and a constant number of global memory accesses.

18 HSU, RAMACHANDRAN, AND DEAN

Graph Application Routines

We now describe the graph algorithms we implemented using the above kernel.

(i) Connected components. We implemented the CRCW PRAM algo-

rithm described in [1]. The PRAM algorithm runs inO(logn) time using

O(n+m) processors on a graph with n vertices and m edges. The con-

current read operation was implemented by using the global router. The

concurrent write operation needed in the algorithm was implemented by

the sendwith operation. After the execution of the algorithm, the ith

PE gets a number indicating the connected component containing the

ith vertex. The component number is the vertex number of the vertex

with the least vertex number in the connected component.

(ii) Spanning forest. We modi�ed the algorithm in [1] for �nding con-

nected components to �nd a spanning forest of the input graph. The

original algorithm partitions the set of vertices into a set of disjoint sets

such that vertices in each set are in the same connected component. Ini-

tially, the algorithm puts a vertex in each set. During the execution, the

algorithm merges two sets of vertices if they are in the same connected

component. Our program selects an edge connecting a vertex in one set

to a vertex in the other set while merging these two disjoint vertex sets.

(iii) Minimum cost spanning forest. Given the input graph with an

integer weight assigned on each edge, we modify the algorithm in [1] for

�nding connected components to �nd a minimumcost spanning forest for

the input graph. This algorithm also partitions the graph into disjoint

sets of vertices. In addition, for each current set of vertices, we compute

a minimum-cost edge with exactly one end point in the set using the

sendwith operation. This edge determines which other set of vertices is

to be merged with its set. Once the merger is completed, the edge that

caused the merging is marked as one of the edges in the minimum cost

spanning forest.

(iv) Ear decomposition of a two-edge connected undirected graph.

We implemented the PRAM parallel algorithm in [19] for �nding an ear

decomposition by calling the MasPar system sorting routine, routines in

the kernel and the routine for �nding a spanning forest.

(v) Strong orientation of a two-edge connected undirected graph.

We �rst �nd an ear decomposition for the input graph. Then we direct

the edges of each ear so that each ear forms a directed path or a di-

rected cycle. Observe that the ear decomposition algorithm �rst �nds

a rooted spanning tree T . The edges in an ear are of the form (v1; v2),

(v2; v3), : : : , (vk�1; vk), (vk; ur), (ur; ur�1), (ur�1; ur�2), : : : , (u2; u1),

where (vi; vi+1) is a tree edge and vi is the parent of vi+1 in T , for

1 � i < k; (ui+1; ui) is a tree edge and ui+1 is the parent of ui in T ,

for 1 < i � r; (vk; ur) is a non-tree edge. Thus we direct every non-tree

edge (u; v) from u to v where u has a smaller ID than that of v. Then

IMPLEMENTATION OF PARALLEL GRAPH ALGORITHMS 19

we assign directions to tree edges in such a way that the edges in an ear

form a directed path or directed cycle and the �rst two ears together

form a directed cycle.

(vi) Cut edges. We �rst �nd a rooted spanning tree T for the input graph

G. (The current version of the program requires G to be connected.) A

cut edge is a tree edge (u; v), where u is the parent of v and there is no

non-tree edge (x; y) in G such that either x or y is a descendant of v

or equal to v and the least common ancestor of x and y is an ancestor

of u or equal to u. This can be implemented by using the Euler tour

technique and the range minimum queries.

5. Performance Data

In this section, we present performance data for our parallel programs. In Sec-

tion 5.1 we describe the sequential algorithms that we implemented correspond-

ing to the parallel graph algorithms that we implemented. Then in Section 5.2,

we describe the way we tested and made measurements on the running time of

the sequential programs and their parallel counterparts. We obtained their CPU

running time and computed the speed-up factor between our parallel programs

and sequential programs. This data is presented and analyzed in Section 5.3.

5.1. Sequential Algorithms. After we implemented the parallel graph al-

gorithm library, we also implemented the following sequential graph algorithms

using NETPAD.

(i) A recursive version of depth-�rst search for �nding connected compo-

nents.

(ii) A routine for �nding all cut edges in the graph based on the recursive

version of depth-�rst search [22].

(iii) A routine for �nding a strong orientation based on the recursive version

of depth-�rst search [22].

(iv) A routine for �nding an ear decomposition based on the recursive version

of depth-�rst search [19].

(v) Kruskal's algorithm [23] for �nding a minimum cost spanning forest.

All but the last of the above �ve routines are based on depth-�rst search with

some special book keeping. The routine for �nding an ear decomposition also

needs a linear time bucket sort routine. For depth-�rst search, �nding cut edges

and �nding a strong orientation, the running time is linear in the size of the

graph (with a very small constant factor).

The routine for �nding an ear decomposition is linear time, but has a slightly

larger constant factor because of the usage of the bucket sort routine. Kruskal's

algorithm for �nding a minimum cost spanning forest runs in O(n + m logn)

time on an input graph with n vertices and m edges. Although faster algorithms

are known for this problem [23], we implemented Kruskal's algorithm for its

simplicity.

20 HSU, RAMACHANDRAN, AND DEAN

5.2. Testing Scheme. Except for the routine for �nding an ear decompo-

sition, the other four sequential programs were run on SPARC II workstations.

The program for �nding an ear decomposition was run on SPARC I workstations.

We wrote a random graph generator using NETPAD and generated random

graphs for various input sizes.

We tested our programs on graphs with more edges than vertices. To gener-

ate a random graph with n vertices and m edges, we �rst generated an empty

graph with n vertices. Then we added one edge at a time with each edge being

chosen with uniform probability until all m edges were generated. To generate a

connected test graph with n vertices and m edges, we �rst generated an empty

graph with n vertices. Then we constructed a spanning tree by adding edges

to connect di�erent connected components with each edge being chosen with

uniform probability over all candidate edges. Finally, we randomly added edges

until the graph contains m edges. For testing the algorithm for �nding a mini-

mum spanning forest, we assigned a random integer cost ranging from 0 to 999

to each edge in the graph with each number being equally likely to be chosen

(with repetition).

We generated a two-edge connected graph with n vertices and m edges by

�rst generating an empty graph with n vertices. We then chose a random length

k, 3 � k � n, and k isolated vertices in random. We randomly permuted these

k vertices and constructed a simple cycle by adding an edge between every two

adjacent vertices in the random permutation and by adding an edge between the

�rst and the last vertices in the permutation. After that, we added non-trivial

ears of random lengths to connect all isolated vertices. To add a non-trivial ear,

we chose a random length l, 1 � l � x, where x is the number of remaining

isolated vertices. Then we randomly picked l isolated vertices and two non-

isolated vertices u and v (with repetition if l > 1). We randomly permuted the l

isolated vertices and constructed a simple path by adding an edge between every

two adjacent vertices in the random permutation. We added an edge between u

and the �rst vertex in the above permutation and another edge between v and

the last vertex in the above permutation. After connecting all isolated vertices,

we randomly added edges until all m edges are generated.

Let n and m be the number of vertices and the number of edges in the input

graph, respectively. Given any input size (the number of vertices), we generated

graphs with three di�erent densities: sparse graphs with m = 3
2
n; intermediate-

dense graphs with m = n1:5; dense graphs with m = n2

4
. For each input size

on each density, we generated 4 di�erent random graphs. On each input graph,

each program was run 10 times. (We ran each program 10 times on the same

input data in order to even out any uctuation in the Unix routines we used for

measuring CPU running time.) The CPU time used in each run was collected.

(We only measured the part of the CPU time used for graph computations. The

overhead for input/output and for using the NETPAD system was not included.)

We then calculated the average CPU time used by the sequential programs for

IMPLEMENTATION OF PARALLEL GRAPH ALGORITHMS 21

each input size on each density.

The same set of testing graphs was then fed into our parallel programs. On

each input graph, we ran the parallel program 10 times. The CPU time used for

graph computation was collected for each run. We then calculated the average

CPU time used by the parallel programs for each input size on each density.

5.3. Analysis. For each graph problem that we solved sequentially and in

parallel, we have plotted the relative CPU time used by both programs on sparse

graphs, intermediate-density graphs and dense graphs. The results are shown

in Figure 8 for �nding connected components; Figure 10 for �nding a minimum

cost spanning forest; Figure 12 for �nding all cut edges; Figure 14 for �nding a

strong orientation on a two-edge connected graph; Figure 16 for �nding an ear

decomposition on a two-edge connected graph. Although each PE is much slower

than the SPARC workstation, we found that in the case of �nding a minimum

cost spanning forest and �nding an ear decomposition, parallel programs in fact

run faster in real time compared to sequential programs. For example, the

routine for �nding an ear decomposition on the MasPar is about 3 times faster

(in real CPU time) on the largest test graph we have than the one that runs on

the SPARC I workstation.

To compute the relative speed-up between our parallel programs running on

the MasPar and the sequential programs running on SPARC workstations, we

need to have the ratio of the computation speed of a MasPar PE to that of a

SPARC workstation. In [13] it is stated that each PE is about 10 times slower

than the MasPar ACU. We tested programs running on the MasPar ACU and

the MasPar front end. Test data show the current MasPar front end, which is

a micro-VAX workstation, is about 2 to 3 times faster than the MasPar ACU.

We then ran our sequential programs on the MasPar front end. Test data show

that the front end is at least 10 times slower than the same programs running on

the SPARC II workstation. In some tests, it is more than 15 times slower. Our

tests also show that the SPARC I workstation is about 1.75 times slower than

the SPARC II workstation. (This �gure is con�rmed by data in [5].) Thus the

SPARC II workstation is at least 200 times faster than each MasPar PE and the

SPARC I workstation is at least 114 times faster than each MasPar PE.

We rescaled the CPU time used by sequential programs running on SPARC

II and SPARC I according to the above �gures and computed the speed-up of

the parallel programs running on the MasPar relative to the sequential programs

on the SPARC workstation. All of our parallel programs run in O(log2m) time

using 2m processors on an input graph of m edges. Thus the theoretical speed-

up for our parallel programs using P PE's is �(P
log2 P

) for all problems, except

for the one for �nding a minimum cost spanning forest. The theoretical speed-

up for �nding a minimum cost spanning forest is �(P
logP

) using P PE's since

the sequential algorithm runs in O(n + m logn) time. We plotted the relative

speed-up for each problem with its theoretical speed-up curve. In plotting each

22 HSU, RAMACHANDRAN, AND DEAN

theoretical speed-up curve, we used a constant multiplicative factor that best ap-

proximated the experimental data. The results are shown in Figure 9 for �nding

connected components; Figure 11 for �nding a minimum cost spanning forest;

Figure 13 for �nding all cut edges; Figure 15 for �nding a strong orientation on

a two-edge connected graph; Figure 17 for �nding an ear decomposition on a

two-edge connected graph.

We found that our parallel program for �nding an ear decomposition has

better speed-up than the rest of the programs, while our parallel routine for

�nding a minimum cost spanning forest has the least speed-up. The other three

problems have a speed-up factor that is very close to P
log2 P

z (i.e. the constant

multiplicative factor is close to 1). This shows that PRAM graph algorithms

for connected components, cut edges, strong orientation and ear decomposition

can be implemented and run with their expected asymptotic time bound with a

small constant multiplicative factor.

In terms of actually writing code, we wrote about 3000 lines of MPL code

for our library of parallel programs which includes the kernel and the graph

algorithms. We used about 1600 lines of C code for our sequential programs

with the help of NETPAD library routines. Without the help of NETPAD to

take care of the general graph data structures and other commonly used graph

operations, the size of our sequential programs would have been larger. (In our

parallel programs, we only use NETPAD for input and output.) Thus the code

for our parallel algorithms was not much larger than that for the sequential

algorithms.

6. Conclusion and Future Work

We have implemented several e�cient PRAM graph algorithms on the Mas-

Par. We have developed an interface between the graph manipulation package

NETPAD and our parallel programs. We have also written sequential programs

for solving the same graph problems and studied the relative speed-up of the

parallel programs over the sequential ones. The performance presented in this

paper is further analyzed in [4] where least-squares-�t curves are obtained for

each set of data.

We note a few observations.

� PRAM based graph algorithms can be implemented e�ciently

and easily. The PRAM model has proven to be a very good theoretical

model for designing parallel algorithms. By developing a general map-

ping strategy between the PRAM model and the target machine hard-

ware architecture, we can make use of results developed on the PRAM

model. Our experience with the MasPar shows that we can achieve rea-

sonable speed-up by this approach. The whole process of programming

and debugging is easy and fast. (All of the work reported here was

zWe use logP to represent log2 P in this paper.

IMPLEMENTATION OF PARALLEL GRAPH ALGORITHMS 23

accomplished within a period of 11 weeks.)

� Global routing bottleneck. The current global router on the MasPar

is very slow compared to the XNET con�guration. (It is 100 times slower

than the XNET for transferring a 32-bit data to each PE [12].) Although

we use the XNET con�guration when we can in our implementations,

our parallel graph algorithms often need to use the global router for

performing list computations. The performance of our parallel programs

would be signi�cantly improved if the global router could be made to

run faster when routing large data sets.

� NETPAD is a useful tool for designing graph algorithms. NET-

PAD takes care of the input of test graphs and the output of results.

NETPAD also provides an interface for generating test data from other

programs. Its graphic display capability provides a good tool for debug-

ging. In the design of the sequential programs, NETPAD also provides

library routines for maintaining graph data structures. Our parallel

programs used NETPAD for the input of test graphs and the output of

results.

There are several avenues for future work. We list some of them:

� NETPAD for designing parallel graph algorithms. The origi-

nal goal of NETPAD was for supporting the design of sequential graph

algorithms. Although we used NETPAD to design our parallel graph

algorithms, we did not get as much support from NETPAD as we did

in designing our sequential programs. Graph data structures for paral-

lel computations should be supported by NETPAD. Better visualization

routines should be added for viewing large graphs. Although we have

built an interface between our parallel programs and NETPAD, the in-

terface is very immature. Further work should be done to use the current

animation capabilities of NETPAD in the parallel environment and to

provide better tools for animating parallel graph algorithms.

� Further �ne tuning of our parallel programs. With a better un-

derstanding of the MPL language and the MasPar architecture, we could

�ne tune our programs to run faster. Some of the things that could be

done include better utilization of registers in each PE, using faster I/O

interface between the PE's and the MasPar �le system and �nding the

trade-o� between computing operations on the ACU and on the PE.

� Processor allocation for large input size. Our current implemen-

tation does not support the use of virtual processors. Our programs

can only handle input graphs of size less than or equal to the number

of physical processors. An obvious avenue for further work is to extend

our programs so that they could run on inputs of any size. Because

the MPL programming language requires explicit allocation of PE's, we

need to modify our code to handle this. We also need to implement op-

timal PRAM algorithms to obtain the best speed-up results when using

24 HSU, RAMACHANDRAN, AND DEAN

virtual processors. (These issues are discussed in [4].)

� Further extension of the parallel graph algorithm library. Since

we have implemented most of the commonly used routines for imple-

menting PRAM undirected graph algorithms, we expect that it will be

fairly easy to implement other graph algorithms; for example, the rou-

tines for �nding an open ear decomposition, biconnectivity, 3-edge con-

nectivity, triconnectivity and planarity [19, 20], since we have already

implemented most of the basic subroutines for these problems.

Acknowledgment. We would like to thank Monika Mevenkamp for her help

in developing the interface between the parallel programs on the MasPar and

NETPAD. We also thank Peter Winkler for helpful discussions on how to gener-

ate two-edge connected graphs and Clyde Monma for his support of this project.

We thank Michael B. Carter for providing a set of routines for measuring CPU

time used by programs run on the MasPar.

IMPLEMENTATION OF PARALLEL GRAPH ALGORITHMS 25

0

0.2

0.4

0.6

0.8

1

1.2

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

S
e
c
o
n
d
s

2 * (# of edges)

Finding a Spanning Forest (m = (3/2)n)

MasPar
SPARC II

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

S
e
c
o
n
d
s

2 * (# of edges)

Finding a Spanning Forest (m = n^(3/2))

MasPar
SPARC II

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

S
e
c
o
n
d
s

2 * (# of edges)

Finding a Spanning Forest (m = (n^2)/4)

MasPar
SPARC II

Figure 8. Relative performances of the sequential program on

a SPARC II workstation and the parallel program on the Mas-

Par for �nding connected components.

26 HSU, RAMACHANDRAN, AND DEAN

0

20

40

60

80

100

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

S
p
e
e
d
u
p

F
a
c
t
o
r

Number of Processors (P)

Finding A Spanning Forest (m = (3/2)n)

Sequential/Parallel
P/log^2(P)

0

20

40

60

80

100

120

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

S
p
e
e
d
u
p

F
a
c
t
o
r

Number of Processors (P)

Finding A Spanning Forest (m = n^(3/2))

Sequential/Parallel
P/log^2(P)

0

20

40

60

80

100

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

S
p
e
e
d
u
p

F
a
c
t
o
r

Number of Processors (P)

Finding A Spanning Forest (m = (n^2)/4)

Sequential/Parallel
P/log^2(P)

Figure 9. Speed-up data for �nding connected components.

Note that the constant multiplicative factor used in plotting

each theoretical speed-up curve is 1.

IMPLEMENTATION OF PARALLEL GRAPH ALGORITHMS 27

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

S
e
c
o
n
d
s

2 * (# of edges)

Minimum Spanning Forest (m = (3/2)n)

MasPar
SPARC II

0

0.2

0.4

0.6

0.8

1

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

S
e
c
o
n
d
s

2 * (# of edges)

Minimum Spanning Forest (m = n^(3/2))

MasPar
SPARC II

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

S
e
c
o
n
d
s

2 * (# of edges)

Minimum Spanning Forest (m = (n^2)/4)

MasPar
SPARC II

Figure 10. Relative performances of the sequential program

on a SPARC II workstation and the parallel program on the

MasPar for �nding a minimum spanning forest.

28 HSU, RAMACHANDRAN, AND DEAN

0

50

100

150

200

250

300

350

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

S
p
e
e
d
u
p

F
a
c
t
o
r

Number of Processors (P)

Minimum Spanning Forest (m = (3/2)n)

Sequential/Parallel
0.25 P/log(P)

0

20

40

60

80

100

120

140

160

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

S
p
e
e
d
u
p

F
a
c
t
o
r

Number of Processors (P)

Minimum Spanning Forest (m = n^(3/2))

Sequential/Parallel
0.1 P/log(P)

0

20

40

60

80

100

120

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

S
p
e
e
d
u
p

F
a
c
t
o
r

Number of Processors (P)

Minimum Spanning Forest (m = (n^2)/4)

Sequential/Parallel
0.09 P/log(P)

Figure 11. Speed-up data for �nding a minimum spanning

forest. Note that the constant multiplicative factors used in

plotting the theoretical speed-up curves are 0.25, 0.1 and 0.09,

respectively (from the top to the bottom), for the above three

sets of data.

IMPLEMENTATION OF PARALLEL GRAPH ALGORITHMS 29

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

S
e
c
o
n
d
s

2 * (# of edges)

Finding All Cut Edges (m = (3/2)n)

MasPar
SPARC II

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

S
e
c
o
n
d
s

2 * (# of edges)

Finding All Cut Edges (m = n^(3/2))

MasPar
SPARC II

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

S
e
c
o
n
d
s

2 * (# of edges)

Finding All Cut Edges (m = (n^2)/4)

MasPar
SPARC II

Figure 12. Relative performances of the sequential program

on a SPARC II workstation and the parallel program on the

MasPar for �nding all cut edges.

30 HSU, RAMACHANDRAN, AND DEAN

0

20

40

60

80

100

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

S
p
e
e
d
u
p

F
a
c
t
o
r

Number of Processors (P)

Finding All Cut Edges (m = (3/2)n)

Sequential/Parallel
P/log^2(P)

0

20

40

60

80

100

120

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

S
p
e
e
d
u
p

F
a
c
t
o
r

Number of Processors (P)

Finding All Cut Edges (m = n^(3/2))

Sequential/Parallel
P/log^2(P)

0

20

40

60

80

100

120

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

S
p
e
e
d
u
p

F
a
c
t
o
r

Number of Processors (P)

Finding All Cut Edges (m = (n^2)/4)

Sequential/Parallel
P/log^2(P)

Figure 13. Speed-up data for �nding all cut edges. Note that

the constant multiplicative factor used in plotting each theoret-

ical speed-up curve is 1.

IMPLEMENTATION OF PARALLEL GRAPH ALGORITHMS 31

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

S
e
c
o
n
d
s

2 * (# of edges)

Strong Orientation (m = (3/2)n)

MasPar
SPARC II

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

S
e
c
o
n
d
s

2 * (# of edges)

Strong Orientation (m = n^(3/2))

MasPar
SPARC II

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

S
e
c
o
n
d
s

2 * (# of edges)

Strong Orientation (m = (n^2)/4)

MasPar
SPARC II

Figure 14. Relative performances of the sequential program

on a SPARC II workstation and the parallel program on the

MasPar for �nding a strong orientation on a two-edge connected

graph.

32 HSU, RAMACHANDRAN, AND DEAN

0

20

40

60

80

100

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

S
p
e
e
d
u
p

F
a
c
t
o
r

Number of Processors (P)

Strong Orientation (m = (3/2)n)

Sequential/Parallel
P/log^2(P)

0

20

40

60

80

100

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

S
p
e
e
d
u
p

F
a
c
t
o
r

Number of Processors (P)

Strong Orientation (m = n^(3/2))

Sequential/Parallel
P/log^2(P)

0

20

40

60

80

100

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

S
p
e
e
d
u
p

F
a
c
t
o
r

Number of Processors (P)

Strong Orientation (m = (n^2)/4)

Sequential/Parallel
P/log^2(P)

Figure 15. Speed-up data for �nding a strong orientation on

a two-edge connected graph. Note that the constant multiplica-

tive factor used in plotting each theoretical speed-up curve is

1.

IMPLEMENTATION OF PARALLEL GRAPH ALGORITHMS 33

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

S
e
c
o
n
d
s

2 * (# of edges)

Ear Decomposition (m = (3/2)n)

MasPar
SPARC I

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

S
e
c
o
n
d
s

2 * (# of edges)

Ear Decomposition (m = n^(3/2))

MasPar
SPARC I

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

S
e
c
o
n
d
s

2 * (# of edges)

Ear Decomposition (m = (n^2)/4)

MasPar
SPARC I

Figure 16. Relative performances of the sequential program on

a SPARC I workstation and the parallel program on the MasPar

for �nding an ear decomposition on a two-edge connected graph.

34 HSU, RAMACHANDRAN, AND DEAN

0

50

100

150

200

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

S
p
e
e
d
u
p

F
a
c
t
o
r

Number of Processors (P)

Ear Decomposition (m = (3/2)n)

Sequential/Parallel
2 P/log^2(P)

0

50

100

150

200

250

300

350

400

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

S
p
e
e
d
u
p

F
a
c
t
o
r

Number of Processors (P)

Ear Decomposition (m = n^(3/2))

Sequential/Parallel
4 P/log^2(P)

0

50

100

150

200

250

300

350

400

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

S
p
e
e
d
u
p

F
a
c
t
o
r

Number of Processors (P)

Ear Decomposition (m = (n^2)/4)

Sequential/Parallel
4 P/log^2(P)

Figure 17. Speed-up data for �nding an ear decomposition on

a two-edge connected graph. Note that the constant multiplica-

tive factors used in plotting the theoretical speed-up curves are

2, 4 and 4, respectively (from the top to the bottom), for the

above three sets of data.

IMPLEMENTATION OF PARALLEL GRAPH ALGORITHMS 35

References

1. B. Awerbuch and Y. Shiloach, New connectivity and MSF algorithms for shu�e-exchange
network and PRAM, IEEE Tran. on Computers (1987), 1258{1263.

2. G. E. Blelloch, Scan primitives and parallel vector models, Ph.D. thesis, M.I.T., October
1989.

3. N. Dean, M. Mevenkamp, and C. L. Monma, NETPAD: An interface graphics system for
network modeling and optimization, Proc. Computer Science & Operations Research: New
Developments in their Interfaces, Pergamon Press, 1992, pp. 231{243.

4. T.-s. Hsu, V. Ramachandran, and N. Dean, Implementation of parallel graph algorithms
on a massively parallel SIMD computer with virtual processing, Proc. 9th International
Parallel Processing Symp., 1995, pp. 106{112.

5. IEEE Computer, New products column, January 1991, pp. 113{115.
6. A. Kanevsky and V. Ramachandran, Improved algorithms for graph four-connectivity, J.

Comp. System Sci. 42 (1991), 288{306.
7. R. M. Karp and V. Ramachandran, Parallel algorithms for shared-memory machines,

Handbook of Theoretical Computer Science (J. van Leeuwen, ed.), North Holland, 1990,
pp. 869{941.

8. B. W. Kernighan and D. M. Ritchie, The C programming language, Prentice Hall, Engle-
wood Cli�s, NJ, 1978.

9. R. E. Ladner and M. J. Fischer, Parallel pre�x computation, J. ACM 27 (1980), 831{838.
10. Y. Maon, B. Schieber, and U. Vishkin, Parallel ear decomposition search (EDS) and st-

numbering in graphs, Theoret. Comput. Sci. (1986), 277{298.
11. MasPar Computer Co., MasPar parallel application language (MPL) reference manual,

version 2.0 ed., March 1991.
12. MasPar Computer Co., MasPar parallel application language (MPL) user guide, version

2.0 ed., March 1991.
13. MasPar Computer Co., MasPar system overview, version 2.0 ed., March 1991.
14. M. Mevenkamp, NETPAD programmer's guide, Bellcore, August 1991.
15. , NETPAD reference guide, Bellcore, August 1991.
16. M. Mevenkamp, N. Dean, and C. L. Monma, NETPAD user's guide, Bellcore, August

1991.
17. G. L. Miller and V. Ramachandran, A new triconnectivity algorithm and its applications,

Combinatorica 12 (1992), 53{76.
18. A. Nye, X window system user's guide, O'Reilly & Associates, Inc., 1988.
19. V. Ramachandran, Parallel open ear decomposition with applications to graph biconnec-

tivity and triconnectivity, Synthesis of Parallel Algorithms (J. H. Reif, ed.), Morgan-
Kaufmann, 1993, pp. 275{340.

20. V. Ramachandran and J. Reif, Planarity testing in parallel, Jour. Comput. and Sys. Sci.
49 (1994), no. 3, 517{561, Special Issue for FOCS '89.

21. D. M. Ritchie and K. Thompson, The Unix timesharing system, Communications of the
ACM 17 (1974), 365{375.

22. R. E. Tarjan, Depth-�rst search and linear graph algorithms, SIAM J. Comput. 1 (1972),
146{160.

23. , Data structures and network algorithms, SIAM Press, Philadelphia, PA, 1983.
24. R. E. Tarjan and U. Vishkin, An e�cient parallel biconnectivity algorithm, SIAM J. Com-

put. 14 (1985), 862{874.

Department of Computer Sciences, Univ. of Texas at Austin, Austin, TX 78712

E-mail address: tshsu@cs.utexas.edu

Department of Computer Sciences, Univ. of Texas at Austin, Austin, TX 78712

E-mail address: vlr@cs.utexas.edu

Room 2M-389, 445 South Street, Bellcore, Morristown, NJ 07960

E-mail address: nate@bellcore.com

