
To appear in Theory of Computing Systems (Special Issue for SPAA’97)

Can a Shared-Memory Model Serve as a

Bridging Model for Parallel Computation? �

Phillip B. Gibbonsy Yossi Matiasz Vijaya Ramachandranx

September 21, 1998

Abstract

There has been a great deal of interest recently in the development of general-purpose bridging
models for parallel computation. Models such as the bsp and logp have been proposed as more
realistic alternatives to the widely-used pram model. The bsp and logp models imply a rather
di�erent style for designing algorithms when compared to the pram model. Indeed, while many
consider data parallelism as a convenient style, and the shared-memory abstraction as an easy-
to-use platform, the bandwidth limitations of current machines have diverted much attention to
message-passing and distributed-memory models (such as the bsp and logp) that account more
properly for these limitations.

In this paper we consider the question of whether a shared-memory model can serve as an
e�ective bridging model for parallel computation. In particular, can a shared-memory model be
as e�ective as, say, the bsp? As a candidate for a bridging model, we introduce the Queuing
Shared Memory (qsm) model, which accounts for limited communication bandwidth while still
providing a simple shared-memory abstraction. We substantiate the ability of the qsm to serve
as a bridging model by providing a simple work-preserving emulation of the qsm on both the
bsp, and on a related model, the (d;x)-bsp. We present evidence that the features of the qsm
are essential to its e�ectiveness as a bridging model. In addition, we describe scenarios in which
the high-level qsm more accurately models certain machines than the more detailed bsp and logp
models. Finally, we present algorithmic results for the qsm, as well as general strategies for mapping
algorithms designed for the bsp or pram models onto the qsm model. Our main conclusion is that
shared-memory models can potentially serve as viable alternatives to existing message-passing,
distributed-memory bridging models.

�A preliminary version of this paper appeared in Proc. 9th ACM Symp. on Parallel Algorithms and Architectures,
pages 72{83, June 1997.

yInformation Sciences Research Center, Bell Laboratories (Lucent Technologies), 600 Mountain Avenue, Murray Hill
NJ 07974. email: gibbons@research.bell-labs.com

zInformation Sciences Research Center, Bell Laboratories (Lucent Technologies), 600 Mountain Avenue, Murray Hill
NJ 07974. Current address is Tel-Aviv University, Ramat Aviv, Tel-Aviv 69978 Israel. Email: matias@math.tau.ac.il.

xDept. of Computer Sciences, University of Texas at Austin, Austin TX 78712. email: vlr@cs.utexas.edu. This work
was supported in part by NSF grant CCR/GER-90-23059.



1 Introduction

A fundamental challenge in parallel processing is to develop e�ective models for parallel computation,
at suitable levels of abstraction. E�ective and widely-used models would provide standards that could
be relied upon by application programmers, algorithm designers, software vendors, and hardware
vendors, making parallel machines cheaper to build and easier to use. E�ective models must balance
simplicity, accuracy, and broad applicability. In particular, a simple, \bridging" model, i.e., a model
that spans the range from algorithm design to architecture to hardware, is an especially desirable one.
A number of models for parallel computation have been proposed and studied in the last twenty years.
Primary among them are the parallel random access machine (pram) model [29, 48, 43, 65], in which
processors execute in lock-step and communicate by reading and writing locations in a shared memory,
and network-based models (hypercube, butter
y, arrays, etc. [51]), in which processors communicate
by sending messages to their neighbors in the given network. The pram model, although simple and
well-suited for developing parallel algorithms, is considered by many to be too high level, failing to
accurately model parallel machines. Network-based models are considered by many to be too low
level, failing to be broadly applicable, and not re
ective of the current generation of parallel machines.
Thus, a number of alternative, intermediate models have been proposed and studied in recent years.
These abstract models di�er in what aspects of parallel machines are exposed. Some focus on dealing
with asynchrony in a shared-memory context (e.g., [8, 20, 21, 28, 32, 35, 49, 57, 61]). Others focus on
accounting for the overheads in accessing the shared memory ([2, 3, 25, 32, 41, 44, 52, 56]) or in sending
messages ([5, 9, 10, 22, 23, 39, 53, 55, 69]). Several models are primarily concerned with the memory
hierarchy, especially disk I/O ([6, 62, 72]). Others focus on contention at the memory location ([28, 36])
or memory module ([60, 7, 27]). Finally, a few models incorporate powerful aggregate communication
primitives ([14, 18]).

Given this plethora of models, it is natural to seek to distinguish a few models with the most
promise, and concentrate on these models. Advocates such as Vishkin [71], Kennedy [50], Smith [67],
and Blelloch [15] have long presented arguments in support of the shared-memory abstraction. On the
other hand, shared-memory models have been criticized for years for failing to model essential realities
of parallel machines. In particular, the pram model has been faulted for completely failing to model
bandwidth limitations of parallel machines. Until recently, there were few attractive alternatives,
so shared-memory models such as the pram remained the most widely used models for the design
and analysis of parallel algorithms (see, e.g., [43, 48, 65]). However, in the last few years, new
alternatives such as the bsp [69] and logp [22] models have gained considerable popularity. These
abstract network models support point-to-point message-passing, can directly support a distributed-
memory abstraction, and account for bandwidth limitations using a parameter, g � 1, that re
ects the
gap between the local instruction rate and the communication rate. Given these new, more realistic
models, there is a temptation to declare all shared-memory models too unrealistic, and not worthy of
further study or consideration.

In this paper we challenge this perception and consider the question of whether a shared-memory
model can in fact serve as an e�ective bridging model for parallel computation. In particular, can a
shared-memory model be as e�ective as, say, the bsp? As a candidate for a bridging model, we intro-
duce the Queuing Shared Memory (qsm) model, which accounts for limited communication bandwidth
while still providing a simple shared-memory abstraction. In a nutshell, the qsm model consists of
processors with individual private memory as well as a global shared memory. Access to shared mem-
ory is more expensive than access to local memory or a computation step, as characterized by a gap
parameter, g, re
ecting bandwidth limitations. The choice of the qsm model is based on the observa-

1



tion that while overheads due to latency, synchronization, and memory granularity can be e�ectively
diminished by using slackness and pipelining, the bandwidth overhead is inherent and hence should be
accounted for directly. Thus, the qsm is envisioned as a \minimal" shared-memory model that can be
competitive with the bsp. Similarly, the memory contention rule of the qsm is the queuing contention
rule, as in the qrqw pram [36]. This rule is strong enough to provide the qsm with an expressive
power comparable to that of the bsp, but it is not too strong to prevent a fast and e�cient emulation
of the qsm on the bsp with the techniques we use.

As advocated in [69, 71] and elsewhere, one reasonable goal for a high-level, shared-memory model
is that it allow for e�cient emulation on lower-level, seemingly more realistic, models. If the overheads
in the emulation are small, then the high-level model becomes an attractive general-purpose bridging
model. We substantiate the ability of the qsm to serve as a bridging model by providing a simple
work-preserving emulation of the qsm on both the bsp, and on a related model, the (d;x)-bsp [16], and
arguing for the practicality of this emulation. Thus the qsm can be e�ectively realized on machines
that can e�ectively realize the bsp, as well as on machines that are better modeled by the (d;x)-
bsp. We also describe scenarios in which the high-level qsm is more suited for analyzing algorithms
on certain machines than the more detailed bsp and logp models, due to the fact that the memory
layout is di�erent than the one perceived by the bsp and logp.

We present several algorithmic results for the qsm. We note that any erew or qrqw pram

algorithm can be mapped onto the qsm with a factor of g increase in time and work, where g is
the bandwidth (gap) parameter of the qsm. We also show that for many linear-work qrqw pram

algorithms, this increase in work in the qsm algorithm is unavoidable, and we present some other
lower bounds for the qsm. We consider the mapping of the bsp onto the qsm when the bandwidth
parameter, g, is the same for both models. We show that many, though not all, bsp algorithms map
onto the qsm step-by-step, resulting in algorithms whose time and work bounds match the bounds on a
bsp whose latency parameter, L, is set to 1. We also present a work-preserving randomized emulation
of the bsp on the qsm with a logarithmic slowdown. This result implies that any n-processor bsp
algorithm that takes time t(n) (when L is set to 1) can be mapped onto the qsm to run in time
O(t(n) lg n) w.h.p. using n= lg n processors, and more generally on a p-processor qsm to run in time
O(t(n) � (n=p+ lgn)) w.h.p.

Our main conclusion is that shared-memory models can potentially serve as viable alternatives
to existing message-passing or distributed-memory bridging models. While this paper focuses on a
shared-memory model that would be competitive with the bsp, a similar approach can be taken with
regard to other message-passing bridging models mentioned above (or others), that may emphasize
other features than the ones emphasized by the bsp.

The rest of the paper is organized as follows. Some advantages of shared-memory models as
bridging models are discussed in Section 2. In Section 3, we describe the Queuing Shared Memory
model, and qualitatively compare it with previous models, and in particular, with the bsp. In Section 4,
we present work-preserving emulations of the qsm on the bsp and on the (d;x)-bsp, and discuss the
practicality of these emulations. In Section 5, we provide a few scenarios where the qsm is a more
accurate model than the more detailed bsp and logp. Section 6 presents algorithmic results and issues
related to algorithm design on the qsm. Section 7 explores the merits of incorporating into the qsm
model distinct bandwidth gaps at the processors and the memories.

Finally, we refer the reader to the position paper [33], which provides a non-technical overview of
much of this work in arguing the importance of shared-memory models in general and the qsm model

2



in particular.

2 Advantages of shared-memory models as bridging models

A bridging model should provide an abstraction that is on the one hand easy to use by algorithm
designers and programmers, and on the other hand can be realized by hardware and system software
at a variety of price vs. performance points. In this section, we describe several contexts under which
the shared-memory abstraction is an attractive choice for a bridging model in this regard.

We consider a (pure) shared memory model to be one in which the processors communicate by
reading and writing locations in a shared memory that is equally accessible by all processors. The
shared memory is viewed as a collection of independent cells: the contention encountered in accessing
a shared memory cell is a function only of the number of processors also accessing the same cell. There
is no visible partitioning of the memory, and no sources of contention due to such partitioning. The
pram is a classic example of a shared memory model.

The shared memory abstraction refers to the interprocessor communication. As part of its local
private state, a processor may have additional memory such as registers, bu�ers, cache, and local
memory banks. A shared memory model may be asynchronous. It may also have explicit charges for
communication, modeling various overheads in reading or writing a shared memory that is not local
to, and may be physically quite remote from, the processor requesting the read or write. Thus it is a
mistake to view \shared memory model" as a synonym for pram.

The shared-memory abstraction is arguably easier to use than a message-passing or distributed-
memory abstraction, and in certain important contexts, can be realized by a wider range of machines.
In what follows, we elaborate on three of the advantages of the shared-memory abstraction over the
message-passing and distributed-memory abstractions.

Smooth transition from sequential to SMP to MPP. The shared-memory abstraction is similar
to the view of memory in sequential programming (the familiar read/write semantics). It is also the
abstraction of choice for the small symmetric multiprocessors (SMPs) found in current microprocessors.
There are high-performance parallel machines such as the Cray C90, Cray J90, and Tera MTA that also
directly support a shared-memory abstraction. Thus as a bridging model, it provides for the smoothest
transition from sequential programming to programming small SMPs to programming larger parallel
machines (MPPs). Code can be debugged on a smaller, simpler and cheaper machine, before running
it on a larger, more expensive machine; this will often signi�cantly reduce the overall debugging time.
In short, the shared-memory abstraction o�ers ease of use in designing algorithms and programs that
span a variety of machine sizes, and it has also been realized by machines that span a variety of
machine sizes. This contrasts with message-passing and explicit distributed-memory, which are not
directly supported by any sequential machine or SMP.

Portability across memory architectures. The shared-memory abstraction is also attractive
for developing algorithms that span a variety of memory architectures. Since the layout of memory
is hidden in the model, the target machine can support the model in a variety of ways beyond that
made visible in message-passing or distributed-memory machines. For example, the target machine
may choose to dynamically map memory locations to processors as the computation proceeds, as in
a cache-only memory architecture (coma) [68]. In general, the target machine is free to implement a
variety of cache and memory consistency protocols (e.g., [31]), since the model does not presuppose

3



a particular memory layout. The shared-memory abstraction is more relevant to parallel machines,
such as the Cray C90, Cray J90, SGI Power Challenge, and Tera MTA, that have many more memory
banks than processors in order to compensate for the slow cycle times of memories. This point is
addressed further later in the paper in Section 5.

Important platform for algorithmic ideas. Finally, it is evident that a simple model with a
shared-memory abstraction provides a useful platform for studying fundamental algorithmic issues.
Many algorithms for more complex models are adaptations of algorithms �rst developed for a simple
shared-memory model. There are numerous examples, covering a wide range of problem domains, in-
cluding sorting [18, 30, 44, 37], connected components [38, 42], computational geometry [66], FFT [22],
and string matching [24]. Designing an algorithm directly for the more complex model is typically a
more daunting task than �rst developing the algorithmic insights on a simple shared-memory model
and only then adapting them to the more complex model. Note that for any algorithm designed
for a high-level bridging model (whether shared-memory, message-passing or distributed-memory), it
may be desirable to consider a more complex, lower-level model when making important performance-
enhancing re�nements. The shared-memory abstraction is desirable when such re�nements are not
necessary (i.e., whenever the algorithm performance is acceptable) since it is easier to use, and, as
discussed above, it is still useful even if such re�nements are necessary.

3 The Queuing Shared Memory model

In this section, we describe the Queuing Shared Memory model, and elaborate on some of its features.

De�nition 3.1 The Queuing Shared Memory (qsm) model consists of a number of identical proces-
sors, each with its own private memory, communicating by reading and writing locations in a shared
memory. Processors execute a sequence of synchronized phases, each consisting of an arbitrary inter-
leaving of the following operations:

1. Shared-memory reads: Each processor i copies the contents of ri shared-memory locations into its
private memory. The value returned by a shared-memory read can only be used in a subsequent
phase.

2. Shared-memory writes: Each processor i writes to wi shared-memory locations.

3. Local computation: Each processor i performs ci ram operations involving only its private state
and private memory.

Concurrent reads or writes (but not both) to the same shared-memory location are permitted in a phase.
In the case of multiple writers to a location x, an arbitrary write to x succeeds in writing the value
present in x at the end of the phase.

The restrictions that (i) values returned by shared-memory reads cannot be used in the same phase
and that (ii) the same shared-memory location cannot be both read and written in the same phase
re
ect the intended emulation of the qsm model on a mimd machine. In this emulation, the shared
memory reads and writes at a processor are issued in a pipelined manner, to amortize against the delay
(latency) on such machines in accessing the shared memory, and could complete any time during the

4



phase, although they are not guaranteed to complete until the end of the phase. Thus, we do not allow
a value read from shared-memory to be used during the phase since the value may not be available
until the end of the phase. Also if we allow a shared-memory location to be both read and written
in the same phase then the value read could be either the initial value or the updated value since we
make no assumption about when a read or write completes within the phase. On the other hand, each
of the local compute operations are assumed to take unit time in the intended emulation, and hence
the values they compute can be used within the same phase.

Each shared-memory location can be read or written by any number of processors in a phase, as in
a concurrent-read concurrent-write pram model; however, in the qsm model, there is a cost for such
contention. In particular, the cost for a phase will depend on the maximum contention to a location
in the phase, de�ned as follows.

De�nition 3.2 The maximum contention of a qsm phase is the maximum, over all locations x, of
the number of processors reading x or the number of processors writing x. A phase with no reads or
writes is de�ned to have maximum contention one.

One can view the shared memory of the qsm model as a collection of queues, one per shared-
memory location; requests to read or write a location queue up and are serviced one at a time. The
maximum contention is the maximum delay encountered in a queue. The cost for a phase depends on
the maximum contention, the maximum number of local operations by a processor, and the maximum
number of shared-memory reads or writes by a processor. To re
ect the limited communication
bandwidth on most parallel machines, the qsm model provides a parameter, g � 1, that re
ects the
gap between the local instruction rate and the communication rate.

De�nition 3.3 Consider a qsm phase with maximum contention �. Let mop = maxifcig for the
phase, i.e., the maximum over all processors i of its number of local operations, and let mrw =
maxf1;maxifri; wigg for the phase. Then the time cost for the phase is max fmop; g �mrw; �g.1 The
time of a qsm algorithm is the sum of the time costs for its phases. The work of a qsm algorithm is
its processor-time product.

Note that although the model charges g per shared-memory request at a given processor (the
g �mrw term in the cost metric), it only charges 1 per shared-memory request at a given location (the
� term in the cost metric)2. Note also that our model considers contention only at individual memory
locations, not at memory modules. Even though both of these features give more power to the qsm
than would appear to be warranted by current technology, our emulation results in Section 4 show that
we can obtain a work-preserving emulation of the qsm on the bsp with only a modest slowdown. Thus,
these features do capture the computational power achievable by current technology. The discussion
in Section 4 provides some intuition for this rather surprising result.

The particular instance of the Queuing Shared Memory model in which the gap parameter, g,
equals 1 is essentially the Queue-Read Queue-Write (qrqw) pram model de�ned by the authors [36].
Previous work on the qrqw pram [36, 34, 16] has been focused primarily on contention issues, unlike
this paper, which is primarily concerned with bridging models and bandwidth issues.

1Alternatively, the time cost could be mop + g � mrw + �; this a�ects the bounds by at most a factor of 3, and the
results in [16] show that at least for certain machines, taking the maximum is more accurate than taking their sum.

2This issue is explored further in Section 7.

5



Comparison of Models of Parallel Computation

model synchrony communication parameters

PRAM [29] lock-step shared memory p
Module Parallel Computer (mpc) [60] lock-step distributed memory p
LPRAM [3] lock-step shared memory p; `
Phase LPRAM [32] bulk-synchrony shared memory p; `; s
XPRAM [70] bulk-synchrony message-passing p; g; L
Bulk-Synchronous Parallel (bsp) [69] bulk-synchrony message-passing p; g; L
Postal model [10] asynchronous message-passing p; `
LogP model [22] asynchronous message-passing p; g; `; o
QRQW Asynchronous PRAM [35] asynchronous shared memory p
QRQW PRAM [36] bulk-synchrony shared memory p
Block Distributed Memory (bdm) [44] bulk-synchrony distributed memory p; g; L;B
PRAM(m) model [56] lock-step shared memory p;m
Interval model [55] bulk-synchrony message-passing p; I

Queuing Shared Memory (qsm) bulk-synchrony shared memory p; g

Table 1: A comparison of several models of parallel computation. The fourth column indicates the
parameters of the model, where p is the number of processors, ` is the communication latency (i.e., the
time to deliver a message point-to-point or to access the shared memory), s is the cost for a barrier
synchronization among all the processors, L is a single parameter that accounts for the sum of ` and
s, g is the bandwidth gap (i.e., the rate at which processors can perform local operations divided by
the rate at which the processors can sustain interprocessor or processor-memory communication), o
is the overhead at the processor to send or receive a message, B is the block size (i.e., the number
of consecutive cells sent on a write or retrieved on a read), m is the number of shared-memory cells
available for both reading and writing, and I is the maximum of `, g, and s.

3.1 Model comparison

Table 1 compares the qsm model to a number of other models in the literature. The �rst column
of the table gives the name of the model. The second column indicates the synchrony assumption of
the model: Lock-step indicates that the processors are fully synchronized at each step, with no cost
for the synchronization. Bulk-synchrony indicates that there is asynchronous execution between syn-
chronization barriers. Typically the barriers involve all the processors, although this is not necessarily
required. Models that permit more general asynchrony are denoted as asynchronous.

The third column indicates the type of interprocessor communication assumed by the model. A
model is considered to be shared memory only if it meets the standards for a pure shared-memory
abstraction outlined in Section 2, i.e., that the memory is viewed as a collection of independent cells
that are equally accessible by all processors. If the processors communicate by reading and writing
locations in a memory that is partitioned, the model is considered to be a distributed memory model.
For example, the bdm model [44] is distributed memory since the contention encountered by a read
request depends on the number of other requests to the same memory module. The message-passing
models shown in this table deliver messages point-to-point: this abstraction hides the details of how
the message is routed through the interprocessor communication network, and hence is similar to the
distributed-memory abstraction.

6



The fourth column indicates the parameters in the model. The description of these parameters is
given in the table caption. Some models, such as the lprammodel, account separately for computation
steps and communication steps. This can be viewed as having a separate latency parameter, as
indicated in the table.

Unlike the previous models shown in Table 1, the qsm provides bulk-synchrony, a shared-memory
abstraction, and just two parameters. In all, the key features of the qsm that make it an attractive
candidate for a bridging model are:

1. Shared-memory abstraction. The qsm provides the simplicity of a shared-memory abstrac-
tion in which the shared memory is viewed as a collection of independent cells, non-local to the
processors. The advantages of a shared-memory abstraction were discussed in Section 2.

2. Bulk-synchrony. The qsm supports bulk-synchronous operation, in which processors operate
asynchronously between barrier synchronizations. As in models such as the phase lpram [32],
the algorithm dictates the points at which barriers occur. This allows a qsm algorithm to
synchronize less frequently than algorithms designed for a lock-step model, which makes for a
more e�cient mapping of the algorithm to mimd machines. The model does not allow for general
asynchronous algorithms. Permitting general asynchrony can lead to algorithms that run faster
on mimd machines. However, any asynchronous model that reasonably re
ects real machines is
considerably more di�cult to use.

3. Few parameters. For simplicity, it is desirable for bridging models to have only a few param-
eters. As evidenced by [22, 30, 47] and elsewhere, having additional parameters in a model can
make it quite di�cult to obtain a concise analysis of an algorithm. On the other hand, it is
desirable to have whatever parameters are essential for a desired level of accuracy in modeling
machines realizing the bridging model. The qsm has only two parameters: one re
ecting the
number of processors and one re
ecting the limited communication bandwidth. In the intended
emulation of the model on mimd machines, the latency of communication is hidden by having
each physical processor emulate a number of qsm processors. Formally, we consider the emula-
tion of higher-level models on lower-level models (such as the bsp), in order to make claims about
the cost, or lack thereof, of ignoring certain parameters in the higher-level model. The results in
the next section provide evidence that a parameter re
ecting limited bandwidth should be in a
high-level model, and that other communication parameters are not necessary. For this reason,
we believe that g is a better choice for a second parameter than the `, s, L, or I parameters
found in other models.

4. Queue contention metric. The \queue-read queue-write" (qrqw) contention rule of the qsm
model more accurately re
ects the contention properties of parallel machines with simple, non-
combining interconnection networks than either the well-studied exclusive-read exclusive-write
(erew) or concurrent-read concurrent-write (crcw) rules. As argued in [36], the erew rule is
too strict, and the crcw rule ignores the large performance penalty of high contention steps.
Indeed, for most existing machines, including the Cray T3E, Cray C90, Cray J90, IBM SP2,
Intel Paragon, MasPar MP-2 (global router), Tera MTA, and Thinking Machines CM-5 (data
network), the contention properties of the machine are well-approximated by the queue-read,
queue-write rule. The queue-read queue-write contention metric can lead to faster algorithms,
since it does not ignore the aforementioned penalty for high contention steps and yet it allows
for low-contention algorithms that are not permitted under the erew rule.

7



5. Work-preserving emulation on bsp. The bsp is a distributed memory, message passing
model that is gaining acceptance as a bridging model for parallel computation. Thus a work-
preserving emulation of the qsm on the bsp is a strong validating point for this shared-memory
model. This key feature will be discussed in Section 3.2.

6. Work-preserving emulation of bsp. In addition to the work-preserving emulation of qsm on
bsp we observe that there is a work-preserving mapping in the reverse direction as well. Many
bsp algorithms map onto the qsm in a step-by-step manner with performance corresponding to
the case when the periodicity parameter on the bsp is set to 1. While it is possible for bsp
algorithms not to have this property, we also present a work-preserving emulation of the bsp
on the qsm with only a small slow-down. This emulation holds for all bsp algorithms. This is
discussed in more detail in Section 3.2 and in Section 6.

The pram(m) model shares many of the same goals as the qsm model. As shown in the table,
the pram(m) provides a shared-memory abstraction and just two parameters: one for the number
of processors and one that captures the limited communication bandwidth (g = p=m). However, the
pram(m) model is suitable only for lower bounds. First, having only m < p shared-memory locations
is a large burden on the algorithm designer; no machines provide this restriction. Second, the model
assumes that input is in a read-only memory that can be accessed by all processors without any
bandwidth limitations; this undercharges the cost of such accesses for existing machines. Third, the
model provides unlimited contention to the m shared-memory locations at no extra charge; this too is
unrealistic for existing machines. Due to these features, the model does not seem to have an e�cient
emulation on lower-level models such as the bsp. The model is intended for lower bounds, and indeed
lower bounds proved for the pram(m) model imply lower bounds for a large number of other models.

Mapping parameters to machines. There have been several papers reporting values for various
model parameters on existing parallel machines. For example, Martin et al [58] reported values for the
g, `, and o parameters from the logp model on three platforms: the Berkeley NOW cluster, the Intel
Paragon and the Meiko CS-2. On the Berkeley NOW cluster, g = 5:8 microseconds (�s), ` = 5:0 �s,
and o = 2:9 �s. On the Intel Paragon, g = 7:6 �s, ` = 6:5 �s, and o = 1:8 �s. On the Meiko
CS-2, g = 13:6 �s, ` = 7:5 �s, and o = 1:7 �s. Since the local instruction rate at a processor is
tens of nanoseconds per instruction or faster, the normalized values for these parameters are in the
hundreds to a few thousand. In contrast, Blelloch et al [17] considered two shared-memory vector
multiprocessors, reporting (normalized) gap parameter values of g = 1:2 for the Cray C90 and g = 1:8
for the Cray J90.

3.2 Comparison to bsp

In this section we compare the qsm and the bsp in terms of their e�ectiveness as a bridging model for
parallel computation. We choose to compare the qsm with the bsp rather than the logp model since
the qsm is a bulk-synchronous model like the bsp (and unlike the logp) model.

The Bulk-Synchronous Parallel (bsp) model [69, 70] consists of p processor/memory components
communicating by sending point-to-point messages. The interconnection network supporting this
communication is characterized by a bandwidth parameter g and a latency parameter L. A bsp

computation consists of a sequence of \supersteps" separated by bulk synchronizations. In each
superstep the processors can perform local computations and send and receive a set of messages.
Messages are sent in a pipelined fashion, and messages sent in one superstep will arrive prior to the

8



Emulations on BSP

model emulated on model with slackness work-preserving?

erew pram bsp(g; L) � max(lg p; L=g) ine�cient by a factor of g
qrqw pram bsp(g; L) � max(lg p; L=g) ine�cient by a factor of g
crcw pram bsp(g; L) � max(p1+�; L=g) ine�cient by a factor of g

qsm(g) bsp(g; L) � max(g lg p; L=g) yes

Table 2: Some emulations of higher-level models on the bsp model. The result for qsm is new. The
emulations are randomized and the bounds are obtained with high probability in p.

start of the next superstep. The time charged for a superstep is calculated as follows. Let wi be the
amount of local work performed by processor i in a given superstep. Let si (ri) be the number of
messages sent (received) by processor i. Let w = maxpi=1 wi, and h = maxpi=1(max(si; ri)). Then the
cost, T , of a superstep is de�ned to be T = max(w; g � h; L).3 Although the bsp is a message-passing
model, it can also be viewed as a distributed-memory model where each memory component serves as
a memory bank.

To compare the cost metrics of the bsp and the qsm, we consider the distributed-memory view of
the bsp and a superstep comprised of local work, read requests and write requests. We can equate
the two g parameters, and wi with ci (and hence w with mop). Let hs = maxpi=1 si, the maximum
number of read/write requests by any one processor, and let hr = maxpi=1 ri, the maximum number
of read/write requests to any one memory bank . The bsp charges the maximum of w, g � hs, g � hr,
and L. The qsm, on the other hand, charges the maximum of w, g � hs, and �, where � 2 [1::hr ] is the
maximum number of read/write requests to any one memory location and is not multiplied by g.

One important measure of a bridging model is its ability to be emulated by important lower-level
models. Table 2 presents some known emulation results of higher-level models on the bsp. The parallel
slackness in an emulation is the number of processors in the higher-level model per processor in the
bsp model. An emulation is work-preserving if both models perform the same amount of work, to
within constant factors. The �rst three rows show emulation results on the bsp of the erew pram

[69], the qrqw pram [36] and the crcw pram [69]; note that none of these three models have a
work-preserving emulation on the bsp if g is not a constant. In the case of the crcw pram, even
for a bsp with gap parameter that is a constant, a work-preserving emulation on the bsp is known
only with a parallel slackness that is very large, i.e., polynomial in p. In contrast, the qsm does have
a work-preserving emulation on a bsp with the same gap parameter, for any g, using only modest
slackness and small constants. This result will be shown in the next section.

The emulation result implies that any algorithm designed on the qsm can be mapped onto the bsp
in a work-preserving manner with only a modest slowdown. Since the qsm has fewer parameters than
the bsp, and does not deal with memory partitioning details, for most problems it should be easier
to design algorithms on the qsm than on the bsp. Moreover, the emulation result implies that any
machine that can realize the bsp model can also realize the qsm model, given the additional system
software needed for the (simple) emulation algorithm.

Many algorithms designed for the bsp have as their goal to minimize the number of supersteps

3Alternatively, the time is w+ g � h+ L; this a�ects the bounds by at most a factor of 3, and the results in [16] show
that at least for certain machines, taking the maximum of the three terms is more accurate than taking their sum.

9



(e.g., [37]). In contrast, the qsm does not account for the number of supersteps (e.g., there is no L
parameter in the qsm model). Ignoring the number of supersteps simpli�es the model, and it can be
somewhat formally justi�ed by the emulation result, which shows that any two qsm algorithms with
the same qsm time bound will have the same bsp time bound when emulated on the bsp, regardless
of the number of supersteps in the respective algorithms.

One can also consider the mapping of bsp algorithms onto the qsm. Many of the bsp algorithms
reported in the literature have a simple version on the qsm corresponding to the case when the latency
L = 1. As shown in Section 6 it is possible, in principle, to have bsp algorithms that do not map back
to the qsm in a work- and time-preserving manner. Such algorithms would exploit the fact that a bsp
processor

(i) could receive a piece of information that it did not speci�cally request, or

(ii) could access, as a unit-time local computation, a value (not requested by it) that was written
into its local memory bank by another processor in an earlier step.

These features are appropriate in contexts where a processor can send a message directly to a processor
at any time, or can write remotely into a processor's local portion of the shared memory. On the qsm
a processor would need to initiate a read for any piece of information that it receives; further that
access will be charged a cost of g at the time the processor reads it in addition to a cost of g being
applied at the time the value was written into the shared-memory location.

While the features listed above could indicate that the bsp is in some ways more powerful than
the qsm, it may not be desirable for a general-purpose bridging model to incorporate these features.
In general, there will be features such as these arising due to contrasts between message-passing and
shared memory, between coherent and non-coherent caches, between update and invalidation-based
coherence protocols, etc. Any choice of these features may not be representative of a wide range of
parallel machines. Moreover, as discussed in Section 2, current designers of parallel processors often
hide the memory partitioning information from the processors since this can be changed dynamically
at runtime. As a result an algorithm that is designed, say, using this additional power of the bsp over
the qsm may not be that widely applicable.

In Section 6, we show that a bsp that does not exploit features (i) and (ii) can be emulated on
a qsm using a simple, deterministic, time- and work-preserving algorithm. We also show that any
n-component bsp, even one that exploits these features, has a work-preserving emulation on a qsm

with the same gap parameter, with a modest slowdown of O(lgn=(1 +L=g)), with high probability in
n; this emulation uses a fairly involved algorithm.

Thus, overall, a case can be made that the qsm is e�ective in modeling the essential features of
the bsp while remaining at a higher level of abstraction.

4 Emulations of qsm on bsp models

The (d;x)-bsp [16] is a model similar to the (distributed-memory view of the) bsp, but it provides a
more detailed modeling of memory bank contention and delay. In [16], it is argued that for shared-
memory machines with a high-bandwidth communication network and more memory banks than
processors, the (d;x)-bsp is a more accurate model than the bsp. Such machines include Cray C90,

10



Cray J90 and Tera MTA (experimental validation of this accuracy claim is provided for Cray C90
and Cray J90). The (d;x)-bsp is parameterized by �ve parameters, p; g; L; d and x, where p, g and
L are as in the original bsp model, the delay d is the `gap' parameter at the memory banks, and the
expansion x is the ratio of memory banks to processors (i.e., there are x �p memory banks). Consider a
superstep where w is the maximum local work performed by a processor, hs is the maximum number of
read/write requests by a processor and hr is the maximum number of read/write requests to a memory
bank. Then the time, T , charged by the (d;x)-bsp for this superstep is T = max(w; g � hs; d � hr; L).
The original bsp can be viewed as a (d;x)-bsp with d = g and x = 1.

In this section we present two emulations of the qsm on the (d;x)-bsp. The �rst emulation is for
a so-called balanced (d;x)-bsp, in which x � d=g, and is work optimal. Since the bsp is a balanced
(d;x)-bsp, this optimal emulation applies also for the bsp. The second emulation is for an unbalanced
(d;x)-bsp, in which x < d=g. This emulation su�ers from work ine�ciency which is proportional to the
\imbalance-factor", d=(gx). We show by a lower bound argument that this overhead is unavoidable.

The two emulations are in fact identical, and di�er only in the slackness parameter. We �rst present
the algorithm, followed by the di�erent analysis for the two cases mentioned above, and concluding
with the lower bound.

4.1 The emulation algorithm

A work-preserving emulation of a model A on a model B provides a formal proof that model A can
be realized on model B with only a constant factor overhead in work. If model B is considered to
be re
ective of an interesting class of parallel machines, then such an emulation supports the use of
A as a bridging model, as long as the emulation can be considered \practical". For the qsm on the
(d;x)-bsp (and hence on the bsp), we present a very simple emulation algorithm and then discuss its
practicality in some detail.

The emulation algorithm of a v-processor qsm on a p-processor (d;x)-bsp, v � p, is quite simple,
and it is similar to emulations that were previously proposed for the pram. Unlike previous emulations,
our analysis needs to handle the gap parameter in the emulated machine.

� The shared address space of the qsm is randomly hashed into the xp memory banks of the
(d;x)-bsp (or to the p memory modules of the bsp).

� In each phase, each processor of the (d;x)-bsp emulates v=p processors of the qsm.

In the work-preserving emulation, each phase i of time ti on the qsm is emulated on the (d;x)-bsp (or
simply the bsp) in time O((v=p) � ti), regardless of the distribution of shared memory reads and writes.
The needed parallel slackness, v=p, is modest, and does not depend on the maximum contention in a
phase (which may be much larger than v=p).

The mapping of the qsm shared memory among the machine's memory banks assumes the machine
supports a single address space. Many recent machines (e.g., Cray T3E) provide hardware support
for a single address space; for other machines (e.g., IBM SP-2), it can be emulated in software with
some overhead.

Note that if a computer system already hashes the data using a pseudo-random hash function, then
the emulation is nothing but the straightforward implementation of an algorithm whose parallelism is

11



larger than the number of processors. Several parallel database systems already hash their data using
pseudo-random hash functions. The Tera MTA provides hardware support for hash functions to be
used for pseudo-random mapping of memory locations to memory banks; the Fujitsu �-VP on the
Meiko node already has optional hardware hashing. For other machines, computing a pseudo-random
hash in software is feasible. For example, it is shown in [16] that the overhead to compute a certain
provably-good (i.e., 2-universal) pseudo-random hash function on the Cray C90 averages 1.8 clock
cycles. Also as noted in [16], for some algorithms it is possible to get the same e�ect without memory
hashing, by randomly permuting the input and some of the intermediate results. In others, the nature
of the algorithm results in random mapping without any additional steps.

It is well known that hashing destroys spatial locality, but not temporal locality. Spatial locality
enables long messages to be sent between components, thereby minimizing overheads on many ma-
chines. Some models, such as bdm [44], loggp [5], and bsp

� [12, 11], account for advantages in long
messages; most others, e.g., qsm, bsp, (d;x)-bsp and logp, do not. Thus the qsm shares with the
bsp, (d;x)-bsp and logp models a disregard for spatial locality. Spatial locality can also arise in initial
data placement. Here the input can be assumed to be distributed among the private memories of the
qsm processors as among the local memories of the bsp, (d;x)-bsp or logp processors.

The emulation of v=p virtual processors by each physical processor can be done by a variety
of techniques. The primary technique is multithreading, in which each virtual processor is its own
process, and the physical processor context switches between these processes. The Tera MTA provides
hardware support for this multithreading, minimizing the context switching costs. Alternatively, such
multithreading can be performed in software. Note that in the qsm, as in other bulk-synchronous
models, each virtual processor issues a series of memory requests in a phase. Instead of context
switching at each memory request, the multithreading can be performed by executing all the code for
the �rst virtual processor in this phase, then switching to the second virtual processor, and so forth, so
that only v=p context switches are needed for the entire phase (this description assumes that storing
values returning in response to shared-memory read requests does not require a context switch).

In order to minimize the overheads, it is very important to minimize the amount of parallel slackness
required. In the worst case, multithreading v=p processes per machine processor results in v=p times
the storage demand at each level of the processor's memory hierarchy, possibly resulting in various
thrashing e�ects. The emulation of the qsm on the bsp requires only max(g lg p; L=g) slackness; on
the (d;x)-bsp, as little as max(d; L=g) slackness may be required. Note that the L=g term matches
the limit on multithreading imposed by the logp model [22].

Thus, overall, the constants hidden by the big-O notation in the emulation result are small, and
hence the emulation can arguably be considered practical. (In fact, this emulation is a fundamental
component in the design of the Tera MTA.)

4.2 Work-preserving qsm emulation on (d;x)-bsp

The following theorem presents an emulation of the qsm on a (d;x)-bsp for the case when x � d=g,
where g is the gap parameter for both the qsm and the (d;x)-bsp. The emulation is work-preserving
for any g (i.e., the work performed on the (d;x)-bsp is within constant factors of the work performed
on the qsm).

Theorem 4.1 (work-preserving QSM emulation) Consider a p-processor (d;x)-bsp with gap pa-

12



rameter g and periodicity factor L, such that dg � x � p�c, for some constant �c > 0, where
dg = d=g � 1. Let

� =

8><
>:

d lg p if dg � x � 2dg
d lg p= lg(x=dg) if 2dg � x � pdg

d if x � pdg

Then for all p0 � max(�; L=g)�p, each step of an algorithm for the p0-processor qsm with gap parameter
g with time cost t can be emulated on the p-processor (d;x)-bsp in O((p0=p) � t) time w.h.p.

This result is not implied by previous simulation results for the qrqw pram [36, 16], since these
previous results considered standard pram models with no gap parameter and bsp or (d;x)-bsp
models with a small constant gap parameter (that was hence ignored as part of the big-O notation).
The question of how the work-e�ciency and/or slowdown of the emulation depended upon the gap
parameters was not studied. Since we are considering the same gap parameter, g, for the qsm as for
the bsp, one might conjecture that considering the gap parameter does not substantially alter the
bounds of the simulations without the gap parameter. However, note that the qsm model charges �
for contention �, regardless of the gap or delay parameters, and indeed a qsm step with time t can
have t=g memory requests per processor and maximum contention t. In contrast, in such cases the
bsp charges at least g � t and the (d;x)-bsp charges at least d � t. Viewing the mapping of memory
locations to memory banks as tossing weighted balls into bins (where the weight of a ball corresponds
to the contention of the location), this implies a di�erent mix of balls than considered in previous
emulations.

Before we present the proof of this theorem, we note that in the original bsp, dg = x = 1, so from
the above theorem we obtain the following corollary:

Corollary 4.2 (work-preserving QSM emulation) A p0-processor qsm with gap parameter g can
be emulated on a p-processor bsp with gap parameter g and periodicity parameter L in a work-
preserving manner w.h.p. provided p0 � max(g lg p; L=g) � p.

Proof of Theorem 4.1 We now prove the theorem. The proof is similar to that in [16], extended
and adjusted to properly account for the gap parameter in the qsm and to improve upon the results
for large values of x, even for the case studied previously of g = 1.

The shared memory of the qsm is randomly hashed onto the B = x � p memory banks of the
(d;x)-bsp. In the emulation algorithm, each (d;x)-bsp processor executes the operations of p0=p qsm
processors.

We �rst assume that x � 2dg. Thus,

� � d
lg p

lg(x=dg)
: (1)

Consider the ith step of the qsm algorithm, with time cost ti. Let c > 0 be some arbitrary constant,
and let � = max fc+ �c+ 1; eg. We will show that this step can be emulated on the (d;x)-bsp in time
at most �(p0=p)ti with probability at least 1� p�c. Note that by the qsm cost metric, ti � g, and the
maximum number of local operations at a processor in this step is ti. The local computation of the

13



qsm processors can be performed on the (d;x)-bsp in time (p0=p)ti, since each (d;x)-bsp processor
emulates p0=p qsm processors.

By the de�nition of the qsm cost metric, we have that �, the maximum number of requests to the
same location, is at most ti, and hs, the maximum number of requests by any one processor, is at most
ti=g. For the sake of simplicity in the analysis, we add dummy memory requests to each processor as
needed so that it sends exactly ti=g memory requests this step. The dummy requests for a processor
are to dummy memory locations, with processor ` sending all its dummy requests to dummy location
`. In this way, the maximum number of requests to the same location, �, remains at most ti, and the
total number of requests is Z = p0ti=g.

Let i1; i2; : : : ; im be the di�erent memory locations accessed in this step (including dummy loca-
tions), and let �j be the number of accesses to location ij , 1 � j � m. Note that

Pm
j=1 �j = Z.

Consider a memory bank �. For j = 1; : : : ;m, let xj be an indicator binary random variable
which is 1 if memory location ij is mapped onto the memory bank �, and is 0 otherwise. Thus,
Prob (xj = 1) = 1=B. Let aj = �j=ti; aj is the normalized contention to location j. Since � � ti, we
have that aj 2 (0; 1]. Let 	� =

Pm
j=1 ajxj ; 	�, the normalized request load to bank �, is the weighted

sum of Bernoulli trials. The expected value of 	� is

E (	�) =
mX
j=1

aj
B

=
1

xp

mX
j=1

�j
ti

=
1

xp
� Z
ti
=

p0 ti
x p ti g

=
p0

xpg
:

Let h�r be the total number of requests to locations mapped to bank �. To show that it is highly
unlikely that h�r greatly exceeds this expected value, we will use the following theorem by Raghavan
and Spencer, which provides a tail inequality for the weighted sum of Bernoulli trials:

Theorem 4.3 ([63]) Let a1; : : : ; am be reals in (0; 1]. Let x1; : : : ; xm be independent Bernoulli trials
with E (xj) = �j. Let 	� =

Pm
j=1 ajxj. If E (	�) > 0, then for any � > 0

Prob (	� > (1 + �)E (	�)) <

�
e�

(1 + �)(1+�)

�E(	�)
: (2)

We apply Theorem 4.3 with �j = 1=B, and set

� = �
x

dg
� 1 ;

implying

(1 + �)E (	�) = �
x

dg
� p0

xpg
=

�p0

dp
: (3)

Therefore,

Prob

�
	� >

�p0

dp

�
[(2),(3)]
<

�
e

(1 + �)

�(1+�)E(	�) [(3)]
=

 
�x

edg

!��p0

dp

[� � e]

�
 
x

dg

!��p0

dp [x > dg]�
 
x

dg

!��
d

max(�;L=g)

14



[x > dg ]�
 
x

dg

!��
d
�
[(1)]

�
 
x

dg

!�� lg p
lg(x=dg)

= p�� � p�(c+�c+1)

=
p�(c+1)

p�c

[x � p�c]
� p�(c+1)

x
:

Note that

h�r =
mX
j=1

xjkj = 	� � ti :

Therefore,

Prob

�
h�r >

�p0 ti
d p

�
<

p�(c+1)

x
:

Let hr = max� h
�
r . Then

Prob

�
hr >

�p0 ti
d p

�
� B �Prob

�
h�r >

�p0 ti
d p

�
< B � p

�(c+1)

x
= p�c :

The time of the (d;x)-bsp step to emulate qsm step i is Ti = max((p0=p)ti; g(p
0=p)(ti=g); d � hr; L).

Since ti � g, we have that (p0=p)ti � (p0=p)g � L and hence it follows from the above that

Prob
�
Ti � � (p0=p) ti

� � 1� p�c :

We next consider the case where dg � x � 2dg, and therefore � = d lg p. In this case we take
� = max fc+ �c+ 1; 2eg, and the proof proceeds as above except that we make use of the fact that

 
�x

edg

!��p0

dp

� 2�
�p0

dp � 2�
�
d
max(d lg p;L=g) � 2�� lg p = p�� :

This completes the proof of Theorem 4.1.

4.3 Emulating qsm on unbalanced (d;x)-bsp

We next consider the case where the bandwidth at the memory banks is less than the bandwidth at
the processors and network, i.e., x < dg. We present an emulation whose work bound is within a
constant factor of the best possible.

Theorem 4.4 (QSM on unbalanced (d,x)-BSP) Consider a p-processor (d;x)-bsp with gap pa-
rameter g and periodicity factor L, such that 1 � x < min fdg; p�cg, for some constant �c > 0, where
dg = d=g. Then for all p0 � max(xg lg p; d; L=g) � p, each step of an algorithm for the p0-processor qsm

with parameter g with time cost t can be emulated on the p-processor (d;x)-bsp in O((dg=x) � (p0=p) � t)
time w.h.p.

Proof. As in the proof of Theorem 4.1, the shared memory of the qsm is randomly hashed onto
the B = x � p memory banks of the (d;x)-bsp. In the emulation algorithm, each (d;x)-bsp processor
executes the operations of p0=p qsm processors.

15



Consider the ith step of the qsm algorithm, with time cost ti. Let c > 0 be some arbitrary constant,
and let � = max fc+ �c+ 1; 2eg. We will show that this step can be emulated on the (d;x)-bsp in time
at most maxf(p0=p)ti; �(dg=x)(p0=p)tig with probability at least 1� p�c.

The proof proceeds exactly as in the proof of Theorem 4.1: we add dummy requests as needed,
de�ne indicator binary random variables xj for each memory bank j, de�ne 	�, and show that
E (	�) = p0=(xpg). We apply the Raghavan and Spencer theorem (Theorem 4.3), but with � = �� 1.
This yields

Prob

�
	� >

�p0

xp

�
<

�
�

e

�� �p0

xpg [� � 2e]

� 2
� �
xg

max(xg lg p;d;L=g)

� p�� � p�(c+�c+1)
[x < p�c]
<

p�(c+1)

x
:

It follows as in the previous proof that

Prob

�
hr >

�p0 ti
x pg

�
< p�c ;

where hr is the maximum number of read/write requests to a memory bank. The time, Ti, of the
(d;x)-bsp superstep to emulate qsm step i is max((p0=p)ti; g(p

0=p)(ti=g); d � hr; L). Since ti � g and
p0=p � L=g, we have that

Prob

�
Ti � max

�
p0

p
� ti ; � � d

x

p0

pg
� ti
��

� 1� p�c :

The theorem follows.

4.4 A lower bound

The following lower bound shows that the work bound in Theorem 4.4 is tight, as well as showing
the importance of having a gap parameter on the qsm. In particular, it implies that a pram has an
inherent ine�ciency overhead of g, when emulated on a bsp or (d;x)-bsp with a gap parameter g.
Likewise, it implies that g is the minimum gap parameter that should be assigned to the qsm in order
to allow for work-e�cient emulation on a bsp and (d;x)-bsp.

Observation 4.5 Let p0 � p. Any emulation of one step of the p0-processor qsm with gap parameter
g0 with time cost t on the p-processor (d;x)-bsp with gap parameter g and periodicity factor L requires
T = max(t � (g=g0) � dp0=pe; d � dtp0=(xpg0)e) time in the worst case.

Proof. Consider a step in which each of the p0 qsm processors perform t=g0 memory requests, such
that all p0t=g0 requests are to distinct locations in the shared memory. Since there are m = p0t=g0

locations distributed among xp memory banks, then regardless of the mapping of locations to banks,
there exists at least one bank j which is mapped to by at least dm=xpe locations. Also, each (d;x)-bsp
processor sends dp0=pe � (t=g0) shared memory requests. Therefore, the time on the (d;x)-bsp is at
least T .

16



5 Improved accuracy through the qsm abstraction

The shared-memory abstraction of the qsm hides the details of the partitioning of memory into mem-
ory modules/components on existing machines. This partitioning is explicit in message-passing or
distributed-memory models such as the bsp or logp. Thus the qsm provides a higher-level of abstrac-
tion, while the bsp and logp seemingly provide more accurate modeling of memory module contention.

In this section, we draw attention to machines for which the bsp and logp models fail to accurately
model memory module contention, whereas the qsm can lead to a more accurate accounting. For the
former, we will refer to results in Blelloch et al. [16], whereas for the latter we will leverage Theorem 4.1
and experimental results in [16]. We also present a simple illustrative example.

5.1 The problem of memory layout mismatch

Standard message-passing or distributed-memory models such as the bsp and logp have the property
that the number of memory components is equal to the number of processors. On the other hand,
several computer manufacturers, motivated by the increasing divergence between processor speeds and
memory speeds, have designed parallel machines with many more memory banks than processors. For
example, the 16-processor Cray C90 has 1024 memory banks, the 16-processor Cray J90 has 512 mem-
ory banks, the 18-processor SGI Power Challenge has 64 memory banks, and the 256-processor Tera
MTA will have 32K memory banks. For these machines, the (d;x)-bsp [16] (described in Section 4) is
a more accurate model than the bsp or logp since it explicitly accounts for both (i) the bank delay ,
d, which is the bandwidth gap parameter at a memory bank, and (ii) the bank expansion, x, which is
the ratio of memory banks to processors.

Blelloch et al. showed experimentally that the (d;x)-bsp models the Cray C90 and Cray J90 quite
accurately, even though the model ignores many details about these machines. They also showed that
accounting for the memory bank delay is critical in predicting running times of algorithms with high
memory contention. Therefore, in some situations the bsp and the logp provide a poor prediction of
an algorithm's performance, while the (d;x)-bsp provides a good one. An example is shown in Figure 1
for the Cray J90. In this �gure, predicted and measured performance are shown on a set of memory
access patterns extracted from a trace of Greiner's algorithm for �nding the connected components of
a graph [38]. Measured times on an 8 processor Cray J90 for several patterns are shown with squares.
Predicted times are given for the (d;x)-bsp, bsp, and logp. The contention is given on a logarithmic
scale indicating the ratio between the maximum contention, k, and the total number of requests, p �S
(p is the number of processors and S is the number of requests sent by each processor).

5.2 Suitability of qsm to Cray-like machines

The qsm is a more high-level model than the bsp or logp, which in turn are more high-level models
than the (d;x)-bsp. Nevertheless, we argue that the qsm is a better model for machines such as the
Cray C90 and Cray J90 than the bsp or the logp, since its shared-memory abstraction does not assume
a particular memory layout. In particular, Theorem 4.1 shows that any algorithm designed for the
qsm will map in a work-preserving manner onto the (d;x)-bsp given a reasonable amount of parallel
slackness, and thus onto these machines. This is because the qsm cost metric accounts for contention
to locations, and hence can be translated (via hashing) to a memory layout of any granularity. Thus

17



0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

T
im

e 
pe

r 
el

em
en

t 
(c

lo
ck

 p
er

io
ds

)

0.01 0.10 1.00
Fraction of requests at one location (k / pS)

(d,x)-BSP

BSP,LOGP

Figure 1: Inaccuracies in the bsp and the logp predictions, due to assuming the wrong memory
layout and underestimating the cost of memory bank contention. This �gure is from [16].

the abstraction of memory components to shared memory, as assumed in the qsm, make it more robust
to changes in the number of memory components.

In contrast, message-passing or distributed-memory models such as the bsp and logp account
only for the aggregated contention per processor, and hence reveal insu�cient information to enable
a work-preserving emulation unless the slackness is � x � d=g. (When the slackness is � x � d=g,
then the p-processor distributed-memory model is emulated on a (d;x)-bsp with at most p memory
banks.)

As a simple example illustrating the above discussion, consider the following two memory access
patterns, A and B, occurring in an algorithm designed for the bsp. Suppose k processors send one
message each to a bsp component C, for some arbitrary k. In access pattern A, all requests are directed
to the same memory location. In access pattern B, each request is directed to a di�erent memory
location within C. The cost on the bsp of each access pattern is the same, namely, g � k, as in each
case the requests are aggregated. Now suppose that the algorithm is run on a machine well-modeled
by the (d;x)-bsp, with x � k. On the (d;x)-bsp, the requests in A are always mapped to the same
memory bank, but the requests in B could be mapped to di�erent banks, depending on the mapping
of (d;x)-bsp banks to bsp components. This results in a cost on the (d;x)-bsp of max(g; d � k) for A
but a cost of anywhere from max(g; d � k) to max(g; d) for B, a potentially large distinction.

An algorithm designed for the qsm would distinguish between k requests to the same location
versus k requests to di�erent locations, charging max(g; k) for A and g for B. Moreover, Theorem 4.1
implies that using a random mapping of qsm memory locations to the (d;x)-bsp memory banks
guarantees that, with high probability, there are no surprises in terms of memory bank contention
when the algorithm is run on a machine well-modeled by the (d;x)-bsp. In any such mapping, the
requests in A will be mapped to the same (d;x)-bsp memory bank, and hence are rightfully aggregated,
whereas the requests in B will likely be mapped to di�erent memory banks, and hence are rightfully
not aggregated. Thus while the metric of the bsp may not be consistent with that of the (d;x)-bsp,
the qsm maintains close consistency with the (d;x)-bsp.

18



6 Algorithmic issues

As a shared-memory model, the qsm o�ers a simple high-level medium for the design of parallel
algorithms that can take into consideration e�ective use of limited bandwidth. In this section we
present some algorithmic results and techniques for the qsm as well as general strategies to map
algorithms developed on some other models onto the qsm.

In general the qsm is to be used for direct algorithm design that makes e�ective use of limited
bandwidth. However, since we would like to leverage on the extensive literature on pram algorithms,
in Section 6.1 we discuss the mapping of qrqw pram and erew pram algorithms onto the qsm. In
Section 6.2 we present some lower bounds, and in Section 6.3 we present some direct qsm algorithms
that are faster than the ones obtained by the generic pram mapping.

It is also important to consider the mapping of bsp algorithms onto the qsm, for two reasons:
First, a good mapping result of this type will allow us to leverage on the results and techniques that
were developed for the bsp model. Second, it will demonstrate that the expressive power of qsm is
no less than that of the bsp. We study this issue in Section 6.4 and Section 6.5. In view of a simple
lower bound of 
(n � g) that we prove in Section 6.2 on the time needed to read n items from global
memory into the qsm processors, for these algorithms we assume that the input is distributed among
the local memories of the processors in a suitable way. In Section 6.4 we show that any bsp algorithm
that is `well-behaved' (as de�ned in that section) can be adapted in a simple way to the qsm with
no loss in performance. In that section we also argue that bsp algorithms that are not `well-behaved'
use certain features of the bsp that are not quite representative of a large class of parallel machines.
For completeness on the issue of expressive power, in Section 6.5 we show a general randomized work-
preserving emulation of bsp on qsm. Unlike the simple adaptation for `well-behaved' algorithms, this
emulation consists of a fairly involved algorithm and results in logarithmic slow-down. Overall these
results demonstrate that any algorithm designed for bsp could be also designed on the qsm, without
substantial loss of e�ciency.

Finally, in Section 6.6 we discuss the importance of the queuing metric for memory accesses in the
qsm model, and note that it is central to its e�ectiveness as a shared-memory bridging model.

First, we consider the property of self-simulation for the qsm, i.e., the problem of simulating a
p-processor qsm on a p0-processor qsm, where p0 < p. The availability of an e�cient self-simulation
is an important feature for parallel models of computation, since it implies that an algorithm written
for a large number of processors is readily portable into a smaller number of processors, without loss
of e�ciency.

Observation 6.1 Given a qsm algorithm that runs in time t using p processors, the same algorithm
can be made to run on a p0-processor qsm, where p0 < p, in time O(t � p=p0), i.e., while performing the
same amount of work.

The e�cient self-simulation is achieved by the standard strategy of mapping the p processors in the
original algorithm uniformly among the p0 available processors. In the following, we will state the
performance of a qsm algorithm in terms of the fastest time t(n) achievable within a given work
bound w(n). When we make such a statement we imply, due to Observation 6.1, that for any p we
have an explicit qsm algorithm that runs in O(t(n) + w(n)=p) time using p processors.

19



In the following we assume that the value of the gap parameter g is less than n, the size of the
input; in practice we expect g to be much smaller than n.

6.1 Mapping pram algorithms onto the qsm

A naive emulation of a qrqw pram algorithm (or an erew pram algorithm, which is a special case)
on a qsm with the same number of processors results in an algorithm that is slower by a factor of g.
This is stated in the following observation.

Observation 6.2 Consider a qsm with gap parameter g.

1. A qrqw pram algorithm that runs in time t with p processors is a qsm algorithm that runs in
time at most t � g with p processors.

2. A qrqw pram algorithm in the work-time framework that runs in time t while performing work
w immediately implies a qsm algorithm that runs in time at most t � g with w=t processors.

Thus the linear-work qrqw pram algorithms given in [36, 34] for leader election, linear compaction,
multiple compaction, load balancing, and hashing, as well as the extensive collection of linear-work
logarithmic-time erew pram algorithms reported in the literature, all translate into qsm algorithms
with work O(n � g) on inputs of length n with a slowdown by a factor of at most g. We show in
Section 6.2 that this increase in work by a factor of g on the qsm may be unavoidable if the input
items are not a priori distributed across the qsm processors.

There are two other avenues through which we can hope to obtain useful results for the qsm over
those obtained through the mapping of qrqw pram algorithms. First, we can consider tailoring qsm
algorithms to its cost metric for the gap parameter, thereby obtaining an improved running time for
the algorithm. Second, we can relax the requirement that the input be placed in global memory, and
allow the input to be distributed across the local memories of the processors in a suitable way. This
would conform to the initial state for bsp algorithms, and in fact most bsp algorithms map back to
the qsm in a natural way in this case.

We address each of these in turn in Section 6.3 and Section 6.4, respectively. But �rst, in the next
section we mention some lower bounds for the qsm model.

6.2 Lower bounds

If n distinct items need to be read from or written into shared memory on a p-processor qsm then
the work performed by the qsm is 
(n � g) regardless of the number of processors used. To see this
we note that the result is immediate if p � n since the qsm has to execute at least one step. If p < n
then some processor needs to read or write dn=pe distinct items, and hence that processor spends time

((n=p) � g). Since p processors are used, the work, which is de�ned as the processor-time product, is

(ng). A similar observation holds for the case when n distinct memory locations are accessed. We
state this in the following.

Observation 6.3 Consider a qsm with gap parameter g.

20



1. Any algorithm in which n distinct items need to be read from or written into global memory must
perform work 
(n � g).

2. Any algorithm that needs to perform a read or write on n distinct global memory locations must
perform work 
(n � g).

By Observation 6.2 and Observation 6.3, the linear-work qrqw pram algorithms for problems in
which the input of length n resides in global memory translate into algorithms with asymptotically
optimal work on the qsm that run with a slowdown of g with respect to the corresponding qrqw

pram algorithm.

The following lower bounds for the qsm are given in [1]. The crcw pram lower bound result
of Beame and Hastad [13] gives a lower bound for the n-element parity, summation, list ranking and
sorting problems of 
(g�lg n= lg lg n) time on the qsm for either deterministic or randomized algorithms
when the number of processors is polynomial in n, the size of the input. Also given in that paper
is a simple lower bound with a matching upper bound of �(ng) for the one-to-all problem in which
one processor has n distinct values in its local memory of which the ith value needs to be read by
processor i, 1 � i � n.

A lower bound of 
(g lgn= lg g) for broadcasting to n processors is given in [1]; in contrast to an
earlier lower bound for this problem on the bsp given in [45] this lower bound holds even if processors
can acquire knowledge through non-receipt of messages (i.e., by reading memory locations that were
not updated by a recent write operation). We note that the same lower bound on time holds for
the problem of broadcasting to n memory locations since any algorithm that broadcasts to n memory
locations can broadcast to n processors in additional g units of time. Further, by Observation 6.3

(ng) work is necessary since writes to n distinct global memory locations are required.

6.3 Some faster algorithms for the qsm

By pipelining reads and writes to memory from di�erent processors to amortize against the delay due
to the gap parameter g at processors, it is possible to obtain an algorithm for the qsm that runs
faster than g times the running time for the fastest qrqw pram algorithm. As an example of an
algorithm that is optimized for the qsm, consider the leader election problem in which the input is
a Boolean n-array, and the output is the �rst location in the array with value 1, if such a location
exists, and is zero otherwise. The fastest qrqw pram algorithm for this problem is just the `binary
tree' erew pram method that halves the number of candidates in each of lgn rounds with O(n) work
(there is a faster algorithm on the crqw pram, but that algorithm is not known to map onto the qsm
with a slowdown of only g). This qrqw pram algorithm will map on to the qsm as a O(g lgn) time
algorithm with O(gn) work. However, we can optimize further for the qsm by replacing the normal
`binary tree' method by a `g-ary tree'. This takes advantage of the fact that requests at the memory
are processed every time step, while at the processors a request can be sent only every g steps. The
time taken by this algorithm to solve the leader election problem on the qsm is O(g lgn= lg g) while
still performing O(gn) work. If the input is distributed evenly among n=(g lgn= lg g) processors, then
the time is O(g lgn= lg g) and the work is O(n).

A similar strategy applies to the broadcasting problem in which the value at one location in memory
needs to be transmitted to n processors. Again, the qrqw pram algorithm of choice for this problem
is a `binary tree' broadcasting method that takes O(lgn) time with O(n lgn) work. This algorithm

21



will map on to the qsm as a O(g lgn) time algorithm with O(gn lg n) work. By optimizing along the
lines of the algorithm for leader election, we can derive an algorithm to broadcast to n processors
on the qsm that runs in O(g lgn= lg g) while performing O((gn lg n)= lg g) work. By the lower bound
cited in Section 6.2, this result is optimal.

We can solve the related problem of broadcasting to n memory locations in the above time bound
of O(g lgn= lg g) but with O(ng) work. For this, we use p = n lg g= lg n processors and broadcast to
the p processors in time O(g lgn= lg g). We then spend an additional O(g lgn= lg g) time to have each
processor write into lgn= lg g locations. As noted in Section 6.2 we have a matching lower bound on
both the running time and the work.

We now consider the problem of sorting on the qsm. The problem of designing highly parallel
algorithms for sorting n keys from a totally ordered set is a well-studied one. On the erew pram, there
are two known O(lgn) time, O(n lgn) work algorithms for general sorting [4, 19]; these deterministic
algorithms match the asymptotic lower bounds for general sorting on the erew and crew pram

models. Both of these algorithms map onto the qsm to run in O(g lg n) time and O(gn lgn) work
using Observation 6.2. Unfortunately, these two algorithms are not as simple and practical as one
would like. Goodrich [37] gives an algorithm for the bsp based on [19] that performs work O((L +
gn) lg n= lg(n=p) + n lgn) with p processors. Since this algorithm is an adaptation of [19] it is again a
fairly complicated algorithm.

Among sorting algorithms that are fairly simple, the fastest O(n lgn) work algorithm on the erew
pram is an O(lg2 n) time randomized quicksort algorithm (see, e.g., [43]), and on the qrqw pram,
a randomized

p
n-sample sort algorithm that runs in O(lg2 n= lg lg n) time, O(n lgn) work, and O(n)

space [34].

On the qsm, the randomized sample sort algorithm can be mapped onto the qsm to perform
O(n lgn) work provided the computation is very coarse-grained, i.e., the number of processors p is
polynomially small in n and g = o(lg n); this qsm algorithm is essentially the same as the bsp algorithm
based on sample sort [30]. If we look for a highly parallel sorting algorithm that is fairly simple, an
adaptation of the qrqw pram sample sort algorithm appears to be the fastest. A straightforward
analysis of this algorithm on the qsm using Observation 6.2 results in an algorithm that runs in
O(g � lg2 n= lg lgn) time while performing O(g � n lgn) work. However, an analysis of the algorithm
directly for the qsm shows that it runs in O(lg2 n= lg lgn + g lgn) time while performing O(gn lgn)
work. Thus, if g is moderately large, speci�cally, 
(lgn= lg lgn), the sample sort algorithm will run
within the same time and work bounds (randomized) as the more involved algorithms obtained by
mapping the asymptotically optimal erew pram algorithms onto the qsm. The improvement in
running time for the qsm sample sort algorithm in comparison to the qrqw pram sample sort comes
from the fact that the �(lg2 n= lg lgn) term in the time bound is only due to the bound on the
contention at memory locations in a dart-throwing step. Since the qsm model charges only � time for
contention �, this term is not multiplied by g in the time bound.

6.4 Mapping bsp algorithms onto the qsm

We now turn to the issue of mapping bsp algorithms onto the qsm. For this we assume that the input
is distributed across the qsm processors to conform to the input distribution for the bsp algorithm;
alternatively one can add the term ng=p to the time bound for the qsm algorithm to take into account
the time needed to distribute the input located in global memory across the private memories of the

22



qsm processors.

Many of the bsp algorithms reported in the literature can be mapped back on the qsm using the
version of the algorithm that results when L = 1. For instance for the n-element summation, parity
and pre�x sums problems, the bsp algorithm that takes time (gd + L) lgd n, minimized by choosing
d � 2 appropriately (d = dL=ge if L > g and d = 2 if L � g) maps on to the qsm as a simple O(g lgn)
time algorithm that performs O(ng) work. Similarly the bsp sorting algorithm of [30] and the matrix
multiplication algorithms of [69, 59] map onto the qsm step by step with a performance corresponding
to the case when L = 1 in the bsp algorithms.

The qsm algorithms in the above paragraph are obtained by the following simple strategy to map
each step of the bsp algorithm on to the qsm to run in the time the step would take on the bsp if
L = 1. A message sent by processor i to a memory location m of processor j on the bsp is written
into shared memory location (j;m) by processor i in the qsm and then read by processor j. We will
refer to a bsp algorithm as well-behaved if it can be mapped onto the qsm in the above manner.

The mapping onto the qsm needed for a well-behaved bsp algorithm may not be possible if, in the
bsp algorithm, a bsp processor

(i) could receive a piece of information that it did not speci�cally request, and its future behavior
depends on whether or not it receives this piece of information; or

(ii) could access, as a unit-time local computation, a value (not requested by it) that was written
into its local memory bank by another processor in an earlier step.

On the qsm a processor would need to initiate a read for any piece of information that it receives;
further that access will be charged a cost of g at the time the processor reads it in addition to a cost
of g being applied at the time the value was written into the shared memory location.

We now give an example of a bsp computation that is not well-behaved. The elements of an array
A[1::n] are distributed uniformly over p bsp processors. Each processor applies a certain function to
its local inputs, and thereby generates some pairs (i; v), where v is the new value for A[i]. The new
values generated have the property that each processor generates no more than c such values, and
there are no more than c new updates generated for each block of inputs assigned to a processor,
where c = o(n=p); other than these two restrictions, the indices i of the locations in the array A whose
values are changed are arbitrary. These new values are updated on the bsp by sending a c-relation
in cg time units. Then in additional n=p time each bsp processor determines the new values of all of
its local inputs by reading the corresponding local memory locations. This computation takes time
O(cg + n=p) on the bsp. If we implement this algorithm step-by-step on a qsm, the updated values
will be written into a copy of the array A[1::n] in shared memory, and each qsm processor then needs
to read these updated values. Since it is not known ahead of time which values were updated, each
qsm processor would need to read from global memory, the current value of each of the n=p elements
of A[i] that it has in local memory. This will take �(gn=p) time, which is larger than the running
time on the bsp since c = o(n=p).

While the above example indicates that the bsp is in some ways more powerful than the qsm, it
may not be desirable for a general-purpose bridging model to incorporate these features of the bsp,
as argued in Section 3.2.

Fortunately, many of the bsp algorithms reported in the literature have simple communication
patterns that map onto the qsm by the simple strategy described above. Also, as shown in the

23



next subsection, there is a randomized strategy that can map any bsp algorithm onto the qsm in a
work-preserving manner, provided a logarithmic slowdown is acceptable.

6.5 A work-preserving emulation of bsp on qsm

In this section we describe a randomized work-preserving emulation of an n-component bsp on a qsm
with O(lgn) slowdown that works with high probability in n (i.e., the probability of failure is 1=n�,
for some � > 0). For this emulation we assume that the input is distributed across the local memories
of the qsm processors in the same manner as in the bsp algorithm.

In the emulation we use the shared memory of the qsm only for the purpose of realizing the h-
relation performed by the bsp in each step, and each qsm processor copies into its private memory
any message that was sent to the local memory of the corresponding bsp processor in that step. The
algorithm is reminiscent of a randomized crqw pram algorithm for integer sorting given in [34]. It
proceeds by using the shared memory to sort the messages being sent in the current step according
to their destination. Each processor then reads the messages being sent to it from an appropriate
subarray in the shared memory and writes it into the corresponding location in its local memory. The
details of the emulation algorithm are given below.

1. Compute the total number of messages, M , to be sent by all processors as follows: Construct
an array A[1::n] in shared memory, with A[i] containing the number of messages being sent by
processor i, and computeM as the sum of the elements in this array. This step can be performed
deterministically in O(g lgn) time and O(M + g � n) work (note that M � n � h, where h is the
maximum number of messages sent or received by any processor in this bsp step).

If M � n= lgn then execute steps 2 through 9 below.

2. Construct a sample S of the messages to be sent by choosing each message independently with
probability 1= lg3M . The size of the sample will be O(M= lg3M) w.h.p.

3. Sort the sample deterministically according to destination using a standard sorting algorithm,
e.g., Cole's merge-sort; this takes O(g lgM) time and O(g �M= lg2M) work.

4. Group the destinations into groups of size lg3M and determine the number of messages destined
for each group. This can be computed by a pre�x sums computation that takes O(g lgM) time
and O(gM) work.

5. Let ki be the number of elements in the sample destined for the ith group. Obtain a high
probability bound on the total number of messages to each group as ri = O(max(ki; 1) � lg3M).
Make lg3M copies of each ri, and place the duplicate values of the ri in an array R[1::n] such
that R[i] contains the bound for the group that contains destination i; 1 � i � n. This step can
be performed in O(g(1 + lg lgM= lg g)) time and O(ng) work using a broadcasting algorithm for
each ri.

6. In parallel, for each i, all processors with a message to a destination i read the value of this
bound from R[i]; this takes time � gh and O(g �M) work.

7. Use an algorithm for multiple compaction to get the messages in each group into a linear-sized
array for that group; this takes O(g lgM) time and O(g � M) work by the adaptation of the

24



randomized qrqw pram algorithm for multiple compaction given in [34] to the qsm using
Observation 6.2.

8. Perform a stable sort within each group according to the individual destination; this can be
performed in O(g lgM) time and O(gM) work deterministically using an erew pram radix-sort
algorithm within each group.

9. Move the messages into an output array R of size M sorted according to destination in O(gh)
time and O(M) work. Create an array B of size n that contains the number of messages to each
destination, and the starting point in the output array for messages to that destination; this can
be done by computing pre�x sums on an appropriate M -array and takes O(g lgM) time and
O(g �M) work. Processor i reads this value from B[i] and then reads the messages destined for
it from the output array in time O(gh) and work O(g �M).

If M < n= lgn then we sort the messages deterministically according to their destination; this
takes time O(g lg n) and O(gn) work. We then perform step 9 above.

Since M � n � h, the above qsm algorithm runs in O(g(h + lgn)) time while performing O(ghn)
work. High-probability bounds for the randomized steps in the above algorithm are shown in [34].
Since a bsp routes an h-relation in O(gh + L) time while performing O(n(gh + L)) work, this is a
work-preserving emulation of a bsp h-relation, with a slowdown of O(1 + lgn=(h+ L=g)).

In summary we have the following result.

Lemma 6.4 Consider a step of an n-component bsp with gap g and latency L that involves routing
an h-relation. On a qsm with gap parameter g this step can be emulated with high probability in n in
a work-preserving manner with a slowdown of O(1 + lgn=(h+ L=g)).

The probability that the emulation will fail to perform according to the stated bounds is less than
1=n� , for some � > 0, whose value depends on parameters of the algorithm such as the constants in
the sizes of arrays used in steps 5 and 7. Thus, if a bsp algorithm takes no more than n� steps, for
any �; 0 < � < �, then the probability that the emulation of any one of its steps on a qsm fails is
polynomially small in n. This leads to the following theorem.

Theorem 6.5 An algorithm that runs in time t(n) on an n-component bsp with gap parameter g
and periodicity factor L, where t(n) � c � n
, for some constants c; 
 > 0, can be emulated with high
probability on a qsm with the same gap parameter g to run in time O(t(n)�dg lgn=Le) with n=dg lgn=Le
processors when L � g, and otherwise in time O(t(n) � lg n) with n= lg n processors.

6.6 On the queuing memory contention rule for the qsm

We note that a work-preserving emulation of a bsp with g = 1 is not known on the erew pram if
the slowdown is to be bounded by polylog(n). If such an emulation is discovered, it will give rise
to randomized linear work polylog time algorithms on the erew pram for certain problems, such as
computing a random permutation, for which such an algorithm is not known currently. Therefore,
even though the erew pram is often referred as stronger model than the bsp, its expressive power
may actually be inferior, in some cases.

25



On the other hand, for the more powerful crcw pram there appears to be a mismatch in the
reverse direction since no work-preserving emulation of a crcw pram on a bsp with g = 1 is known
if the slowdown is to be bounded by polylog(n). Thus, if either the erew pram or the crcw

pram is augmented with the gap parameter, the resulting model is not known to have as strong
a correspondence to the bsp as we have shown for the qsm. In other words, the queuing memory
contention rule for the qsm, in contrast to the exclusive or concurrent rules, is crucial in order for it
to serve as a bridging shared-memory model.

7 Gap parameter at memory

The qsm has a gap parameter g at the processors, but no gap parameter at the memory { each request
at memory is serviced in unit time once it reaches the head of its queue. One could argue that another
gap parameter d for processing memory accesses would be a desirable feature in a general-purpose
model, since many currently available parallel machines have di�erent gap parameters at processors
and at memory banks. We refer to this model as qsm(g; d). The following result is shown in [64].

Observation 7.1 [64] There is a deterministic work-preserving emulation of qsm(g; d0) on qsm(g; d)
with slowdown O(d d

d0 e).

The above observation shows that very little generality is lost in assuming that the gap parameter
at memory is 1 rather than some other value d. The only potential drawback is that an algorithm
designed for the qsm(g; 1) (which is the standard qsm model) may not achieve the full level of speed-
up attainable on qsm(g; d), due to the slowdown in the emulation mentioned in the observation. The
advantage in not having a gap parameter d at memory is that we have a simpler model with fewer
parameters. We believe that the simplicity achieved in not having a gap parameter d at memory far
outweighs the drawback of not achieving the best possible speed-up for a speci�c value of d.

We de�ne the s-qsm (the symmetric qsm) to be the model qsm(g; g). This is the special case of
qsm(g; d) with the same gap parameter g at both processors and memory. This model has the same
number of parameters as the qsm, and could serve as an alternative to the qsm. The main di�erence
between the two models is the asymmetry in the application of the gap parameter at processor and
memory in the case of the qsm versus the symmetry in this application in the s-qsm. As a result,
the fastest speed-up achievable for a given problem can be slightly di�erent in the two models, e.g.,
on the s-qsm broadcasting a bit to n memory locations has the tight time bound of �(g lgn) in
contrast to the tight bound of �(g lgn= lg g) for the qsm. (Several other lower bounds for qsm and
s-qsm are given in [54].) However, except for this di�erence, the qsm and the s-qsm are essentially
interchangeable models. Speci�cally, the qsm can emulate the s-qsm with no slowdown and, as follows
from Observation 7.1, there is a work-preserving emulation of the qsm on the s-qsm with slowdown
O(g).

8 Conclusion

Developing e�ective models for parallel computation, at suitable levels of abstraction, remains a funda-
mental challenge in parallel processing. The bsp and logp models have gained considerable popularity

26



as high level "bridging models" for parallel computation, and indeed they have many attractive fea-
tures and have proven to be e�ective in many scenarios. We have described a new model, the Queuing
Shared Memory (qsm) model, which in many cases may be an attractive alternative as a bridging
model for parallel computation. In contrast to the bsp and logp models, the qsm model provides a
shared-memory abstraction. The model has a simple queuing metric for shared-memory access, and
only two parameters{ p, the number of processors and g, the bandwidth gap{ yet it can be e�ciently
emulated on both the bsp and (d;x)-bsp models, using an arguably practical emulation. Thus the qsm
can be e�ectively realized on machines that can e�ectively realize the bsp, as well as on machines that
are better modeled by the (d;x)-bsp. We have presented evidence that both the queuing metric and
the bandwidth parameter are essential to the qsm's e�ectiveness as a bridging model. In addition, we
have described several algorithms for the qsm, as well as general strategies for mapping erew pram,
qrqw pram and bsp algorithms onto the qsm.

We conclude that a model such as the qsm can serve the role of a bridging model for parallel
computation while preserving the high-level abstraction of a shared-memory model. On the other
hand, as discussed in this paper, there are trade-o�s in any bridging model, and scenarios in which
another model (bsp, logp, etc.) may be preferred. Thus the choice of a best bridging model remains
open to debate.

Future research should consider further algorithmic techniques that may be useful for this model,
as well as experimental validation of the model. Such validation may reveal the primary importance
of features not present in either the qsm, bsp or logp. For example, each of these models de�nes
a single bandwidth parameter that re
ects a per-processor bandwidth limitation; other recent work
has considered variants of these models with an aggregate bandwidth limitation [1] or a hierarchical
bandwidth limitation that accounts for network proximity [52, 25, 26, 46, 73]. Per-processor bandwidth
limitations better model machines in which each processor has access to its \share" of the network
bandwidth and no more, as well as machines for which the primary network bottleneck, in the absence
of hot-spots, is in the processor-network interface. As a second example, each of these models ignores
the memory hierarchy at a processor, assuming a unit-time charge for local operations regardless of
the local working set size. A possible feature to consider is to limit the size of the private memories
on the qsm, or to have two levels of memory hierarchy on the bsp or logp. Third, as discussed in
Section 4, each of these models disregards spatial locality. Variants of the bsp and logp that account
for spatial locality include [44, 5, 46, 11]. In machines supporting a single address space, the unit of
data transfer between components is typically either a cache line or a page, and hence opportunities to
exploit spatial locality are restricted to that level of granularity. A possible enhancement for the qsm
would be to have the shared-memory partitioned into small, �xed-sized blocks of locations that could
be accessed e�ciently; the realization of such a qsm on a distributed-memory machine would map
these blocks pseudo-randomly onto the memory banks. Finally, each of these models ignores the e�ects
of the cache coherence protocol used in most shared-memory multiprocessors to maintain consistency
among the various cached copies of shared-memory data. It would be interesting to study a qsm

model that incorporates and accounts for a standard invalidation-based cache coherence protocol [40].
Should it become necessary to include additional features as part of a bridging model, the qsm may
be more suited for augmentation than the bsp or logp, since it is simpler, with fewer parameters.

27



References

[1] M. Adler, P. B. Gibbons, Y. Matias, and V. Ramachandran. Modeling parallel bandwidth: Local
vs. global restrictions. In Proc. 9th ACM Symp. on Parallel Algorithms and Architectures, pages
94{105, June 1997.

[2] A. Aggarwal, A. K. Chandra, and M. Snir. On communication latency in PRAM computations.
In Proc. 1st ACM Symp. on Parallel Algorithms and Architectures, pages 11{21, June 1989.

[3] A. Aggarwal, A. K. Chandra, and M. Snir. Communication complexity of PRAMs. Theoretical
Computer Science, 71(1):3{28, 1990.

[4] M. Ajtai, J. Komlos, and E. Szemeredi. Sorting in c lgn parallel steps. Combinatorica, 3(1):1{19,
1983.

[5] A. Alexandrov, M. F. Ionescu, K. E. Schauser, and C. Sheiman. LogGP: Incorporating long
messages into the LogP model| one step closer towards a realistic model for parallel computation.
In Proc. 7th ACM Symp. on Parallel Algorithms and Architectures, pages 95{105, July 1995.

[6] B. Alpern, L. Carter, and E. Feig. Uniform memory hierarchies. In Proc. 31st IEEE Symp. on
Foundations of Computer Science, pages 600{608, October 1990.

[7] R. J. Anderson and G. L. Miller. Optical communication for pointer based algorithms. Technical
Report CRI 88-14, Computer Science Department, University of Southern California, Los Angeles,
CA, 1988.

[8] Y. Aumann and M. O. Rabin. Clock construction in fully asynchronous parallel systems and
PRAM simulation. In Proc. 33rd IEEE Symp. on Foundations of Computer Science, pages 147{
156, October 1992.

[9] A. Bar-Noy, J. Bruck, C. T. Ho, S. Kipnis, and B. Schieber. Computing global combine operations
in the multi-port postal model. In Proc. 5th IEEE Symp. on Parallel and Distributed Processing,
pages 336{343, December 1993.

[10] A. Bar-Noy and S. Kipnis. Designing broadcasting algorithms in the postal model for message-
passing systems. In Proc. 4th ACM Symp. on Parallel Algorithms and Architectures, pages 13{22,
June-July 1992.

[11] A. Baumker and W. Dittrich. Fully dynamic search trees for an extension of the BSP model. In
Proc. 8th ACM Symp. on Parallel Algorithms and Architectures, pages 233{242, June 1996.

[12] A. Baumker, W. Dittrich, and F. Meyer auf der Heide. Truly e�cient parallel algorithms: 1-
optimal multisearch for an extension of the BSP model. Technical report, University of Paderborn,
1996.

[13] P. Beame and J. H�astad. Optimal bounds for decision problems on the CRCW PRAM. Journal
of the ACM, 36(3):643{670, July 1989.

[14] G. E. Blelloch. Vector Models for Data-Parallel Computing. The MIT Press, Cambridge, MA,
1990.

[15] G. E. Blelloch. Programming parallel algorithms. Communications of the ACM, 39(3):85{97,
1996.

28



[16] G. E. Blelloch, P. B. Gibbons, Y. Matias, and M. Zagha. Accounting for memory bank contention
and delay in high-bandwidth multiprocessors. IEEE Trans. on Parallel and Distributed Systems,
8(9):943{958, 1997. Preliminary version appears in Proc. 7th ACM Symp. on Parallel Algorithms
and Architectures, pages 84{94, July 1995.

[17] G. E. Blelloch, P. B. Gibbons, Y. Matias, and M. Zagha. Accounting for memory bank contention
and delay in high-bandwidth multiprocessors. IEEE Trans. on Parallel and Distributed Systems,
8(9):943{958, 1997.

[18] G. E. Blelloch, C. E. Leiserson, B. M. Maggs, C. G. Plaxton, S. J. Smith, and M. Zagha. A
comparison of sorting algorithms for the Connection Machine CM-2. In Proc. 3rd ACM Symp. on
Parallel Algorithms and Architectures, pages 3{16, July 1991.

[19] R. Cole. Parallel merge sort. SIAM Journal on Computing, 17(4):770{785, 1988.

[20] R. Cole and O. Zajicek. The APRAM: Incorporating asynchrony into the PRAM model. In Proc.
1st ACM Symp. on Parallel Algorithms and Architectures, pages 169{178, June 1989.

[21] R. Cole and O. Zajicek. The expected advantage of asynchrony. In Proc. 2nd ACM Symp. on
Parallel Algorithms and Architectures, pages 85{94, July 1990.

[22] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos, R. Subramonian, and
T. von Eicken. LogP: Towards a realistic model of parallel computation. In Proc. 4th ACM
SIGPLAN Symp. on Principles and Practices of Parallel Programming, pages 1{12, May 1993.

[23] R. Cypher and S. Konstantinidou. Bounds on the e�ciency of message-passing protocols for
parallel computers. In Proc. 5th ACM Symp. on Parallel Algorithms and Architectures, pages
173{181, June-July 1993.

[24] A. Czumaj, Z. Galil, L. G�asieniec, K. Park, and W. Plandowski. Work-time-optimal parallel
algorithms for string problems. In Proc. 27th ACM Symp. on the Theory of Computing, pages
713{722, May-June 1995.

[25] P. de la Torre and C. P. Kruskal. Towards a single model of e�cient computation in real parallel
machines. Future Generation Computer Systems, 8:395{408, 1992.

[26] P. de la Torre and C. P. Kruskal. Submachine locality in the bulk synchronous setting. In
Proc. Euro-Par'96, pages 352{358, August 1996.

[27] M. Dietzfelbinger and F. Meyer auf der Heide. Simple, e�cient shared memory simulations. In
Proc. 5th ACM Symp. on Parallel Algorithms and Architectures, pages 110{119, June-July 1993.

[28] C. Dwork, M. Herlihy, and O. Waarts. Contention in shared memory algorithms. In Proc. 25th
ACM Symp. on Theory of Computing, pages 174{183, May 1993.

[29] S. Fortune and J. Wyllie. Parallelism in random access machines. In Proc. 10th ACM Symp. on
Theory of Computing, pages 114{118, May 1978.

[30] A. V. Gerbessiotis and L. Valiant. Direct bulk-synchronous parallel algorithms. Journal of Parallel
and Distributed Computing, 22:251{267, 1994.

[31] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. Hennessy. Memory consis-
tency and event ordering in scalable shared-memory multiprocessors. In Proc. 17th International
Symp. on Computer Architecture, pages 15{26, May 1990.

29



[32] P. B. Gibbons. A more practical PRAM model. In Proc. 1st ACM Symp. on Parallel Algorithms
and Architectures, pages 158{168, June 1989. Full version in The Asynchronous PRAM: A semi-
synchronous model for shared memory MIMD machines, PhD thesis, U.C. Berkeley 1989.

[33] P. B. Gibbons. What good are shared-memory models? In Proc. 1996 ICPP Workshop on
Challenges for Parallel Processing, pages 103{114, August 1996. Invited position paper.

[34] P. B. Gibbons, Y. Matias, and V. Ramachandran. E�cient low-contention parallel algorithms.
Journal of Computer and System Sciences, 53(3):417{442, 1996. Special issue devoted to selected
papers from the 1994 ACM Symp. on Parallel Algorithms and Architectures.

[35] P. B. Gibbons, Y. Matias, and V. Ramachandran. The Queue-Read Queue-Write Asynchronous
PRAM model. In L. Boug�e, P. Fraigniaud, A. Mignotte, and Y. Robert, editors, Euro-Par'96
Parallel Processing, Lecture Notes in Computer Science, Vol. 1124, pages 279{292. Springer,
Berlin, August 1996. Proc. 2nd International Euro-Par Conference, Lyon, France, Volume II.

[36] P. B. Gibbons, Y. Matias, and V. Ramachandran. The Queue-Read Queue-Write PRAM model:
Accounting for contention in parallel algorithms. SIAM Journal on Computing, 1997. To appear.
Preliminary version appears in Proc. 5th ACM-SIAM Symp. on Discrete Algorithms, pages 638-
648, January 1994.

[37] M. Goodrich. Communication-e�cient parallel sorting. In Proc. 28th ACM Symp. on the Theory
of Computing, pages 247{256, May 1996.

[38] J. Greiner. A comparison of data-parallel algorithms for connected components. In Proc. 6th
ACM Symp. on Parallel Algorithms and Architectures, pages 16{25, June 1994.

[39] S. Hambrusch and A. Khokhar. C3: An architecture-independent model for coarse-grained parallel
machines. In Proc. 6th IEEE Symp. on Parallel and Distributed Processing, pages 544{551, 1994.

[40] J. Hennessy and D. Patterson. Computer Architecture: A Quantitative Approach. Morgan Kauf-
mann, San Francisco, CA, 1996. Second edition.

[41] T. Heywood and S. Ranka. A practical hierarchical model of parallel computation: I. The model.
Journal of Parallel and Distributed Computing, 16:212{232, 1992.

[42] T.-s. Hsu, V. Ramachandran, and N. Dean. Parallel implementation of algorithms for �nding
connected components in graphs. In Proc. AMS/DIMACS Parallel Implementation Challenge
Workshop III, 1997. To appear.

[43] J. J�aJ�a. An Introduction to Parallel Algorithms. Addison-Wesley, Reading, MA, 1992.

[44] J. J�aJ�a and K. W. Ryu. The Block Distributed Memory model. Technical Report UMIACS-
TR-94-5, University of Maryland Institute for Advanced Computer Studies, College Park, MD,
January 1994.

[45] B H. H. Juurlink. Ph.D. Thesis, Leiden University, 1996.

[46] B. H. H. Juurlink and H. A. G. Wijsho�. The E-BSP Model: Incorporating general locality and
unbalanced communication into the BSP Model. In Proc. Euro-Par'96, pages 339{347, August
1996.

30



[47] R. Karp, A. Sahay, E. Santos, and K.E. Schauser. Optimal broadcast and summation in the
LogP model. In Proc. 5th ACM Symp. on Parallel Algorithms and Architectures, pages 142{153,
June-July 1993.

[48] R. M. Karp and V. Ramachandran. Parallel algorithms for shared-memory machines. In J. van
Leeuwen, editor, Handbook of Theoretical Computer Science, Volume A, pages 869{941. Elsevier
Science Publishers B.V., Amsterdam, The Netherlands, 1990.

[49] Z. M. Kedem, K. V. Palem, M. O. Rabin, and A. Raghunathan. E�cient program transformations
for resilient parallel computation via randomization. In Proc. 24th ACM Symp. on Theory of
Computing, pages 306{317, May 1992.

[50] K. Kennedy. A research agenda for high performance computing software. In Developing a
Computer Science Agenda for High-Performance Computing, pages 106{109. ACM Press, 1994.

[51] F. T. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays � Trees � Hypercubes.
Morgan Kaufmann, San Mateo, CA, 1992.

[52] C. E. Leiserson and B. M. Maggs. Communication-e�cient parallel algorithms for distributed
random-access machines. Algorithmica, 3(1):53{77, 1988.

[53] P. Liu, W. Aiello, and S. Bhatt. An atomic model for message-passing. In Proc. 5th ACM Symp.
on Parallel Algorithms and Architectures, pages 154{163, June-July 1993.

[54] P. D. MacKenzie and V. Ramachandran. Computational bounds for fundamental problems on
general-purpose parallel models. In Proc. 10th ACM Symp. on Parallel Algorithms and Architec-
tures, pages 152{163, June-July 1998.

[55] B. M. Maggs, L. R. Matheson, and R. E. Tarjan. Models of parallel computation: A survey and
synthesis. In Proc. 28th Hawaii International Conf. on System Sciences, pages II: 61{70, January
1995.

[56] Y. Mansour, N. Nisan, and U. Vishkin. Trade-o�s between communication throughput and
parallel time. In Proc. 26th ACM Symp. on the Theory of Computing, pages 372{381, 1994.

[57] C. Martel, A. Park, and R. Subramonian. Work-optimal asynchronous algorithms for shared
memory parallel computers. SIAM Journal on Computing, 21(6):1070{1099, 1992.

[58] R. P. Martin, A. M. Vahdat, D. E. Culler, and T. E. Anderson. E�ects of communication latency,
overhead, and bandwidth in a cluster architecture. In Proc. 24th International Symp. on Computer
Architecture, pages 85{97, June 1997.

[59] W. F. McColl. A BSP realization of Strassen's algorithm. Technical report, Oxford University
Computing Laboratory, May 1995.

[60] K. Mehlhorn and U. Vishkin. Randomized and deterministic simulations of PRAMs by parallel
machines with restricted granularity of parallel memories. Acta Informatica, 21:339{374, 1984.

[61] N. Nishimura. Asynchronous shared memory parallel computation. In Proc. 2nd ACM Symp. on
Parallel Algorithms and Architectures, pages 76{84, July 1990.

[62] M. H. Nodine and J. S. Vitter. Large-scale sorting in parallel memories. In Proc. 3rd ACM
Symp. on Parallel Algorithms and Architectures, pages 29{39, July 1991.

31



[63] P. Raghavan. Probabilistic construction of deterministic algorithms: approximating packing in-
teger programs. Journal of Computer and System Sciences, 37:130{143, 1988.

[64] V. Ramachandran. A general purpose shared memory model for parallel computation. In
Proc. IMA Workshop on Parallel Algorithms, September 1996.

[65] J. H. Reif, editor. A Synthesis of Parallel Algorithms. Morgan-Kaufmann, San Mateo, CA, 1993.

[66] J. H. Reif and S. Sen. Randomized algorithms for binary search and load balancing on �xed
connection networks with geometric applications. In Proc. 2nd ACM Symp. on Parallel Algorithms
and Architectures, pages 327{337, July 1990.

[67] B. Smith. Invited lecture, 7th ACM Symp. on Parallel Algorithms and Architectures, July 1995.

[68] P. Stenstr�om, T. Joe, and A. Gupta. Comparative performance evaluation of cache-coherent
NUMA and COMA architectures. In Proc. 19th International Symp. on Computer Architecture,
pages 80{91, May 1992.

[69] L. G. Valiant. A bridging model for parallel computation. Communications of the ACM,
33(8):103{111, 1990.

[70] L. G. Valiant. General purpose parallel architectures. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, Volume A, pages 943{972. Elsevier Science Publishers B.V.,
Amsterdam, The Netherlands, 1990.

[71] U. Vishkin. A parallel-design distributed-implementation (PDDI) general purpose computer.
Theoretical Computer Science, 32:157{172, 1984.

[72] J. S. Vitter and E. A. M. Shriver. Optimal disk I/O with parallel block transfer. In Proc. 22nd
ACM Symp. on Theory of Computing, pages 159{169, May 1990.

[73] H. A. G. Wijsho� and B. H. H. Juurlink. A quantitative comparison of parallel computation
models. In Proc. 8th ACM Symp. on Parallel Algorithms and Architectures, pages 13{24, June
1996.

32


