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ABSTRACT: We derive an expression of the form c ln n+o(ln n) for the diameter of a sparse random
graph with a specified degree sequence. The result holds asymptotically almost surely, assuming that
certain convergence and supercriticality conditions are met, and is applicable to the classical random
graph Gn,p with np = �(1) + 1, as well as certain random power law graphs. © 2007 Wiley Periodicals,
Inc. Random Struct. Alg., 31, 482–516, 2007
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1. INTRODUCTION

The diameter of a graph is the maximum distance between two vertices in the same
component. We derive an expression of the form

c ln n + o(ln n)

for the diameter of a sparse random graph with a specified degree sequence. Our result holds
asymptotically almost surely (AAS) for any degree distribution that asymptotically satisfies
certain sparseness and convergence conditions similar to those imposed by [17, 18] in the
analysis of the size and degree distribution of the largest connected component of such a ran-
dom graph, as well as a supercriticality condition which guarantees that a giant component —
that is, a connected component of size �(n) — is AAS present. This includes sparse “power
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law” distributions which have received considerable recent attention (e.g. [1]), as well as the
Poisson distribution, which corresponds to the random graph Gn,p with constant expected
degree.

Diameter results of such precision for sparse random graphs were known earlier only
for regular graphs of constant degree [6]. Weaker results (to within a constant factor)
were known for the diameter of sparse Gn,p [8] and random “expected-degree” power
law graphs [16]. A recent paper on inhomogeneous random graphs [7] includes diame-
ter results which generalize the Gn,p result of the present paper in a different direction.
A slightly different derivation of diameter results in this paper, with a stronger proba-
bilistic guarantee (1 − n�(1) rather than 1 − o(1)) can be found in the first author’s PhD
thesis [11].

For the random graph Gn,p with expected degree d = np > 1, we derive an expression for
the leading constant c as a function of d. This function can be characterized asymptotically

by c = 3−o(1)

ln d as d → 1 and c = 1
ln d + 2

d + O
(

ln d
d2

)
as d → ∞. This resolves the open

problem, posed in [8], of whether the diameter of Gn,d/n satisfies ln n
ln d (1 + o(1)). We also

show that, for all d > 1, the diameter of Gn,d/n is AAS equal to the diameter of its giant
component, thus resolving another open problem from [8].

The proof of the diameter result involves tracing the rate of neighborhood expansion
during a breadth-first search (BFS); as such, our argument bears some resemblance to the
arguments used in previous diameter papers including [8] and [16]. However, rather than
perform BFS on the entire graph, we restrict our search to edges in the 2-core (defined as the
maximal induced subgraph of minimum degree at least 2), as well as any edges connecting
a particular vertex to the 2-core. Our argument thus relies heavily on results about the size
and degree distribution of the 2-core of a random graph, which have been derived by several
authors including [9, 12, 14].

Performing BFS in the 2-core is advantageous in that each vertex has degree at
least 2, and therefore there are no “dead ends.” It follows that neighborhood sizes during
2-core BFS are generally nondecreasing, and this property facilitates the analysis of the
neighborhood growth, particularly for small neighborhoods. As a result, we are able to
attain relatively simple and tight bounds on worst-case neighborhood growth, which in turn
lead an asymptotic expression of the form c ln n + o(ln n) for the diameter of a random
graph.

Our main theorem (Theorem 5.1) yields a method for computing the leading constant
c in the above expression, as well as an intuitive interpretation of the resulting formula.
Briefly, the leading constant can be expressed as c = 2c1 + c2, where c2 ln n is the “average
distance” between vertices in the giant component (or in the giant connected 2-core), while
c1 ln n is the maximum distance separating any vertex in the graph from the 2-core. A typical
longest shortest path connecting vertices u, v will consist of a path of length c1 ln n from
u to the 2-core, a path of “average” length c2 ln n across the 2-core, and a second path of
length c1 ln n from the 2-core to v.

This paper is organized as follows. In section 2 we present basic definitions and notation,
and we derive some preliminary lemmas. In section 3 we analyze a breadth-first search on
a random graph. In section 4 we recall previous results regarding the 2-core of a random
graph, and we analyze a breadth-first search in the 2-core. Then, in section 5, we use the
results in two previous sections to prove our main result. In section 6, we compute the
diameter for the Poisson distribution, which corresponds to the random graph Gn,p and for
a certain power law distribution.
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2. PRELIMINARIES

In this section, we introduce basic definitions and notation, and we present some preliminary
results. The lemmas presented in this section are fairly simple, and as such the proofs are
discussed in the appendix.

2.1. Probability

In this section, we introduce notation and basic definitions to describe probabilistic con-
structions. We adopt the convention that random variables and structures are denoted in
boldface. We denote the distribution of a random element s in a discrete set S by

D[s](s) = P[s = s]

for s ∈ S. If two random elements s, s′ are equal in distribution, we write s d= s′.
Given a probability distribution µ on R, we denote a generic random variable with

distribution µ by Xµ. Generic random variables are all considered independent, and as such
we denote the sum of n independent µ-distributed random variables by

∑n
i=1 Xµ,i.

We denote the binomial distribution with parameters n, p by Binn,p(j) = (n
j

)
pj(1 − p)n−j.

This paper deals exclusively with discrete probability spaces which are measure-
theoretically trivial. Nevertheless, we shall use several constructs of probability theory,
specifically σ -fields and filtrations, to deal with states of partial information; definitions of
these concepts can be found in any standard probability text (e.g. [3, 15]).

We assume that every random element s in a set S is a measurable mapping from an
underlying probability space � → S. We let σ [s] denote the σ -field induced by s, and
we let σ [∅] = {�, ∅} denote the trivial σ -field. If F is a σ -field on � and s is a random
element, we denote by D[s|F] the distribution of s conditional on F , noting that D[s|F] is
an F-measurable random probability distribution on S.

2.2. The Configuration Model

We shall generate fixed-degree-sequence random graphs using the configuration model [4].
Our notation is as follows. We begin with an (even) set of endpoints A partitioned into a set
of vertices V . A configuration on (A, V) is a triple G = (A, V , E), where the edge set E is
a perfect matching of the endpoint set A. We let m = |A| denote the number of endpoints
and n = |V | the number of vertices; note that the number of edges in the resulting graph
is m/2.

We now introduce notation to describe a configuration G = (A, V , E).

• For a vertex v ∈ V , A(v) denotes the set of endpoints which belong to v.
• For an endpoint a ∈ A, V(a) denotes the vertex which contains a.
• For an endpoint a ∈ A, �E(a) denotes the endpoint matched to a, so the pair {a, �E(a)}

occurs as an edge in E.
• For a vertex set V ′ ⊆ V , A(V ′) denotes the set of all endpoints belonging to vertices

in V ′, so A(V ′) = ∪v∈V ′ {A(v)}.
• For an endpoint set A′ ∈ A, we similarly write V(A′) = ∪a∈A′ {V(a)} and �E(A′) =

∪a∈A′ {�E(a)}, noting that the union which defines V(A′) is not necessarily disjoint.

Random Structures and Algorithms DOI 10.1002/rsa
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Now, given an endpoint partition (A, V), we define the random configuration

G(A, V) = (A, V , E),

where E is a uniformly random matching of the set A.
We note that the configuration model does not necessarily produce a simple graph. If we

are specifically interested in random simple graphs, it is not difficult to argue that results
achieved using the configuration model are still valid so long as some minor technical
conditions are satisfied (see e.g., [4, 5]). In this paper, we ignore these concerns and focus
on the random configuration G(A, V). Moreover, from this point forward, we shall use the
terms “graph” and “configuration” interchangeably, and as such we may simply refer to
G(A, V) as a “random graph.”

2.2.1. The Configuration Model Algorithm. We adopt an algorithmic approach to the
configuration model similar to [13, 17]. The algorithmic approach is based on a simple
observation.

Let E be a matching of A, and consider a subset A0 ⊆ A. We define the restricted matching
E〈A0〉 to be the subset of E consisting of all edges {a, a′} ∈ E such that either a ∈ A0 or
a′ ∈ A0. The following proposition is immediate.

Proposition 2.1. Let E be a uniformly random matching of an endpoint set A, and choose
any a ∈ A. Then �E(a) is a uniformly random element in A\{a}, and conditional on �E(a), the
restricted matching E〈A\{a, �E(a)}〉 is a uniformly random matching of the set A\{a, �E(a)}.

This proposition allows us to observe selected parts of a random configuration G(A, V) =
(A, V , E) while maintaining the conditional uniform randomness of the parts we have
not seen. In this section, we present notation for generating random configurations
incrementally.

Let F ⊆ σ [E] be a sub-σ -field of the σ -field induced by E. Intuitively, F represents
a state of partial knowledge about E. We now define the F-measurable random partial
matching

EF = {{a, a′} ⊂ A : P[{a, a′} ∈ E | F] = 1}.
Informally, EF consists of the set of edges which are known to occur in E based on the
information in F . We say an edge in EF is F-exposed; accordingly, we call any endpoint
belonging to an F-exposed edge an F-exposed endpoint. We denote by UF the set of
F-unexposed endpoints, noting that UF is an F-measurable random subset of A.

We say a sub-σ -field F ⊆ σ [E] is sub-uniform if the conditional distribution D[E〈UF 〉 |
F] is always uniform on the set of matchings of UF . Accordingly, a sub-uniform filtration is
a filtration in which each σ -field is sub-uniform. It follows immediately from Proposition 2.1
that, for any subset A0 ⊆ A, the induced σ -field σ [E〈A0〉] is sub-uniform. By using this
same technique repeatedly, we have the following proposition.

Proposition 2.2. Consider a sequence of σ -fields F0 = σ [∅], F1, . . . , Ft such that for
each 0 ≤ i ≤ t − 1, there exists an Fi-measurable random subset Bi ⊆ A such that
Fi+1 = σ [Fi, E〈Bi〉].

Then F0, . . . , Ft is a sub-uniform filtration.

It is useful to think of sub-uniform filtrations constructed according to Proposition 2.2
algorithmically in the following sense. At time 0, we have no knowledge of the matching E
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whatsoever, as represented by the σ -field F0 = σ [∅]. We now choose an F0-measurable
(i.e., non-random) subset B0 ⊆ A, and we determine the (random) matches of all endpoints
in B0. The σ -field F1 = σ [E〈B0〉] thus represents our knowledge about E after these
endpoints have been exposed. Then, we choose a second set of endpoints B1, possibly using
some information provided by F1; hence, the set B1 may be random, since it may depend on
the restricted matching E〈B0〉. We then let F2 = σ [F1, E〈B1〉] represent our newly updated
state of knowledge, and so on.

2.3. Asymptotic Parametrization and the Degree Distribution

In this section, we present notation and definitions and preliminary results related to the
asymptotic specification of the configuration model.

This paper studies large random graphs asymptotically as the number of vertices n → ∞.
Hence, we are in effect considering a sequence of random graphs G(A1, V1), G(A2, V2), . . .
where (An, Vn) is an endpoint partition with |Vn| = n. The asymptotic subscript “n” will
generally remain implicit; in this section, we make the subscript explicit to give precise
asymptotic definitions.

We shall use the usual “big O” asymptotic notation, including the standard notation
Õ(f (n)) = O(f (n) lnO(1) n). All asymptotic notation is assumed to refer to the limit as
|Vn| = n → ∞ unless explicitly stated otherwise.

We shall reserve the symbols n and m for the number of vertices n = |V | and end-
points m = |A| in an endpoint partition (A, V). We shall deal exclusively with sparse
graphs, meaning that m = �(n). In particular, this means that the symbols “m” and
“n” are interchangeable in many asymptotic expressions, for example O(n) ≡ O(m) and
(ln n) · (1 + o(1)) ≡ (ln m) · (1 + o(1)).

2.3.1. Asymptotics and Probability. Given a sequence of events H1, H2, . . ., we say Hn

occurs AAS if P[Hn] = 1 − o(1), and H occurs with high probability (WHP), if P[Hn] =
1 − n−ω(1). Note that the conjunction of a constant number of AAS events occurs AAS, and
the conjunction of a polynomial number of WHP events occurs WHP.

The AAS and WHP conditions can be used in concert with asymptotic notation in the
natural way; for example, the statement f (n) = o(n) AAS (WHP) indicates that for all
ε > 0, the event f (n) < εn occurs AAS (WHP).

2.3.2. The Degree Distribution. In this section we describe our method for asymp-
totic specification of the configuration model. Our asymptotic assumptions are essentially
equivalent to those of Molloy and Reed [17, 18].

Given a vertex v in an endpoint partition (A, V), the degree deg(A,V)(v) = |A(v)| is the
number of endpoints contained in v. Accordingly, the degree distribution

λ(A,V)(i) = |{v ∈ V : deg(A,V)(v) = i}|
n

is the probability distribution corresponding to the degree of a randomly chosen vertex.
We shall specify the configuration model asymptotically using convergence of the degree

distribution; we require convergence in L1 as well as convergence of either one or two
moments. Given distributions λ, ν on a discrete set S, the L1 distance is defined as usual
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by ‖λ − ν‖1 = ∑
s∈S |λ(s) − ν(s)|. For any distribution λ on Z, we denote the k’th

moment of λ by Mk(λ) = E[Xk
λ]. Our asymptotic assumptions will take the following

form.

Assumptions 2.1. We are given a sequence (A1, V1), (A2, V2), . . . of (even) endpoint par-
titions with |Vn| = n and a limiting degree distribution λ, which satisfies 0 < M1(λ) < ∞,
and such that

1. limn→∞ ‖λ(An ,Vn) − λ‖1 = 0;
2. limn→∞ M1(λ(An ,Vn)) = M1(λ);
3. limn→∞ M2(λ(An ,Vn)) = M2(λ).

Note that we only require that the limiting distribution have one finite moment; however,
if in fact M2(λ) < ∞ then the second moment M2(λ(An ,Vn)) must converge to M2(λ).

Our main theorem, proved in Section 5, relies on these asymptotic assumptions. However,
the technical lemmas proved in Sections 3 and 4 are stated in the more explicit form “for
all ε > 0 there exists δ > 0 . . .” to precisely specify dependencies among asymptotic
constants.

2.4. The Residual Distribution

Our method of asymptotic parametrization, described above, is based on the degree dis-
tribution. However, our technical work relies mainly on a second, related distribution,
namely the residual distribution. In this section, we define the residual distribution, and
we derive some preliminary results regarding its sensitivity to small changes in an endpoint
partition.

Given an endpoint partition (A, V) and an endpoint a ∈ A, the residual degree res(A,V)(a)

is the number of other endpoints which belong to the same vertex as a. Formally, we have

res(A,V)(a) = |A(V(a))\{a}| = deg(A,V) V(a) − 1.

Accordingly, we define the residual distribution by µ(A,V)(i) = |{a∈A:res(A,V)(a)=i}|
m . The residual

distribution can be computed easily from the degree distribution, and in general, for any
distribution λ on Z

∗ = {0, 1, . . .} with 0 < M1(λ) < ∞, we define the corresponding
residual distribution by

µλ(i) = (i + 1)λ(i + 1)

M1(λ)
. (1)

The effects of our asymptotic assumptions on the residual distribution are given in the
following proposition, which follows immediately from definitions.

Proposition 2.3. Assumptions 2.1 have the following implications:

1. limn→∞ ‖µ(An ,Vn) − µλ‖1 = 0, where µλ is computed from the limiting degree
distribution λ according to Eq. (1).

2. limn→∞ M1(µ(An ,Vn)) = M1(µλ).

We call the distribution µλ the limiting residual distribution. Note that, similarly to
assumptions 2.1, it is not necessarily the case the M1(µλ) < ∞, but if the first moment is
finite, then the convergence M1(µ(An ,Vn)) → M1(µλ) holds.
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2.4.1. Sensitivity of the Residual Distribution We now present a technical lemma which
states that, under our asymptotic assumptions, a vertex set of size o(m) can only contain
o(m) endpoints.

Lemma 2.4. Let µ be any distribution on Z
∗. Then for all ε > 0, there exists a δ > 0

such that the following statement holds.
For any endpoint partition (A, V) such that the residual distribution µ(A,V) satisfies

‖µ(A,V) − µ‖1 < δ, and any subset V ′ ⊆ V satisfying |V ′| < δ|A|, we have |A(V ′)| < ε|A|.
The proof of this lemma appears in the Appendix. We have the following immedi-

ate corollary, which essentially states that removing o(m) endpoints changes the residual
distribution by an L1 distance of at most o(1).

Corollary 2.5. Let µ be any distribution on Z
∗. Then for all ε > 0, there exists a δ > 0

such that the following statement holds.
For any endpoint partition (A, V) satisfying ‖µ(A,V)−µ‖1 < δ, and for any subset A′ ⊆ A

satisfying |A| − |A′| < δ|A|, we have

‖µ(A′ ,V) − µ‖1 < ε.

2.5. Probabilistic Tools

In our analysis of the random graph G(A, V), we will encounter certain technical difficulties
which stem from two principal sources. First, our method of asymptotic parametrization
does not provide precise knowledge of any particular endpoint partition (A, V); we can only
assume that, for n sufficiently large, the degree distribution λ(A,V) lies in an arbitrarily small
neighborhood of the limiting distribution λ. Second, the occurrences of edges in a random
matching are not independent events, and as a result, we will frequently be confronted
with sequences of random variables which are “not quite” independent and identically
distributed.

Our general strategy for dealing with these difficulties will be to relate certain “messy”
situations to “clean” probabilistic constructions, and then to derive bounds using well-known
classical results. The material presented below will be used toward this end.

2.5.1. Domination and the Truncated Distribution. Given distributions µ, ν on Z, we
say µ dominates ν and write µ � ν if P[Xµ ≥ i] ≥ P[Xν ≥ i] for all i, where, as defined in
Section 2.1, Xµ and Xν are µ- and ν-distributed random variables, respectively. Accordingly,

for random variables X, Y, we write X
d
� Y if D[X] � D[Y] and say X dominates Y in

distribution.
We shall frequently encounter distributions with support in the set Z

∗ = {0, 1, . . .} (e.g.,
the degree and residual distributions defined above). For technical reasons, we shall often
consider these as distributions on the set Z

∗ ∪ {−1}. Our next lemma establishes that the
closed ε-neighborhood of any such distribution µ (with respect to L1 distance) contains a
lower bound µ[ε] with respect to the partial order �. We call this lower bound the ε-truncated
distribution.

Lemma 2.6. For any distribution µ on Z
∗ ∪ {−1} and any ε > 0, there exists a unique

distribution µ[ε] on Z
∗ ∪ {−1} satisfying both ‖µ−µ[ε]‖1 ≤ ε and ν �µ[ε] for all distribu-

tions ν on Z
∗ ∪ {−1} with ‖µ − ν‖1 ≤ ε.
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The proof of this lemma (which appears in the Appendix) is quite simple; briefly, µ[ε] is
constructed by taking an amount ε/2 of probability weight from the top of the distribution
and placing this weight on the value −1.

2.5.2. Applications. We now present three lemmas which apply the concepts defined
above to achieve probabilistic bounds in specific situations; the proofs can be found in the
Appendix.

The first lemma deals with a random process in which the conditional distributions of
the increments always dominate a fixed distribution µ.

Lemma 2.7. Let y1, . . . , yt be a random process adapted to a filtration F0 =
σ [∅], F1, . . . , Ft , and let Yt = ∑t

i=1 yi. Consider a distribution µ such that D[ys+1 | Fs]�µ

always for all 0 ≤ s ≤ t − 1. Then Yt dominates in distribution the sum of t independent
µ-distributed random variables.

The next lemma considers a similar situation for a sequence of Bernoulli trials, but where
the lower bound on the conditional distribution only holds before a given stopping time τ .

Lemma 2.8. Consider a sequence of Bernoulli random variables z1, z2, . . . adapted to a
filtration F0 = σ [∅], F1, F2, . . ., and let Zt = ∑t

i=1 zi. Consider a stopping time τ and a
constant 0 < p < 1 such that

P[zt+1 = 1 | t < τ , Ft] ≥ p

always for all t ≥ 0. Then for any t, r ≥ 0, we have

P[τ > t ∧ Zt ≤ r] ≤ P[XBint,p ≤ r].

The final lemma in this section deals with the sum of Y independent, identically distrib-
uted random variables, where Y is itself a random variable, and such that the distribution
D[Y] dominates a binomial distribution.

Lemma 2.9. Let µ be a distribution on Z
∗ ∪ {−1}, let r ∈ Z

∗ and 0 ≤ ε ≤ 1, and let Y

be a Z-valued random variable such 0 ≤ Y ≤ r always and such that Y
d
� XBinr,1−ε/2 . Then

Y∑
i=1

Xµ,i

d
�

r∑
j=1

Xµ[ε] ,j.

3. BREADTH-FIRST SEARCH ON A RANDOM GRAPH

In this section we analyze a breadth-first search on a random graph. Our notation is as
follows. Let (A, V , E) be a configuration, and choose any v ∈ V . For any integer i ≥ 0, we
let Nv,i denote the set of vertices at distance exactly i from v; the set Nv,i is the i’th vertex
neighborhood of v.

It is often more useful to consider neighborhoods as consisting of endpoints rather than
vertices. Hence, we define the i’th endpoint neighborhood Rv,i to be the set of endpoints
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belonging to vertices in Nv,i, and which are not matched to endpoints in Rv,i−1. Formally,
then, we have

Rv,0 = A(v)

Rv,i = {a ∈ A(Nv,i) : �E(a) /∈ Rv,i−1}.

The endpoint neighborhoods of a vertex v are illustrated below.

In a random configuration G(A, V) = (A, V , E), the endpoint neighborhoods are random
subsets of A, which according to our convention we denote in boldface by Rv,i. For any v,
and any i, we now define the σ -field Bv,i inductively by Bv,0 = σ [∅] and

Bv,i+1 = σ [Bv,i, E〈Ri〉].

We call the filtration Bv,0, Bv,1, . . . , the breadth-first search (BFS) filtration. We note that,
since Rv,i+1 is clearly Bv,i-measurable, then by proposition 2.2 the BFS filtration is sub-
uniform.

This section is devoted to analyzing the BFS filtration. To simplify our notation, we
abbreviate the set of unexposed endpoints and exposed edges in the BFS filtration by
Uv,i = UBv,i and Ev,i = EBv,i , respectively. Intuitively, the set Ev,i consists of all edges
explored during i iterations of a standard breadth-first search beginning at v. We note that
the endpoints in Rv,i remain unexposed in the σ -field Bv,i, and therefore Rv,i ⊆ Uv,i. Also,
the set Uv,i\Rv,i consists of all endpoints belonging to vertices at distances greater than i
from v.

We are particularly interested in the random sequence of neighborhood sizes
|Rv,0|, |Rv,1|, . . . , which we call the BFS process. We thus simplify our notation by defining
rv,i = |Rv,i|.

Before we begin our formal analysis, we engage in a brief intuitive discussion about this
process. Let us imagine that we are performing BFS on a random configuration. After i
levels, we will have explored the edges in Ev,i, and in the next iteration, we will explore all
edges incident on the endpoint set Rv,i. And, conditional on Bv,i, the unexposed endpoints
Uv,i will be matched uniformly at random.

Now, if Rv,i is “small” relative to Uv,i, then in the typical situation, each endpoint in Rv,i

will match to an endpoint outside of Rv,i, and no two endpoints in Rv,i will match to the
same vertex. In this case, if an endpoint a ∈ Rv,i matches to an endpoint �E(a) on a vertex
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of degree d, then the remaining d − 1 endpoints are contributed to Ri+1. Hence, informally,
the size of Rv,i+1 is approximated by

rv,i+1 �
∑

a∈Rv,i

deg(V(�E(a))) − 1 =
∑

a∈Rv,i

res(�E(a)),

where res(�E(a)) = deg(V(�E(a)))−1 is the residual degree of the endpoint �E(a), as defined
in Section 2.4.

Moreover, if Rv,i is “small,” then the residual degrees of the endpoints in �E(a) will
be “almost” independent random variables, and the distribution of each of these random
variables will be approximately given by the residual degree distribution µ(A,V). So, again
quite informally, we have

rv,i+1 �
rv,i∑
j=1

Xµ,j,

where the Xµ,j are independent µ-distributed.
We note that, if strict equality were to hold, then the equation above would define a

branching process (see e.g., [2]), and the expected rate of neighborhood growth would be
given by the average residual degree M1(µ). To make this approximation precise, we must
account for the various informal assumptions that have been made above. Specifically, the
two principal differences between the the BFS process and a pure branching process are the
following.

1. Cross-edges can occur during BFS in two ways: two endpoints in Rv,i might match to
each other, or two (or more) endpoints in Rv,i might match to the same vertex outside
of Nv,i.

2. The residual distribution changes over time; and in fact, even at the beginning of the
BFS process, we only have asymptotic knowledge of the residual distribution.

We now proceed as follows. In Section 3.1, we derive a lower bound on the growth of
neighborhood sizes by relating the BFS process to independent sampling from a truncated
residual distribution. Then, in Section 3.2, we derive a weaker upper bound on neighbor-
hood growth using only the expectation. We note that faster rates of neighborhood growth
generally correspond to a shorter graph distances, and as such, the lower bound on neigh-
borhood sizes will be used to derive an upper bound on the diameter in Section 5, and vice
versa.

3.1. Lower Bound on Neighborhood Sizes

In this section we derive a lower bound on the growth rate of neighborhoods during BFS.
Our main result in this section is the following theorem, which establishes a bound on large
deviation probabilities of neighborhood sizes.

Theorem 3.1. For any fixed distribution µ and any M < M1(µ), there exist δ > 0 and
C > 0 such that the following statement holds.

Let (A, V) be an endpoint partition satisfying ‖µ(A,V) −µ‖1 < δ. For any v ∈ V and any
i ≥ 0, if

∑i
j=0 rv,i < δ|A| then

P[rv,i+1 < M · rv,i | Bv,i] ≤ e−C·rv,i .

Random Structures and Algorithms DOI 10.1002/rsa



492 FERNHOLZ AND RAMACHANDRAN

This theorem establishes a uniform bound on large deviation probabilities, in the sense
that same constant C can be used for an entire δ-neighborhood of residual distributions.
Also, for a given v, the same constant can be used for every BFS iteration until the sum of
the neighborhood sizes exceeds δm.

Now, if the BFS process were a true branching process generated by the residual dis-
tribution µ, then the result in Theorem 3.1 would follow immediately from well known
large deviation results regarding sums of independent random variables. We thus proceed
by dealing individually with each of the informal assumptions discussed above which cause
the BFS process to differ from a pure branching process. Hence, in Section 3.1.1, we deal
with the problem that two endpoints in Rv,i may match to each other (horizontal edges).
In Section 3.1.2 we deal with the problem that two or more endpoints may match to the
same vertex outside of Nv,i (diagonal edges). In Section 3.1.3 we combine these results to
relate an iteration of the BFS process to independent sampling from the ε-truncated residual
distribution, and in Section 3.1.4 we derive the large deviation result in Theorem 3.1.

3.1.1. Horizontal Edges. A horizontal edge occurs if two endpoints in Rv,i match to
each other. In this section we derive a probabilistic upper bound to the number of horizontal
edges which occur in an iteration of BFS.

Specifically, the following lemma shows that, if |Rv,i| = r ≤ m/2, then the number of
endpoints in horizontal edges is dominated by the binomial distribution Binr,

√
r/m. Hence,

if Rv,i is “small” then “most” of the endpoints will match outside of Rv,i.

Lemma 3.2. Consider a subset R of an endpoint set A, let r = |R| and m = |A|, and
assume r ≤ m/2. For a uniformly random matching E, we have

D[|�E(R) ∩ R|] � Binr,
√

r/m. (2)

Proof. We first define
f (s, r, m) = P[|�E(R) ∩ R| ≥ s]

for r = |R| and let m = |A|, and similarly g(s, p, r) = P[XBinr,p ≥ s]. Equation (2) is
therefore equivalent to the statement that

f (s, r, m) ≤ g(s,
√

r/m, r) (3)

holds for all s.
We proceed by induction; clearly (3) holds for r = 0, 1 and any s and m ≥ 2r, since

if |R| ≤ 1 then there cannot be any internally matched endpoints. Now, choose any r and
assume inductively that (3) holds for all triples (s′, r ′, m′) where r ′ < r and m′ ≥ 2r ′.

We note that any given endpoint a ∈ R matches to another endpoint within R with
probability (r − 1)/(m − 1). If this occurs, then r − 2 unexposed endpoint remain in R, and
we have 2 internally matched endpoints. Otherwise, we have r − 1 remaining unexposed
endpoints in R, and no internally matched endpoint. In both cases, the total number of
unexposed endpoints remaining is m − 2. Hence, we inductively compute

f (s, r, m) = r − 1

m − 1
f (s − 2, r − 2, m − 2) + m − r

m − 1
f (s, r − 1, m − 2)

≤ r − 1

m − 1
g

(
s − 2,

√
r−2
m−2 , r − 2

)
+ m − r

m − 1
g

(
s,

√
r−1
m−2 , r − 1

)
≤ (r/m)g

(
s − 2,

√
r/m, r − 2

) + (1 − r/m)g
(
s,

√
r/m, r − 1

)
.
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The inequality in (3) now follows by letting p = √
r/m and computing

g(s, p, r) = p · g(s − 1, p, r − 1) + (1 − p) · g(s, p, r − 1)

= ( p2 · g(s − 2, p, r − 2) + p(1 − p) · g(s − 1, p, r − 2)) + (1 − p) · g(s, p, r − 1)

≥ p2 · g(s − 2, p, r − 2) + (1 − p2) · g(s, p, r − 1).

3.1.2. Diagonal Edges and Uniform Endpoint Sampling. In the previous subsection,
we derived a probabilistic bound on the number of endpoints in Rv,i, which match internally
due to horizontal edges. In this subsection, we prove a lemma which deals with diagonal
edges, which occur if two endpoints in Rv,i match to the same vertex outside of Nv,i.

Our approach is based on the following observation. For any integer r ≥ 0, conditional
on the event that exactly r endpoints in Rv,i match externally, the set �E(Rv,i)\Rv,i will
be a uniformly random subset of size r from Uv,i\Rv,i. And if we let S = �E(Rv,i)\Rv,i,
we have

Rv,i+1 = A(V(S))\S.

Hence, in the following lemma, we derive a probabilistic lower bound on the size of the set
A(V(S))\S, where S is a uniform sample of size r from an endpoint partition (A, V).

Lemma 3.3. For any fixed distribution µ and any ε > 0, there exists a δ > 0 such that
the following statement holds.

Let (A, V) be an endpoint partition satisfying ‖µ(A,V)−µ‖1 < δ, and consider a uniformly
random subset S ⊆ A of size |S| = r < δ|A|. Then the random variable |A(V(S))\S|
dominates in distribution the sum of r independent µ[ε]-distributed random variables.

Proof. We consider the random process s1, . . . , sr corresponding to sampling from A
without replacement, so at each step 1 ≤ t ≤ r, we choose an endpoint st uniformly at
random from A\St−1, where Si = {s1, . . . , si} for 1 ≤ i ≤ r and S0 = ∅. We also define
Qt = A(V(St))\St , and we write qt = |Qt|, so the lemma states that qr dominates in
distribution the sum of r independent µ[ε]-distributed random variables.

At time t, we define the effective residual degree of any endpoint in A\St by

res∗
t (a) =

{
−1 if a ∈ Qt;

res(a) otherwise.

We denote the distribution of effective residual degrees at time t by

ν t(j) = |{a ∈ A\St : res∗
t (a) = j}|

|A\St| .

We note that qt+1 −qt = res∗
t (st+1), and therefore D[qt+1 −qt | Ft] = ν t , where F1, . . . , Fr

is the induced filtration Ft = σ [s1, . . . , st].
We claim that, for δ sufficiently small, we have ‖ν t − µ‖ < ε always for all t. Indeed,

since |St| = t ≤ r < δ|A|, then by Corollary 2.5, δ can be chosen sufficiently small that,
for arbitrary ε0 > 0, the residual distribution at time t satisfies ‖µ(At ,V) − µ‖1 < ε0 always.
And, the actual residual degree and the effective residual degree at time t differ only on the
set Qt; since Qt is contained in at most t ≤ r < δ|A| vertices, then by Lemma 2.4, we can
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again choose δ sufficiently small such that |Qt| < ε0|A| always. By setting ε0 appropriately,
it follows that δ can be chosen sufficiently small that ‖ν t − µ‖ < ε always for all t.

It now follows by Lemma 2.6 that ν t � µ[ε] always, and since D[qt+1 − qt | Ft] = ν t ,
the proof is complete due to Lemma 2.7.

3.1.3. General Lower Bound on Neighborhood Sizes. In this section, we combine
Lemmas 3.2 and 3.3, along with Lemma 2.9 from Section 2.5.2, to derive a general prob-
abilistic lower bound relating the distribution of rv,i+1 given rv,i to independent sampling
from the truncated residual distribution.

Lemma 3.4. For any fixed distribution µ and any ε > 0, there exists a δ > 0 such that
the following statement holds.

Let (A, V) an endpoint partition satisfying ‖µ(A,V) − µ‖1 < δ. Choose any v ∈ V and
any i ≥ 0. If

∑i
j=0 rv,i < δ|A| then the distribution of rv,i conditional on Bv,i satisfies

D[rv,i+1 | Bv,i] � D

[ rv,i∑
j=1

Xµ[ε] ,j

]
.

Proof. First, let Q = Rv,i\�E(Rv,i) denote the set of endpoints which match outside of
Rv,i, and let q = |Q|. For arbitrary ε0 > 0, we may choose δ sufficiently small that√

rv,i/|Uv,i| < ε0/2, and thus by Lemma 3.2, we have

D[q | Bv,i] � Binrv,i ,1−√
rv,i/|Uv,i | � Binrv,i ,1−ε0/2. (4)

Now, conditional on both Bv,i and q, the set of endpoints �E(Rv,i)\Rv,i is a uniformly ran-
dom subset of size q chosen from Uv,i\Rv,i. Moreover, since |A| − |Uv,i\Rv,i| ≤ 2

∑i
j=0 rv,i,

then by making δ sufficiently small, by Corollary 2.5 we can ensure that the residual dis-
tribution of (Uv,i\Rv,i, V) satisfies ‖µ(Uv,i\Rv,i ,V) − µ‖1 < δ0 for arbitrary δ0 > 0. Hence, by
Lemma 3.3, we have

D[rv,i+1 | q, Bv,i] � D

[
q∑

j=1

Xµ[ε1] ,j

]
(5)

for arbitrary ε1 > 0.
We now invoke Lemma 2.9 regarding the sum of a random number of random vari-

ables, and since (µ[ε1])[ε0] = µ[ε0+ε1], it follows from (4) and (5) that D[rv,i+1 | Bv,i] �
D

[ ∑rv,i
j=1 Xµ[ε0+ε1] ,j

]
. The proof is now complete since ε0, ε1 can be made arbitrarily small.

3.1.4. Large Deviations. We now use Lemma 3.4 to complete the proof of the large
deviation bound in Theorem 3.1. We begin by recalling a classical large deviation result for
independent, identically distributed random variables. Although the result is standard (e.g.,
see [10, 15]), we include a brief proof in the Appendix.

Lemma 3.5 ([10,15]). Let µ be any distribution on Z
∗ ∪ {−1}. Then for all M < M1(µ)

there exists a C > 0 such that for all r > 0,

P

[
r∑

i=1

Xµ,i ≤ Mr

]
< e−Cr .
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We now complete the proof of Theorem 3.1.

Proof of Theorem 3.1. By lemma 3.4, we can choose δ sufficiently small so that

P[rv,i+1 < M · rv,i | Bv,i] ≤ P

[ rv,i∑
j=1

Xµ[ε] ,j < M · rv,i

]

for arbitrary ε > 0. Moreover, since limε→0 M1(µ[ε]) = M1(µ), then for a given M <

M1(µ), we may choose ε sufficiently small that M1(µ[ε]) > M. The result now follows by
applying Lemma 3.5 to the distribution µ[ε].

3.2. Upper Bound on Neighborhood Sizes

In this section we derive an upper bound on the rate of neighborhood growth in a BFS
process. The upper bound is different in nature than the lower bound derived in Section
3.1 in two ways. First, we only use the expected neighborhood size to compute the bound.
Second, we bound the probability that the sum of all neighborhoods up to time t exceeds a
given amount, rather than considering individual iterations.

Lemma 3.6. For any 1 < M < ∞, and any ε > 0, there exists a δ > 0 such that the
following statement holds.

For any endpoint partition (A, V) with |A| = m and such that M1(µ(A,V)) < M + δ, and
for any q < δm and t ≥ 0, we have

P

[
t∑

i=0

rv,i > q

]
<

deg(v)(M + ε)t

q(1 − 1/M)
.

Proof. For any i ≥ 0, note that rv,i+1 is at most equal to the sum of the residual degrees of
the endpoints �E(a) for a ∈ Rv,i (with equality if no cross-edges occur). Hence, by linearity
of expectation, we have

E[rv,i+1 | Bv,i] ≤
∑

a∈Rv,i

E[res(�E(a)) | Bv,i].

Now for any given a, we compute

E[res(�E(a)) | Bv,i] =
∑

a′∈Uv,i\{a} res(a′)

|Uv,i| − 1
≤

∑
a′∈A res(a′)
|Uv,i| − 1

= M1(µ(A,V))
m

|Uv,i| − 1
,

and therefore, for δ sufficiently small, we can guarantee E[rv,i+1|Bv,i] ≤ rv,i(M+ε) whenever
both M1(µ(A,V)) < M + δ and

∑i
j=0 rv,j < δm.

We now define the random variables

r′
v,i =

{
rv,i if

∑i−1
j=0 rv,i−1 < δm,

0 otherwise,

and we deduce that E[r′
v,j+1 | Bv,j] ≤ r′

v,j(M +ε) always, and therefore E[r′
v,i] ≤ deg(v)(M +

ε)i for all i.
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For q < δm, using Markov’s inequality, we now compute

P

[
t∑

i=0

rv,i > q

]
= P

[
t∑

i=0

r′
v,i > q

]
≤ 1

q
E

[
t∑

i=0

r′
v,i

]
≤ deg(v)

q

t∑
i=0

(M + ε)i

≤ deg(v)(M + ε)t

q(1 − 1/M)
.

4. THE 2-CORE

The k-core of a graph is the maximal induced subgraph of minimum degree at least k. The
sizes and degree distributions of the k-cores of a random graph have been determined by
various authors [9, 12, 14], and our diameter result relies significantly on these results for
the specific case of k = 2.

The relevance of the 2-core to the diameter of a random graph can be appreciated intu-
itively by considering the structure of a typical longest shortest path. In general, any longest
shortest path in a random graph (with minimum degree 1) will occur between a pair vertices
u, v of degree 1. Moreover, this path will consist of three segments: a path from u to the
2-core, a path through the 2-core, a path from the 2-core to v. It follows that, if we wish
to uncover such a path using BFS, we only need to search through the set of edges in the
2-core, as well as the edges connecting u and v to the 2-core.

In this section, motivated by the informal discussion in the previous paragraph, we intro-
duce notation and some simple results related to BFS in the 2-core of the random graph
G(A, V). As we shall see, restricting BFS to the 2-core greatly simplifies the analysis of
neighborhood growth, particularly when neighborhood sizes are small. This is because
every vertex in the 2-core contains at least two endpoints, and thus if we “enter” a par-
ticular vertex through one of its endpoints, at least one other endpoint typically remains
unexposed as an “exit.” It follows that, if no cross-edges occur, neighborhood sizes are
strictly nondecreasing. Moreover, if no cross-edges occur, then a (strict) increase in neigh-
borhood size will occur unless every endpoint matched during a given BFS iteration has
residual degree 1. These two properties allow for a simpler and more accurate analysis of
the growth of small neighborhoods than can be achieved using the tools of the previous
section.

We now proceed as follows. In Section 4.1, we introduce our notation for describing
the 2-core of a random graph, and we review some known results about the structure of
the 2-core. We also define a related structure which we call the augmented 2-core, and
we translate relevant results about the 2-core to the augmented 2-core. In Section 4.2, we
discuss BFS in the augmented 2-core, and we derive some preliminary results related to the
nondecreasing neighborhood size property discussed above. These results will enable us to
pin down our main diameter result in Section 5.

4.1. The 2-Core and the Augmented 2-Core

As noted above, the 2-core of a graph is the maximal induced subgraph with minimum
degree at least 2. We shall denote the 2-core of a graph G = (A, V , E) by Gκ ; and, in
general, we shall use the superscript “κ” to refer to the structures related to the 2-core of
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G, so Aκ , V κ and Eκ denote the endpoint, vertex, and edge sets of the 2-core, respectively.
Also, degκ(v) denotes the degree of a vertex in the 2-core, λκ denotes the degree distribution
of the 2-core, and similarly for the residual distribution.

The size and degree distribution of the 2-core of a random graph have been determined
previously by several authors [9, 12, 14]. In particular, we have the following theorem,
which implies that if (A, V) satisfies the asymptotic assumptions 2.1 with limiting residual
distribution µ, then the 2-core of G(A, V) also satisfies assumptions 2.1 WHP, with a limiting
residual distribution ηµ which can be computed from µ.

Theorem 4.1 ([9, 12, 14]). Let (A, V) be an endpoint partition which asymptotically
satisfies assumptions 2.1 with limiting residual distribution µ = µλ satisfying M1(µ) > 1.
Then,

1. there exists a constant 0 < Cµ < 1 determined by µ such that |Aκ |/|A| = Cµ + o(1),
WHP;

2. there exists a distribution ηµ determined by µ, such that ‖µκ − ηµ‖1 = o(1) WHP;
3. the distribution ηµ satisfies M1(ηµ) = M1(µ), and in fact M1(µ

κ) = M1(µ) + o(1)

WHP.

Let G = (A, V , E) be a graph and consider a subset W ⊆ V . We define the W-augmented
2-core to be the maximal induced subgraph of G such that every vertex in V\W has degree
at least 2. Hence, the vertices in W are “exempt” from the minimum degree requirement.
We denote the W -augmented 2-core of a graph by Gκ ,W , and related structures are denoted
accordingly.

For this paper, we shall often examine W -augmented 2-core where W is a “small” subset
of V . Our next lemma follows almost immediately from the proof of Theorem 4.1 (in fact
the bound on |A(W)| can be weakened to o(m)). However, for completeness, we include an
independent proof in the Appendix.

Lemma 4.2. Consider an endpoint partition (A, V) as in Theorem 4.1, and consider a
subset W ⊆ V such that |A(W)| = o(m/ ln m). Then WHP |Aκ ,W\Aκ | = o(m).

If, in addition, |A(W)| = m�(1) then AAS a constant fraction of the endpoints in A(W)

belong to Aκ ,W .

It follows immediately from Lemma 4.2, that for any subset W ⊆ V of size |A(W)| =
o(m/ ln m), the statement of Theorem 4.1 holds if we replace Aκ and µκ with Aκ ,W and
µκ ,W , respectively.

Given a random graph G(A, V), we define the 2-core σ -field to be the σ -field induced
by the set of edges which are not in the 2-core. We denote this σ -field by F κ = σ [E\Eκ ].
Intuitively, the 2-core σ -field represents a state of information in which all the edges which
are not in the 2-core are known, but the structure of the 2-core remains unknown. It follows
from the proof of Theorem 4.1 in [12] (and it is not difficult to see) that the 2-core σ -field
F κ is subuniform. Similarly, for any W ⊆ V , we define the W -augmented 2-core σ -field
F κ ,W = σ [E\Eκ ,W ], noting that F κ ,W is also subuniform.

4.2. BFS and the 2-Core

In this section, we present some definitions and a simple lemma related to BFS in the
augmented 2-core of a random graph.
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For any vertex v in a graph G, we define the 2-core endpoint neighborhoods of v, denoted
by Rκ

v,i to be the endpoint neighborhoods of v in the v-augmented 2-core Gκ ,v. It is easy to
see that any path in the original graph G, which connects v to a vertex u ∈ Gκ ,v is itself
contained in Gκ ,v, and it follows that the 2-core endpoint neighborhoods can be expressed
simply as

Rκ
v,i = Rv,i ∩ Aκ ,v. (6)

As usual, the 2-core endpoint neighborhoods of a vertex in a random graph are denoted
in boldface by Rκ

v,i. We also define the 2-core BFS filtration Bκ
v,t analogously to the ordi-

nary BFS filtration, by Bκ
v,0 = F κ ,v and Bκ

v,i+1 = σ [Bκ
v,i, E〈Rκ

v,i〉]. The 2-core BFS filtration
thus corresponds to first exposing all edges outside the v-augmented 2-core and then per-
forming BFS beginning at v. Moreover, using the expression in (6) for 2-core endpoint
neighborhoods, we may express the 2-core BFS filtration in terms of the ordinary BFS
filtration by

Bκ
v,i = σ [F κ ,v, Bv,i].

As discussed at the beginning of Section 4, BFS in the 2-core exhibits the useful property
that neighborhood sizes are generally nondecreasing. In the following lemma, we make this
property precise, and we also bound the probability of repeating a given neighborhood
size.

Lemma 4.3. For any fixed distribution µ with M1(µ) > 1 and any ε > 0, there exist
constants C and δ > 0 such that the following holds WHP.

Let (A, V) an endpoint partition with |A| = m, and assume that ‖µ(A,V) − µ‖1 < δ.
Choose any v ∈ V and any i ≥ 0, and assume that

∑i
j=0 rκ

v,i < δm. Then

1. P[rκ
v,i+1 < rκ

v,i | Bκ
v,i] ≤ C · (rκ

v,i)
3/m.

2. P[rκ
v,i+1 < rκ

v,i − 2 | Bκ
v,i] ≤ C · (rκ

v,i)
6/m2.

3. P[rκ
v,i+1 = rκ

v,i | Bκ
v,i] ≤ (ηµ(1) + ε)

rκ
v,i + C · (rκ

v,i)
3/m.

Proof. First, note that by choosing δ > 0 sufficiently small and invoking Theorem 4.1
and Lemma 4.2, we can guarantee that the fraction of Bκ

v,i-unexposed endpoints which have
unexposed residual degree 1 is at most ηµ(1) + ε WHP. Now, for each a ∈ Rκ

v,i, define the
Bκ

v,i+1-measurable random variable y(a) by letting y(a) = 1 if either

1. �E(a) ∈ Rκ
v,i, or

2. V(�E(a)) = V(�E(a′)) = w for some vertex w with degκ ,v(w) ≤ 2rκ
v,i,

and y(a) = 0 otherwise. We also define Y = ∑
a∈Rκ

v,i
y(a), and since every vertex other

than v has unexposed degree at least 2, it follows that rκ
v,i+1 ≥ rκ

v,i − Y.

Now, for any given pair a, a′ ∈ Rκ
i , we have P[�E(a) = a′|Bκ

v,i] = O(1/m). Also, the
probability, conditional on Bκ

v,i, that a and a′ both match to a vertex w with degκ ,v(w) ≤ 2rκ
v,i

is O(rκ
v,i/m). By considering all pairs a, a′ ∈ Rκ

v,i, it follows that

P[Y > 0 | Bv,i] = O
((

rκ
v,i

)3
/m

)
.
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Similarly, by considering all possible ways that at least three endpoints in Rκ
v,i can be

involved in cross-edges of the kinds described above, we easily deduce

P[Y > 2 | Bv,i] = O
((

rκ
v,i

)6
/m2

)
.

For the final statement of the lemma, we note that the probability, conditional on Bκ
v,i,

that every endpoint in Rκ
v,i matches to an endpoint of residual degree 1 outside of Rκ

v,i is at
most

µκ
v,i(1)

rκ
v,i ≤ (ηµ(1) + ε)

rκ
v,i .

And, the event rκ
v,i+1 = rκ

i,v can only occur if either Y > 0 or if every endpoint in Rκ
v,i

matches to an endpoint of residual degree 1, hence the proof is complete.

5. THE DIAMETER OF A RANDOM GRAPH

Given vertices u, v in a graph G, let δ(u, v) denote the distance from u to v, that is, the length
of a shortest path from u to v. We set δ(u, v) = ∞ if u and v do not belong to the same
connected component. The diameter �(G) of a graph G is the maximum finite distance
between any pair of vertices in G. In this section, we compute the diameter of a random
graph G(A, V) with asymptotic precision.

We begin by stating our main theorem regarding the diameter of a random graph. Recall
that, for a distribution µ, ηµ denotes the limiting residual distribution of the 2-core of a
random graph with limiting residual distribution µ, as determined by Theorem 4.1.

Theorem 5.1. Let (A, V) be an endpoint partition which asymptotically satisfies assump-
tions 2.1, with limiting degree distribution λ and corresponding residual distribution
µ = µλ. Assume further that both M1(µ) > 1 and λ(1) > 0.

Then, the diameter of G(A, V) AAS satisfies �(G(A, V)) = �µ ln n + o(ln n), where

�µ = 2

− ln ηµ(1)
+ 1

ln M1(µ)
. (7)

Due to a result of Molloy and Reed [17, 18], the assumption that M1(µ) > 1 implies
that the largest connected component of G(A, V) AAS has size �(n)—this is the so-called
“giant” component—while the second largest component AAS has size o(n) (and there-
fore all of the “non-giant” components are “small”). An immediate consequence of the
proof of Theorem 5.1 is that the diameter of G(A, V) is equal to the diameter of the giant
component.

The assumption that λ(1) > 0 ensures that the minimum (positive) degree is 1. The
behavior of the diameter in the case λ(1) = 0 is qualitatively different, and we deal with
generalizations to higher minimum degree in Section 5.3.

Informally, the two terms on the right hand side of Eq. (7) correspond to two different
characteristics of a random graph that determine its diameter. The term 1

ln M1(µ)
measures

the “average” distance across the graph. The term 2
− ln ηµ(1)

accounts for long isolated paths
or cycles which can cause the distance between a particular pair of vertices to be signifi-
cantly longer than the average. A typical longest shortest path will consist of an “average”
shortest path of length ln n

ln M1(µ)
extended on both ends by two long “strands,” each having

length ln n
− ln ηµ(1)

.
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We prove the upper bound of Theorem 5.1 in Section 5.1 and the lower bound in
Section 5.2. Then, in Section 5.3 we generalize to higher minimum degrees.

5.1. Upper Bound Proof for Theorem 5.1

In this section, we prove the upper bound of Theorem 5.1. Our general approach is to use
the results from Sections 3 and 4 to trace the rate of neighborhood growth during BFS in the
augmented 2-core. We maintain the unstated assumption that we are considering a random
graph G(A, V) such that the endpoint partition (A, V) asymptotically satisfies assumptions
2.1 with asymptotic degree distribution λ and corresponding residual distribution µ = µλ.
And, as usual the number of endpoints and vertices in (A, V) are denoted by m = |A| and
n = |V |, respectively.

We begin by observing that “large” endpoint neighborhoods will AAS be connected
by an edge. Specifically, we have the following lemma; the proof is straightforward and
appears in the Appendix.

Lemma 5.2. Consider disjoint subsets S1, S2 ⊆ A such that both |S1|, |S2| > m1/2 ln2 m.
Then

P[�E(S1) ∩ S2 = ∅] = m−ω(1).

For our purposes, then, a “large” neighborhood consists of at least m1/2 ln2 m endpoints.
Since this value plays a central role in the upper bound proof of Theorem 5.1, we abbreviate
by defining

ξ = m1/2 ln2 m.

Now, for any pair of vertices u, v, and any integers t1, t2, if both ru,t1 > ξ and rv,t2 > ξ , it
follows immediately from lemma 5.2 that δ(u, v) ≤ t1 + t2 +1 WHP. Moreover, since 2-core
neighborhood sizes satisfy rκ

v,t ≤ rv,t always, we have the following WHP implication:

(
rκ

u,t1
> ξ

) ∧ (
rκ

v,t2
> ξ

) =⇒ δ(u, v) ≤ t1 + t2 + 1. (8)

For any integer r ≥ 0, we now define the random variables

τ v(r) = min
{
i : rκ

v,i ≥ r
}
,

ρv(r) = min
{
i : rκ

v,i ≥ r or rκ
v,i = 0

}
.

(9)

Intuitively, τ v(r) is the closest 2-core neighborhood which contains at least r endpoints, and
τ v(r) is the closest 2-core neighborhood which is either empty or has size at least r. Both
τ v(r) and ρv(r) are clearly stopping times with respect to the 2-core BFS filtration Bκ

v,t . We
note that τ v(r) = ∞ if and only if rκ

v,i < r for all i, while ρv(r) < ∞ always. Moreover, if
τ v(r) < ∞ then in fact τ v(r) = ρv(r).

It follows from the WHP implication in (8) that the inequality

δ(u, v) ≤ τ v(ξ) + τ u(ξ) + 1 (10)

holds WHP for all pairs u, v ∈ V . Hence, if we are able to bound the maximum finite value
of τ v(ξ) for all v ∈ V , then (10) will yield an upper bound on the distance between any pair
of vertices which both satisfy τ v(ξ) < ∞.
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Of course, the inequality (10) is only useful for vertices satisfying τ v(ξ) < ∞. A different
method is necessary to deal with vertices for which τ v(ξ) = ∞. Intuitively, the condition
τ v(ξ) < ∞ holds if and only if the vertex v belongs to the giant component (in fact, this
statement holds AAS for all v). As we shall see, it is somewhat easier to bound the distance
between vertices satisfying τ v(ξ) = ∞, and the substance of the upper bound proof is the
bound on the maximum finite value of τ v(ξ).

We now proceed as follows. In Section 5.1.2, we derive an upper bound on the distance
between any pair of vertices satisfying τ v(ξ) < ∞ as described above, or equivalently,
a bound on the diameter of the giant component. Then, in Section 5.1.3, we bound the
maximum distance between any pair of vertices which are not in the giant component.
Moreover, the upper bound we derive in Section 5.1.3 is strictly lesser than the expression
for the diameter of G(A, V) in Theorem 5.1. Hence, this bound, in conjunction with the
upper bound proof of Theorem 5.1, will establish that the diameter of G(A, V) is AAS equal
to the diameter of the giant component.

5.1.1. Neighborhood Growth in the 2-Core. In this section, we present a concise
summary of key results from Sections 3 and 4, stated in the form that will be used in the
upper bound proof of Theorem 5.1. We note that for any t = O(ln n), if t ≤ ρv(ξ), then
all neighborhoods rκ

v,i for i ≤ t have size at most ξ = m1/2 ln2 m, and hence the sum of
their sizes is o(m). This observation allows us to invoke both Theorem 3.1 (with respect to
the 2-core residual distribution ηµ) and Lemma 4.3. The following proposition is therefore
immediate and serves essentially as a summary of these earlier results.

Proposition 5.3. For any v ∈ V and t = O(ln n), the following hold WHP whenever
t < ρv(ξ).

1. P[rκ
v,t+1 < rκ

v,t | Bκ
v,t] = Õ(n−1).

2. P[rκ
v,t+1 < rκ

v,t − 2 | Bκ
v,t] = Õ(n−2).

3. P[rκ
v,t+1 = rκ

v,t | Bκ
v,t] ≤ ηµ(1) + o(1).

4. For any constant M < M1(ηµ) = M1(µ),

P
[
rκ

v,t+1 < M · rκ
v,t | Bκ

v,t

] = e−�

(
rκ
v,t

)
.

From the first two statements in this proposition, we easily deduce the following corollary
regarding decreases in neighborhood sizes.

Corollary 5.4. For any v ∈ V, and any t = O(ln n), with probability 1 − o(n−1):

1. The event rκ
v,s+1 < rκ

v,s occurs at most once for all s satisfying both s < t and s < ρv(ξ);
2. The event rκ

v,s+1 < rκ
v,s −2 never occurs for any s satisfying both s < t and s < ρv(ξ).

In particular, note that if the value of rκ
v,s exceeds 2 for any s ≥ 0, then with probability

1 − o(n−1), we have rκ
v,t > 0 for all t = O(ln n) and t ≤ ρv(ξ). Moreover, Theorem

5.5, which is proved in the next section, establishes that ρv(ξ) = O(ln n) with probability
1 − o(n−1). It follows that, with probability 1 − o(n−1), for any vertex v, if τ v(3) < ∞ then
τ v(ξ) < ∞, and therefore the giant component AAS consists of exactly the set of vertices
satisfying τ v(3) < ∞.
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5.1.2. The Giant Component. In this section, we prove the following theorem, which
establishes an upper bound of �µ

2 ln n + o(ln n) for the stopping time ρv(ξ) (where �µ is
defined in Eq. (7)).

Theorem 5.5. For any fixed ε > 0, and for all v ∈ V,

P

[
ρv(ξ) >

(
1

− ln ηµ(1)
+ 1

2M1(µ)
+ ε

)
ln n

]
= o(n−1). (11)

Since τ v(r) = ρv(r) if and only if τ v(r) < ∞ (see (9)), then we also have an upper
bound on the maximum finite value of τ v(ξ) for all v ∈ V ; and, by Lemma 5.2, this yields
an upper bound on the diameter of giant component. Moreover, as noted above, Theorem
5.5 and Corollary 5.4 jointly imply that τ v(3) < ∞ =⇒ τ v(ξ) < ∞ with probability
1 − o(n−1). Hence (pending the proof of Theorem 5.5), we have the following corollary.

Corollary 5.6. For all ε > 0, the maximum distance between any pair of vertices u, v
satisfying τ u(3) < ∞ and τ v(3) < ∞ is AAS at most (�µ + ε) ln n.

To derive the upper bound in (11), we split the interval 0, . . . , ρv(ξ) into two subintervals
using the intermediate stopping time ρv(ln ln n). We bound the length of each of these
subintervals in Lemmas 5.7 and 5.8. The proofs of these lemmas are quite similar; in each
case, we exploit the fact that neighborhood sizes are generally nondecreasing, and we simply
count the number of “good” iterations for which the increase in neighborhood size exceeds
a given amount. We then use Proposition 5.3 to derive a lower bound on the probability that
any given iteration is “good,” and we determine the maximum number of good iterations
which can occur before the neighborhood size must exceed the given limit. Finally, we use
Lemma 2.8 from Section 2.5.2 to attain bounds on the corresponding stopping times from
the binomial distribution.

We first consider neighborhoods of size 0 < rκ
v,t < ln ln n. Here, a “good” iteration

occurs whenever rκ
v,t > rκ

v,t−1, and the probability of a good iteration is bounded below by
1 − ηµ(1) − o(1).

Lemma 5.7. For any vertex v and any ε > 0,

P

[
ρv(ln ln n) >

(
1

− ln ηµ(1)
+ ε

)
ln n

]
= o(n−1).

Proof. For t ≥ 1, define the Bκ
v,t-measurable random variable

zt =
{

0 if rκ
v,t ≤ rκ

v,t−1,

1 if rκ
v,t > rκ

v,t−1,

and let Zt = ∑t
i=1 zt . It follows from the nondecreasing neighborhood size property

expressed in Corollary 5.4 that for any t = O(ln n) and t < ρv(ln ln n), if rκ
v,0 > 0 then

rκ
v,t ≥ Zt − 1 with probability 1 − o(n−1). Hence, for t = O(ln n),

P[ρv(ln ln n) > t ∧ Zt > ln ln n] = o(n−1). (12)
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Now, since ρv(ln ln n) ≤ ρv(ξ), then by Statement 3 of Proposition 5.3 we have

P
[
zt+1 = 0 | ρv(ln ln n) > t, Bκ

v,t

] ≤ ηµ(1) + o(1)

WHP. It thus follows from (12) and Lemma 2.8 that

P[ρv(ln ln n) > t] ≤ P[ρv(ln ln n) > t ∧ Zt ≤ ln ln n] + o(n−1)

≤ P[XBint,1−ηµ(1)−o(1)
≤ ln ln n] + o(n−1).

We now invoke a simple binomial inequality

P[XBint,1−p ≤ r] ≤
(

t

r

)
pt−r ≤ trpt

pr
,

and for t = c ln n, r = ln ln n, and p = ην(1) + o(1), we deduce

P[ρv(ln ln n) > c ln n] ≤
(

c ln n

ηµ(1) + o(1)

)ln ln n

(ηµ(1) + o(1))c ln n + o(n−1)

≤ nc ln ηµ(1)+o(1) + o(n−1).

Hence, for c = 1
− ln ηµ(1)

+ ε, we have P[ρv(ln ln n) > c ln n] = o(n−1), and the proof is
complete.

Next, we consider neighborhood sizes ln ln n up to ξ = m1/2 ln2 m. In this range, a
“good” iteration occurs if rκ

v,t+1 > M · rκ
v,t for arbitrary M < M1(µ). We note that if

rκ
v,ρv(ln ln n) = 0 then ρv(ξ) = ρv(ln ln n), so the duration of this interval is 0. Thus, in the

following lemma we consider the nontrivial case where rκ
v,ρv(ln ln n) ≥ ln ln n, and therefore

ρv(ln ln n) = τ v(ln ln n).

Lemma 5.8. For all ε > 0, there exists δ > 0 such that, for all v,

P

[
∞ > τ v(ξ) > τ v(ln ln n) +

(
1

2M1(µ)
+ ε

)
ln n

]
= o(n−1).

Proof. We begin by considering an arbitrary constant M satisfying 1 < M < M1(µ); the
value of M will be specified further on. For each t > τ (v, ln ln n), we now define

yt =
{

1 if rκ
v,t+1/rκ

v,t ≥ M,

0 if rκ
v,t+1/rκ

v,t < M,

and Yt = ∑t
i=τv(ln ln n) yi. Corollary 5.4, now implies that for t = O(ln n) and τ v(ln ln n) <

t < ρv(ξ), with probability 1 − o(n−1), we have (for n sufficiently large)

rκ
v,t ≥ MYt (ln ln n − 2) > eYt ln M .

It follows that for s = O(ln n),

P

[
(ρv(ξ) − τ v(ln ln n) > s) ∧

(
Yτv(ln ln n)+s >

ln ξ

ln M

)]
= o(n−1). (13)
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Using Statement 4 of Proposition 5.3, it follows that with probability 1 − o(n−1), for
t = O(ln n),

P
[
yt+1 = 0 | τ v(ln ln n) < t < τ v(ξ), Bκ

v,t

] ≤ e−�(ln ln n) = o(1),

and hence by (13) and Lemma 2.8, for s = O(ln n),

P[τ v(ξ) − τ v(ln ln n) > s] ≤ P

[
XBins,1−o(1)

≤ ln ξ

ln M

]
+ o(n−1).

Since
ln ξ = ln m1/2 ln2 m = (1/2 + o(1)) ln n,

we set s = c ln n for a constant c > 1
2 ln M and deduce

P[τ v(ξ) − τ v(ln ln n) > c ln n] ≤ P

[
XBinc ln n,1−o(1)

≤
(

1

2 ln M
+ o(1)

)
ln n

]
+ o(n−1)

= P

[
XBinc ln n,o(1)

≥
(

c − 1

2 ln M
− o(1)

)
ln n

]
+ o(n−1)

= P[XBinc ln n,o(1)
≥ �(ln n)] + o(n−1)

= o(n−1).

Moreover, by making M1(µ) − M arbitrarily small, we can achieve this bound for any
c = 1

2 ln M1(µ)
+ ε, and the proof is complete.

The proof of Theorem 5.5 is now complete, and, as discussed above, this establishes an
upper bound on the diameter of the giant component, as stated in Corollary 5.6.

5.1.3. Small Components. We now deal with distances between vertices which are not in
the giant component, or, more precisely, between vertices for which τ (ξ) = ∞. We consider
the two possible types of small components in G(A, V) separately: tree components and
components that contain cycles.

We first compute an upper bound on the diameter of the tree components.

Lemma 5.9. For any ε > 0, the maximum diameter of any tree component is AAS less
then (

1

− ln ηµ(1)
+ ε

)
ln n. (14)

Proof. Note that if u, v belong to the same tree component, then the augmented 2-core
Gκ ,{u,v} consists of the ordinary 2-core Gκ along with a path connecting u, v which is disjoint
from Gκ . Also, the unexposed degrees of u, v must satisfy

degκ ,{u,v}(u) = degκ ,{u,v}(v) = 1.

Now, if we perform BFS beginning from u in Gκ ,{u,v}, to reveal a path of length r con-
necting u to v which does not connect to the 2-core, we must encounter r − 1 consecutive
endpoints of unexposed residual degree 1, and then in the r’th iteration, we must encounter
the remaining unexposed endpoint on the vertex v. Since the fraction of endpoints of unex-
posed residual degree 1 is at WHP at most ηµ(1) + o(1), then the probability of choosing
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1

− ln ηµ(1)
+ ε

)
ln n consecutive endpoints of residual degree 1 is o(n−1). And, the probabil-

ity of choosing the remaining endpoint on v is O(n−1), so the overall probability is o(n−2).
The lemma now follows by considering all O(n2) possible pairs of endpoints and invoking
the first moment method.

We now consider small components which contain cycles. More precisely, we recall that
corollary 5.6 establishes an upper bound for the distance between any pair of vertices for
which τ v(3) < ∞. Hence, we consider vertices for which τ v(3) = ∞.

Lemma 5.10. For any v ∈ V and any ε > 0,

P[τ v(3) = ∞ ∧ ρv(3) > ε ln n] = O(n−(1+�(1))).

Proof. We first note that if τ v(3) = ∞, then we must have degκ ,v(v) = rκ
v,0 ≤ 2. Moreover,

in order for ρv(3) > ε ln n, the neighborhood size rκ
v,i must be either 1 or 2 for ε ln n

consecutive iterations, and since the probability of repeating a neighborhood size is WHP
at most ηµ(1) + o(1), we have

P[τ v(3) = ∞ ∧ ρv(3) > ε ln n] ≤ (ηµ + o(1))ε ln n−1 + O(n−1) = O(n−�(1)).

Then, in order for τ v(3) = ∞, the neighborhood size must drop to 0 due to a cross edge;
this occurs with probability O(n−1). Hence, the probability of at least ε ln n neighborhoods
of size either 1 or 2 followed by a neighborhood of size 0 is O(n−(1+�(1))).

This lemma immediately implies if τ v(3) = ∞ then with probability 1 − o(n−1) the
maximum finite distance between v and any vertex in the 2-core is less than ε ln n. It
follows that the maximum finite distance between any two such vertices is AAS less than
2ε ln n for arbitrary ε > 0.

This lemma also implies that if τ v(3) = ∞, then with probability 1−o(n−1), most ε ln n
vertices in the 2-core belong to the same connected component as v. Therefore, v cannot be
connected by a path to any vertex u with τ u(3) < ∞, since any such u will AAS belong to
the giant component as shown previously.

These observations, which are summarized in the following corollary, complete the upper
bound proof of Theorem 5.1.

Corollary 5.11. The following occur AAS simultaneously for all pairs of vertices u, v,
neither of which belong to tree components:

1. if τ u(3) = ∞ and τ v(3) = ∞ then either δ(u, v) = o(ln n) or δ(u, v) = ∞;
2. if τ u(3) < ∞ and τ v(3) = ∞ then δ(u, v) = ∞.

5.2. Lower Bound Proof for Theorem 5.1

In this section we prove the lower bound of Theorem 5.1 by showing that for any ε > 0,
there AAS exist vertices u, v ∈ V such that δ(u, v) > (�µ − ε) ln n. Although we are
ultimately interested in the limiting residual distribution µ, we first consider the diameter
of a random graph in which the limiting residual distribution is the 2-core distribution ηµ,
and then we extend this to the desired result.
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We first prove that almost all pairs of vertices in a graph with residual distribution ηµ are
connected by a path of length at least ln n

ln M1(µ)
− o(ln n).

Lemma 5.12. Let (A, V) be an endpoint partition which asymptotically satisfies assump-
tions 2.1 with limiting residual distribution ηµ, and let u, v be vertices of degree O(1). Then,
for all ε > 0

P

[
∞ > δ(u, v) >

(
1

ln M1(µ)
− ε

)
ln n

]
= 1 − o(1).

Proof. It is shown in [17,18] that the giant component of such a graph AAS contains all but
o(n) vertices, and it follows easily that any given vertex belongs to the giant component with
probability 1−o(1). Hence, for any given pair u, v ∈ V , we have P[δ(u, v) < ∞] = 1−o(1).

For the lower bound on δ(u, v), we use the upper bound on neighborhood growth from
Lemma 3.6. Specifically, since M1(ηµ) = M1(µ), then for arbitrary ε0 > 0 there exists
δ > 0 such that

P

[
t∑

i=0

rv,i > q

]
= O

(
(M1(µ) + ε0)

t

q

)

for all q < δm. Hence, by making ε0 sufficiently small, for all t ≤
(

1
ln M1(µ)

− ε
)

ln n we

deduce P
[∑t

i=0 r′
v,i = o(m)

] = 1 − o(1).
In other words, with probability 1 − o(1), the first t neighborhoods have combined size

o(m), and thus the probability that a path from v to an arbitrary vertex of degree O(1) is
exposed is also o(1). We conclude that the distance from u to v is at least t with probability
1 − o(1).

We now consider the diameter a random graph with limiting distribution ηµ but which
contains at least m1−o(1) vertices of degree 1.

Lemma 5.13. Let (A, V) be an endpoint partition which asymptotically satisfies assump-
tions 2.1 with limiting residual distribution ηµ and assume that V contains at least m1−o(1)

vertices of degree 1. Then, for any ε > 0, the diameter of G(A, V) is AAS at least(
2

− ln ηµ(1)
+ 1

ln M1(µ)
− ε

)
ln n.

Proof. Let V0 ⊆ V denote the set of vertices of degree 1, and for any v ∈ V0, let wv denote
closest vertex to v such that deg(wv) �= 2 (other than v itself). Note that wv can be found
easily by performing BFS from v until a vertex of some degree other than 2 is found.

We now choose an integer C ≥ 2 such that ηµ(C) > 0, and we let t =⌊(
1

− ln ηµ(1)
− ε0

)
ln n

⌋
for arbitrary ε0 > 0. For each v ∈ V0, we define the following

events:

• H1(v) occurs if both deg(wv) = C + 1 and δ(v, wv) = t;
• H2(v) occurs if wv �= wu for all u ∈ V0\{v};
• H(v) = H1(v) ∧ H2(v).

We claim that there AAS exist at least two vertices u, v such that H(u) and H(v) both
occur.
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Let us denote the exact fraction of endpoints of residual degree 1 by z = µ(A′ ,V ′)(1),
noting that z = ηµ(1) + o(1) by assumption, and let us denote y = ηµ(C) > 0. Since the
event H1(v) occurs if and only if, during BFS, we encounter t − 1 endpoints of residual
degree 1 followed by an endpoint of residual degree C, we have

P[H1(v)] = zt−1y(1 + o(1)).

Also, it is clear that, for any u ∈ V0\{v}, we have P[wu = wv | H1(v)] = O(m−1), and
since ηµ(0) = 0, then we must have |V0| = o(m) by assumption, and therefore P[H2(v) |
H1(v)] = 1 − o(1), and hence

P[H(v)] = P[H1(v) ∧ H2(v)] = zt−1y(1 + o(1)).

And, since |V0| = m1−o(1) and zt−1 = m�(1)−1, it follows that the expected number of vertices
for which H(v) occurs is m�(1).

For any pair of vertices u, v ∈ V0, we similarly deduce P[H(v) ∧ H(u)] = (zt−1y)2(1 +
o(1)), and by the second moment method, it follows that with probability 1−o(1) the event
H(v) occurs for ω(1) vertices v ∈ V0.

In particular, there AAS exist u, v ∈ V such that both H(u) and H(v) occur. And, any
path connecting such vertices u and v must pass through wu and wv, and therefore

δ(u, v) = δ(u, wu) + δ(wu, wv) + δ(v, wv)

= δ(wu, wv) + 2 ·
⌊(

1

− ln ηµ(1)
− ε0

)
ln n

⌋
.

Now, let F∗ denote the σ -field induced by all edges connecting v to wv for all v ∈ V0.
Note that F∗ is clearly subuniform, and since AAS we have δ(v, w) = O(ln n) for all v ∈ V0,
then |UF∗ | = m − o(m) a.a.s. Hence, for vertices u, v such that H(u) and H(v) both occur,
by lemma 5.12 we have

P

[
δ(wu, wv) >

(
1

ln M1(µ)
− ε1

)
ln n|F∗

]
= 1 − o(1)

AAS for arbitrary ε1 > 0. The lemma now follows by choosing ε0, ε1 sufficiently small.

To complete the lower bound proof of Theorem 5.1, we consider a set V0 ⊆ V such that
|V0| = �(n/ ln2 n) and such that V0 consists exclusively of vertices of degree 1. By Lemma
4.2, WHP a constant fraction of the vertices in V0 have degree 1 in the V0-augmented 2-core
Gκ ,V0 . Hence, we may apply Lemma 5.13 to Gκ ,V0 and conclude that that there AAS exist
vertices u, v ∈ V0 such that δ(u, v) > (�µ − ε) ln n for arbitrary ε > 0.

5.3. Other Cases

We now consider generalizations of Theorem 5.1 to graphs of higher minimum degree. The
proofs of the generalizations in this section are quite similar to the proof of Theorem 5.1
given above. Hence we only offer proof sketches, which describe how to adapt the original
proof to handle particular generalizations.

Recall that the term 2
− ln ηµ(1)

in the constant �µ reflects the fact that the longest shortest

path will include two long “strands” of length 1
− ln ηµ(1)

. Moreover, the length of these strands
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is determined by the fact that the probability of repeating a neighborhood size during 2-core
BFS is ηµ(1) + o(1) for a neighborhood of size 1.

The length of these “strands” changes when the minimum degree is at least 2. First,
obviously, the 2-core of a graph with minimum degree at least 2 is simply the entire graph,
so ηµ(1) = µ(1). More significantly, for graphs with minimum degree exactly 2, the
initial neighborhood size is also at least 2, so to repeat a neighborhood size, in general
we must choose two consecutive endpoints of residual degree 1. As a result, the longest
“strands” will have length 1

−2 ln µ(1)
. For graphs with minimum degree at least 3, there are

no endpoints of residual degree 1, and hence a neighborhood size can only be repeated
when cross edges occur. In this case, the “strands” have length o(ln n), and the diameter
is determined by 1

ln M1(µ)
. We now consider these two cases formally in the two theorems

stated below.
First, we consider graphs with µ(0) = 0 and µ(1) > 0. In this case, our asymptotic

assumptions are not sufficient to determine the diameter; we must also require that the
minimum degree is in fact 2, otherwise the presence of vertices of degree 1 may increase
the diameter.

Theorem 5.14. Let (A, V) asymptotically satisfy assumptions 2.1 with limiting residual
distribution µ and assume that µ(1) > 0 and µ(0) = 0, and that the minimum degree in
(A, V) is 2. Then AAS

�(G(A, V)) =
(

1

− ln µ(1)
+ 1

ln M1(µ)
+ o(1)

)
ln n.

Proof Sketch. For the upper bound, we note that the first endpoint neighborhood during
BFS contains at least two endpoints, and the probability of repeating a neighborhood size
of two is µ(1)2 + o(1). Using this observation, it is straightforward to adapt the proof of
Lemma 5.7 to show that for any v and any ε0 > 0, we have

ρv(ln ln n) <

(
1

−2 ln µ(1)
+ ε0

)
ln n

with probability 1 − o(n−1). The only minor technicality is the fact that it is possible to
encounter a situation where the neighborhood size drops to 1 due to cross-edges. However,
the probability of such an occurrence is O(n−1) for any given BFS iteration, and hence the
probability that an endpoint neighborhood of size 1 is either preceded or followed by more
than ε0 ln n nonempty neighborhoods of size less than ln ln n is o(n−1).

The lower bound proof can be modified similarly by finding a pair of vertices u, v, such

that both u and v have
(

1
−2 ln µ(1)

− ε0

)
ln n consecutive endpoint neighborhoods of size 2.

We now consider graphs with µ(0) = µ(1) = 0 and with minimum degree 3.

Theorem 5.15. Let (A, V) asymptotically satisfy assumptions 2.1 with limiting residual
distribution µ and assume that µ(1) = µ(0) = 0, and that the minimum degree in (A, V)

is at least 3. Then AAS

�(G(A, V)) =
(

1

ln M1(µ)
+ o(1)

)
ln n.
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Proof Sketch. In this case, the minimum degree is at least 3, and hence the minimum
residual degree is at least 2. It follows that, for a neighborhood of size rv,i = O(ln ln n), we
have rv,i+1 > rv,i with probability 1−o(1) and from this we can deduce ρv(ln ln n) = o(ln n)

with probability 1 − o(n−1), and the upper bound follows. And, in this situation the lower
bound follows directly from lemma 5.12.

6. COMPUTING THE DIAMETER FOR SPECIFIC DEGREE DISTRIBUTIONS

In this section, we describe a technique for computing the value of ηµ(1), which is necessary
for computing the constant

�µ = 2

− ln ηµ(1)
+ 1

ln M1(µ)

from Theorem 5.1. We then illustrate by computing the �µ for some special degree
distributions.

The probability generating function (PGF) of a distribution µ is given by

fµ(z) = E[zXµ ] =
∞∑

i=0

ziµ(i).

The PGF is a central tool in the theory of branching processes, and the use of the PGF for
analyzing algorithms on random graphs is described in [11].

In particular, for any distribution µ with M1(µ) > 1, the PGF will exhibit exactly one
fixed point in the range z ∈ [0, 1); let us denote this fixed point by zµ. A straightforward
computation, using the expression for the 2-core residual distribution ηµ given in [12],
shows that the PGF of ηµ is given by

fηµ(z) = fµ(zµ + (1 − zµ)z) − zµ

1 − zµ

. (15)

Details of this computation are given in [11]. We also note that the distribution ηµ occurs
in the theory of branching processes, where ηµ describes the number of surviving children
in a survival-conditioned branching process generated by µ [2].

From Eq. (15), we immediately deduce

ηµ(1) = f ′
ηµ

(0) = f ′
µ(zµ).

Note also that the equality of the first moments of µ and ηµ stated in Theorem 4.1 can also
be deduced using the PGF by

M(ηµ) = f ′
ηµ

(1) = f ′
µ(1) = M(µ).

Hence, in terms of the PGF, we have

�µ = 2

− ln f ′
µ(zµ)

+ 1

ln f ′
µ(1)

. (16)
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6.1. The Diameter of Gn,p

We now consider the diameter of the classical random graph Gn,p, for p = d
n , where d > 1.

It is known (e.g., [17,18]) that Gn,p for p = d
m can be studied using the configuration model

by specifying a Poisson degree distribution πd(i) = e−d di

i! . Also, the Poisson distribution
has the property that the residual distribution is the same as the original distribution, so
µπd = πd . Hence, the diameter of Gn,d/n for 1 < d = O(1) is AAS given by

�(Gn,d/n) = �πd ln n + o(ln n).

The PGF for the Poisson distribution πd has the simple expression fπd (z) = ed(z−1). The

fixed point of this function is given by zπd = −W(−de−d )

d , where the Lambert W-function
W(z) is the principal inverse of f (z) = zez. This gives the following expression for �πd :

�πd = 2

ln −W(de−d)
+ 1

ln d
. (17)

The “average distance” between vertices in the giant component of Gn,d/n is given by
ln n/ ln d = logd n. The actual diameter hence exceeds the average distance by 2 ln n

ln −W(de−d )
.

The qualitative behavior of the diameter of sparse Gn,p can be understood by examining the
plot in Fig. 1, which shows the ratio of the diameter to the average distance as a function of
the average degree.

From Eq. (17), it can be shown that �πd ln d → 3 as d → 1 and �πd ln d → 1 as
d → ∞ as the above plot suggests, and it is a simple exercise to derive increasingly
accurate asymptotic characterizations of �πd , as in

�πd = 1

ln d
+ 2

d
+ O

(
ln d

d2

)
as d → ∞

and so on.

Fig. 1. The function
�πd

1/ ln d as a function of the average degree d, which measures the ratio of the
diameter to the average distance in the random graph Gn,d/n.

Random Structures and Algorithms DOI 10.1002/rsa



THE DIAMETER OF SPARSE RANDOM GRAPHS 511

6.2. The Diameter of Power Law Graphs

We now compute the diameter of random graphs with the so-called “power-law” distribu-
tions, in which the number of vertices of degree d is proportional to d−β for a given constant
β. The degree distribution for the random power law graph model proposed by [1] is

λβ(i) = i−β

ζ(β)
,

with the zeta function ζ(β) = ∑∞
n=1 n−β . The residual distribution is therefore given by

µβ(i) = (i + 1)1−β

ζ(1 − β)
,

and the corresponding PGF is

fµβ
(z) = Li(β − 1, z)

zζ(β − 1)
,

with the polylogarithm Li(x, z) = ∑∞
n=1

zn

nx .
Note that both the average degree and the average residual degree decrease as β increases.

For β > 2, the average degree is O(1), so the graph is sparse, and for β > 3, the average
residual degree is O(1) so the “average distance” is �(ln n) In addition, the giant component
phase transition for this model occurs at the point β = 3.479 . . . , where M1(µβ) = 1, so
for β > 3.479 . . . , the graph no longer exhibits a giant component.

Hence, the results of this paper are relevant for the range 2 < β < 3.479. Moreover,
for 2 < β ≤ 3, the “average distance” is o(ln n), and therefore the leading constant for the
diameter is simply given by 2

− ln f ′
µ(zµ)

. The leading constant for the diameter of a random

power law graphs is plotted in Fig. 2 as a function of β, along with the function 2
− ln f ′

µ(zµ)

for β > 3.

Fig. 2. The leading constant �µ for the diameter of random graphs generated by the power law model
introduced in [1], as a function of β. For β < 3, the average distance is o(ln n), and therefore the
leading constant reflects only the contribution of long isolated paths. For β > 3, the dashed curve
shows the contribution of long isolated paths, given by 2

− ln f ′
µ(zµ)

, while the vertical distance between

the solid and dashed curves represents the average distance. The dotted vertical line shows the phase
transition, which occurs at β = 3.479 . . . .
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APPENDIX

Proofs of Selected Lemmas

Lemma A.1 (Lemma 2.4). Let µ be any distribution on Z
∗. Then for all ε > 0, there

exists a δ > 0 such that the following statement holds.
For any endpoint partition (A, V) satisfying ‖µ(A,V)−µ‖1 < δ, and for any subset V ′ ⊆ V

satisfying |V ′| < δ|A|, we have |A(V ′)| < ε|A|.
Proof. Choose an integer J sufficiently large that

∑
j>J µ(j) < ε/2, and partition the set

A into disjoint subsets A≥J , A<J according to residual degree:

A≥J = {a ∈ A : res(A,V)(a) ≥ J}
A<J = {a ∈ A : res(A,V)(a) < J}.

Now, let B = A(V ′), and note that since ‖µ − µ(A,V)‖1 < δ, it follows that

|A≥J |
|A| =

∑
j≥J

µ(A,V)(j) < ε/2 + δ

and therefore |B∩A≥J | ≤ (ε/2+δ)|A|. On the other hand, each endpoint in A<J has residual
degree at most J − 1, and therefore belongs to a vertex of degree at most J . Therefore, each
vertex in V ′ contributes at most J endpoints to B ∩ A<J , and thus

|B ∩ A<J | ≤ J|V ′| < Jδ|A|.
The lemma follows by choosing δ < ε

2(J+1)
.

Lemma A.2 (Lemma 2.6). For any distribution µ on Z
∗ ∪ {−1} and any ε > 0, there

exists a unique distribution µ[ε] on Z
∗ ∪ {−1} satisfying both ‖µ − µ[ε]‖1 ≤ ε and ν � µ[ε]

for all distributions ν on Z
∗ ∪ {−1} with ‖µ − ν‖1 ≤ ε.

Proof. We denote the cumulative distribution function of µ by

Fµ(j) = P[Xµ ≤ i] =
i∑

i=−1

µ(j)

for j ∈ Z
∗ ∪ {−1}. We note the function Fµ completely specifies the distribution µ. In

addition, for distributions µ, ν on Z
∗ ∪ {−1}, we have µ � ν if and only if Fµ(j) ≤ Fν(j)

for all j.
We define the truncated distribution in by its distribution function

Fµ[ε](j) = max{Fµ(j) + ε/2, 1}
for all j ∈ Z

∗ ∪ {−1}.
It is easy to verify that ‖µ−µ[ε]‖1 ≤ ε. And, for any pair of distributions µ, ν and any j,

‖µ − ν‖1 =
j∑

i=−1

|µ(i) − ν(i)| +
∞∑

i=j+1

|µ(i) − ν(i)| ≤ 2|Fν(j) − Fµ(j)|.

It follows that if ‖µ − ν‖1 ≤ ε, then Fν(j) ≤ Fµ(j) + ε/2 for all j, and hence ν � µ[ε].
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Lemma A.3 (Lemma 2.7). Let y1, . . . , yt be a random process adapted to a filtration
F0 = σ [∅], F1, . . . , Ft , and let Yt = ∑t

i=1 yi. Consider a distribution µ such that D[ys+1 |
Fs] � µ always for all 0 ≤ s ≤ t − 1. Then Yt dominates in distribution the sum of t
independent µ-distributed random variables.

Proof. By induction, it suffices to prove that for a pair of random variables y1, y2, and for
distributions µ1, µ2, if that y1 � µ1, and D[y2 | y1] � µ2 always then

y1 + y2 � Xµ1 + Xµ2

where as usual Xµ1 and Xµ2 are independent.
In this case, for any y such that P[y1 = y] > 0, and for any s, we have

P[y1 + y2 > s | y1 = y] ≥ P[Xµ2 > s − y] = 1 − Fµ2(s − y),

where as above Fµ2 denotes the cumulative distribution function. Hence,

P[y1 + y2 > s] = E[P[y1 + y2 > s | y1]] ≥ E[1 − Fµ2(s − y1)],
and since Fµ2 is nondecreasing, then

P[y1 + y2 > s] ≥ E[1 − Fµ2(s − Xµ1)] = P[Xµ1 + Xµ2 > s].

Lemma A.4 (Lemma 2.8). Consider a sequence of Bernoulli random variables z1, z2, . . . ,
adapted to a filtration F0 = σ [∅], F1, F2, . . . , and let Zt = ∑t

i=1 zi. Consider a stopping
time τ and a constant 0 < p < 1 such that

P[zt+1 = 1 | t < τ , Ft] ≥ p

always for all t ≥ 0. Then, for any t, r ≥ 0, we have

P[τ > t ∧ Zt ≤ r] ≤ P[XBint, p ≤ r].

Proof. We define a second adapted sequence of Bernoulli trials

yt =
{

zt if t ≤ τ

1 if t > τ ,

and we let Yt = ∑t
i=1 yt . Clearly, P[yt+1 = 1 | Ft] ≥ p always, and thus by lemma 2.7,

Yt � Bint,p for all t. Moreover, since Yt = Zt for t ≤ τ , then

P[τ > t ∧ Zt ≤ r] ≤ P[Yt ≤ r] ≤ P[XBint, p ≤ r].

Lemma A.5 (Lemma 2.9). Let µ be a distribution on Z
∗ ∪ {−1}, let r ∈ Z

∗ and 0 ≤
ε ≤ 1, and let Y be a Z-valued random variable such 0 ≤ Y ≤ r always and such that

Y
d
� XBinr,1−ε/2 . Then

Y∑
i=1

Xµ,i

d
�

r∑
j=1

Xµ[ε] ,j.
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Proof. We shall in fact prove the stronger statement

Y∑
i=1

(Xν,i + 1)
d
�

r∑
j=1

(Xν[ε] ,j + 1).

Note that since Xν + 1 ≥ 0 always, and since Y
d
� XBinr,1−ε/2 , we have

Y∑
i=1

(Xν,i + 1)
d
�

XBinr,1−ε/2∑
j=1

(Xν,j + 1).

It therefore suffices to prove

XBinr,1−ε/2∑
i=1

(Xν,i + 1)
d
�

r∑
j=1

(Xν[ε] ,j + 1). (18)

Now, let I1−ε/2 denote a Bernoulli random variable with P[I1−ε/2 = 1] = 1 − ε/2

and P[I1−ε/2 = 0] = ε/2. Since XBinr,1−ε/2

d= ∑r
j=1 I1−ε/2,j, where as usual the I1−ε/2,j are

independent, we can express the left hand side of the above expression as

XBinr,1−ε/2∑
i=1

(Xν,i + 1)
d=

r∑
j=1

I1−ε/2, j(Xν, j + 1). (19)

It is clear that
‖D[I1−ε/2(Xν + 1)] − D[Xν + 1]‖1 ≤ ε,

and therefore

I1−ε/2(Xν + 1)
d
� Xν[ε] + 1 (20)

by Lemma 2.6. Equation (18) now follows from (20) and (19), and the proof is complete.

Lemma A.6 (Lemma 3.5, [10, 15]). Let µ be any distribution on Z
∗ ∪ {−1}. Then for all

M < M1(µ) there exists a C > 0 such that for all n > 0,

P

[
n∑

i=1

Xµ,i ≤ Mn

]
< e−Cn.

Proof. Let us denote the cumulant generating function of the random variable −Xµ by

�(z) = ln E[e−zXµ ],
and we note that since µ has support in [−1, ∞), then �(z) is convergent for all z ≥ 0.
Also, let Y = ∑n

i=1 Xµ,i and note that ln E[e−zY] = n ln E[e−zXµ ] = n�(z).
For any z ≥ 0, by Markov’s inequality we have

P[Y ≤ Mn] = P[e−zY ≥ e−zMn] ≤ E[e−zY]ezMn = en(�(z)+zM).
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Since limz→0+ �(z)
z = �′(0) = −M1(µ), then for z0 sufficiently small we have �(z0) <

−z0M, and hence by setting C = �(z0) + z0M < 0, we conclude

P

[
n∑

i=1

Xµ,i ≤ Mn

]
= P[Y ≤ Mn] ≤ en(�(z0)+z0M) = e−Cn.

Lemma A.7 (Lemma 4.2). Consider an endpoint partition (A, V) as in Theorem 4.1 and
consider a subset W ⊆ V such that |A(W)| = o(m/ ln m). Then WHP |Aκ ,W\Aκ | = o(m).

If, in addition, |A(W)| = m�(1) then AAS a constant fraction of the endpoints in A(W)

belong to Aκ ,W .

Proof. As noted in the main text, this lemma follows almost immediately from any proof
of the 2-core result in either of [9, 12, 14]. We give a brief self-contained proof that relies
only on the statement of Theorem 4.1 and the results of [17, 18].

For the first statement, we first show that for any set W and any w ∈ W , we have

P
[|Aκ ,W | − |Aκ ,W\{w}| = O(ln n)

] = 1 − o(n−1).

The first statement of the lemma then follows by removing one vertex from W at a time.
We note that if degκ ,W (w) ≥ 2 then Aκ ,W = Aκ ,W\{w}, so we consider the case where

degκ ,W (w) ≥ 1. In this case Aκ ,W\(Aκ ,W\{w}) will contain all endpoints on the path connecting
w to the nearest vertex of any degree other than 2 in Gκ ,w. Moreover, this path can be found by
performing BFS, and the length of the path is equal to the number of consecutive endpoints
of residual degree 1. It follows by Theorem 4.1 and by the fact that Aκ ,W ⊇ Aκ that WHP, the
fraction of endpoints of residual degree 1 in Aκ ,W is 1−�(1). Hence, there exists a constant C
such that the probability choosing more than C ln n such endpoints consecutively is o(n−1).

For the second statement of the lemma, it is only necessary to compare that the size of
the 2-core computed in [9,12,14] and the size of the giant component, computed in [17,18].
Specifically, the giant component contains �(m) more endpoints and �(n) more vertices
than the 2-core. It follows that a constant fraction of the vertices (and endpoints) which are
not in the 2-core still belong to the giant component and therefore are connected by a path
to the 2-core, and hence if the set A(W) is sufficiently large (i.e., m�(1)), then by standard
means it follows easily that AAS a constant fraction of these endpoints will be connected
by a path to the 2-core, and thus belong to Aκ ,W .

Lemma A.8 (Lemma 5.2). Consider disjoint subsets S1, S2 ⊆ A such that both |S1|, |S2| >

m1/2 ln2 m. Then
P[�E(S1) ∩ S2 = ∅] = m−ω(1).

Proof. First, note that any given endpoint in S1 matches into S2 with probability at least
|S2|/m ≥ m−1/2. Now, if a particular endpoint in S1 does not match into S2, it may match
to another endpoint in S1. Nevertheless, if we sequentially expose the matches all of the
endpoints in S1, there are at least |S1|/2 chances to find a connection to S2. The probability
that no connection is found is therefore at most

(1−m−1/2)
m1/2 ln2 m

2 =
((

1 − 1

m1/2

)m1/2) ln2 m
2

=
(

1

e − o(1)

)�(ln2 m)

= m−�(ln m) = m−ω(1).
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