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Abstract popular heuristics in use for phylogenetic analysis under

The inference of evolutionary trees using approaches whldgximum Parsimony. Of these two, the TBR transformation
attempt to solve the maximum parsimony (MP) and maxX}&s been traditionally more popular, and is better understood
mum likelihood (ML) optimization problems is a standart)! terms of the properties of the “landscape” of trees it
part of much of biological data analysis. However, bofRduces [23, 18, 14, 16, 1]. _ _

problems are hard to solve: MP provably NP-hard, and " @ p-ECR movep of the edges in the given tree are
ML even harder in practice. Consequently, hi”_cnmbin@ontracted and the resulting tree is refined to give back a
heuristics are used to analyze datasets for phylogeny redd# tree. Sankoff et.al [22] define a version of the ECR
struction. Two primary topological transformations hav&ove where the contracted edges are restricted to form a
been used in the most popular heuristics: TBR (treg.lbtree (henceforth, we will call this move thesECR orp-
bisection-and-reconnection) and ECR (edge-contractiofdPtreeECRnove). In [22] an experimental comparison of
and-refinements). While most of the popular heuristics dg¢@l searches based sECR moves for different values
clusively use TBR moves to explore tree space, some recp is presented, and evaluated with regard to the quality of
methods have used ECR in conjunction with TBR and fouf@fal optima generated. Subsequently (RECR move has
significant improvements in the speed and accuracy witgpeared implicitly rather then explicitly in the local-search
which they can analyze datasets. In this paper we anaw%ristic sectorial-search[9]. In sectorial-search, a tree
ECR moves in detail, and provide results on the diameter'®ftransformed through contractions of edges subsequent
the tree space, the neigborhood intersection with TBR, stri@inements, but the edges to be contracted are chosen
tural analysis of the ECR operation, and an efficient methdgind some specific heuristic, and so the number of edges
for sampling uniformly from the 2-ECR neighborhood of §ontracted can vary during the search. Tr&CR move
tree. Our results should lead to a better understanding@§fused in this paper was defined recently in [8], where the
the impact of ECR moves on the performance of heurisfigighborhoods of trees induced by the 2-ECR move and by

searches. the TBR move were compared and were shown to have a
small intersection.
1 Introduction In this paper, we present several results about the prop-

. erties of the generg)-ECR operation and the search space

Most, if not all, of the favored approaches in biology for
ferring phylogenetic (i.e., evolutionary) trees are based upon
attempts to solve certain NP-hard optimization problems; of
these, perhaps Maximum Parsimony [7] is the most popular.
Maximum Likelihood [6] is also favored, but considerably
harder in practice to solve than Maximum Parsimony
(though not established to be NP-hard). Approximation
algorithms for Maximum Parsimony exist, but the approxi-
mation ratios are not good enough for use in molecular sys-
tematics where errors as small as 1% are unacceptable. Con-
sequently, heuristics, largely based upon hill-climbing (alsoe
called local-search), are used to search for optimal trees.
Two topological transformations on trees, TBR (for

Tree-Bisection-and-Reconnection) aqdECR, short for
p-Edge Contract and Refine [8], are the basis for the most

n-
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induced by it. In particular, we present

e asymptotically tight bounds for the diameter of tree-

space undep-ECR moves as a function gf showing
that the diameter of the search space isa'hgl?%)
(wheren is the number of leaves in the trees). This
result could be potentially useful in selecting a suitable
range of values op for performing local searches based
on p-ECR operations.

a comparison of the neighborhoods of a tree induced by
TBR andp-ECR moves, showing that their intersection
is of sizeO(min{n2P,n?p}). The neighborhoods them-
selves are much larger: there could®@q) trees in the
TBR neighborhood of a tree, while theECR neigh-
borhood contain€(nP2P) trees. These results may
help explain why the combination of the two moves im-
proves upon the use of just one, as reported in [9]. This
work generalizes the result in [8] for 2-ECR.



e an O(n) pre-processing-timeQ(1) update-time algo- rearrangement operation on a binary phylogeny is defined
rithm for sampling a tree uniformly at random from théo be p edge-contractions, which are then followed by
set of 2-ECR neighbors of a phylogenetic tree. This prefinements that give back a binary phylogeny. The tieks
tentially has applications in Markov Chain Monte CarlandT5 in Figure 1 are separated by one 2-ECR operation.
methods for inferring evolutionary histories through The Robinson-Foulds Metric The Robinson-Foulds
Bayesian analysis [15, 12, 13]. distance between two unrooted leaf-labeled (not necessarily

: , N '
a structural analysis of the-ECR operation, motivated?inary) treesT and T’, denotedRF(T,T’) is defined to
by its application in our algorithm for uniformly sam-be the length of a shortest sequences of contractions and

pling from the 2-ECR neighborhood of a tree. We dégfinements that transfornisto T’ [21]. It was also shown
fine the properties dfreducibility andcommutativitf " [21] thatRF(T, T') = [C(T) — C(T")| + |C(T") — C(T)|

p-ECR operations, and observe a surprising connection .Basgd on the above definitions we can deduce the fol-
between irreducible-ECR operations anelementary '0Wing simple fact.

bipartite gr?phs. We exploit this connection to develggg g pyarion 1. Let T and T be two unrooted binary leaf-
an O(n+ p%) algorithm to reduce g-ECR operation labeled trees on n leaves, and let p be any integer betdieen

into an equivalent sequence of irreducible ECR opergsy _ 3 Then RRT,T') < 2p if and only if T and T are
tions. : LT

one p-ECR move apart.

The rest of the paper is organized as follows: In Section Tree Bisection and Reconnection (TBR)In a TBR
2 we introduce some basic concepts necessary for theve an edge is removed frofy creating subtreesand
remaining sections. In Section 3 we present upper and lower ¢ and then a new edge is added between the midpoints of
bounds on the diameter of the search space induced lp# thgny two edges ihandT —t, creating a new tree. Throughout
ECR operation. In Section 4 we compare the neighborhogf§ operation any internal node of degree two is suppressed.
of a tree induced by th@-ECR and TBR operations. InThe TBR operation is illustrated in Figure 2.
Section 5 we present our algorithm for sampling uniformly  Nearest Neighbor Interchange (NNI) The NNI move
from the set of 2-ECR neighbors of a tree, and in Sectigfyaps one rooted subtree on one side of an internal edge
6 we carry out structural analyses of thé=CR operation ith another on the other side; note that this is equivalent to
vis-a-vis the properties of irreducibility and commutativity.Comracting the edge and then resolving the resultant tree
_ into a new binary tree. The NNI operation is thus the same
2 Basics as a 1-ECR operation, and is also a special case of the TBR
A phylogenyis an unrooted tree (rooted, if the evolutionargperation. Every sequence pfNNI moves on a tree is a
origin is known) whose leaves are labeled and represerECR move on that tree; however there gr&CR moves
extant species, and all of whose internal nodes have dedheg cannot be performed by a sequencegpdfiNI moves
at least three. Ainary phylogenys one where all internal (see, e.g., Figure 1).
nodes are of degree three. Edges thatreneincident on Neighborhoods, distances, and diameter§Ve define
leaves are calleihternal edges Non-binary phylogeniesthe neighborhood of an unrooted binary leaf-labeled Tree
are referred to as beingnresolvedat the nodes of degreeunder a tree-rearrangement move to be the set of all trees
greater than three. Any isomorphism between phylogenikat can be obtained from by one move. For each of the
must preserve the leaf labels. different tree rearrangement operations (TBR, NNI, and
ECR), we define the edit distance between two trees on the
2.1 Bipartitions A notion crucial to the study of phylo-same set of leaves as the minimum number of moves needed
genies is that of dipartition: removing an edge from to move from one tree to the other. All these distances
a leaf-labeled tred induces a bipartitiont on its set of are known to be finite (follows from [20] ), but tend to be
leaves. We denote by(T) the set{Te: e € E(T)}, which hard to compute [1, 11, 4]. We denote the edit distance
represents the set of bipartitions inducedibyThe seC(T) under thep-ECR move byd, ecr(T,T’), and the others
is known as theharacter encodingf the treeT. Buneman are similarly defined. Given a specific move (such as TBR,
proved [2] that two phylogenies are isomorphic if and only-ECR, etc.), we can define ttltameterof tree space to

if they have the same character encoding. be the maximum edit distance between any two trees. For
convenience, we will phrase the diameter of the search space
2.2 Tree Transformations as the diameter of a graph, in which the trees on a given set

Contractions and RefinementsA contraction col- of leaves constitute the vertices, and an edge exists between
lapses an edge in the tree and identifies its two end poim®) trees if they are related to each other by one move. Thus,
while a refinement expands an unresolved node into tée graph defined by the-ECR move isGp_ecr= (U, E),
nodes connected by an edge (see Figure 1).pFE€Rtree whereU is the set of unrooted leaf-labeled binary trees on
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Figure 1: Two edges are contracted in T1 to produce T3, which is then refined to produce T5; T3 and T5 are thus separated
by one 2-ECR operation.

Figure 2: Treel” is one TBR move away from.

n leaves, andu,v) € E if and only if u andv are separatedto a caterpillaC is at most% log,n. We will then apply an
by onep-ECR move. We denote the diametet@f_ecrby idea from [3] to show how any tree can be converted to a

A(Gp—ecR). complete binary tree ii2n — 10) NNI moves. This implies
that the number of2p — 2)-ECR steps needed to convert

3 Bounds on the diameter 0iGp_gcr any tree to a complete binary tree is at mée22. The

In this section we derive asymptotically tight bounds féove two results would then imply that any tree can be

s : , 2n-10
the diameter of the tree-space induced by §ECR converted t& in at mostflog,n+ 2= steps. A complete

operation (as a function op). It was shown in[16] binary tree! and the sorted caterpillar tree for the set of
that A(Gnni) € ©(nlogn), and it was shown in [1] thatleaves labeled from 1 through 7 are given in Figure 3.
A(Grgr) € ©(n). As mentioned earlier, the NNI operation i€€onverting an arbitrary complete binary tree to a sorted
just the 1-ECR operation. Hence the diameter of the 1-ECRterpillar tree The procedure is recursive, and is illustrated
operation is i@(nlogn). The diameter of thén — 3)-ECR in Figures??and??. Let B be the complete binary tree on
operation is, of course, 1. Obtaining the diameter aslemves. LeBy, By, B3, ...Bp be the subtrees @& at a depth
function of p might give us a way to pick the right range o0bf log, p. SinceB is a complete binary tree, so are subtrees
values ofp to use in a search, based on the diameter. B: throughB,. Recursively convert each of thpesubtrees to

a sorted caterpillar tree, producing the-tree(binary-cum-

3.1 Upper Bound caterpillar treelB’. The subtrees dB’ at a depth logp are
nlogny , 2n—10 now sorted caterpillar tre€3; throughCp, (see Figuré?).
THEOREM 3. 1. A(G(2p-2)-£cr) € Olpiogp) + 1 The following process is illustrated in Figur@?

Proof. We show that\(G2p_2)—ecr) < B:ggg + 22np—_120, for consider the firsp leaves in the sorted order. Theséeaves

p a power of two greater than one, and> 5. It can then can be “pulled” up to the root by contracting or{§p — 2)

be shown that\(Gzp_2)-gcR) < % + Zgjo, for all edges (this is because the caterpillar t@gthroughC, are

values ofp > 2 andn > 5, thus proving out theorem. sorted). The contraction of the¢2p — 2) edges make the
Let C be the sorted “caterpillar” tree for the set of leafoot of the tree unresolved, with each of thdeaves now

labels[n] (Figure 3). We will show that for any unrootech descendant of the root. To complete {2p —2)-ECR

binary leaf-labeled tred, &, -gcr(T,C) < %Iogpn+

2n—10

2p-2" o " TA complete binary tree is shown rooted at the edge that divides the set
We will first show that the number of2p — 2)-ECR  of leaves most evenly. The tree being rooted makes little difference to our

steps needed to convert a complete binary tre@ t@aves analysis.




Figure 3:Bis a complete rooted binary tree on seven lea@as.the sorted caterpillar tree for the same set of leaves.

operation, we have to refine the root, and when we refine the Our method will apply gp-sECR move by contracting
root thep leaves can be transferred to “above” (see Figueelges starting with the edges in the subtree rooted at the
??) the root in sorted order. The nef@p — 2)-ECR move vertexv on the spine that is adjacent to the last vertex that
will transfer the nextp leaves in the sorted order to abovis a root of one of then; g-spokes already constructed
the root. In this manner we can obtainCafrom B’ in % (if np = 0 then this is the first vertex on the spine). The
(2p — 2)-ECR moves. This gives us the following recursivéesulting contracted subtr&on p internal edges will have
equation for the number of moves required to conrt p+ 3 external edges incident on it, of which two are on the
to C. Let S(n) denote the number o2p — 2)-ECR steps spine andp + 1 are within subtrees rooted at one or more
required to convert am-leaf complete binary tree to thevertices on the spine. I% can be refined to form a new

corresponding sorted caterpillar tree. Then, successival-spoke, then the potential increases by at least
noon one. Otherwise, at leastexternal edges end in subtrees,
S(n) < pS=)+ = each of which contain at least two leaves, which implies that
P Scan be refined into two subtrees, each containing at tpast
Solving the recurrence yields $n) < %Iogpn. leaves. Further, sincgcould not be refined into g-spoke
Converting any tree to a complete binary tree inO(n/p) the subtree rooted atwas not of size betweeq and 2y,
p-sECR moves so one of the two subtrees formed is a new one, resulting

In a caterpillar we define thend leavess the two pairs in an increase in potential of at least one. Heilicean be
of leaves at each end of the caterpillar; the remaining leadnsformed into @-caterpillar inO(n/p) p-sECR moves.
will be calledinternal leaves The path connecting the two By reversing the above strategy tigecaterpillar can
pairs of end leaves is thepineof the caterpillar. We definebe transformed into any binary tree in the same number
a g-caterpillar as a caterpillar in which each internal legf moves, hence any binary tree can be transformed into a
is replaced by aj-spoke which is a caterpillar withg— 2 complete binary tree i@(n/p) p-sECR moves. O
internal leaves and one pair of end leaves (see figure). The
very last spoke (one that is adjacent to the parent of one of the nlog, n—o(nlogn
two end pairs of leaves) isgt-spoke forq’ = n—4— |n/q]. Hfeorema. A(Gp-ecr) 2 8pglggz pJ(rO(%))’ forall p> 1.

Let T be an unrooted binary tree. Any binary treBroof. Let T be an unrooted binary tree orlabeled leaves,
contains two pairs of leaves where each pair has a comneemd letT’ be a tree such that, ecr(T,T') = 1. We first
parent. We fix two such pairs of leavesTinand we call the show thatdnn(T,T’) < 2plog, p+ O(p), for p
unique path connecting their paremsand p; as its spine. Without loss of generality, assume th@afT) —C(T')| =
We fix one of the parents, say, and relative tqp; we define p, and letX be thep-ECR operation that transforristo T'.
the potential®(T) = 2-n; + ny, wheren; is the number of If the edges corresponding to bipartitions@T) — C(T’)
succ essivg-spokes inTl starting with the vertex adjacent tdorm a subtree of, sayS, let the corresponding subtree in
p1in T, andny is the number of successive subtrees of siZé beS. ThenSandS may be considered to form a tree with
at leasi rooted at vertices following the initiah g-spokes. p+ 3 leaves each, arffican be transformed int8 using at

Consider the transformation of an arbitrary binary ffeemost 2log, p+ O(p) NNI moves, as was shown in [16].
into ag-caterpillar usingd>-sECR moves, where= | p/2]. If the edges corresponding to bipartitions G{T) —
The initial potential ofT is non-negative and final potentiaC(T') form a forest ofk trees, then it can be shown that
of the transformed tree is-3n/q]. We now describe athere exist som& ECR operations(; throughX, that act
method that transform§ into a g-caterpillar usingp-ECR on disjoint set of bipartitions such that is equivalent to
moves, which increases the potential of the transformed tpsaforming thek operationsX; through Xy one after the
in each step by at least one. Thus this method transfdrmsther (see Corollary 6.3). LeX; be ap-ECR operation.
into ag-caterpilla r inO(n/p) moves. We havez!‘=1 pi = p. LetT' be the tree obtained by the



application ofX; on T'~1 (thus, T = T% andT’ = TX). Then, (the first edge, the last edge and the edge that is broken for

Snuni(TH1, T < 2pilog, pi + O(pi). Henceduni(T,T') < the TBR move) must be i6(T) — C(T’). Hence, each such

22!‘11 pilogpi + O(p). The summation on the right-handl’ can be specified by three edges that lie on a path of length

side is less thaplog, p for all p > 1 andk > 1, and hence at most(p+ 3). Now, the number of paths of length at most

onni (T, T') < 2plog, p+ O(p), for p> 1. (p+ 3) is at most{2n — 3)2P*3, This is because the number
From the results in [16, 1JA\(Gnni) > ”'0912“+(m°9“). of paths of length exactlp + 3 is at mosf(2n— 3)2P*+2: fix

This, together with the fact that aqrECR move can be one of the terminal edges of the path, there are at nfyst 2

emulated by at mostplog, p+ O(p) NNI moves, gives us paths with a given terminal edge, since the tree is binary. But
the desired result. in this manner, each path will be counted at least twice, and

] hence there are at mggn — 3)2P*2 paths of length exactly
(p+ 3). Summing over alp we get that the number of paths
4 Comparison of p-ECR and TBR neighborhoods of length at mos{p + 3) is at most(2n — 3)2°P+3,

Recall that the neighborhood of a tr@eunder a tree rear-  Also, each path of length at mogp + 3) corresponds

rangement operation is the set of all trees that can be obtaitfe@t most(p+ 1) trees that are i, since there arép+1)

by performing one such operation @n In this section we Ways of choosing the edge that is broken for the TBR move.

first establish bounds on the size of {MECR neighborhood Hence we have tha§ < (2n—3)2P*3(p+1).

of a tree om leaves, and then show that size of the intersec- Moreover, the total number of paths Tis (2n - 3)

tion of thep-ECR neighborhood and the TBR neighborhodtPr every tree inS there is a path inf, and each path

of a tree is small. We will denote the neighborhood of a tré@ntributes at mosp + 1 trees toS. Hence|S| < (2n—

T under, say, the TBR operation, Bggr(T). It is known 3)*(P+1).

that|1er(T)| = ©(n%) [4]. Thus, we have that|lp_ecr(T) N Mer(T)| <
min{(2n—3)(p+1)2°"3,(2n—3)*(p+1)}). O

LEMMA 4.1. Let T be an unrooted binary leaf-labeled tree

on n leaves. ThergP_, ("3)2¢ < M p_ecr(T)| < (B)(p+ 5 Uniform Sampling from the set of 2-ECR Neighbors

3)!1, where(p+ 3)!! is the product of all odd numbers up tolrhe use of MCMC (Markov Chain Monte Carlo) algorithms

p+3. in phylogeny reconstruction is of increasing interest in
the research and user community [13, 12, 15]. In this

Proof. For any treeT’ in I'p ecr(T), RF(T,T') € section, therefore, we address the problem of selecting a

{2,4,6,...,2p}. We will show that the number of tredS  tree uniformly at random from the set of 2-ECR neighbors

in Mp_ecr(T) such thalRF(T,T') = 2kis at least("%)2, of a tree. Our algorithm takeS(1) time, after a one-time

and that will give us the result that we desire. pre-processing step that cofgn) time.

Let k be such that K k < (n—3). For every way of  \ve partition the set of 2-ECR neighbors Bfinto two
choosingk edges iriT, there are at least@lifferentk-ECR subsetsT i (T) andS= Mo_gcr(T) — Fni(T). The size
moves that can be performed dn for each chosen edgeof the former set is — 6, and the size of the latter set

contract the edge and refine the resulting unresolved ne@pends on the structure ®f The outline of our algorithm
one of at least two ways that results in the alteration of theas follows:

bipartition corresponding to the edge. Thus, there are at least
("3 2 treesT' such thatRF(T,T’) = 2k. This completes 1. Compute, irD(n) time,s= |S.

our proof of the lower bound. For the upper bound, observey Generatay at random from a uniform distribution on
that for each of th¢[) ways of selecting edges to contract, [0,1].

2

there are at mogip+ 3)!! neighbors (p+ 3)!! is the number -6 :
of unrooted leaf-labeled binary trees pa- 3 leaves). This 3. Irfq S(TZ';*G*S’ generate a tree uniformly at random from
completes our proof. O NN

4. Ifg> Zﬁﬂgis, generate a tree uniformly at random from

S

THEOREM4.1. Let T be an unrooted binary leaf-labeled ) )
tree on n leaves. Then, for any |pp_ecr(T) NT1eR(T)| < Sampling from Fnni(T): Step (3) is easy and can be
min{(2n—3)(p+ 1)2P*3 (2n—3)2(p+1)}). performed inO(1) time, given the set of internal edgesTof

We choose an internal edgeiniformly at random, and pick
Proof. Let S=T,_gcr(T)NT1er(T), and letT' be inS.  each of the two trees that can be obtained by contracting and
Then, |C(T) —C(T')| < p, sinceT’ € I'p_ecr(T). More- refininge with probability 1/2. It can be verified that in this
over, sinceT’ € Mrgr(T), the edges i corresponding to manner we do sample uniformly at random froigay (T).
bipartitionsinC(T) —C(T') all must lie on a path, and the bi- ~ Sampling from S This is a complicated by the fact that
partitions corresponding to all edges on the path except thsaenpling two edges; ande, one after the other without re-



placement, and then sampling uniformly at random from the Every 2-ECR neighbor is generated with a probability
1

set of neighbors obtained by performing a 2-ECR move iof 5—5+ by our algorithm. The running time i®(n),
volving edgese; ande, does not induce a uniform distributhe time taken to to calculate the number of pairs of adjacent
tion onS. This is due to the following reason: whenand internal edges iff. However, note that once a new a tree is
e are adjacent, there are 14 neighbors, while there are ogénerated, this number can be calculated for the new tree in
8 whene; ande; are not adjacent. 0O(1) time, since a 2-ECR move makes only local changes to
Hence, we adopt the following strategy: we arbitrarilghe tree structure. Hence, we have the following:
order the internal edges i, and letindexe) denote the
position of the edge in such an order. THEOREMS5.1. We can generate a tree uniformly at random
from the set 0R-ECR neighbors of an unrooted leaf-labeled
e We letY be the set of neighbors that can be obtaingghary tree on n leaves in @) time, after an @n) pre-
from T through a sequence of two 1-ECR MoVegyocessing step.

the first one involving edge; and the next involving
€, and such thaindexe;) < indexe;). Every pair At first sight, our algorithm seems to be a series of case
of internal edges (whether adjacent or non-adjaceghalyses. However, the analyses reveals some interesting
contributes four trees té. We let|Y| =y. properties of structure of 2-ECR moves: there are some 2-
o LetX =S—Y, and let|X| = x. The set of neighbors ECR operations are naeducibleto two successive NNI
contains the following two classes of trees: moves, and among those thate thus reducible, some
involve successive NNI moves that acemmutable(i.e,

— Trees that cannot be obtained by a sequence of tiose that can be reordered), and the rest involve successive
1-ECR moves. There are two such trees for evamyoves that are not commutable. We believe that these
pair of adjacent internal edges. concepts (and generalizations of them) will be essential in

— Trees that are obtained by two 1-ECR moves idesigning an algorithm that samples efficiently from the set
volving twoadjacentnternal edges; firstande, Of p-ECR neighbors of a tree fgr > 2. In the next section
next, such thaindexe;) > indexe;). Every pair We study reducibility and commutability gi-ECR moves,
of adjacent internal edges contributes four su@d show that these concepts generalize to gepe¢habugh
trees toX. Note that two 1-ECR operations pera surprising connection to elementary bipartite graphs.
formed in the reverse order on two non-adjacent
edges do not generate any new trees, since fhe Structural Analyses of the p-ECR Operation
order does not matter when the edges are nan-this section we will show how to construct, for any two
adjacent. given trees, a sequence elementaryor irreducible ECR

. operations that transforms one tree to another, where an ECR
Note thatll'>_ecr(T)| = 2n — 6+ x+y. We are now in operation is -ECR operation for some (unspecifigul)
a posmon_ to describe our al_gorlthm. We first introduce some terminology and notation. Let
Algorithm to sample uniformly from S T be an unrooted leaf-labeled tree. deandY be two ECR

1. Calculatexandy. This can be done i®(n) time sincex  OPerations of. We will say X equalsY if performingX on

depends only on the number of pairs of adjacent interfal€sults in the same tree as the one obtained by performing
edges ifT, andy depends only on. Y onT. FortwoECRsequenceX andY, we will letY o X be

the following sequence of twBCRoperationsX onT, fol-

2. Generatey at random from a uniform distribution onlowed byY on the tree that results from performiXgonT.
0,1].
0.1 DEFINITION 1. Reducible p-ECR operation

3. if < &, then sample a pair of adjacentinternal edges | et T be an unrooted leaf-labeled tree. Let X be a p-
e1 andey, and then sample a tree uniformly at randoBCR operation on T. X is said to be reducible if there exists
from the set of nEighborS ContribUtEdXOby a 2-ECR a pl_ECR operation a(and a Q'ECR Operation lsuch that
move involvinge; ande; (this involves sampling onex — x, o X; and p= p1 + p».
tree from a set of six trees).

4. if > g5, then sample two internal edges and e, The concepts of reducibility and irreducibility of ECR
one after the other without replacement from the set @berations are illustrated in Figure 4.
internal edges. Then sample a tree uniformly at random The problem that we address in this section is this:
from the set of neighbors contributedYoby a 2-ECR given two binary tree§ and T’ such thatRF(T,T’) = 2p,
move involvinge; ande, (this involves sampling onedecompose th@-ECR operatiorX that separates andT’
tree from a set of four trees). such that,
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Figure 4: Trees T1 and T2 are one irreducible 2-ECR move away, and trees T1 and T3 are one reducible 2-ECR move away.

e X = X¢oX¢ 10...0Xy, with X; being an irreducible;- An elementary bipartite graph is one where every edge
ECR operation, and is in some perfect matching [17]. SuppdsendT’ are two
K trees such thalp_ecr(T,T’) = 1, then, we show that the-

* 2imPi=p ECR move that separates them is irreducible if and only if the

incompatibility graph induced by the two trees is elementary.

6.1 Irreducibility and Elementary Bipartite Graphs We start with the following lemma.

We begin with a definition:

DEFINITION 2. Bipartition (or edge) compatibility: LEMMA 6.2. Let G be the incompatibility graph between
A set of bipartitions B is said to beompatibleif and two unrooted binary leaf-labeled trees. Then G has a perfect
only if BC C(T) for some tree T. matching.

LEMMA 6.1. (FROM BUNEMAN [2]) A set of bipartitions Proof. We will show that the incompatibility grap8 satis-
is compatible iff any two bipartitions in the set are ardies the following two properties: (1) For every subSetV,
pairwise compatible. Furthermore, two bipartitions#A; :  |(S)| > |9, and (2) For every subs&of U, | (R)| > |R|.
Az and B= B; : B, are compatible iff at least one of the fouOur result will then follow from Hall's matching theorem
sets ANB1, A1N By, A,N By and AN B3 is empty. [10]. Letgq=|C(T)—C(T")| =|C(T") —C(T)|. We first
show that (1) holds. Le$ be a subset 0f. Note then that

Observe _that ther_e can not be_ more than-3 edges in tpe set of bipartitions = (U — [ (S)) USU (C(T) NC(T")
a phylogenetic tree with leaves, since there are no |nterna|1$ compatible. Now ifir (S)| < |3, then the seA contains
nodes of degree two (through out the rest of the paper we P ' '

S ore than & — 3 bipartitions that are pairwise compatible,
;Josi;aor\:\/itr?g(.jenote the number of leaves). This gives us t@:ence|(u ~1(S)US > qand|C(T)NC(T")| = 2n—3—q,

But this is a contradiction by Corollary 6.1. Similarly, we
COROLLARY 6.1. The maximum cardinality of any set ofan show that (2) holds. O
compatible bipartitions of a set of n elementis- 3.

We now define a graph, which we call tmeompatibil- THEorEM6.1. Let X be a p-ECR move that can be carried
ity graph, defined by two leaf-labeled trees. out on an unrooted leaf-labeled binary tree T. LetHe
DEFINITION 3. Incompatibility Graph the result of carrying out X on T. Let & (U,V,E) be

Let T and T be two unrooted leaf-labeled trees. Thie incompatibility graph between T and.TThen, X is
incompatibility graph G between T and,TG, is defined reducible if and only if there is a proper subset S of V such
thus: G is a bipartite graph, and & (U,V,E) where U= that|l'(S)| =S.

C(T)—C(T"),V=C(T")—C(T) 2, and(u,v) € E ifand only Proof

if u and v are incompatible. Suppose thaX is reducible and is equivalent to

X2 0 X;. Then the set of bipartitionS that results from the
. L L. S| —
ZNote that the definition here is almost the same as the definition r@flnelrfnentt F;Ease Fxl StaltISfIiS the (;:.mdlz.l?n th.glft(h )|t .

the incompatibility graph appearing in [19], whelle andV were C(T) | : no EI€ IS al Ieast one iparttion | auis

andC(T') respectively. Our definition has the effect of removing isolatefiCOMpatible with a.bipartit.ion iV —T(S). But this makes
vertices from the incompatibility graph. carrying outX; on T impossible, and hend§ =T (S).



Conversely, if there is a seb C V that satisfies corresponding elementary subgraphs@fas follows: if
|§ = |I'(9)], then the contraction of the bipartitionsiifS) (u,v) € E such thau € § andv € Tj, theni < j (assuming
and the creation of bipartitions i can be “scheduled” without loss of generality that all edges were oriented
before the other contractions and refinement¥,imnd that towardsV while creatingH from G). Hence, if we let
makesX reducible. O the induced subgrapkS,T;) stand for thei'!” ECR op-
eration X;, it is assured thal; can be performed once
operationsX; throughX;_1 have been performed. This is
COROLLARY 6.2. A p-ECR move is irreducible if and onlybecause the incompatibilities of the bipartitions created
if the corresponding incompatibility graph is elementary. by X; (i.e, those inT;) are with bipartitions in components
) o Sj with j <i, and these bipartitions would have been
Using the above characterization, we now show that Wgminated by the ECR moves frod, throughX_1. The

can check efficiently if -ECR move is irreducible. It also gytcome of the sequence of operatidashroughXy is X. O
means that we can compute, for any giyeECR move, an

equivalent sequence of irreducible ECR operations.
6.2 Commutablep-ECR moves
THEOREM®G6.2. Let X be a p-ECR move that can be per-
formed on an unrooted binary leaf-labeled tree on n leavgSerINITION 4. A p-ECR operation X is separable if and
Then, in @n+ p?) time, we can determine if X is reducibleonly if there are two ECR moves Xnd X% such that X=
and we can compute a sequence of ECR movéesdugh X X, 0 X; = X 0 Xo. The ECR movespéand X% are then said
(for some k), with each;Xeing an irreducible pPECR move to be commutable.
for 1 <i <k, such that X= Xco...0X; andyX_; pi = p.
Suppose for an ECR movg the corresponding incom-

Proof. Let G = (U,V,E) be the incompatibility graph patibility graph is not connected. Thitis reducible is im-
corresponding to th@-ECR moveX. The graphG can be mediate. However, in the following lemma (proof omitted)
constructed irO(n+ p?) time as follows: The sets) and we observe thaX is in fact separable.
V can be computed i@(n) time, while calculating thé&rF
distance betweef and T’ [5] OnceU andV have been LEMMA 6.3. Let X be an ECR move executable on an
determinedE can be calculated i®(n+ p?) time, since for unrooted leaf-labeled binary tree. The incompatibility graph
each bipartition inJ, we can identify all bipartitions itv  induced by X is not connected if and only if X is separable.
incompatible with it inO(p) time. o N

Once we havé, we use the method in [17] (Section4.3)  We now present a necessary and _sufﬁuent con_dltlon for
to decomposeS into maximal vertex-disjoint component§eparab'|!t¥ _ofX that can be verified without computing the
such that the subgraph & induced by each componentncompatibility graph.
is elementary, as follows: we compute a perfect matchin
M in G (which is guaranteed to exist by Lemma 6.2) anq%ROLLARY 6.3. Let X be a p-ECR move that can be
then compute an associated directed graph, Kay The carried out on an unrooted leaf-labeled tree T. Léthe

graphH is computed fronG by first orienting all the edgestN® result of carrying out X on T. Then X is separable if
uniformly towards eithet) or V, and then identifying the and only if the edges corresponding to the bipartitions in
vertices matched by. C(T) —C(T’) do not form a connected subtree.

The directed grapHi is strongly connected if and OnIyProof LetU = C

! — n _
if Gis elementary. This is due to the following reason: eachb S, andS, (Tzﬁg Cn(z ) an?w\:h_t(ir(]-r ) d C(TE)B.l Lﬁé
edge ofG notinM is in some perfect matching if and only jfoUbsets a partiion®’, such that the edges i a

the corresponding directed edgeHnis in a directed cycle. S form vertex-disjoint components ih. LetT; andT, form

Hence G is elementary if and only if every edge nothhis the corresponding partition &. Now letG = (U,V, E) be
! Y y I every €dg .. the incompatibility graph betweeh andT’. In G, it can be
also in a perfect matching, be definition. Every edggliis

in a cycle if and only ifH is strongly connected. This proves?_ei?gzmh_rere can not be any edges between &irand
our claim. ’ To rovelt.he other direction, we prove the following: let
If G is not elementary, thetd can be decomposed b - Wep 9:

into strongly connected components, day throughCy, us, Uz be tW(.) blparfcmons inJ, correspondlng_to tv_v_o edges
. . ande; adjacentinl. Letvs andv, be two bipartitions in

with componentC; representing an elementary subgraR(':frSuch that

of G induced by the sets of verticé§, Ti), with § Cc U ’

and Ty C V. Without loss of generality, le€y,Cy,...,Cy o (up,va) €E,

be the topologically sorted order of the strongly connected

components. Then, this represents an ordering of the (up,v2) € E,



e (u;,vp) ZE, and 6.3 Existence of Irreducible p-ECR moves In this sec-
tion we establish that one can construct an irredu@HECR
o (u2,v1) ZE. move for every set op connected edges in any tree. Our
construction relies on the concept of adge-minimal ele-
We show thatuy, up, vi and v, can be reached from ongyeniary pipartite graphi.e., an elementary bipartite graph

anotherinG. This would imply that if the edges ld form a i, \yhich the removal of any single edge makes the graph
single subtree i, thenG is connected. non-elementary.

We now prove the above claim. La&{ be the biparti-
tionP:P"and letu, bePUY : P’ Y, for someY C P’ (this  Theorem6.3. Let T be any unrooted binary tree with at
entails no loss of generality sincg andu; are compatible). jeast p internal edges. Then there is a treksTich that
Similarly, letvy andv, beQ: Q" andQUZ: Q' —Z respec- RE(T T') = 2p, and the incompatibility graph between T
tively, for someZ C Q. Sinceu; andv; are incompatible, 3nd T is elementary.
we haveP N (Q' — Z) = 0 (it can be verified that the other
three pairwise intersection cannot be empty) from Lemmggof.

6.1. Similarly, we hav@n (P’ —Y) = 0. The proof is by explicit construction. Given aily we
Now, since the tre€l is binary, and the edges; show how to construct suchTd.
ande; are adjacent, we have th¥t: Y’ (whereY’ is the We will call a pair of leaves that are siblings as forming a

complement oY) is a bipartition inT, and the correspondingcherry. Let T havek cherries(x1,y1),.. ., (X,Yk). We create

edge is adjacent to botty ande;. We show thaty : Y' T'thus:T’isidentical toT as far as tree topology (neglecting

is incompatible with bothv; and v2, thus showing that |eaf-labels) is concerned. Hend,also contain& cherries.

U1, Up, V1, V2 are reachable from each other. In T" we let (x1,Yi), (X2,¥1); (X3,¥2),---, (%, Yk-1) be the
Now, QN (P'=Y) = 0 and QN P" # 0 implies that cherries. For an illustration of this construction, see Figure

QNP CY. Now, we show tha¥ ¢ QN P’. Suppose, to the g,

contrary, thay C QNP'. Then,Y C Q. This, combined with We claim thaflT andT’ are separated by one irreducible

the fact that(Q —Z) C P, means thatQ' - Z) C (P ~Y). p-ECR move. We will prove this by showing that the

However, this contradictQ’ —Z) N (PUY) # 0, and hence incompatibility graph ofl andT’ is elementary.

Y ZQNP'. Thus, we hav¢QNP’) CY. We now showthat  we omit detailed proof and just present an outline here.

Y 1 Y"is incompatible with bottv; andv,, thus completing |et G = (U,V,E) be the incompatibility graph whetg =

our proof. C(T) —C(T') andV = C(T) — C(T'). Then,

1. YNQ # 0, since as we already sa@NP' C Y. Also, 1. Itcan be shown that)| = |V| = p.
Y € Q. Hence,YNQ # 0. Moreover,Q Z Y (since
Q¢Z P'), and henc&®NY’ # 0. Similarly, @ NY’ # 0. 2. Observe that our transformation just permutes the

Thus, we have that : Y' is incompatible withv;. leaves. For each bipartitionin U there is a unique
bipartition in V that is obtained by just permuting the
2. YN(QUZ) #0, sinceYNQ # 0. Now, since(Q — leaves intaccording to our transformation. Theamis
ZYNP=0and(Q —2Z)Nn(PUY) # 0, we haveY N incompatible withrt.

(Q —Z) #0. This means that' N (QUZ) # 0 and ) ) ) .
Y'N(Q - Z) # 0 as well. Thus, we have that: Y' is 3. There is a permutation of the vertices id,

incompatible withvs. T4, TR, ..., T, Such that _ o
T4, T, TR, Th, ..., T, TG, T4 is a (Hamiltonian) cycle
This completes our proof. 0O in G. See Figure 5 for an example on how to obtain this
permutation.

Corollary 6.3 can be generalized as follows: ) ) ] )
The presence of a Hamiltonian cycle@implies that

COROLLARY 6.4. Let T be an unrooted leaf-labeled treeC IS €lementary, since the cycle by itself is a minimally

Let X be a p-ECR operation on T that would result in glementary bipartite graph dh andV. This completes our
tree T. Suppose the edges corresponding to bipartitions RO O

C(T) —C(T') constitute a forest with k trees. There exist k .
ECR operations X %o, . . . % such that X= X0 X¢_10...0 Acknowledgement.We thank the referee for pointing us to

X1. reference [22].

Proof. By repeated application of Corollary 6.3. O References
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Figure 5: Tree§ andT' are separated by one irreducible 5-ECR move. A minimally elementary subgraph (a Hamiltonian
cycle) of the incompatibility graph of andT' is shown alongside. Other edges in the graph have been omitted for the sake
of clarity.
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