
External-Memory Exact and Approximate All-Pairs Shortest-Paths in 
Undirected Graphs * 

R e z a u l  A l a m  C h o w d h u r y  V i j a y a  R a m a c h a n d r a n  

A b s t r a c t  

We present several new external-memory algorithms 
for finding all-pairs shortest paths in a V-node, E- 
edge undirected graph. For all-pairs shortest paths and 
diameter in unweighted undirected graphs we present 
cache-oblivious algorithnls with O(V. ~ log.~ ~)  I/Os, 
where B is the block-size and M is the size of internal 
memory. For weighted tmdirected graphs we present 
a cache-aware APSP algorithm that  performs O(V. 

( V / ~  + ~ log ~))  I/Os. We also present efficient cache- 

aware algorithms that  find paths between all pairs of 
vertices in an unweighted graph with lengths within a 
small additive constant of the shortest path length. 

All of our results improve earlier results known for 
these problems. For approximate APSP we provide 
the first nontrivial results. Our diameter result uses 
C9(V + E) extra space, and all of our other algorithms 
use O(V 2) space. 

1 I n t r o d u c t i o n  

1.1 T h e  A P S P  P r o b l e m .  The all-pairs shortest 
paths (APSP) problem is one of the nlost flmdamen- 
tal and important combinatorial optimization problems 
fl'om both a theoretical and a practical point of view. 
Given a (directed or undirected) graph G with vertex 
set V[G], edge set E[G], and a non-negative real-valued 
weight function w over E[G], the APSP problem seeks 
to find a path of mininmm total edge-weight between 
every pair of vertices in V[G]. For any pair of vertices 
u ,v  C V, the path from u to v having the minimmn 
total edge-weight is called the shortest path fl'om u to v, 
and the sum of all edge-weights along that  path is the 
shortest distance from u to v. The diameter of G is the 
longest shortest distance between any pair of vertices in 
G. For unweighted graphs the APSP problem is also 
called the all-pairs breadth-first-search (AP-BFS) prob- 
lem. By V and E we denote the size of V[G] and E[G], 
respectively. 

Considerable research has been devoted to devel- 
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oping efficient internal-memory approximate and exact 
APSP algorithms [17]. All of these algorithms, however, 
perform poorly on large data sets when data needs to 
be swapped between the faster internal n~emory and the 
slower extemzal memory. Since most real world applica- 
tions work with huge data  sets, the large number of I /O 
operations performed by these algorithms becomes a 
bottleneck which necessitates the design of I/O-efficient 
APSP algorithms. 

1.2 C a c h e - A w a r e  A l g o r i t h m s .  The two-level I/O 
model (or cache-aware model) was introduced in [1]. 
This model consists of a memory hierarchy with an 
internal memory of size M-, and an arbitrarily large 
external memory partitioned into blocks of size B. 
The I/O complexity of an algorithm in this model is 
measured in terms of the number of blocks transferred 
between these two levels. Two basic I /O bounds are 
known for this model: to read N contiguous data items 
from the disk one needs scan(N) = 0 ( ~ )  I /Os and to 
sort N items, sort(N) = O ( ~  log.~ ~ )  I /Os  [1]. 

A straight-forward method of computing AP-BFS 
(or APSP) is to simply run a BFS (or single source 
shortest path (SSSP) algorithm, respectively) from each 
of the V vertices of the graph. External BFS on 
an unweighted undirected graph can be solved using 
either (V + sort(E)) I /Os  [15] or O(X/'~-/B + sort(E)) 
I/Os [la]. External SSSP on an undirected graph 
with general non-negative edge-weights is computed in 
O(V+ ~ log ~7) I /Os  using the cache-aware Buffer Heap 
in [8]. There are also some results known for external 
SSSP on undirected graphs with restricted edge-weights 
[14]. The I /O complexity of external AP-BFS (or 
APSP) is obtained by multiplying the I /O complexity 
of external BFS (or SSSP) by V. 

Recently Arge et al. [6] proposed an O(V. sort(E)) 
I /O cache-aware algorithm for AP-BFS on undirected 
graphs. Their algorithm works by clustering nearby 
vertices in the graph, and running concurrent BFS from 
all vertices of the same cluster. This same algorithm can 
be used to compute unweighted dianmter of the graph in 
the same I /O  bound and O ( V ~ )  additional space. 
They also present another algorithm for computing the 
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Approximate unweighted APSP 
Results Unweighted APSP i with additive error 2(k - 1) Weighted APSP 

(for integer k C [2, log V]) 
O( # V 2 log½ V v/-v-E O(V.sort(E)) I/Os, [6] k 2 1 ~! 1 O(V'(v-~-l°gV+s°rt(E))) 

Known O(Vx/-V-E-B) extra space + ~ V  - ~ ; E ~  log 1-~- Vloglog YE ~)  for E < ~ [61 
] (trivial using [10, 14]) 

cache-ob l iv ious ,  i 1 2 -  . 2 ,  ,.2, 2 1. V B  New O(~T-V a~Eak logg(1-r.)  V O(V.(~/L~+sort(E))) forE_< 
O(V. sort(E)) 1/Os, 

(this paper) O(V) extra space ] k 2 -±  * + ~ V  k Er" l o g l - ~  • V) O(V. ( V / ~ +  ~ log ~ ) )  always 
L 

Table  1: I / O  bounds  for A P S P  problems on undi rec ted  graphs.  (V = [V[G]], E = ]E[G][, and  all a lgor i thms are 
cache-aware unless expl ic i t ly  specified) 

unweighted diameter of sparse graphs (E = O(V)) in 
2 1 O(sort(kV BY)) I /Os and O(kV) space for any integer 

k, 3 < k < logB.  
For undirected graphs with general non-negative 

edge-weights Arge et al. [6] proposed an APSP algo- 
ri thm requiring O(V .  (v / (VE/B)  • logV + sort(E))) 
I /Os,  whenever E _< VB/IogV. They use a prior- 
ity queue structure called the Multi-Tournament-Tree 
which is created by bundling together a number of I /O- 
efficient Tournament Trees [12]. This reduces unstruc- 
tured accesses to adjacency lists at the expense of in- 
creasing the cost of each priority queue operation. 

1.3 T h e  C a c h e - O b l i v i o u s  M o d e l .  The main dis- 
advantage of the two-level I /O  model is that  algorithms 
often crucially depend on the knowledge of the param- 
eters of two particular levels of the memory hierarchy 
and thus do not adapt well when the parameters change. 
In order to remove this inflexibility Frigo et al. intro- 
duced the cache-oblivious model [11]. As before, this 
model consists of a two-level memory hierarchy, but al- 
gorithms are designed and analyzed without using the 
parameters M and B in the algorithm description, and 
it is assumed that  an optimal cache-replacement strat- 
egy is used. 

No non-trivial algorithm is known for the AP-BFS 
and the APSP problems in the cache-oblivious model 
except for the method of running single BFS and SSSP, 
respectively, fi'om each of the V vertices. In this model, 
BFS on an undirected graph can be performed using 
O( V ~  + (E /B) .  logV + MST(E))  I/Os [7], and 
SSSP on an undirected graph with non-negative real- 

E E valued edge-weights can be solved in O(V + ~ log ~7) 
I /Os  using the cache-oblivious Buffer Heap [8] or Bucket 
Heap [7]. 

1.4 O u r  R e s u l t s .  In section 2 we present a simple 
cache-oblivious algorithm for computing AP-BFS on 
unweighted undirected graphs in O(V • sort(E)) I /Os,  
matching the I /O  complexity of its cache-aware coun- 
terpart  [6]. We use this algorithm to comlmte the di- 

ameter of an unweighted undirected graph in tile same 
I /O  bound and O(V + E) space. Our cache-oblivious 
algorithm is arguably simpler than the cache-aware al- 
gorithm in [6] and it has a better  space bound for com- 
puting the diameter. 

In section 3 we present the first nontrivial external- 
memory algorithm to compute approximate APSP 
oil unweighted undirected graphs with small addi- 
tive error. The algorithm is cache-aware, it uses 

~ ~ Z ' l -  ~V 2-~ ~V) O(~.~V2-akEa',log at { )V  + - "E~tog  1- 

I /Os,  and produces estimated distances with an addi- 
tive error of at most 2(k - 1), where 2 <_ k < log V is 
an integer, and E > V log V. Our algorithm is based on 
an internM-memory algorithm in [10], and the number 
of I /Os  performed by our algorithm is close to being a 
factor of B smaller than the running time of tha t  algo- 
rithm. Our approximate algorithm pertorms fewer I /O  
operations than the O(V • sort(E)) I /O  exact AP-BFS 

k k 

algorithm when E > max{k  ~-r,  (log@)~:=~ } • VlogV.  
For k = 2, we present an alternate algorithm that  per- 
forms better  for large values of B; this algorithm builds 
on the internal-memory algorithm in [2]. 

In section 4 we introduce the notion of a Slim Data 
Structure for external-memory computation. This no- 
tion captures the scenario where only a limited portion 
of the internal memory is available to store data  fi'om 
the data  structure; it is assumed, however, that  while 
executing an individual operation of the data  structure, 
the entire internal memory of size M is available for 
the computation. We describe and analyze the Slim 
Buffer Heap which is a slim data  structure based on the 
Buffer Heap [8]. We use Slim Buffer Heaps in a Multi- 
Buffer Heap to solve the cache-aware exact APSP prob- 
lem for undirected graphs with general non-negative 
edge-weights in O(V.  ( V ~ / B  + sort(E))) I /Os  and 
O(V 2) space, whenever E _< VB/log 2 (VE/B)  (or 
E = O(VB/log 2V)). This improves on the result in 
[6] for weighted undirected APSP. We also believe that  
the notion of a slim data  structure is of independent 
interest. 
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2 C a c h e - O b l i v i o u s  A P S P  a n d  D i a m e t e r  for  
U n w e i g h t e d  U n d i r e c t e d  G r a p h s  

In this section we present  a cache-oblivious a lgor i thm 
for comput ing  all-pairs shortest  pa ths  and diameter  in 
an unweighted undi rec ted  graph. 

2.1 T h e  C a c h e - O b l i v i o u s  B F S  A l g o r i t h m  o f  
M u n a g a l a  a n d  R a n a d e .  Given a source node s, the 
a lgor i thm of MunagMa & Ranade  [15] computes  the 
BFS level of each node with respect to s. Let L(i )  de- 
note  the set of nodes in BFS level i. For i < 0, L(i )  is 
defined to be empty. Let N ( v )  denote  the set of ver- 
tices adjacent  to vertex v, and  for a set of vertices S, 
let N ( S )  denote  the nmlt ise t  formed by conca tena t ing  
N ( v )  for all v E S. 

ALGORITHM 2.1. MR-BFS(G) 
The algorithm starts by setting L(0) = {s}. Then starting fl'om 
i = 1, for each i < V, the algorithm computes L(i) assmning that 
L(i - 1) and L(i - 2) have already been computed. Each L(i) is 
computed in the following three steps: 

1. Construct N(L(i - 1)) by IL(i - 1)l accesses to the adjacency 
lists, once for each v G L(i - 1). This step requires O(IL(i - 1)I + 
~]N(L(i - 1))I) I/Os. 

2. l-l.emove duplicates from N(L(i - 1)) by sorting the nodes in 
N(L(i - 1)) by node indices, followed by a scan and a compaction 
phase. Let us denote the resulting set by L~(i). This step requires 
O(sort(IN(L(i - 1))1) ) I/Os. 

3. Remove from L'(i) the nodes occurring in L(i - 1) U L(i - 2) 
by parallel scanning of L~(i), L(i - 1) and L(i -2) .  Since all these 
three sets are sorted by node indices tile 1/O complexity of this 
step is O(~(]N(L(i - 1))l + IL(i - 1)1 + IL(i - 2)1)). The resulting 
set is the required set L(i). 

Since ~ I L ( i ) I  = O(V) and ~iIN(L(i))l = O(E), 
this algorithm performs O(~dlL(i)l +sort(IN(L(i))])+ 
~(Ig(L(i))I + L(i)))) = O(Y + sort(E)) I/Os. 

2.2 C a c h e - O b l i v i o u s  A P S P  for  U n w e i g h t e d  
U n d i r e c t e d  G r a p h s .  In  this section we describe a 

O ( V .  sor t (E) )  I / O  cache-oblivious A P S P  a lgor i thm for 
unweighted undirected graphs. Let G = (V[G],E[G]) 
be an unweighted undirected graph. By d(u, v) we de- 
note  the shortest  dis tance between u, v C V[G]. 

Our  a lgor i thm is based on the following observat ion 
which follows fl'om tr iangle inequal i ty  and the fact tha t  
d(u, v) = d(v, u) in an undirected graph: 

OBSERVATION 2.1. For any three vertices u, v and w 
in C ,  d(u, w) - -  d(u, v) < d(v, w) < d(u, w) + d(u, v). 

Suppose for some u E V[G] we have already computed  
d(u, w) for all w E V[G]. We sort the adjacency lists in 
non-decreasing order by d(u, .), and  by A ( j )  we denote  
the por t ion of this sorted list conta in ing  adjacency lists 
of vertices w with d(u, w) = j .  Now ifv  is another  vertex 
in V[G] then  observat ion 2.1 implies tha t  the adjacency 

list of any  ver tex w with d(v, w) = i, must  reside in some 
A ( j )  where i - d (u , v )  < j < i + d(u ,v ) .  Therefore,  
we can use observat ion 2.1 to compute  d ( v , w )  for all 
w C V[G] as follows: 

ALGORITHM 2.2. Ineremental-BFS(G, u, v, d( u, .)) 
(Given an unweighted undirected graph G, two vertices u,v E 
V[G], and d(u,w) for all w E V[G], this algorithm computes 
d(v,w) for all w ~ V[G]. It is assmned that E[G] is given as 
a set of adjacency lists.) 

1. Sort tile adjacency lists of G so that adjacency list of a vertex x 
is placed before that of another vertex y provided d(u, x) < d(u, y) 
or d(u,x) = d(u,y) Ax  < y. Let A(i), 0 < i < ]VI, denote the 
portion of this sorted list that contains adjacency lists of vertices 
lying exactly at distance i from u. 

2. To compute d(v,w) for all w C V[G], run Munagala and 
Ranade's BFS algorithm with source vertex v. But step (1) of 
that algorithm is modified so that instead of finding the adjacency 
lists of the vertices in L(i - 1) by IL(i - 1)] independent accesses, 
they are found as follows: 
Forj  ~-- max{0,/-  1 -d(u ,v)}  to rain{IV I - 1, i -  1 +d(u,v)} do: 

Extract the adjacency list of each w E V[G] that appears in 
L(i - 1) and whose adjacency list appears in A(j) by scaxming 
L(i - 1) and A(j) simultaneously. 

Step 1 of I n c r e m e n t a l - B F S  requires O ( s o r t ( E ) )  
I /Os .  In  step 2 each A ( j )  is scanned O ( d ( u , v ) )  
times. Since ~ j  IA(j)] = O ( E ) ,  this step requires 

O ( ~ d ( u , v )  + sor t (E) )  I /Os .  Thus  the I / O  complex- 

ity of I n c r e m e n t a l - B F S  is O( ~ d ( u ,  v) + sor t (E) ) .  
Since I n c r e m e n t a l - B F S  is ac tual ly  all implemen-  

t a t ion  of Munaga la  and Ranade ' s  algori thm, its correct- 
ness ibllows from the correctness of tha t  a lgori thm, and  
fl'om observat ion 2.1 which guarantees  tha t  the adja- 
cency lists of all w c L( i  - 1) in step 2 of I n c r e m e n t a l -  
B F S  are found in the set of A ( j ) ' s  scanned.  

We can use I n c r e m e n t a l - B F S  to perform BFS 
I/O-efficiently from all v C V[G]. The following 
observat ion each par t  of which follows t r ivial ly  from the 
propert ies of spann ing  trees, Euler  Tours and  shortest  
paths,  is central  to this extension:  

OBSERVATION 2.2. I f  E T  is an Euler Tour of  a span- 
ning tree of  an unweighted undirected graph G, then (a) 
the number  of  edges between any two vertices x and y 
on E T  is an upper bound on d(x,  y) in G, (b)  E T  has 
O ( V )  edges, and (c) each vertex of  V[G] appears at least 
once in E T .  

This  extension is out l ined in a lgor i thm 2.3 ( A P - B F S ) .  

C o r r e c t n e s s .  Correctness of A P - B F S  follows fl'om 
the correctness of M R - B F S  and I n c r e m e n t a l - B F S .  
Moreover, observat ion 2.2(c) ensures t ha t  BFS will be 
performed from each v c V[G]. 

S p a c e  C o m p l e x i t y .  Since the a lgor i thm ou tpu t s  all 
O ( V  2) pairwise dis tances it requires O ( V  2) space. 
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ALGORITHM 2.3. AP-BFS(G) 
1. (a) Find a spanning tree T of G. 

(b) Construct an Euler Tour ET for T. 
(c) Mark the first occurrence of each vertex on ET, and 
let Vl,V2,... , V l v  I be the marked vertices in the order they 
appear on ET. 

2. Run Munagala and Ranade's original BFS algorithm with vl 
as the source vertex, and compute d(vl, w) for all w • V[G]. 
3. For i ~ 2 to IVI do: 

Compute d(vi,w) for all w • V[G] by calling 
Incrementa l -BFS ( G , v.i-1, vi  , d(  v i - 1 ,  ")). 

I / O  C o m p l e x i t y .  Step l (a)  can be performed cache- 
obliviously in O(min{V+sor t (E ) ,  sort(E). log 2 logs V}) 
I / O s  [4]. In step l (b)  E T  can also be cons t ruc ted  cache- 
obliviously using O(sort (V))  I / O s  [41. Step 1(c) re- 
quires O(sort(E))  I /Os .  Step 2 requires O ( V + s o r t ( E ) )  
I /Os .  I tera t ion i of  step 3 requires O ( ~ d ( v i - l , V i ) +  
sort(E))  I /Os .  Total  number  of I / O  opera t ions  required 

by the  entire a lgor i thm is thus O(-~ ~Iv__~ d(vi_l ,  vi) + 
V .  sort(E)).  Since by observat ion 2.2(a) and 2.2(b) we 

have v.Ivl  d(vi-t ,v~) = O(V) ,  tile I / O  complexi ty  of 
Z--. , i=2 

A P - B F S  reduces to  O ( V .  sort(E)).  

2.3  C a c h e - O b l i v i o u s  U n w e i g h t e d  D i a m e t e r  fo r  
U n d i r e c t e d  G r a p h s .  The  A P - B F S  a lgor i thm can be 
used to find the unweighted diameter  of an undirected 
g raph  cache-obliviously in O(V  • sort(E))  I /Os .  We no 
longer need to ou tpu t  all O(V 2) pairwise distances, and 
each i teration of step 3 of  A P - B F S  only requires the  
iS(V) distances computed  in the previous i teration or 
in step 2. Thus  the  space requirement  is only (9(V) 
in addi t ion to the O(E)  space required to handle the  
adjacency lists. 

3 C a c h e - A w a r e  A p p r o x i m a t e  A P S P  fo r  
U n w e i g h t e d  U n d i r e c t e d  G r a p h s  

In this section we present a family of  cache-aware 
ex te rna l -memory  algori thms A p p r o x - A P - B F S k  for 
approximat ing  all distances in an unweighted undi- 
rected graph  with an addit ive error of at  mos t  2(k - 1), 
where 2 _< k <_ l o g V  is an integer. The  error is one 
sided. If  5(u, v) denotes the  shortest  dis tance between 

any two vertices u and v in the graph,  and ~(u, v) de- 
notes the es t imated distance between u and v produced 
by the algori thm, then 5(u,v) _< 5(u,v)  <_ 5(u,v)  + 
2 ( k -  1). Provided E > V l o g V ,  A p p r o x - A P - B F S k  

2 1 ] runs in O ( k V - ~ E v  l o g l - 1 / k V )  time, and tr iggers 
1 2 2 2 k -  2 - ~ 1  1 1 O(~ .~V - ~ E ~ .  log ~ ( 1 - ~ ) V  + ~ v  ~ g ' ~ l o g  - ~  V) 

I /Os .  This family of a lgori thms is the  ex te rna l -memory  

version of  the family of O ( k V 2 - ~ E  ~ log 1-1/k V) t ime 
in te rna l -memory  approximate  shortest  pa ths  a lgori thms 

by Dor et al. [10] which is the most  efficient a lgor i thm 
available for solving the  problem in internal memory.  

The  second te rm in the I / O  complexi ty  of A p p r o x -  
A P - B F S k  is exact ly ( l / B )  t imes the running  t ime 
of  the Dot' et al. a lgor i thm [10]. T h o u g h  the first 

2 
te rm has a smaller denomina tor  (B s),  its numera tor  
is smaller than  the numera tor  of the second te rm when 
E > V log V, thus reducing the  impact  of the first t e rm 
in the overall I / O  complexity. 

3.1 T h e  I n t e r n a l - M e m o r y  A p p r o x i m a t e  A P -  
B F S  A l g o r i t h m  b y  D o r  e t  al . .  The  intei 'nal-memory 
approximate  A P S P  a lgor i thm ( a p a s p k )  in [10] receives 
an unweighted undirected g raph  G = (V[G] ,E[G])  as 

input,  and ou tpu t s  an approximate  distance ~'(u,v) 
between every pair of vertices u,v  C V[G] with a 
positive addit ive error  of  at  most  2(k - 1). Recall t ha t  
a set of vertices D is said to  domina te  a set U if every 
ver tex in U has a neighbor in D.  

A high level overview of  the a lgor i thm follows: 

ALGORITHM 3.1. DHZ-Approx-AP-BFSk(G) 
E ( V  los. 1. Fori+-- 1 t o k -  1do: set si~-- V E v)~. 

2. Decompose G to produce the following sets: 
(a) A sequence of vertex sets D1, D2,. . . ,  Dk of increasing sizes 
with D k = V[G]. For 1 < i < k - 1, Di dominates all vertices of 
degree at least si in G. 
(b) A decreasing sequence of edge sets E1 _D E2 _D ... _D Ek, 
where E1 = E[G] and for 1 < i < k tim set Ei contains edges that 
touch vertices of degree at most si-1. 
(c) A set E* C_ E[G] which bears witness that each Di dominates 
the vertices of degree at least si in G. 
3. For i ~-- 1 to k do: 

(a) For each u • Di do: 
(al) Run SSSP from u on Gi(u) = (V[G],Ei U E* U 

({~} x v [c ] ) )  
In each O~ (u) the edges E~ U E* are unweighted edges of the input 
graph, but the edges {u} x V[G] are weighted, and to each such 
edge (u,v) an weight is attached which is equal to the current 
known best upper bound on the shortest distance from u to v. 
4. Return the smallest distance computed between every pair of 
vertices in step 2. 

Tile a lgor i thm mainta ins  the  invariant  t ha t  after the  
i th  i terat ion in step 3, the  distance computed  fl'om each 
u E Di to each v E V[G] has an addit ive error  of at  most  
2(i - 1). Thus  after the k th  i terat ion a surplus 2(k - 1) 
dis tance is computed  between every u, v C V[G]. 

3.2  O u r  A l g o r i t h m .  Our  a lgor i thm adapts  the Dor  
et al. a lgor i thm ( D H Z - A p p r o x - A P - B F S k )  to obta in  
a cache-efficient implementat ion.  In our  adap ta t i on  we 
do not  modify  step 1 of  D H Z - A p p r o x - A P - B F S k ,  and 
use the same sequence of  values for (sl,  s2, • . . ,  sk-1).  In  
section 3.3 we describe an ex te rna l -memory  implemen- 
ta t ion  of  step 2 of  D H Z - A p p r o x - A P - B F S k .  

I t  tu rns  out  t h a t  the  I /O-complex i ty  of  D H Z -  
A p p r o x - A P - B F S k  depends on the  I /O-eff iciency of  
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the SSSP algorithm used in step 3(al). Therefore, 
we replace each SSSP algorithm with a more I /O-  
efficient BFS algorithm by transforming each Gi(u) to 
an unweighted graph G~(u) of comparable size. But  in 
order to preserve the shortest distances fl'om u to other 
vertices in Gi(u), the weighted edges of G~(u) need to be 
replaced with a set of directed unweighted edges. This 
makes the graph G{(u) partially directed, and we need 
to modify existing external undirected BFS algorithms 
to handle the partial  directedness in G{(u) efficiently. 
This is described in section 3.4. 

There are two ways to apply the BFS: either we 
can run an independent BFS fl'om each u E D~ as in 
step 3 of D H Z - A p p r o x - A P - B F S k ,  or we can run BFS 
incrementally from the vertices of Di as in section 2.2. 
Running independent BFS is more I/O-efficient when 
IDd is smaller (i.e., i is smaller), and incremental BFS 
is more I/O-efficient when G~(u) is sparser (i.e., i is 
larger). Therefore, we choose a value of i at which 
switching fl'om independent BFS to incremental BFS 
minimizes the I /O-complexi ty  of the entire algorithm. 
The overall algorithm is described in section 3.5. 

3.3 External-Memory Implementation of Step 
2. It  has been shown by Aingworth et al. [2] tha t  there 
is always a set of size O(-E-D-~-Y-) tha t  dominates all 8 
vertices of degree at least s in an undirected graph, and 
in [10] it has been shown that  this set can be found 
deterministically in O(V + E) time. We describe an 
external-memory version of this construction, which we 

V 2 call D o m i n a t e ,  that  requires C9(V + -W + sort(E)) 
I /Os  and C9(V 2 + E log V) time, which is sufficient for 
our purposes, The internal-memory algorithm uses a 
priority queue that  supports  Delete-Max and Decrease- 
Key. But due to the lack of any such I/O-efficient 
priority queue we use linear scans to sinmlate those two 

V 2 
operations leading to the N- term in the I /O-complexi ty  
of D o m i n a t e .  Details of this construction are in the full 
paper [9]. 

We need another fnnction, called Decompose, 
which is an external-melnory version of an internal- 
memory fnnction with the same name described in [101, 
and uses D o m i n a t e  as a subroutine. The function 
receives an undirected graph G = (V[G],E[G]), and 
a decreasing sequence sl > s2 > . . .  > sk-1 of degree 
thresholds as inputs. I t  produces edge sets E1 D E2 =D 
. , .  D Ek, where E1 = E[G] and for 1 < i 55 k the set 
E i contains edges that  touch vertices of degree at most 
s,i-1. Clearly, IEiI 55 Vsi-1 for 1 < i 55 k. This function 
also produces dominating sets D1, D 2 , . . . ,  Dk, and an 
edge set E*. For 1 55 i < k, Di dominates all vertices 
of degree greater than si, while Dk is simply V[G]. The 
set E* C_ E is a set of edges such tha t  if the degree of 

F f t 

U V 2 I,' 3 Vt Pt+l ViVI-I 
~ X  ~ . . . . . . . .  ~ y  . . . . . . . .  

(u,x) = 1 (u,y)  = t 

Figure 1: The directed unweighted edges that  replace 
the undirected weighted edges of G~(u). 

a vertex u is greater than si then there exists an edge 
(u,v) E E* with v E Di. Clearly IE*[ 55 kV. Details of 
Decompose and the analysis of its I / O  complexity of 

is O(k(V + -~) + sort(E)) are in [9]. 

3.4 Replacing SSSP with B F S  in S t e p  3 ( a l ) .  
For i = 1 , 2 , . . . , k ,  in step 3(at) D H Z - A p p r o x - A P -  
BFSk  runs an SSSP algorithm from each u E Di o i l  

a graph G,(u) = (V, El(U)), where E~(u) = E~ U E* U 
({u} x V). The edges E~UE* are the original edges of the 
graph. But the edges {u} x V are not necessarily so, and 

to such an edge (u, v) an weight of 6(u, v) is attached, 

where ~(u, v) is the current best known upper bound on 

6(u, v) ill G. Initially, 6"(u, v) = 1 if (u, v) C E[G] and 

~(u, v) = oo otherwise. 
Since external-memory BFS is more I/O-efficient 

than external-memory SSSP, we replace the SSSP in 
step 3(al) with a BFS algorithm. But this requires us to 
transform the weighted graph Gi(u) into an unweighted 
graph of conlparable size. 

Transforming Gi(u) into an Unweighted Graph. 
Since the distances we compute are non-negative inte- 
gers smaller than IV], we can, in fact, t ransform Gi(u) 
into an nnweighted graph G{(u) by introducing IV[ - 2 
new vertices along with at most 2IV 1-3 new unweighted 
directed edges instead of the weighted undirected edges 
of {u} x V while preserving the shortest distances fl'om u 
to all other vertices in V. We introduce I V ] -  2 new ver- 
tices v~, v~, . . . ,  vlvj_l, and introduce the directed edges 

t V t (U, V 2 ) , ( V ~ , V . ~ ) , ( V ; , V ~ ) , . . . , (  [V l_2 ,Y fv l_ l ) .  For each_ 

v E V[G] with ~(u, v) = 1, we acid a directed edge (u, v), 

and for each v C V[G] with 2 55 6(u, v) = t 55 [VI - 1, we 
add a directed edge (v~, v) (see Figure 1). The resulting 
graph G{(u) is partially directed. The following lemma 
has been proved in the full paper  [9] for G{(u): 

LEMMA 3.1. The unweighted partially directed graph 
G{(u) obtained f i rm the weighted undirected 9r'aph 
G,i(u) = (V, E,i(u) ) preserves the shortest distances front 
u to all other vertices in V. 

Handling the Partial Directedness in G~(u). We 
can modify the M R - B F S  algorithm in section 2.1 to 
correctly handle the partial directedness in G{(u) with 
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only  O(scan(E) + sort(V))  I / O  overhead,  and  thus  
w i thou t  changing  i ts  I / O  complexi ty .  T h e  a lgo r i t hm 
will receive G~(u) as an und i rec ted  g raph ,  and  will 
impl ic i t ly  hand le  the  edges t h a t  a re  in tended  to be 
d i rec ted .  I t  mus t  ensure  the  following: 

(a )  L(i)  mus t  not  con ta in  any  v~ except  vi+' 1, and  

(b )  for a ve r t ex  v wi th  BFS  level less t h a n  i, any  
edge (v~+l, v) mus t  not  force v to  be inc luded in L(i).  

Ensur ing  (a )  is s t r a igh t - fo rward ,  bu t  in o rde r  to  ensure  
( b )  we use an  o p t i m a l  e x t e r n a l - m e m o r y  p r io r i t y  queue 
s u p p o r t i n g  Insert and  Delete-Min [3] t h a t  keeps t r ack  
of  the  v is i ted  ver t ices  connec ted  to  the  v}'s. T h e  
modi f ica t ions  are  de ta i l ed  in M o d i f i e d - M R - B F S .  I t  
pe r fo rms  a t  mos t  one Insert and  one Delete-Min for each 
edge of  the  form ('v~, v), and  thus  caus ing  O(sort (V))  
e x t r a  I / O s  [3]. A n  add i t i ona l  O(scan(E))  I / O  overhead  
resul ts  from scann ing  the  a d j a c e n c y  lists. Cor rec tness  
of  th is  a lgo r i t hm a p p e a r s  in the  full p a p e r  [9]. 

ALGORITHM 3.2. Modified-MR-BFS(G~(u),u) 
(The input graph G~ (u) is given as an undirected graph but with 
implicit directed edges as discussed in section 3.5. This algorithm 
is a version of Muuagala & Ranade's BFS algorithm modified to 
perform BFS on this implicitly partially directed graph from the 
source vertex u.) 
1. Perform the following initializations: 
(~) Set L(0) ~- {~} 
(b) Set Q ~-- 0, where Q is an optimal external-memory priority 
queue supporting Insert and Delete-Min 
2. Fori~-- 1 to V -  1 do: 
(a) Scan the adjacency lists of vertices in L(i - 1), and for each 
edge (v,v~+l) with j > i, set Q ~-- Q u {(v,j)} (Insert) 
(b) Set P ~-- {v[ (v,i) C Q} (Delete-Min) 
(e) Construct N(L(i - 1)) 
(d) Remove duplicates and all v}'s from N(L(i - 1)) 
(e) Set L(i) ~- {N(L(i - 1)) \ {L(i - 1) U L(i - 2) U P}} U {v~+ 1 } 

3.5 External-Memory A p p r o x i m a t e  A P - B F S .  
As  po in ted  ou t  in sect ion 3.2, t he re  are  two ways  to  
a p p l y  the  B F S  in s t ep  3 (a l )  of  D H Z - A p p r o x - A P -  
B F S k :  e i ther  we can run  B F S  i n d e p e n d e n t l y  fi 'om each 
ve r t ex  in Di  as in D H Z - A p p r o x - A P - B F S k ,  or  we can  
run  B F S  inc remen ta l ly  from the  ver t ices  of  D~ using the  
s t r a t e g y  used in A P - B F S  (see sect ion 2.2). 

We present  the  a lgo r i t hm I n d e p e n d e n t - B F S  
which when cal led wi th  Di  as a p a r a m e t e r  cons t ruc t s  
the  p a r t i a l l y  d i rec ted  unweighted  g r a p h  G~(u) for each 
u E Di  and  runs  Meh lho rn  & Meyer ' s  B F S  algo- 
r i t h m  [13] on  G~(u) f r o m  u. T h e  I / O - c o m p l e x i t y  
of  Meh lhorn  & Meyer ' s  a l g o r i t h m  is O(  V ~  + 
( E / B )  log V),  and  thus  i t  pe r fo rms  be t t e r  t h a n  Muna-  
ga l a  & R a n a d e ' s  a lgo r i t hm ( M R - B F S  in sect ion 2.1) 
on spa rse  graphs .  Meh lhorn  & Meyer ' s  a lgo r i t hm is 
based  on M R - B F S ,  and  can  be modif ied  in e xa c t l y  
the  same  way  to hand le  the  pa r t i a l  d i rec tedness  in 

G~(u). The  IJ_.O=cip~plexity of  I n d e p e n d e n t - B F S  is 
thus  O ( D i ( v / V E i / B  + (E i /  B)  log Y)) .  

The  a lgo r i t hm I n t e r d e p e n d e n t - B F S  when cal led 
wi th  p a r a m e t e r  Di, cons t ruc t s  G~(u) for each u E 
Di, and  then  runs  M o d i f i e d - M R - B F S  (sect ion 3.4) 
i nc remen ta l ly  on G~(u) f rom each u using the  tech-  
nique used in A P - B F S  (sect ion 2.2). T h e  ma in  dif- 
ferences between I n t e r d e p e n d e n t - B F S  and  A P - B F S  
are: I n t e r d e p e n d e n t - B F S  uses a different  range  for 
loca t ing  the  ad j acency  lists, works  on a s l ight ly  differ- 
ent  g r a p h  in each i t e ra t ion ,  each g r a p h  it works  on is 
p a r t i a l l y  d i rec ted ,  and  runs  B F S  on ly  from the  ver t ices  
in Di. The  I / O - c o m p l e x i t y  of  I n t e r d e p e n d e n t - B F S  
is O ( ( E i / B ) ( V  + iD~) + D~sort(E.i)). 

We observe  t h a t  runn ing  I n d e p e n d e n t - B F S  in 
s tep  3(a) of D H Z - A p p r o x - A P - B F S k  is more  I / O -  
efficient when  IDol is smal le r  and  G~(u) is denser  
(i.e., i is smal ler ) ,  and  I n t e r d e p e n d e n t - B F S  is 
more  I /O-ef f ic ien t  when ]Di[ is larger  and  G~(u) is 
spa rse r  (i.e., i is larger) .  I f  we use I n d e p e n d e n t -  
B F S  for all values  of  i, i t  will cause  a t o t a l  of  

2 1 1 1 i O ( V 2 / x / ~  + ( k / B ) V  - r E r .  log - ~  V) I / O s ,  and  run-  
ning I n t e r d e p e n d e n t - B F S  for all  values  of i requires  

2 1 1 a t o t a l  of  O ( V E / B  + ( k / B ) V  - r E r  l o g l - ~  V) I / O s .  
Therefore ,  we can  do be t t e r  if we t ake  a hybr id  ap-  
proach:  s t a r t i n g  fi 'om i = 1 we run  I n d e p e n d e n t -  
B F S  up to  some value  l of  i, and  then  we swi tch  
to  I n t e r d e p e n d e n t - B F S .  We call  this  p a r a m e t e r  1 a 
switching parameter, and  choose i ts  value in o rde r  to  
min imizes  the  I / O - c o m p l e x i t y  of  the  ent i re  a lgor i thm.  
The  overal l  a l go r i t hm is given in A p p r o x - A P - B F S k ,  
and  i ts  p roo f  of  cor rec tness  is in [9]. 

ALGORITHM 3.3. Independent -BFS(V,  E, Di, El, E*, L) 
(Perform BFS independently from each vertex u C Di on a graph 
constructed from V, Ei,E* and the information in the list L of 
current best upper bounds oil all-pairs shortest distances ill tile 
original graph (V, E). It updates L with the computed distances. 
Invoked by A p p r o x - A P - B F S .  See A p p r o x - A P - B F S  for the 
definition of the parameters.) 

1. Set L ~ ~-- q} 
2. Sort the vertices in Di by vertex indices. 
3. For each u C Di do: 
(a) Set V I ~-- V, and E I ~ Ei U E* 
(b) Retrieve from L the current best upper bound 5(u, v) on the 
shortest distance from u to each v E V. Collect only finite bounds. 

I ! i y I "  ( c )  A d d  IV l  - 2 new ver t i ces  v2,v3,...,vlvl_l t o  

(d) Add the following undirected edges to E~: (i) (u,v~), (ii) 
(u,v) for each v E V with 5(u,v) = 1, (iii) (v~,v~+l) for 
2 < t < IV] - 1, and (iv) (v~,v) for each v C V with 5(u,v) = t 
(e) Sort the edges in E ~ to convert it into adjacency list format. 
(f) Run Mehlhorn & Meyer's BFS [13] on (V ~, E~), and append 
the computed distances to L t. The algorithm must be modified 
to handle the implicit partial directedness in (V ~, E~). 

4. Update the entries in L by sorting L ~ appropriately and 
scanning the two lists in parallel. 
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ALGORITHM3.4. I n t e r d e p e n d e n t - B F S ( V ,  E, Di, E,, E*, 
(Vl,V2,. . . ,Vlvl) ,  L) 
(Perform BFS from each u ~ D,  on a g raph  cons t ruc ted  from 
V, El, E* and the  in format ion  in the  list L of cur ren t  bes t  upper  
b o u n d s  on al l-pairs  shor tes t  d i s t ances  in t he  g raph  (V, E).  BFS 
is pe r fo rmed  on t he  vert ices  of  D i in the  order  they  appear  
in (v~,v2, . . . ,v lv l ) ,  and  d i s tance  in format ion  obta ined  from 
the  last  (most  recent)  BFS is used to reduce I / O  overhead.  
List  L is upda t ed  wi th  the  c o m p u t e d  dis tances,  hwoked  by 
A p p r o x - A P - B F S .  See A p p r o x - A P - B F S  for the  defini t ion of 
t he  pa ramete r s . )  

1. Set L ~ ~-- 
2. Ar r ange  t he  vertices in Di in t he  order  they  appear  in 
(Vl, v2 , . . . ,  vlvl) .  Let  (u~, u2 , . . . ,  ut) be t he  sequence  of vertices 
in Di after  t he  ordering.  
3. ( a ) - ( e )  Same  as s teps  3 ( a ) - ( e )  in I n d e p e n d e n t - B F S ,  bu t  

per formed wi th  'a~ ins tead  of u. Let  (Iq~, E~) be the  g raph  
cons t ruc ted .  
( f )  R u n  M u n a g a l a  and  R a n a d e ' s  a lgor i thm ( M o d i f i e d -  
M R - B F S )  with u~ as the  source to c o m p u t e  d(u~,w) for 
all w ~ V. Append  t he  compu t ed  d i s tances  to L ~. 

4. F o r j  ~ - - 2 t o t d o :  
( a ) - ( e )  Same  as the  s teps  3 ( a )  to 3 ( e )  in I n d e p e n d e n t - B F S ,  
but  per formed with uj ins tead of u. Let  (Vj, E}) be  the  g raph  

cons t ruc ted .  
( f )  Sort the  adjacency lists of the  vertices v,~, vl~,.. .  ,Vlv[_ 1 so 

t ha t  for 2 _< p < IVI - 1, ad jacency list of @ is placed ahead  of 
t ha t  of v~+~. Let A ~ be th is  sor ted list of  adjacency lists. 
(g)  Sort  the  r emain ing  adjacency lists so t ha t  adjacency list 
of a ver tex  x is placed before t h a t  of y provided d(u j_ i ,x )  < 
d(uj-~,y)  or d(u i -~ ,x  ) : d(uj_~,y) A x < y. Let A(p), 
0 _< i < [VI, denote  the  por t ion  of th is  sor ted list t h a t  conta ins  
adjacency lists of vertices lying exact ly  at  d i s tance  p f rom u j_~ .  
(h )  To c o m p u t e  d(uj ,w) for all w 6 V ' ,  r un  M u n a g a l a  and  
R a n a d e ' s  BFS a lgor i thm ( M o d i f i e d - M R - B F S )  wi th  source  ver- 
tex u j .  But  s tep  (2) of t ha t  a lgor i thm is modified so t h a t  ins tead  
of f inding the  adjacency lists of the  vertices in L(q -  1) by IL(q- 1)l 
independen t  accesses, t hey  are found by scann ing  L(q - 1) and  
A(p) in parallel for max{0 ,  q -  1 - d ( U j _ l , U j )  - 2 ( i -  1)} < p < 
rain{IV [ - 1 , q -  1 + d(u j - l ,Uj )  + 2(i - 1)}. If v~ 6 L ( q -  1) load 
its adjacency list h 'om A' .  A p p e n d  the  compu t ed  d i s tances  to L ' .  

5. U p d a t e  the  entr ies  in L by sor t ing  L '  appropr ia te ly  and  
scann ing  the  two lists in parallel. 

ALGORITHM 3.5. A p p r o x - A P - B F S k ( G , l )  
(Given an undi rec ted  g raph  G = (V[G],E[G])  and  a swi tching 
pa r ame te r  l, compu t e s  the  shor tes t  d i s tance  between every pair  
of vert ices in G wi th  addi t ive  error of  at  mos t  2(k - 1).) 

1. Per form the  following init ializations: 
E ,  }.~_12..g_~.(~. - ± (a)  F o r i ~ l t o k - l d o :  set s ~ - V t  E ) ~ 

(b )  Set ( (E l ,  E2, •. •, Ek, E*), (D~, D2 , . . . ,  Dk)) 
D e c o m p o s e ( G ,  (s~., s2 . . . .  , s k - 1 ) )  
(c)  Sort the  edges in E[G] so t h a t  edge (u l , v~ )  is placed ahead  
edge (u2,v2)  provided (u~ < u 2 )  V ( ( g l  = ~./,2) A ( V l  < v 2 ) ) .  Scan 
E[G] to p roduce  a sor ted (in the  s a m e  order t ha t  is used for sor t ing  

E[G]) list L of approx ima te  d i s tances  6(u, v), where  u, v 6 V[G], 
and 6(u, v) ~-- 1 provided (u, v) 6 E[G], 6(u, v) ~-- c<~ otherwise.  

2. 
(a)  For i *-- 1 to l do: I n d e p e n d e n t - B F S ( V ,  E,  Di, Ei, E*, L) 
(b )  F ind  a spamf ing  tree T of G, and  an  Euler Tour ET  of T.  
Mark  the  first occurrence  of each ver tex on ET; let v~, v2, • . . ,  v Iyl 
be the  marked  vert ices in the  order  t hey  appear  on ET. 
(c)  For i ~-  l + 1 to k do: I n t e r d e p e n d e n t -  
B F S ( V ,  E,  D~, Ei,  E* ,  (Vl, v2 . . . . .  vwi),  L) 

3. Re tu rn  the  o u t p u t  of s tep 2(c). 

I / O  C o m p l e x i t y  o f  A p p r o x - A P - B F S k .  I /O  
cost of step 1 is dominated by that  of D e c o m p o s e  
which is O(k(V + V2/B) + sort(E)). Step 2(a) 

D , ( v W k 7 / B  (E /B)logV)) = requires O ( ~ =  1 + 

O(V2x/V/(BEd+ 0 logV + (I/B)V2-~E~ log ~-~ V) 
I/Os, where ct = ( V l o g V / E ) ~ .  Step 

--~-) I /Os  2(b) incurs O(sort(E) log2 log2 VB 
[5]. The I /O-complexity of step 2(c) is 
O k (~ i= t+ l  {(Ei/B)(V + iD~) + Di " sort(Ei)}) = 
O(VEal-I /B + ((k - I)/B)V2-} E } log '-} V). 

Therefore the total I /O cost of A p p r o x - A P -  
BFSk  is O(V2v/V/(BEc~I+I)IogV + VEctl-1/B + 

2 1 1 (k/B)V -;Er.  log 1-{= V). This expression is minimized 
for 1 = (log (VaB log 2 V) - log (E3c~))/(31ogct) + 1, 
and thus the I /O complexity reduces to 

O( V2-  loofi('- .) v + log v). 

3.6 A n  A l t e r n a t e  A l g o r i t h m  for  k = 2. We can 
externalize the internal-memory approximation algo- 
ri thm by Aingworth et al. [2] to compute all pair- 
wise distances in an unweighted undirected graph with 
an additive one-sided error of at most 2 incurring 

' 7- ' -  " ' v+½v.  v )  I /Os.  O(B~4V4 E4 log V+NV~E-~ log ~ log 

The resulting algorithm is described in detail in [9] 
and outperforms A p p r o x - A P - B F S 2  whenever B > 

V 2 v-~ lo~V assuming V > log4V and E < logV 
E - -  - -  " 

4 C a c h e - A w a r e  A P S P  for W e i g h t e d  
U n d i r e c t e d  G r a p h s  

In [6], Arge et al. introduce the Multi-Tournament-lq'ee 
to obtain an O(V.  (v/(VE/B)logV + sort(E))) I /O 
cache-aware algorithm for computing APSP on general 
weighted undirected graphs with E < VB/logV. In 
this section we introduce the Multi-Buffer-Heap, and use 
it to obtain an O(V. ( V ~ / B  + sort(E))) I /O cache- 
aware algorithm for solving the same problem assuming 
E < VB/log 2 (VE/B) or E = O(VB/log zy).  This 
leads to an O(V . ( v / ~  + (E/B)logE/B)) I /O 
algorithm for any edge density using O(V 2) space. 

4.1 S l im D a t a  S t r u c t u r e s .  We introduce here the 
notion of a slim data structure which is an external- 
memory data structure in which a fixed-sized portion 
is kept in internal memory. The area in the internal 
memory that  holds that  specific portion is called the 
slim cache. By DS(A) we denote an external-memory 
data  structure DS, in which a portion of size A is 
kept in the slim cache. We continue to assmne the 
behavior of the two-level I /O model, namely (a) the 
size of the internal memory is M and (b) the portion of 
the data structure that  is not stored in the slim cache 
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is stored in an external memory  divided into blocks of 
size B, and thus accessing anything outside the slim 
cache causes I /Os.  While executing a da ta  structural  
operation the operation can use all free internal memory  
for t emporary  computat ion,  hut  after the operation 
completes only the data  in the slim cache is preserved 
for reuse by the next operation on the data  structure. 

In the next section we present a slim data  structure 
based on the Buffer Heap [8], which we call a Slim 
Buffer Heap, SBH(A) ,  which supports  Decrease-Key, 
Delete and Delete-Min with the amortized cost of O(-~ + 
.!.a log ~ )  I /Os  each. In section 4.3 we use a collection 
of Slim Buffer Heaps in a Multi-Buffer-Heap. 

we believe tha t  the need for slim data  structures 
could arise in other applications. A typical application 
would be one in which a number of da ta  structures need 
to be kept in internal memory  simultaneously, and thus 
only a limited portion of the internal memory  (:an be 
dedicated to each structure. 

4.2 The  Sl im Buffer Heap.  In this section we 
extend the cache-oblivious Buffer Heap [8] to a slim 
data  structure with an arbi t rary  parameter  A. We 
call this data  structure a Slim Buffer Heap (SBH) ,  
and for an SBH with parameter  A (1 <_ A _< M),  
denoted by SBH(A) ,  it is assumed that  an initial 
segment of O(A) elements in the da ta  structure resides 
in internal memory. A Delete(x) operation deletes 
element x from the queue if it exists and a Delete- 
Min 0 operation retrieves and deletes the element with 
mininmm key from the queue. A Decrease-Key(x, kx) 
operation inserts the element x with key k~ into the 
queue if x does not already exist in the queue, otherwise 
it replaces the key k~ of x in the queue with k~ provided 
k~ < k~. A Buffet" Heap supports  Delete, Delete-Min 
and Decrease-Key operations in O ( ~  log ~ )  I /Os  each. 
We show in this section tha t  an SBH(A)  supports  each 
of these operations in OO(-~ + ½ log ~ )  amortized I /Os ,  
where N is the number of elements. 

in Bi+i.  (b)  For 0 _< i < r - 1, for each element x in 
Bi, all updates applicable to x that are not yet applied, 
reside in Uo, U1, . . . , U,i. 

INVARIANT 4.3. (a) Elements in each Bi are kept 
sorted in ascending order by element id. (b)  Updates 
in each Ui are divided into (a constant number of) seg- 
ments with 'updates in each segment sorted in ascending 
order by element id and time stamp. 

All buffers are initially empty. 

4 .2.2 L a y o u t .  As in [8] we use a stack SB to store 
the element buffers, and another  stack Su to store 
the update  buffers. An array As of size r to stores 
information on the buffers. For 0 < i < r - 1, As[i] 
contains the number  of elements in Bi, and the number  
of segments in Ui along with the nnmber  of updates  
in each segment. We assume the existence of a slim 
cache of size O(A), large enough to store B0, B1,. • . ,  Bt, 
Uo, U1, . . . ,  Ut+l, and the first A entries of A~, where 
t = log (A + 1) - 1. The remaining portions of SB, Su 
and As are kept in external memory. 

4 .2.3 O p e r a t i o n s .  In this section we describe how 
Delete, Delete-Min and Decrease-Key operations are im- 
plemented. A Delete or Decrease-Key operat ion inserts 
itself into U0 (by pushing itself into Su) augmented with 
the current t ime stamp. Further processing is deferred 
to the next Delete-Min operation except that  the F ix -  
U function may  be called to restore invariant 4.1(b) 
for the structure. If  needed, the Delete-Mi'n/Delete/ 
Decrease-Key operat ion collects enough elements from 
higher level element buffers to fill the slim cache. 

After each operat ion the Reconstruct function is 
called which reconstructs the entire da ta  s tructure 
periodically. The objective of the function is to ensure 
that  the nmnber  of levels r in the s tructure is always 
within ±1 of log 2 N,  where N is the current number  of 
elements in the structure. 

4.2.1 S t r u c t u r e .  The structure is the same as tha t  
of a 'Buffer Heap without a tall cache' which was 
described briefly in [8]. I t  consists of r = 1 + [log 2 N]  
levels. For 0 < i < r - 1, level i consists of an element 
buffer Bi and an update buffer Ui. Each element in Bi 
is of the form (x, kx), where x is the element id and kx 
is its key. Each update  in Ui is augmented with a t ime 
s tamp indicating the t ime of its insertion into the queue. 
At any time, the following invariants are maintained: 
INVARIANT 4.1. (a) Each Bi contains at most 2 i ele- 
ments. (b)  Each U.i contains at most 2 i updates. 

INVARIANT 4.2. (a) For 0 _< i < r -  1, key of every 
element in Bi is no larger than the key of any element 

FUNCTION 4.1. D e c r e a s e - K e y ( x ,  k x ) / D e l e t e ( x )  
(Inserts a Decrease -Key /De le t e  operat ion into the  s t ructure.)  

1. Push  the  operat ion into U0 augmented  with current  t ime s tmnp  

2. 
• Set B I ~-- 0, i ~-- 0 {L i s t  B ~ stores elems re turned by F i x - U }  
• F i x - U ( / ,  B ' )  
3. Move the  contents  of B ~ to the  shallowest possible element  
buffers mMntaining invariants 4.1(a), 4.2(a) and 4.3(a) 

4. R e c o n s t r u c t ( )  

FUNCTION 4.2. F i x - U ( / ,  B ~) 
(Fixes all overflowing upda te  buffers in levels i and up. An upda te  
buffer Ui overflows if lu l l  > 2 i. For each overflowing U~ collects 
the  contents  of Bi in B t after  applying Ui on Bi,) 

1. While  i < r AND ( [Ui [>  2 i OR (i = t +  1 AND [B'l = 0) OR 
(i > t + 1 AND IB'I < A)) do: 
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• A p p l y - U p d a t e s ( i )  
• Append the elements of Bi to B'  
• Set i ~ - i + 1  
2. If i < r then merge the segments of Ui 

FUNC'rlON 4.3. A p p l y - U p d a t e s ( i )  
(Apply the updates in Ui on the elements in Bi, move remaining 
updates h'om Ui to Ui+l if i < r - 1, and after applying the 
updates move overflowing elements h'om Bi to Ui+i as Sinks.) 
1. l f lBi l  = 0 a n d i < r -  1 then: 
• Merge the segments of Ui 
• Empty Ui by moving contents of Ui as a new segment of Ui+i 

2. Else (IBil > 0 or i = r - 1) do:  
• Merge the segments of Ui 
• If  i = r - 1 then set k ~-- +co else set k ~-- largest key in Bi 
• Scan Bi and Ui simultaneously, and for each operation in Ui if 
the operation is: 

- Delete(x) then remove any element (x, kx) from Bi if exists 
- Decrease-Key(x, kx)/Sink(x, kx) then if any element 

(x, k*) exists in Bi replace it with (x, min(k~, k~)), otherwise copy 
(x, kx) to B~ i f  kx < k 
• If i < r - 1 then do the following: 

- copy each Decrease-Key(x, kz) / Sink(x, kx) in Ui with 
k~ > k t o U i + l  

- for each Delete(x) and Decrease-Key(x, kx) with kx < k 
in Ui copy a Delete(x) to Ui+i 
• If [B d > 2 i+1 then do:  

- i f i = r -  l t h e n s e t  r ~ - - r + l  
- keep the 2 i+i  elements with the smallest 2 i+l keys in Bi 

and insert each remaining element (x, kx) into Ui+l as Sink(x, kx) 
• Set Ui ~- 0 

FUNCTION 4 . 4 .  D e l e t e - M i n  0 
(Extracts the element with the smallest key from the strncture.) 

1. Set i +- 0 
Repeat 

- A p p l y - U p d a t e s ( i )  
- Set i ~ - - i + 1  

Until Bi is non-empty or i = r 
2 .  
• Set B' ~-- Bi, i ~-- i -/- 1 
• F i x - U ( i ,  B ' )  
3 .  
• Extract the minimum-key element frmn B' 
• Move rest of B' to the shallowest possible element buffers 
maintaining invariants 4.1(a), 4.2(a) and 4.3(a) 
4 .  R e c o n s t r u c t ( )  

FUNCTION 4.5. R e c o n s t r u c t ( )  

(Reconstructs the data structure when No = L ~ J  + 1, where 
Ne is the number of elements in SBH immediately after the 
last reconstruction (Ne = 0 initially), and No is the nmnber of 
operations since the last reconstruction/initialization of SBH.) 

1. If No = k-~] + 1 then: 
• For i ~-- 0 to r - 1 do A p p l y - U p d a t e s ( i )  
• Distribute remaining elements to shallowest element buffers 

4 . 2 . 4  A n a l y s i s .  C o r r e c t n e s s  of  t h e  o p e r a t i o n s  1s 

s t r a i g h t - f o r w a r d ,  a n d  t h e  p r o o f  is in t h e  full  p a p e r  [9]. 

T h e  p r o o f  of  t h e  fo l lowing  l e m m a  is also in [9]. 

LEMMA 4.1 .  For 1 < i < r - l ,  every empty U~ ,receives 
batches of updates a constant number of times before Ui 
is applied on Bi and emptied again. 

T h i s  l e m m a  has  t h e  fo l lowing  i m p l i c a t i o n s :  
• E a c h  e n t r y  o f  As has  c o n s t a n t  s ize and  t h u s  

s e q u e n t i a l  access  of  As wil l  i ncu r  ( 9 ( ~ )  a m o r t i z e d  cache-  

misses  pe r  access  pe r  ent ry .  
• M e r g i n g  t h e  s e g m e n t s  of  Ui (in A p p l y - U p d a t e s )  

incur s  o n l y  0 ( ~ )  a m o r t i z e d  I / O s  p e r  u p d a t e  ill g i .  

We  now s t a t e  t h e  m a i n  l e m m a  of  th is  sec t ion .  

LEMMA 4.2 .  A Slim Buffer Heap supports Dele te ,  

D e l e t e - M i n  and D e c r e a s e - K e y  operations in 0 (  ~ + 
£ log 2 -~) amortized I /Os  each using O(N)  space, where 
B 
N is the current number of elements in the structure. 

Proof .  ( S k e t c h -  see [9] for de ta i l s )  As in [8], we  a s s u m e  

t h a t  a Decrease-Key o p e r a t i o n  is i n se r t ed  in to  U0 as 

an  o r d e r e d  pa i r  (Decrease-Key, Dummy}. A f t e r  t i le  

successfu l  a p p l i c a t i o n  of  t h a t  Decrease-Key o p e r a t i o n  on  

s o m e  B i ,  t h e  Decrease-Key o p e r a t i o n  in t h e  o r d e r e d  pa i r  

m o v e s  to  Ui+l as a Delete o p e r a t i o n ,  a n d  t h e  Dummy 
o p e r a t i o n  e i t he r  t u r n s  in to  an  e l e m e n t  in Bi ,  or  m o v e s  

to  U~+i as a Sink o p e r a t i o n .  T h u s  a Decrease-Key 
o p e r a t i o n  wil l  be  c o u n t e d  as two  o p e r a t i o n s  un t i l  i t  is 

app l i ed  on  s o m e  e l e m e n t  buffer .  
For  0 < i < r - l ,  le t  ui  be  t h e  n u m b e r  of  o p e r a t i o n s  

in U~ and  b~ t h e  n u m b e r  in Bi .  Le t  A d e n o t e  t h e  n u m b e r  

of  n e w  Decrease-Key, Delete a n d  Delete-Min o p e r a t i o n s  

s ince t h e  las t  t i m e  any  p a r t  of  t h e  d a t a  s t r u c t u r e  o u t s i d e  

t h e  s l im cache  was  accessed ,  and  le t  Ao  be  t h e  n u m b e r  of  

o p e r a t i o n s  s ince  t h e  las t  c o n s t r u c t i o n / r e c o n s t r u c t i o n  o f  

t h e  d a t a  s t r u c t u r e .  I f  H is t h e  c u r r e n t  s t a t e  o f  SBH(A) ,  
we def ine  t h e  potential of  H as tbllows: 

• (H) = E =0 {(2r - i ) .  + (i + 1)- bd 

As in t h e  ana lys i s  of  t h e  I / O - c o m p l e x i t i e s  of  t h e  Buffer  

H e a p  o p e r a t i o n s  in [8], t h e  key o b s e r v a t i o n  is t h a t  

o p e r a t i o n s  a lways  m o v e  d o w n w a r d  in t h e  U buffer  

and  e l e m e n t s  g e n e r a l l y  m o v e  u p w a r d  in t h e  B buffer.  
F u r t h e r ,  any  t i m e  a U buffer  is e x a m i n e d ,  i t  is e m p t i e d  

and  i ts  c o n t e n t s  m o v e d  d o w n  to  t h e  n e x t  lower  buffer ,  

and  b e t w e e n  two  success ive  e m p t y i n g s  it  neve r  rece ives  

m o r e  t h a n  a c o n s t a n t  n u m b e r  of  ba t ches  of  u p d a t e s .  

S imi la r ly ,  any  t i m e  a B buffer  is e x a m i n e d ,  each  e l e m e n t  

in it  is e i t h e r  m o v e d  up  to  a h ighe r  B bnffer  or  is 

m o v e d  to  a lower  U buffer  as a Sink o p e r a t i o n .  T h e  o n e  

e x c e p t i o n  is w h e n  a B buffer  is e x a m i n e d  d u r i n g  F i x - U ,  

and  t h e  cos t  of  t h i s  is p a i d  by t h e  d r o p  in p o t e n t i a l  d u e  

to  t h e  u p w a r d  m o v e m e n t  of  ~t(k) e l e m e n t s  in e l e m e n t  

buffers  ( th is  is t h e  r e a s o n  for t h e  f ac to r  2 t h a t  a p p e a r s  

be fo re  t h e  s u m m a t i o n  p a r t  in t h e  p o t e n t i M  func t ion ) .  

I g n o r i n g  t h e  Sink o p e r a t i o n  for t h e  m o m e n t ,  all  o t h e r  

cos ts  a re  pa id  for by t h e  c o r r e s p o n d i n g  d r o p  in p o t e n t i a l .  
O n e  un i t  o f  ~ on  O(A) en t r i e s  in t h e  t o p  t levels  pays  
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for the cost of bringing in a new block when an access 
is made to an entry in level t + 1. Finally the cost of 
the Sink operations is handled in the same manner as 
in [8], namely by the drop in potential incurred by the 
removal of the Decrease-Key operation that  triggered 
the Sink. The Ao terms appearing in the potential 
function ensures enough potential drop to pay for the 
cost of periodic reconstruction of the data  structure. [] 

4.3 Mult i -Buffer-Heap and External -Memory  
APSP.  A Multi-Buffer-Heap is constructed as follows. 
Let .k < B and let L = ~.  We pack the slim caches of 
O(L) SBH(A) into a single memory block. We call this 
block the multi-slim-cache and the resulting structure a 
Multi-Buffer-Heap. By the analysis in section 4.2.4 this 
structure supports Delete, Delete-Min and Decrease- 
Key operations on each of its component Slim Buffer 

, 
Heaps in O(~  + -~ log 2 amortized I /Os each. 

For computing APSP we take the approach in [6]. 
We work on all V underlying SSSP problems sinmlta- 
neously, and solve each individual SSSP problem using 
Kumar & Schwabe's algorithm for weighted undirected 
graphs [12]. For 1 < i < V, we require a priority 
queue pair (Qi, Q~), where the i th pair belong to the 
i th SSSP problem. These V priority queue pairs are 
implemented using O(-~) Multi-Buffer-Heaps. The al- 
gorithm proceeds in V rounds. In each round we load 
the multi-slim-cache of each MBH, and for each MBH 
extract a settled vertex with minimum distance from 
each of the O(L) priority queue pairs it stores. We sort 
the extracted vertices by vertex indices, and scan this 
sorted vertex list and the sorted sequences of adjacency 
lists in parallel to retrieve the adjacency lists of the set- 
tled vertices of this rotmd. Another sorting phase moves 
all adjacency lists to be applied to the same MBH to- 
gether. Then all necessary Decrease-Key operations are 
performed by cycling through the Multi-Buffer-Heaps 
once again. At the end of the algorithm the extracted 
vertices along with their computed distance values are 
sorted to produce the final distance matrix. 

I / O  Complex i t y .  In each round O(~)  I /Os are 
required to load the multi-slim-caches of all Multi- 
Buffer-Heaps. Accessing all required adjacency lists 
over O(V) rounds requires (9(V. sort(E)) I/Os. A 
total of O(VE.  (~ + ~ log2 ~))  I /Os are required by 
all O(VE) priority queue operations performed by this 
algorithm. Sorting the final distance matrix requires 
O(V.  sort(V)) I/Os. Thus the I /O complexity of this 
algorithm is O(V. ( ~ + -~ + ~- log 2 ~ + sort(E))). Using 
L = r i f l e  >_ 1, we obtain the following: 

THEOREM 4.1. Using Multi-Buffer-Heaps, APSP on 
undirected graphs with non-negative real edge weights 

can be solved using O(V.  ( V / R I B  + sort(E))) I/Os 
and O(V 2) space whenever E - l o g - ~  < v13 (or E = 

VB O(~o7 )). 
In conjunction with the I /O efficient APSP algo- 

rithm for sufficiently dense graphs implied by the SSSP 
results in [12, 8] we obtain the following corollary. 

COROLLARY 4.1. APSP on an undirected graph with 
non-negative real edge weights can be solved using O(V. 
( v / ~ f f  / B  + (E/B) log E/B))  I/Os and O(V 2) space. 
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