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Abstract
We prove that, for k ≥ 2, the k-orientability threshold for the
random graph Gn,p coincides with the threshold at which
the (k + 1)-core has average degree 2k. The proof involves
the analysis of a heuristic algorithm that attempts to find a
k-orientation of the random graph.

The k-orientation threshold has several applications
including offline balanced allocation with a limit of k on
maximum bin-size, perfect hashing with a limit of k on
maximum chain-length, and concurrent access to parallel
memories through redundancy,

1 Introduction

A graph G is k-orientable if its edges can be directed
such that every vertex has in-degree at most k. For the
random graph Gn,p with p = d/n for constant d, we
determine the k-orientability thresholds, defined by

(1.1) dk = sup{d : Gn,d/n is a.a.s. k-orientable}.

For k = 1, it is easily seen that dk = 1, as
the 1-orientability threshold coincides with the giant
component threshold. For k ≥ 2, k-orientability is
closely related to the (k+1)-core, defined as the maximal
induced subgraph of minimum degree at least k+1. The
k-core thresholds for random graphs have been studied
in [20, 4, 15, 7, 10].

It is evident that if the (k + 1)-core of a graph G is
empty, then G is k-orientable since one can repeatedly
pick a vertex of degree at most k in the current graph
and orient all of its incident edges as incoming to the
vertex. It is also easy to see that if G contains any
subgraph of average degree strictly greater than k, then
G is not k-orientable. Hence, if we define

ck = sup{c : the (k + 1)-core of Gn,c/n is a.a.s. empty}

c′k = sup{c′ : the (k + 1)-core of Gn,c′/n a.a.s. has

average degree at most 2k}

we immediately have

(1.2) ck ≤ dk ≤ c′k.

The bounds for dk in equation 1.2 were the best
known until recently. A 2004 Ph.D. thesis [14] gives
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some improved results, but these are not tight. A
conjecture by Karp and Saks on the k-orientability
threshold is mentioned in [11]. Our main result is that
the second inequality in (1.2) is tight.

Theorem 1.1. For any k ≥ 2, c′k = dk.

Concurrent with our paper the same result is reported
in [3] using a different method.

For average degree d > c′k it is known the k-core
a.a.s. has average degree strictly greater than 2k, so we
have a sharp threshold for k-orientability:

dk = sup{d : Gn,d/n is a.a.s. k-orientable}

= inf{d : Gn,d/n is a.a.s. not k-orientable}.

The proof of Theorem 1.1 involves the analysis of
an algorithm for computing an upper bound on the
probability that a random graph with a specified degree
distribution is k-orientable. We show how to trace
the execution of this algorithm by viewing the random
graph as a random multigraph with a Poisson degree
distribution.

The algorithm for computing the k-orientability
threshold is constructive, and can be modified in trivial
ways to yield a heuristic for k-orientation that succeeds
a.a.s. on the random graph Gn,d/n for any d < dk

(though it may fail on an arbitrary k-orientable graph).
The main contribution of this paper is the proof

of Theorem 1.1. As mentioned in the abstract this
result has applications in many areas including perfect
hashing, simulation of shared memory on DMM, and
concurrent accesses to parallel disks (see e.g., [12, 1,
21, 5, 19, 14, 6]). As an example, in the context of
perfect hashing [9] we wish to maximize c and hence m
such that we can almost always store m = c · n keys
in a hash table of size n with each slot containing at
most k keys; we have two fully random and independent
hash functions and each key can be placed in either
one of the two slots into which it is hashed. The
connection to k-orientability is seen as follows: the
slots are the vertices of the random graph and keys are
(random) edges; orienting edge (u, v) from u to v places
the corresponding key in the slot corresponding to v.
Clearly a valid placement of keys is possible if and only
if this random graph is k-orientable. Our main theorem
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gives a sharp bound dk such that a placement is almost
always possible if 2c < dk and is almost never possible
if 2c > dk. Our proof also gives an efficient algorithm
to find such a placement when 2c < dk. Table 1 in the
appendix lists some values of dk.

In the above formulation, for k = 1 cuckoo hashing
[18] corresponds to 1-orientability and achieves the best
bound, however in that case c = 1/2 and there is a 50%
wastage in space. The space usage for k ≥ 2 is studied in
[5, 8, 19, 6] among others, but their bounds are not tight.
Our main theorem pins down the best possible bound
for c for a given bound k on the maximum number of
elements per slot. (These other results also consider the
dynamic case (insertions and deletions); this is likely to
become harder as we approach the threshold dk and we
leave this as a topic for future research.)

2 Preliminaries

2.1 Asymptotics and Probability This paper
studies large random graphs asymptotically as the num-
ber of vertices n → ∞. Hence, we are in effect consider-
ing a sequence of random graphs G(1), G(2), . . . where
G(n) is a random graph on n vertices. The asymptotic
index “(n)” will generally remain implicit. Neverthe-
less, all asymptotic notation in this paper (i.e. big O,
big Ω, etc) refers to the limit as n → ∞. In this subsec-
tion only, we make the index “(n)” explicit in order to
give precise asymptotic definitions.

Given a sequence of events H(n), we say H(n) oc-
curs asymptotically almost surely (a.a.s.) if P[H(n)] =
1 − o(1), and H occurs with high probability (w.h.p.),
if P[H(n)] = 1 − n−ω(1). Note that the conjunction of
constant number of w.h.p. events also occurs w.h.p., and
that the conjunction of a polynomial number of events
which hold uniformly w.h.p. also occurs w.h.p.

We shall frequently state lemmas in the form:

Assume H(n); then J(n) occurs w.h.p.

This means that the event [H(n) =⇒ J(n)], or
equivalently, [¬H(n) ∨ J(n)], occurs w.h.p.; in particu-
lar, this does not mean that the conditional probability
P[J(n)|H(n)] is always high.

2.2 Random Processes and Martingale Con-
centration Our concentration results will use Azuma’s
inequality. The setting we shall encounter repeatedly is
the following. We have a random sequence of nested
subsets (A0 ⊇ A1 ⊇ A2 ⊇ . . . ⊇ Aτ ) of an initial set
A0, where τ is a possibly random stopping time. All
random processes z0, z1, . . . are implicitly assumed to
be functions of the history, so zt = z(A0, . . . , At).

For a real-valued random process z0, z1, . . ., we

denote the change in z at a given time by ∆tz =
zt − zt−1. We let Et denote the conditional expectation
at time t, and we abbreviate

Et∆z = Et∆t+1z = E[zt+1 − zt|A0, . . . At].

Our main tool for deriving w.h.p. concentration is
Azuma’s inequality.

Theorem 2.1. (Corollary to Azuma’s Inequality)
Fix constants ǫ, c1, c2 > 0, and consider a random pro-
cess z0, z1, . . . , zt for t > mc1 such that |∆sz| < c2

always for all s ∈ [1, t]. Then w.h.p.

sup
s∈[0,t]

∣

∣

∣

∣

∣

zs −
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)
∣

∣

∣

∣

∣

< ǫt.

Note that all w.h.p. results derived from Azuma’s
inequality are uniform as long as the Lipschitz constant
and the length of the interval are uniformly bounded.

2.3 The Configuration Model Let πd denote a
Poisson distribution with expected value d, so πd(i) =
e−ddi

i! . It is well known and easy to see that the de-
gree distribution (i.e. the fraction of vertices of various
degrees, see §2.4) of the random graph Gn,d/n is asymp-
totically Poisson. Hence, the random graph Gn,d/n can
be successfully studied by generating a uniformly ran-
dom graph with specified sequence of vertex degrees
which exhibits a Poisson degree distribution with ex-
pected value d.

We shall generate fixed-degree-sequence random
graphs using the configuration model [2]. Our notation
is as follows. We begin with an (even) set of endpoints
A partitioned into a set of vertices V . A multigraph on
(A, V ) is a triple G = (A, V, E), where the edge set E
is a perfect matching of the endpoint set A. We let m
denote the number of endpoints and n the number of
vertices; note that the number of edges in the resulting
graph is m/2.

Given a set of endpoints A, we let EA denote a
uniformly random matching of A, and given an endpoint
partition (A, V ), and we let G(A, V ) = G(A, V, EA)
denote the corresponding random multi-graph.

There are various technical difficulties which must
be addressed when studying the random graph Gn,p us-
ing the configuration model, most notably the fact that
the configuration model does not necessarily produce a
simple graph. Nevertheless, the use of the configura-
tion model in this setting is standard, and has been em-
ployed by various authors, including [16, 17, 13, 7, 10]
and in this paper we shall ignore the distinction be-
tween graphs and multigraphs, and simply study the
k-orientability of the random multigraph G(A, V ).
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2.4 The Degree Distribution Given an endpoint
partition (A, V ) we define the degree deg(A,V )(v) of a
vertex v to be the number of endpoints which the vertex
v contains. We let

Λ(A,V )(i) =
∣

∣

∣
v ∈ V : deg(A,V )(v) = i

∣

∣

∣

denote the number of vertices of degree i. Accordingly,
we define the degree distribution by

λ(A,V )(i) =
Λ(A,V )(i)

n
,

so λ(A,V ) is the distribution of the random variable
corresponding to the degree of a randomly chosen
vertex. We let M(λ) denote the average positive degree
(which excludes vertices of degree 0).

We define the degree deg(A,V )(a) of an endpoint
a to be the degree of the vertex containing a. For
any distribution λ (degree distribution or otherwise),
we define the corresponding endpoint degree distribution
(or simply endpoint distribution) by

µλ(i) =
iλ(i)

∑

j jλ(j)
.

The endpoint distribution corresponds to the degree of
a randomly chosen endpoint.

2.5 Gn,p and the Poisson Distribution We assert
without proof that the degree distribution of Gn,d/n

converges to a Poisson distribution.

Proposition 2.1. For any d > 0, the degree distribu-
tion of the random graph Gn,d/n satisfies the following
properties a.a.s.:

1. for any constant i, λ(i) = πd(i) ± o(1);

2. there exist constants C1, C2 > 0 such that
∑∞

i=1 eC1iλ(i) < C2.

In particular, it is known that if a property holds
a.a.s. for any random configuration G(A, V ) such that
the degree distribution which satisfies the conditions of
proposition 2.1, then the property holds a.a.s. for the
random graph Gn,d/n (see e.g. [16]).

3 A Heuristic for Finding a k-orientation

In this section we present a simple recursive algorithm
which attempts to determine whether a graph G is k-
orientable. For the purposes of analysis, we consider
a slightly more general situation. Given a multigraph
G = (V, E), we consider a mapping K : V → N, and we
define a K-orientation to be an orientation of the edges
such that the indegree of each v ∈ V is at most K(v).

For a constant k, the k-orientation problem is thus a
special case of the K-orientation problem, by letting
K(v) = k for all k.

We say a vertex v is unconstrained if deg(v) ≤ K(v);
hence if v is unconstrained, then every edge incident
on v can be directed toward v. We say v is partially
constrained if K(v) < deg(v) ≤ 2K(v). A partially
constrained vertex has the property that at least half of
its vertices can be directed towards v. Finally, we say
v is overconstrained if deg(v) > 2K(v). Note that if all
vertices are overconstrained then the graph is evidently
not K-orientable.

We now give an informal overview of the k-
orientation algorithm. The algorithm is recursive, in
that, given a graph G, and a mapping K, the algorithm
will produce a modified graph G′ and a modified map-
ping K such that if G′ is K ′-orientable, then G is K ′-
orientable as well. The methods we used to construct
the graph G′ are based on two observations.

First, as noted above, all edges incident on any
unconstrained vertex may be directed towards the given
vertex. Hence, the first part of the algorithm simply
directs edges towards unconstrained vertices in a greedy
fashion. Specifically, if G contains an unconstrained
vertex v, then we direct all incident edges towards v.
Then we remove these edges and orient the edges in the
residual graph G′.

The situation becomes non-trivial when there are
no unconstrained vertices, in which case we employ a
procedure called excess degree reduction. Consider a
partially constrained vertex v, so K(v) < deg(v) ≤
2K(v). We perform excess degree reduction on v as
follows. First, we arbitrarily choose two endpoints s1, s2

which belong to v, with the intention of guaranteeing
that at most one of s1, s2 are ultimately directed toward
v. We consider two cases:

1. (s1, s2) is an edge in G (recall that we allow self-
loops — see §2.3)

2. s1 and s2 are connected to two other endpoints
r1, r2 in G.

In the first case, it is trivial that exactly one of {s1, s2}
must be directed inward. Hence we may remove s1, s2

from G along with the edge (s1, s2) to produce the graph
G′, and we set K ′(v) = K(v) − 1. It is evident that G
is K-orientable (if and) only if G′ is K ′-orientable.

In the second case, we note exactly one of {s1, s2}
will be directed inward if and only if exactly one of
{r1, r2} is directed inward. We can ensure that this
second condition occurs by connecting r1 and r2 with
an edge. Hence, we perform excess degree reduction
on the pair {s1, s2} by removing the endpoints {s1, s2}
and creating a new edge (r1, r2) in the graph G′. Once
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Figure 1: The two cases of excess degree reduction for
two endpoints on a vertex of degree 3.

again, we set K ′(v) = K(v) − 1, and therefore G is
K-orientable only if G′ is K ′-orientable.

Note that, after excess degree reduction we have
deg′(v) = deg(v) − 2 and K ′(v) = K(v) − 1, and
therefore after deg(v) − K(v) rounds, v will become
unconstrained, in which case we may direct all incident
edges towards v as discussed above. The procedure of
excess degree reduction is illustrated in figure 1.

Hence, the k-orientation algorithm will proceed by
repeatedly choosing a vertex v of minimum degree and
applying the applicable steps in the following:

1. if v is unconstrained, direct all incident edges
inwards, and remove v along with these edges;

2. if v is partially constrained, perform excess degree
reduction until v is unconstrained, and then pro-
ceed as above;

3. if v is overconstrained terminate and and report
failure.

3.1 The k-orientation Algorithm and the Con-
figuration Model We incorporate the excess degree
reduction steps into the configuration model, which we
study algorithmically as in [16, 17]. We state the fol-
lowing lemma without proof.

Lemma 3.1. Each of the following two recursive proce-
dures, P1 and P2, yields a uniformly random matching
of a set A.

(P1) Choose an arbitrary endpoint a0, choose an end-
point a1 uniformly at random from A − {a0}, gen-
erate a uniformly random matching E′ of A′ =
A − {a0, a1}, and let E = E′ ∪ {(a0, a1)}.

(P2) Choose an arbitrary pair of endpoints a0, a1 ∈ A,
and generate a random matching E′ of the set
A′ = A − {a0, a1}. With probability 1/(m − 1),

set E = E′ ∪ {(a0, a1)}. Otherwise choose an edge
e′ = (b0, b1) ∈ E′ uniformly at random (directed at
random, so P[e′ = (b0, b1)] = P[e′ = (b1, b0)]), and
let E = (E′ − {e′}) ∪ {(a0, b0), (a1, b1)}.

Parts (P1) and (P2) correspond to the two pro-
cedures used by the k-orientation algorithm described
above when it does not fail. This leads to the configu-
ration model version of the k-orientation algorithm:

Algorithm 3.1. k-orientation(A, V )
repeatedly execute the following on a vertex v of mini-
mum degree until A is empty:

1. if deg(v) ≤ k, repeat until deg(v) = 0:

1a. remove an endpoint from v;

1b. remove an endpoint chosen uniformly at ran-
dom;

2. if deg(v) = k + j for 0 < j < k, first remove 2j
endpoints from v; then execute step 1;

3. if deg(v) ≥ 2k, terminate and return failure.

It is not difficult to verify the correctness of this
algorithm in light of the above discussion; hence, we
state the following lemma without proof.

Lemma 3.2. The probability that the k-orientation al-
gorithm succeeds is at most equal to the probability that
the random graph G(A, V ) is k-orientable.

4 Analysis of the k-orientation Algorithm on a
Random Graph

In this section, we analyze the execution of the k-
orientation algorithm. We begin with some notation.

Note that the loop in algorithm 3.1 does not always
remove the same number of endpoints from A. In order
to simplify the analysis, we shall break the loop into
individual steps. At each step, a single endpoint is
removed from A. An iteration of the loop therefore
consists of several consecutive steps.

We let At denote the set of endpoints that remain
after t steps, and we let at denote the endpoint removed
at step t, so At = At−1 − {at}. The subscript t is used
generally to indicate the state of the algorithm at time
t. So, for example, λt denotes the degree distribution
at time t, degt(v) denotes the degree of a given vertex
v at time t, and so on.

We say step t is random if the endpoint at removed
at time t is chosen uniformly at random, otherwise t is
deterministic. We note that the type of step which will
occur at time (t+1) can be determined from the history
at time t, and therefore, this information is included
when computing conditional expectations. Specifically,
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if step t + 1 is random, the probability of removing an
endpoint of degree i is µt(i), and therefore, for a random

step, we have Et ∆Λ(i) = µt(i + 1) − µt(i).

We denote the minimum positive degree at time t
by dmint. For any h > 0, we let

(4.3) τh = min{t ∈ [0, m] : dmint = h}

denote the first time that the minimum degree reaches
h; if this never occurs, we set τh = m. Note that the
algorithm terminates at time τ2k, and the algorithm
succeeds if and only if the termination time is τ2k = m.

We define the degree of an iteration to be the degree
of the vertex v chosen at the beginning of the iteration.
Since the vertex v always has minimum positive degree,
then the degree of an iteration which begins at time t is
dmint.

4.1 k-orientability and the (k + 1)-core As noted
in the introduction, the k-orientability problem is re-
lated to the (k + 1)-core of a random graph, which is
the maximal induced subgraph of minimum degree at
least k + 1. The (k + 1) core of a random graph has
been studied extensively[20, 4, 15, 7, 10], and given the
average degree d, it is possible to determine whether the
(k + 1)-core of Gn,d/n is nonempty, and if so, the size
and degree distribution of the (k + 1)-core.

The (k + 1)-core of a graph can be found using
a simple algorithm which removes vertices of degree
less than k + 1 from the graph until no such vertices
remain. In fact, while the minimum degree remains at
most k, the k-orientation algorithm defined in this paper
coincides with this algorithm for finding the (k+1)-core.
Hence, if the graph does not contain a (k + 1)-core, the
minimum degree remains at most k throughout, and the
algorithm terminates successfully.

The following lemma from [10] allows us to rule out
the possibility of finding a very small (k + 1)-core.

Lemma 4.1. ([10]) Fix constants ǫ, C1, C2 > 0, and
consider an endpoint partition (A, V ) with degree distri-
bution λ, such that λ(0) < 1−ǫ and

∑∞

i=1 eC1iλ(i) < C2.
Then there exists a β > 0 such that the random graph
G(A, V ) a.a.s. does not contain a (k+1)-core containing
fewer than βn vertices.

The following corollary follows fairly immediately
from this lemma, and allows us focus on the first
m − o(m) steps of the execution of the k-orientation
algorithm.

Corollary 4.1. Assume the initial degree distribution
λ0 satisfies both conditions of proposition 2.1, and
suppose that there exists a constant δ0 > 0 such that

for arbitrary δ > 0, the we have dmint ≤ k for all times
m − δ0m < t < m − δm w.h.p. Then the random graph
G(A, V ) is a.a.s. k-orientable.

4.2 Intervals and Iterations Due to corollary 4.1,
we shall focus our analysis on the time interval [0, m −
δm] for arbitrary but fixed δ > 0. Noting that µt(h) =
hΛt(h)
m−t and that |∆tΛ(h)| ≤ 1 always, we have the

following proposition.

Proposition 4.1. Fix arbitrary constants C, δ > 0,
and consider a degree h ≤ C. Then:

1. for any time t < m − δm, we have |∆tµ(h)| =
O(1/m);

2. for times t < t1 < m − δm, we have
|µt1(h) − µt(h)| = O

(

t1−t
m

)

.

The first claim of this proposition allows us to
invoke Azuma’s inequality, while the second allows
us to assume that the endpoint distribution remains
essentially unchanged over intervals of length o(m).
Typically, we are interested in the values µ(h) ≤ 2k,
so we may set the constant C = 2k. In order to take
advantage of this proposition, we offer the following
definition.

Definition 4.1. Fix constants δ > 0 and 0 < c1 <
c2 < 1. A regular interval is a time interval [t, t1] such
that (1) t1 − t > mc1 , (2) t1 < m− δm, and (3) a new
iteration begins at time t.

A short regular interval is a regular interval which
also satisfies t1 − t < mc2 .

In particular, note that for a short regular interval and
any h < 2k, we have µs(h) = µt(h)± o(1) for s ∈ [t, t1].

For any time interval [t, t1], regular or otherwise, we
say a condition holds at almost every step (or almost
every iteration) in [t, t1], if the condition holds for all
but o(t1 − t) steps (respectively iterations) during the
interval.

Note that, during a given iteration, all of the end-
points belonging to the chosen vertex v are removed.
And, unless one of these endpoints is chosen randomly
during the the iteration, they are all removed determin-
istically. Since the degree of an iteration is at most
2k−1 = O(1), then at any time t < m− δm, the proba-
bility that any of these endpoints are chosen at random
is O(1/m). Hence, with probability 1−O(1/m), an iter-
ation of degree h includes exactly h deterministic steps.

Now, if h ≤ k, then each deterministic step is
followed by a random step, while if h > k, the first
2(h − k) steps are deterministic and then deterministic
and random steps alternate. Hence, with probability
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1 − O(1/m), an iteration of degree h ≥ k lasts a total
of 2k steps. We thus have the following proposition.

Proposition 4.2. For any regular interval, almost ev-
ery iteration of degree h includes max{2h, 2k} steps, of
which k − |k − h| are random w.h.p.

Next, we note that during any iteration, the chosen
vertex v becomes empty. A second vertex can only
become empty if all of its endpoints are selected at
random, an event which occurs with probability O(1/m)
if the minimum degree is at least 2. Hence we have the
following proposition.

Proposition 4.3. For any regular interval, almost ev-
ery iteration of degree at least 2 reduces the number of
nonempty vertices by exactly 1 w.h.p.

4.3 The Degree Distribution at High Degrees
Recall from equation (4.3) that τh denotes the first
time the event dminτh

≥ h occurs. Until τh, endpoints
belonging to vertices of degree h or greater are only
subject to random selection. Hence, it is fairly easy to
determine the degree distribution at degrees j ≥ h for
any time t ≤ τh.

The degree distribution at time 0 satisfies λ(i) =
πd(i)±o(1), where πd is a Poisson distribution. As part
of the analysis of k-core of sparse Gn,p, Pittel et al.
[20] noted that the fact that high-degree endpoints are
only selected at random implies that the distribution at
high degrees maintains a Poisson distribution, but with
a lower expected value parameter. The following lemma
states that the same occurs for the k-orientability algo-
rithm; its proof is omitted for this extended abstract.

Lemma 4.2. Assume the initial degree distribution sat-
isfies the conditions of proposition 2.1 for a Poisson dis-
tribution πd. For any fixed constants C > j > 0, and
any time 0 < t < τj, there exists a value dt < d such
that w.h.p. for all j ≤ h < C

λt(h) = πdt
(h) ± o(1)

4.4 The Minimum Degree Using the result of the
previous section, given dt, we can determine the value of
λt(h) at any time t ≤ τh. In particular, for any h ≥ 2k,
lemma 4.2 is always applicable, since the algorithm
terminates at time τ2k.

In this section, we examine the lower degrees of the
degree distribution. The essential part of this analysis
is to determine the behavior of the minimum positive
degree dmint over time. We begin by noting that if
dmint = h, then there are no vertices of degree less
than h at time t. Hence, the only way the minimum
degree can reach j < h at the start of a future iteration

if the degree of a vertex with degt(v) ≥ h is reduced via
random selection. This allows us to bound the number
of iterations of degree j < h by the following lemma,
which we state without proof.

Lemma 4.3. Fix a constant ǫ > 0 and consider a
regular interval [t, t1] such that dmint ≥ h and µs(h) < ǫ
for all s ∈ [t, t1]. Then at most ǫ(t1 − t) iterations in
[t, t1] have degree h − 1 w.h.p.

We now have a useful corollary which follows easily
from lemma 4.3 and proposition 4.1.

Corollary 4.2. Consider a short regular interval
[t, t1] such that dmint = h. Then w.h.p.:

1. almost all iterations in the interval [t, t1] have
degree at least h − 1;

2. if µt(h) = o(1) then almost all iterations in the
interval [t, t1] have degree at least h; and

3. if µt(h) = Ω(1) then almost all iterations in the
interval [t, t1] have degree either h or h − 1.

Based on this corollary, we begin to understand
the behavior of the minimum degree at the start of
successive iterations. Specifically, if dmint = h and
µt(h) = Ω(1), then almost all iterations in a short
regular interval will have degree either h or h − 1. In
most cases, iterations of both degrees h and h − 1 will
occur fairly regularly in such an interval. Intuitively,
a larger value of µt(h) implies a greater frequency of
iterations of degree h − 1. This is because iterations
of degree h − 1 occur due to random selections of
endpoints of degree h, and the frequency of these
random selections is determined by µt(h).

Since the minimum degree at the start of successive
iterations typically alternates between h and h − 1, it
is often useful to think of the maximum degree of an
iteration in the “recent past” (say the last m1/100 steps)
as an informal and qualitative guage of the current
behavior of the algorithm. We call this value the
max-min degree at time t. The notion of max-min
degree is informal, and we do not use the term in any
rigorous statements, but the idea is useful for intuitive
explanations.

Our next task is to determine conditions which
govern changes in the max-min degree. Typically, these
changes occur in two ways. First, if the minimum degree
is h− 1, and vertices of degree h− 1 become exhausted
then the max-min degree increases to (at least) h.
Second, if the max-min degree is h and µ(h) becomes
sufficiently large, then vertices of degree h − 1 begin
to accumulate due to random selections of endpoints of
degree h, and the max-min drops to h − 1.
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Both of these transitions are determined by the
value of µt(h), and, as shown in the following two
lemmas, for degree h > kx the critical value for a change
in max-min degree is

µt(h) ≃
1

2k − h + 1
.

The next lemma states that, if µt(h) < 1
2k−h+1 − Ω(1)

and dmint is at least h, then the minimum degree
becomes at least h again in the “near future,” and
therefore the max-min degree cannot drop to h − 1.

Lemma 4.4. Fix a constant ǫ > 0, and consider a short
regular interval [t, t1] such that dmint ≥ h > k and
µt(h) ≤ 1

2k−h+1 − ǫ. Then w.h.p.

max
t<s≤t1

dmins ≥ h.

Proof. By corollary 4.2, almost every iteration in the
interval [t, t1] has degree either h− 1 or h. The proof is
by contradiction, so let us assume the lemma fails; that
is, assume that dmins ≤ h− 1 for all t < s ≤ t1. In this
case almost every iteration has degree exactly h − 1.

By proposition 4.2, almost every iteration of degree
h − 1 includes 2k − h + 1 random steps. Each of these
random steps produces a new vertex of degree h−1 with
probability µs(h), and each random step reduces the
number of vertices of degree h− 1 by 1 with probability
µs(h − 1) = o(1). Also, a single vertex of degree h − 1
is removed deterministically each iteration. Hence, the
expected change in Λ(h − 1) for an iteration of degree
h − 1 is

(µs(h) − µs(h − 1))(2k − h + 1) − 1 ± o(1)

= µs(h)(2k − h + 1) − 1 ± o(1)

= −
ǫ

2k − h + 1
± o(1).

Since Λt(h − 1) = 0, and the expected change is
−Ω(1) for almost every iteration, it follows by Azuma’s
inequality that the number of vertices at time t1 is
negative w.h.p. But this is a contradiction w.h.p., since
the number of vertices cannot be negative. Hence it
cannot be the case that the almost all iterations have
degree h − 1, and therefore some iterations must have
degree h. In particular, the minimum degree must
become h in this time period w.h.p.

A similar lemma demonstrates that, if µt(h) >
1

2k−h+1 + Ω(1), and Λt(h) (the number of vertices of
degree h) is sufficiently small, then Λt(h) increases over
the course of a short regular interval, and therefore the
max-min degree cannot increase from h − 1 to h.

Lemma 4.5. Fix constants ǫ > 0 and 0 < c < 1, and
consider a short regular interval [t, t1] such that, for
h > k, we have dmint ≥ h − 1 and µt(h) ≥ 1

2k−h+1 + ǫ.
Assume also that Λt(h − 1) < mc. Then Λt1(h − 1) >
Λt(h − 1) w.h.p.

Proof. Note that, since Λt(h − 1) = o(m), then µt(h −
1) = o(1), and therefore by lemma 4.3 almost all
iterations in the interval [t, t1] have degree either h or
h − 1 w.h.p.

We now argue as in the previous lemma that an
iteration of degree h − 1 produces an expected change
in Λ(h − 1) of

(µs(h)−µs(h−1))(2k−h+1)−1±o(1) >
ǫ

2k − h + 1
+o(1),

and therefore the expected change is Ω(1). Also,
evidently, the expected change in Λ(h − 1) for an
iteration of degree h is also Ω(1). Hence, by martingale
concentration, the number of vertices of degree h − 1
increases over the interval [t, t1] w.h.p.

It is useful to restate the previous lemmas in terms
of a quantity related to the endpoint distribution. For
a distribution µ, let us define

(4.4) µ∗(h) =
µ(h)

∑

j≥h µ(j)
.

Intuitively, µ∗(h) is the probability of choosing an
endpoint of degree exactly h, conditional on choosing
an endpoint of degree at least h.

If h is the minimum degree then µ(h) = µ∗(h),
and if

∑

j<h µ(j) = o(1), then µ(h) = µ∗(h) ± o(1).
Therefore, we may replace µ with µ∗ in the previous
lemmas.

Corollary 4.3. Lemmas 4.4 and 4.5 hold if the con-
ditions µt(h) ≥ 1

2k−h+1 + ǫ and µt(h) ≤ 1
2k−h+1 − ǫ are

replaced by µ∗
t (h) ≥ 1

2k−h+1 +ǫ and µ∗
t (h) ≤ 1

2k−h+1 −ǫ,
respectively.

Although this is a trivial observation, as we shall see in
the next section, it is easier in certain cases to bound
µ∗(h) rather than µ(h).

5 k-orientability of Random Graphs

In this section, we shall prove our main theorem, The-
orem 1.1, by showing that the k-orientability algorithm
succeeds a.a.s. for Gn,d/n with average degree d < c′k.
Informally, we show that while the max-min degree is at
least k+1 and the average degree is 2k−Ω(1), the aver-
age degree decreases with almost every iteration. This
implies that the max-min degree must eventually drop
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from k + 1 back down to k. We also show that it does
not go back up to k + 1 for the remainder of the algo-
rithm. Hence, if the average degree is at most 2k−Ω(1)
at the time τk+1 when the (k + 1)-core is found, then
the algorithm will terminate successfully a.a.s.

The following lemma states a useful characteristic
of the Poisson distribution, namely that µ∗, defined in
equation (4.4), satisfies µ∗(h + 1) > µ∗(h) for all h.

Lemma 5.1. Let µπc
denote the endpoint distribution

for the Poisson distribution πc. Then, for fixed con-
stants C2 > C1 > 0 and a given h, there exists an ǫ > 0
such that

µ∗
πc

(h + 1) − µ∗
πc

(h) > ǫ for all C1 < c < C2

Proof. We first note that the endpoint distribution for
a Poisson distribution πc is given by

µπc
(i) =

i e−cci

i!

c
=

e−cci−1

(i − 1)!
= πc(i − 1).

Hence, it suffices to prove that π∗
c (h+1) > π∗

c (h), where

π∗
c (h) = πc(h)P

j≥h πc(j)
. Since πc(j) = e−ccj

j! , we compute

πc(j)
πc(h) = h!

j! c
j−h, and therefore 1

π∗
c (h) =

∑∞

i=0
h!

(h+i)!c
i.

Hence

1

π∗
c (h + 1)

=

∞
∑

i=0

(h + 1)!

(h + i + 1)!
ci

=

∞
∑

i=0

h!

(h + i)!

h + 1

h + i + 1
ci <

1

π∗
c (h)

.

It follows that if π∗
c (h + 1) > π∗

c (h) for all c > 0. And,
since π∗

c (h) is evidently a continuous function of c for
c > 0, the minimum value of π∗

c (h+1)−π∗
c (h) is strictly

positive in the interval [C1, C2].

For the remainder of this section, we shall assume
that the degree distribution at time 0 satisfies the
convergence conditions of proposition 2.1 for a Poisson
distribution πd with expected value d.

Noting that µ∗(h) depends only on λ(j) for j ≥ h,
and that by lemma 4.2, the λt(j) are Poisson distributed
for j ≥ 2k, we have the following corollary to lemma 5.1.

Corollary 5.1. For fixed δ > 0, there exists a con-
stant ǫ > 0 such that w.h.p. for all t < m − δm

µ∗
t (2k + 1) − µ∗

t (2k) > ǫ.

We now prove the condition µ∗(h+1)−µ∗(h)−Ω(1)
holds, not only for 2k, but also for any degree h ≤ 2k,
provided that the max-min degree is at least h. First, we
compute the expected change in µ∗(h). The proof of the
following lemma is routine calculations and is omitted.

Lemma 5.2. For any fixed δ > 0, and any time t <
m− δm, the expected change in µ∗(h) during a random
step is given by

Et ∆µ∗(h) =
1 − µ∗

t (h)

m − t
(hµ∗

t (h + 1) − (h − 1)µ∗
t (h))

± O(m−2).

We can now obtain the following corollary.

Corollary 5.2. Fix constants ǫ, δ > 0, and a degree
h ≤ 2k. For a random step at time t = m − δm such
that µ∗

t (h) < 1 − ǫ, the following hold:

1. for all δ0 > 0, there exists a constant C > 0 such
that if µ∗

t (h + 1) − µ∗
t (h) > δ0 then Et ∆µ∗(h) >

C/m;

2. for all δ0 > 0, there exist constants ǫ0 > 0 and
C0 > 0 such that if µ∗

t (h + 2) − µ∗
t (h + 1) > δ0

and µ∗
t (h + 1) − µ∗

t (h) < ǫ0 then Et ∆(µ∗(h + 1) −
µ∗(h)) > C0/m.

In particular, we have the following lemma.

Lemma 5.3. Consider a regular interval [t, t1] and a
degree k ≤ h ≤ 2k such that dmins ≤ h for all s ∈ [t, t1].
Then, we have µ∗

s(h+1)−µ∗
s(h) = Ω(1) for all s ∈ [t, t1]

w.h.p.

Proof. [Proof Sketch] Intuitively, by corollary 5.2, the
expected change in µ∗(h + 1) − µ∗(h) is positive for
a random selection, so µ∗(h + 1) − µ∗(h) continues to
increase so long as both µ∗(h + 2) > µ∗(h + 1) and
µ∗(h + 1) > µ∗(h). And, if the minimum degree is
at most h, then deterministic selections do not affect
µ∗(h + 1), and deterministic selections cannot increase
µ∗(h).

Recall that by corollary 4.1, it suffices to prove that
there exists a δ1 > 0 such that for all δ > 0, we have
dmins ≤ k for all m − δ1m ≤ s ≤ m − δm w.h.p.
We shall now prove the existence of such an interval.
First, we show that it suffices to find any interval of
length Ω(m) which begins after τk+1, during which the
minimum degree does not exceed k.

Lemma 5.4. Fix ǫ > 0 and h > k, and suppose there is
a regular interval [t, t1] of length t1 − t > ǫm such that
t ≥ τh and such that the dmins ≤ h−1 for all s ∈ [t, t1].
Then dmins ≤ h − 1 for all s ∈ [t, m − δm] w.h.p.

Proof. Without loss of generality, assume t is the least
value t > τh such that dmins < h−1 for all s ∈ [t, t+ǫm].
It follows the degree of the iteration which ends at time
t − 1 is at least h. By corollary 4.3 to lemma 4.4, if
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µ∗
t (h) ≤ 1

2k−h+1 −Ω(m), then we must have dmins ≥ h
for some t ≤ s ≤ t+ǫm w.h.p. But, since by assumption
this does not occur, then it must be the case that have
µ∗

t (h) ≥ 1
2k−h+1 − o(1) w.h.p.

Moreover, by lemma 5.3, we have µ∗
s(h+1)−µ∗

s(h) =
Ω(1) for all s ∈ [t, t1], so by corollary 5.2, it follows
that the expected change in µ∗(h) is Ω(1/m) for a
random selection throughout this interval. And, since
endpoints of degree h or greater are subject only to
random selection during the interval [t, t+ǫm], it follows
that µ∗

t+ǫm(h) ≥ 1
2k−h+1 + Ω(1) w.h.p. by martingale

concentration.
We now note that, so long as µ∗(h) ≥ 1

2k−h+1 +
Ω(1), by corollary 4.3 to lemma 4.5, the minimum
degree cannot increase to h w.h.p. And, so long as the
minimum degree remains at most h − 1, the condition
µ∗(h + 1) − µ∗

t (h) = Ω(1) continues to hold, and
therefore the expected change in µ∗(h) remains positive.
Therefore µ∗(h) continues to increase w.h.p., and the
minimum degree never exceeds h − 1 in the interval
[t, m − δm].

All that remains is to prove that there exists an
interval [t, t1] of length Ω(m) beginning at time t >
τk+1, such that dmins ≤ k for all s ∈ [t, t1]. Informally,
in order to find such an interval, we note that, while
µ(h) = o(1) for all h ≤ k, then almost all iterations
have degree at least k, and therefore almost all iterations
remove exactly 2k endpoints and reduce the number of
nonempty vertices by exactly 1. Hence, if the average
degree is 2k − ǫ, and the number of nonempty vertices
is n, the change in the average positive degree can be
computed by

(2k − ǫ)n

n
7−→

(2k − ǫ)n − 2k

n − 1
=

(2k − ǫ)(n − 1) − ǫ

n − 1

= 2k − ǫ −
ǫ

n − 1
.

In particular, the average degree decreases by Ω(1/m)
during each iteration.

This fact has two consequences. First, the aver-
age positive degree remains less than 2k, and so the
minimum degree remains less than 2k as well; this im-
plies that algorithm does not terminate during this time.
Second, if the pattern of removing 2k endpoints and 1
nonempty vertex each iteration continues, then the aver-
age positive degree will drop below k at some time before
m − δm for a constant δ > 0. But, clearly, the average
degree cannot drop below k−o(1) if all but o(1) vertices
have degree at least k. Hence, it must be the case that
before m− δm, we must have Ω(m) iterations of degree
less than k, which implies that

∑

h≤k µ(h) = Ω(1).
The informal argument in the previous paragraph

is made formal in the following lemma.

Lemma 5.5. Assume the (k + 1)-core has average pos-
itive degree at most 2k − ǫ w.h.p., and choose arbi-
trarily small constants ǫ0, δ > 0, which may depend
on ǫ. Let ρ denote the first time after τk+1 such that
∑

j≤k µρ(j) > ǫ0, and let ρ = m if this event never
occurs.

Then, for ǫ0, δ > 0 sufficiently small, we have
ρ < m − δm w.h.p.

Proof. Note that the (k + 1)-core of the graph G(A, S)
consists precisely of the endpoints which remain at
time τk+1. It follows that, for δ sufficiently small,
we have τk+1 < m − δm w.h.p., and average positive
degree at this time satisfies Mτk+1

< 2k − ǫ w.h.p. To
simplify computations, we may assume without loss of
generality that τk+1 = 0, so the algorithm begins with
minimum degree k+1, and that there are no non-empty
vertices at this time, so the average positive degree is
Mτk+1

= M0 = m/n < 2k − ǫ.
Now, if ρ < mc1 , then the conditions of the lemma

are satisfied. Otherwise, we consider a regular interval
[0, t], where t < ρ. Since

∑

j≤k µ(j) < ǫ0 during
this interval, it follows by lemma 4.3 that at most tǫ0
iterations in this interval have degree less than k w.h.p.

By proposition 4.2, almost all iterations of degree
at least k remove 2k endpoints produce a single empty
vertex. And, evidently, at most one empty vertex can be
produced each step during any iteration of any degree.
Hence, by making ǫ0 > 0 sufficiently small, we can
guarantee that at time t, for arbitrary ǫ1 > 0 there
are at least

n − t

(

1

2k
− ǫ1

)

non-empty vertices w.h.p.
Hence, the average positive degree at time t satisfies

Mt ≤
m − t

n − t/2k − ǫ1
= M0

(

m − t

m − M0

2k t − ǫ1tM0

)

≥ M0

(

m − t

m − t(1 + ǫ
2k − 2kǫ1)

)

.

In particular, if we set t = m − δm this equation yields

Mt

M0
=

δ

δ + (1 − δ)( ǫ
2k − 2kǫ1)

.

Hence, by choosing ǫ1 < ǫ/(2k)2 and making δ suffi-
ciently small, we can make Mt arbitrarily small as well.
Clearly, though, at time t < ρ, since

∑

j≤k µt(j) < ǫ we
must have Mt > k − ǫ0. It follows that ρ < m − δm
w.h.p.

We can now prove the main result of this paper.
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k ck dk

2 3.351 3.588
3 5.149 5.755
4 6.799 7.843
5 8.365 9.896

Table 1: The k-orientability threshold for Gn,d/n for
small values of k. In this table d = dk gives the k-
orientability threshold we establish, and d = ck gives
the threshold for the emergence of the (k + 1) core; c2

has been widely used as a lower bound for d2, and ck

or lower bounds based on c2 have been used as lower
bounds for dk, k > 2.

Proof. [Proof of Theorem 1.1] By assumption, the (k +
1)-core of the random graph has average positive degree
at most 2k−ǫ w.h.p. It follows that τk+1 < m−δm, and
that the average positive degree at this time is at most
2k− ǫ. By lemma 5.5, it follows that w.h.p. there exists
a time τk+1 < ρ < m − δm such that

∑

j≤k µρ(j) > ǫ0.
Moreover, since ρ < m − δm, by proposition 4.1 there
exists a constant ǫ1 > 0 such that

∣

∣

∣

∣

∣

∣

∑

j≤k

µs(j) −
∑

j≤k

µρ(j)

∣

∣

∣

∣

∣

∣

< ǫ0

for all times s satisfying |s − ρ| < ǫ1m, and therefore
dmins ≤ k for all ρ−ǫ1m < s < ρ. Hence, by lemma 5.4,
it follows that dmins ≤ k for all ρ− ǫ1m < s < m− δm
w.h.p. Finally, by corollary 4.1, this implies that the
algorithm terminates successfully a.a.s.

Hence, by lemma 3.2, the graph G(A, V ) is a.a.s.
k-orientable, and therefore the random graph Gn,d/n is
a.a.s. k-orientable for any d such that the (k + 1)-core
has average degree 2k − Ω(1).
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