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Abstract—Identifying common patterns among area cladograms that arise in historical biogeography is an important tool for

biogeographical inference. We develop the first rigorous formalization of these pattern-identification problems. We develop metrics to

compare area cladograms. We define the maximum agreement area cladogram (MAAC) and we develop efficient algorithms for finding

the MAAC of two area cladograms, while showing that it is NP-hard to find the MAAC of several binary area cladograms. We also

describe a linear-time algorithm to identify if two area cladograms are identical.

Index Terms—Biogeography, area cladograms, distance metrics, maximum agreement area cladogram, maximum agreement

subset.
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1 INTRODUCTION

BIOGEOGRAPHY is the study of the geographic distribution
of organisms [4], [6]. Biogeographers seek to under-

stand ecological processes (e.g., climatic stability and effect

of area) that influence the distribution of living organisms

over short periods of time and to uncover events occurring

in the distant past (e.g., continental drift, glaciation, and

evolution) which have resulted in the geographic distribu-

tion observed today. Historical biogeography is the study of

the geographic distribution of organisms in the light of their

evolutionary history. One of the main tools of historical

biogeographic inference is the comparison of phylogenetic

trees of different groups of organisms that share their

geographic distributions, in order to detect common

patterns. However, until very recently, comparisons have

largely been made visually. In this paper, we formalize the

comparison and pattern identification problems, we devel-

op efficient algorithms to detect common patterns, we

prove an NP-hardness result, and we develop distance

metrics so as to compare two patterns. Such pattern-

identification problems arise in the context of indirect

historical biogeographic inference. In the following section,

we provide a brief introduction to historical biogeography

and to direct and indirect historical biogeographic inference

so as to place our work in context.
Historical Biogeography. One of the ways of under-

standing the geographic distribution of species is by
studying the evolutionary history of the species, and this
forms the basis for the discipline of historical biogeography
[3], [6], [9], [19].

The evolutionary relationships are typically represented
as branching tree structures called phylogenetic trees or,

simply, phylogenies. Historical biogeographers generally

assume that the current geographic distribution of organ-
isms is a result of the following past events: 1) an event that

splits an area into two or more distinct parts, known as

geographic vicariance, 2) extinction of species in an area,
and 3) dispersal of organisms from one area to another.

Historical biogeographical inference, then, aims to recon-

struct these past events, and usually takes one of the

following two forms:

. Direct Inference. In direct inference methods, a
branching history of areas, called an area cladogram,
is inferred from the phylogeny of organisms living in
the areas. Brooks parsimony analysis (BPA) [3],
Assumptions 0, 1, and 2 [31], and Page’s reconcilia-
tion maps [24] are examples of this approach.

. Indirect Inference. Here, phylogenies of different
groups of organisms which share their geographic
distributions are compared. Common patterns ob-
served in the different phylogenies are taken to be
evidence of common past geological or climatic
events that influenced the geographic distribution of
species [19], [21].

The contributions of our paper are toward indirect
historical biogeographic inference. We formalize the notion

of comparison of phylogenies of codistributed groups of

organisms and develop algorithms and metrics in order to
compare such phylogenies. However, in order to place our

work in context, we will review previous inference methods

as well.

1.1 Direct Inference

We now look at the direct inference methods in more detail.
Brooks parsimony analysis and Assumptions 0, 1, and 2

take as input a phylogeny of the organisms whose

geographic distribution is to be understood and the

geographic distribution of the organisms. Fig. 1 depicts
two hypothetical phylogenies and geographic distributions.

The output of these methods is a branching history of the areas
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that support the organisms. As a first step, these methods
construct a general area cladogram by replacing the taxon
label of the leaf with the label of the area in which the taxon
is found; see Fig. 2. Note that some taxa may occur in more
than one area (called widespread taxa) and there may be
many taxa endemic to one area (called redundant taxa). This
in turn translates to many leaves with the same area label or
leaves with more than one area label in the general area
cladogram. Hence, the area cladograms constructed as
above do not, and cannot, represent a history of the areas.
Consequently, the direct inference methods further process
the general area cladograms to produce a branching history
of areas where each leaf is labeled with a unique area, called
resolved area cladograms.

Brooks Parsimony Analysis produces a resolved area
cladogram as follows: Each node, including the leaves, in
the general area cladogram is given a number. In a
general area cladogram with n leaves, there will be a total
of 2n� 1 nodes. Each area is then represented as a binary
string of length 2n� 1. The ith bit of the string for an area p
is 1 if node i is an ancestor of any occurrence of the area p in
the general cladogram. This process is illustrated in Fig. 3.
The set of binary strings representing areas is then subjected
to a maximum parsimony analysis to produce a resolved area
cladogram. Thus, Brooks parsimony analysis reconstructs a
purely vicariance-based history of the areas.

Page’s Reconciliation Maps combine the branching
histories of two associated entities into one summary of
historical association between the two entities. The asso-
ciated entities can be hosts and parasites, organisms and
genes, or, as in our case, areas and organisms that live in
them. The need for reconciliation arises when the branching
histories of the associated entities are incongruent. The
simplest hypothesis about the coevolution of two associated
entities (such as areas and organisms) is that a vicariance
event in one entity corresponds to a speciation event in the
other entity; incongruence arises when this hypothesis is
violated. Reconciliation maps explain incongruence in
terms of vicariance-independent speciation of organisms
and extinct or uncollected species lineages; see Fig. 4 (from

[24]) for an illustration of this. Reconciliation maps thus
invoke vicariance and extinction in order to understand the
geographic distribution of species.

Assumptions 0, 1, and 2 are again methods that produce
resolved area cladograms from general area cladograms. In
A0, vicariance is the only a priori hypothesis used to explain
the geographic distribution of species. In A1, vicariance and
extinction are the a priori hypotheses and, in A2, vicariance,
extinction, and dispersal are the a priori hypotheses.
However, how exactly these assumptions must be applied
is contentious [30].

1.2 Indirect Inference

The fundamental idea behind indirect inference is that a
consistent pattern observed in the phylogenies of species
from different genera in the same geographic area will
imply stronger evidence for the particular hypotheses
suggested by the pattern. As an example of this approach,
consider a group of islands, each containing multiple
ecological zones (for example, each island can contain
coastal and mountain ecological zones). Suppose our goal is
to understand the observed geographic distribution of
species on the islands. One hypothesis about the distribu-
tion, called interisland colonization, is that species dispersed
from each ecological zone in each island to similar zones in
other islands and then differentiated. Another hypothesis,
called adaptive radiation is that dispersal between islands
happened first, followed by dispersal to the different
ecological zones and differentiation into many species
[20]. The crucial idea is that we might be able to infer
which of the above two hypotheses is responsible for the
observed distribution: Interisland colonization is suggested
by taxa on different islands but the same ecological zone
forming a monophyletic group (i.e., a “clade” or rooted
subtree), and adaptive radiation is suggested if species on
the same island in different ecological zones form a
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Fig. 1. Two hypothetical phylogenies on eight taxa on four islands

(a; b; c; d) with two ecological zones each (1 and 2).

Fig. 2. A phylogeny S and its associated area cladogram T, assuming

taxon 1 appears in area c, 2 appears in area a, 3 appears in area d, 4

appears in area d, 5 appears in area a, and 6 appears in area b.

Fig. 3. Brooks parsimony analysis: A general area cladogram T is
derived from the phylogeny S and the geographic distribution. The areas
are then coded as binary strings and subjected to a maximum parsimony
analysis. The resolved area cladogram is a most parsimonious tree for
the set of strings that encode the four areas.



monophyletic group. For example, in Fig. 1, T suggests

dispersal, while T 0 suggests adaptive radiation.
In practice, common patterns are identified between

general area cladograms derived from the phylogenies of

the different groups of codistributed species. Until very

recently, such common patterns have been identified by

visual observation [19], [18], [7], Recently, Lapointe and

Rissler in [21] identified common patterns among area

cladograms by applying the maximum agreement subtree

(MAST) method originally developed for phylogenies [15].

A maximum agreement subtree between two rooted trees is

obtained by deleting a minimum number of leaves from

either tree so that, on the remaining set of leaves, the trees

are identical (i.e., isomorphic). However, before the the

application of the MAST algorithm, the authors of [21]

obtain area cladograms using a distant-based approach, as

follows: 1) First, pairwise distances between areas are

computed, where the distance between two areas A1 and

A2 is the average distance between a species in A1 and a
species in A2. The distance between species is the distance
between sequence that represents the species. 2) Then, a
neighbor-joining [27] tree for the areas is computed based on
the calculated distances between the areas. The problem
with this approach is the calculated distance between the
areas does not capture all the evolutionary history of the
species in the areas. Further, neighbor-joining is not the best
method for obtaining phylogenies; most realistic phyloge-
nies are computed using either maximum parsimony or
maximum likelihood [29], [14].

In this paper, we show that the Steel-Warnow algorithm
for MAST from [28] can in fact be applied without
modification to the problem of identifying the largest
common patterns among area cladograms, called the
Maximum Agreement Area Cladogram (MAAC) problem.
However, in general, care must be exercised before
adapting any MAST algorithm for the MAAC problem.

Comparing Area Cladograms. Apart from identifying
common patterns among area cladograms, it is of interest to
quantify the difference between an observed area clado-
gram and a hypothesized area cladogram. Earlier work on
comparing area cladograms has included pruning the
cladograms until the two cladograms agree on the remain-
ing leaves (see [26]) and using similarity metrics such as the
bipartition metric (also called the component metric or the
character encoding metric in the literature [23]) and the
triplets metric between rooted area cladograms [23]. How-
ever, all these methods only apply to resolved area
cladograms. In this paper, we develop distance metrics to
compare general area cladograms.

1.3 Our Contributions

Our contributions are two-fold: We develop both metrics
and algorithmic results for comparing area cladograms.
More specifically,

. We show that the equivalence between the edge-
contract-and-refine metric (“RF-distance”) and the
bipartition metric (“character-encoding” metric) that
holds for phylogenies does not hold for area clado-
grams. More specifically, we show that the biparti-
tion metric, when extended to area cladograms, is
not a metric. For the edge-contract-and-refine edit
distance between two area cladograms we present a
simple, but worst-case exponential-time algorithm.
This edit distance can compare only area cladograms
that are on the same number of leaves and when
each area labels the same number of leaves in both
area cladograms (Section 3).

. We define another metric, the MAAC distance
metric, for comparing two rooted area cladograms,
which is based on the size of the largest common
pruned subtree between the two area cladograms.
The MAAC distance metric can compare two
arbitrary trees that are not necessarily on the same
number of leaves, which is particularly useful when
comparing area cladograms (Section 3).

. We present two polynomial-time algorithms for
computing a MAAC of two rooted area clado-
grams. The first algorithm is a standard dynamic
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Fig. 4. Reconciliation Maps: A host phylogeny, H, and a parasite
phylogeny, P are incongruent. The parasites 1, 2, 3, and 4 live in hosts
a, b, c, and d, respectively. The nodes 6 and 7 of the parasite phylogeny
are both mapped to node f of the host phylogeny. This represents a
speciation event of the parasite inside the host species f without an
accompanying host speciation. The ancestors of the two resulting
parasitic lineages are labeled 7 and 10 in the reconciled tree; both the
parasite lineages then follow the host lineage f’s speciation pattern,
leading to a parasite phylogeny shown as the reconciled tree. The
dissimilarity between this inferred parasite phylogeny and the observed
parasite phylogeny on top is explained by postulating the extinct or
unsampled parasite lineages 9, 12, and 13.



programming algorithm that runs in Oðn2:5 lognÞ
time, where n is the maximum number of leaves in
either cladogram. We then present a “sparse”
version of this basic dynamic program that achieves
a running time of Oðn2Þ when the number of leaves
with any given label is not too large. We also
describe a linear-time algorithm to decide if two area
cladograms are identical (Section 4).

. We study the problem of computing the MAAC of
k area cladograms, and we show that computing
MAAC for k area cladograms is NP-hard even if all
trees are binary (Section 5).

2 PHYLOGENIES: DISTANCE METRICS AND

AGREEMENT SUBSETS

In this section, we define some basic concepts: the formal
notion of a phylogenetic tree, distance metrics between
phylogenetic trees, and the maximum agreement subset
problem for phylogenetic trees.

Character Encoding of Phylogenies. Tests for equality
between phylogenies are based on the notion of the character
encoding of phylogenies. Another notion crucial to the study
of phylogenies is that of a bipartition: Removing an edge e
from a leaf-labeled tree T induces a bipartition �e on its set
of leaves.

Definition 1 (Character Encoding of a Phylogeny). The
character encoding of a phylogeny T is the set
CðT Þ ¼ f�e : e 2 EðT Þg, which represents the set of biparti-
tions induced by the edges of T .

Theorem 1 (Character-Encoding Metric [5]). Let T and T 0 be
two phylogenies on the same set of taxa. Then,
jCðT Þ4CðT 0Þj ¼ jðCðT Þ � CðT 0ÞÞ [ ðCðT 0Þ � CðT ÞÞj d e -
fines a distance metric.

By Theorem 1, two phylogenies, T and T 0, are iso-
morphic (with the isomorphism preserving the leaf labels) if
and only if jCðT Þ4CðT 0Þj ¼ 0.

A contraction operation applied on an edge in a tree
collapses that edge and identifies its two end points; a
refinement operation reverses a contraction and, when
applied at an unresolved node (i.e., an internal node with
degree greater than three), expands that unresolved node
into two nodes connected by an edge.

Definition 2 (Robinson-Foulds (RF) Distance). The Robin-
son-Foulds distance between two phylogenies T1 and T2 is
defined as the number of edge-contractions and refinements
necessary to transform T1 into T2 (or vice versa) and is denoted
RF ðT1; T2Þ. Thus, it is also the “edge-contract-and-refine”
distance.

The RF distance naturally defines a metric since it is an
edit distance.

Theorem 2 [25]. Let T1 and T2 be two phylogenies, each on the
same set of taxa. Then, RF ðT1; T2Þ ¼ jCðT1Þ4CðT2Þj.

Finally, we define the maximum agreement subtree
problem for phylogenies. The analogue of this problem for
area cladograms is crucial to addressing the problems

outlined in Section 1. We begin by defining what we mean

by a restriction of an unrooted tree T to a subset L0 of its leaf

set L: We delete from T all the leaves in L� L0, and we then

suppress all nodes of degree two by contracting an edge

incident with each such node. If T is rooted, the second step

is equivalent to suppressing all internal nodes with only one

child. The resulting tree is given by the notation T jL0.
Definition 3 (Maximum Agreement Subset (MAST)). Let

fT1; T2; . . . ; Tkg be a set of phylogenetic trees, each on a set L

of leaves. A maximum agreement subset (MAST) of trees

T1 through Tk is a subset L0 � L of maximum cardinality such

that the restrictions of the trees T1; . . . ; Tk to the set L0 are all

isomorphic, with the isomorphisms preserving leaf labels.

The maximum agreement subset problem was intro-

duced in [15] and has been studied thoroughly since then.

The rooted and unrooted versions of MAST are poly-

nomially related since the unrooted MAST problem can

be solved by solving a polynomial number of rooted

MAST problems. Computing a MAST is NP-hard for

three or more trees [2]. An Oðn2þoð1ÞÞ time algorithm for

the case of two trees on n leaves is given in [13]. For two

rooted binary trees, the best known algorithm takes

Oðn log3 nÞ time [11], [10]; for two rooted trees which

may not be binary, the best known algorithm takes

Oðn1:5c
ffiffiffiffiffiffiffi
logn
p

Þ time, where c is a constant [13]. For computing

a MAST of k rooted trees, an Oðkn3 þ ndÞ algorithm (with d

the maximum degree of a node in any tree) was presented

in [10].

3 DISTANCE MEASURES BETWEEN

AREA CLADOGRAMS

In this section, we develop distance metrics for the set of

area cladograms. We first show that the character encoding

distance between two different area cladograms can be zero

and, hence, the character-encoding “distance” is not a

metric on area cladograms and, in particular, cannot be

used as a test of isomorphism. While the character-encoding

metric for phylogenies does not extend to area cladograms,

the contract-and-refine edit distance still defines a metric

since it is an edit distance. We present an algorithm to

compute the edge contract-and-refine edit distance between

area cladograms. This algorithm is efficient if there are only

a few occurrences of widespread taxa, but it is exponential-

time in general. For phylogenies, this edit distance (which is

called the Robinson-Foulds distance) can be computed

efficiently since it equals the character-encoding distance.
In the Section 3.3, we define the notion of a Maximum

Agreement Area Cladogram (MAAC) of a collection of area

cladograms, which is roughly a largest pruned subtree of all

trees in the collection (see Fig. 6). We propose the MAAC

distance metric for comparing area cladograms, and we

argue that this is a more appropriate metric for area

cladograms than the contract-and-refine edit distance. In

the rest of the paper, we present algorithms and an NP-

hardness result for computing MAAC.
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3.1 The Character Encoding Cannot Distinguish
between Area Cladograms

We first formally define an area cladogram:

Definition 4. An area cladogram is a rooted or unrooted tree whose
leaves are labeled with areas. Thus, an area cladogram T is a
triplet ðt; A;MÞ, where t is its unlabeled topology,A is the set of
labels, and M is an onto map from the set of leaves of t to A.

The map M can map many leaves to the same label and
may also map single leaves to many labels. It will not
always be necessary in this paper to explicitly refer to the
triplet ðt; A;MÞ of an area cladogram T . The triplet will be
left out of the notation where unnecessary.

We now define the extended character encoding of an area
cladogram.

Definition 5. Let T be an area cladogram. The multiset f�e :
e 2 EðT Þg is called the extended character encoding of Tw
and will be denoted by CðT Þ. Here, �e denotes the bipartition
of the multiset of leaf labels induced by the edge e.

Contrary to our experience with phylogenetic trees,
where the mapping between leaves and labels is one-one, it
is possible for two area cladograms T1 and T2 to satisfy
CðT1Þ ¼ CðT2Þ and yet not be isomorphic. We exhibit such a
pair of trees in Fig. 5.

3.2 The Edge-Contract-and-Refine Distance Metric
for Area Cladograms

Though the character-encoding distance fails to extend to
area cladograms, the RF distance, being an edit distance,

can be extended to unrooted area cladograms to provide a
distance metric.

Definition 6 (Robinson-Foulds Distance between Un-

rooted Area Cladograms). The Robinson-Foulds distance
between two unrooted area cladograms T1 and T2 is defined to

be the number of contractions and refinements necessary to

transform T1 to T2 (or, equivalently, T2 to T1).

Handling Widespread Taxa. Taxa endemic (resident) to
more than one area would result in cladograms with leaves
labeled by many areas. Our definition of the Robinson-
Foulds distance applies to such cladograms as well: If a leaf
is labeled with a set of areas, we can consider that set of
areas to be the unique label for that leaf. Thus, throughout
the rest of this section, we will assume that each area
cladogram leaf has just one area label.

Notation. We let n1 and n2 be the number of leaves in
trees T1 and T2, respectively, and we let n ¼ maxfn1; n2g.
We let A ¼ fa1; a2; . . . ; akg be the set of areas with which the
leaves of T1 and T2 are labeled, and we let �i;j, j ¼ 1; 2, be
the number of leaves in tree Tj which are labeled with ai;
hence,

Pk
i¼1 �i;j ¼ nj for j ¼ 1; 2. Our analysis is parameter-

ized on the numbers �i;j. (This notation will also be used in
Section 4.2.)

Note that, if �i;1 6¼ �i;2 for some i, then there is no
sequence of contractions and refinements that can trans-
form T1 into T2; in such cases, we define RF ðT1; T2Þ ¼ 1.
So, throughout the rest of this section, we will assume that a
given pair of cladograms Tj; Tk will have �i;j ¼ �i;k for all i
and, hence, nj ¼ nk. We therefore will set n to denote the
number of leaves in each of the cladograms and �i to be the
number of leaves labeled with area ai.

As shown in Section 3.1, the RF distance may not be
equal to the extended-character-encoding distance for area
cladograms (see Definition 5). However, we can relate the
RF distance between two area cladograms to the
RF distance between two associated phylogenies, as we
now show. We begin with some definitions.

Definition 7 (Full Differentiation of an Area Cladogram).

Let T ¼ ðt; A;MÞ be an unrooted area cladogram, with the

unrooted topology t, set of labels A, and the map M from the

leaves of t to A. Then, a full differentiation of T is a leaf-

labeled tree T � ¼ ðt; A�;M�Þ such that M� is one-one.
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Fig. 5. Two different binary area cladograms that induce the same multiset of partitions.

Fig. 6. Two area cladograms, T1 and T2, and their MAAC.



In other words, T � has the same topology as T , but has its

leaves labeled uniquely. Therefore, A 6¼ A� is possible.

Definition 8 (Consistent Full Differentiations). Let T1 ¼
ðt1; A;M1Þ and T2 ¼ ðt2; A;M2Þ be two unrooted area clado-

grams with the same setA of leaf labels and letT �1 ¼ ðt1; A�;M�
1 Þ

and T �2 ¼ ðt2; A�;M�2 Þ be full differentiations of T1 and T2,

respectively. T �1 and T �2 are consistent full differentiations if,

for each label l 2 A, the set of labels assigned to leaves in T �1 that

were labeled l in T1 is identical to the set of labels assigned to

leaves in T �2 that were labeled l in T2. Mathematically, this is:

8l 2 A; fM�1 ðxÞ : M1ðxÞ ¼ lg ¼ fM�
2 ðxÞ : M2ðxÞ ¼ lg.

Theorem 3. Let T1 and T2 be two unrooted area cladograms.

Then, RF ðT1; T2Þ ¼ minfRF ðT �1 ; T �2 Þ : T �1 and T �2 are

mutually consistent full differentiations of T1 and T2,

respectivelyg.
Proof. Let S1 and S2 be two mutually consistent full

differentiations of T1 and T2 such that RF ðS1; S2Þ is

minimum. We will show that RF ðT1; T2Þ ¼ RF ðS1; S2Þ.
We first show that RF ðT1; T2Þ � RF ðS1; S2Þ by induc-

tion on the RF distance between S1 and S2. We begin
with a simple observation: If S1 and S2 are isomorphic,
then T1 and T2 are also isomorphic. To see this, let gi be
the isomorphism from Ti to Si, for i ¼ 1; 2, and let f be
the isomorphism between S1 and S2. We define f 0 from
T1 to T2 implicitly by g2ðf 0ðuÞÞ ¼ fðg1ðuÞÞ. This mapping
f 0 is an isomorphism since S1 and S2 are consistent.

We now continue with our proof. Suppose
RF ðS1; S2Þ ¼ 1 and assume without loss of generality
that S2 is obtained by contracting an edge ðu; vÞ in S1 to a
single vertex w in S2. Then, there is a mapping f between
the vertices of S1 and S2 such that fðuÞ ¼ fðvÞ ¼ w and,
for any pair of vertices x and y in S1 such that
fx; yg 6¼ fu; vg, x and y are adjacent if and only if fðxÞ
and fðyÞ are adjacent. The mapping f also preserves leaf
labels. Hence, an analogous mapping f 0 can be defined
between the vertices of T1 and T2 that preserves leaf-
labels (this is possible because S1 and S2 are consistent).
Hence, RF ðT1; T2Þ � 1. Suppose that RF ðS1; S2Þ ¼ kþ 1.
Then, there is a phylogeny S3 such that RF ðS1; S3Þ ¼ 1
and RF ðS3; S2Þ ¼ k. Assume that it takes a contraction to
convert S1 to S3 (the claim can be proven in a very
similar manner when it takes a refinement). Then, it can
be shown that there is an area cladogram T3 such that S3

is a full differentiation of T3 consistent with S1. Since S1

and S3 are consistent and S1 and S2 are consistent, S2 and
S3 are consistent as full differentiations of T2 and T3.
Hence, we can conclude by induction that RF ðT1; T3Þ � 1
and RF ðT3; T2Þ � k. Hence, we have RF ðT1; T2Þ � kþ 1.

It can be shown similarly that there exist consistent
full differentiations X1 and X2 of T1 and T2 such that
RF ðX1; X2Þ � RF ðT1; T2Þ. It follows that RF ðS1; S2Þ �
RF ðT1; T2Þ since we assumed that the S1 and S2

minimize the RF distance between two consistent full
differentiations of T1 and T2. Hence, we have
RF ðT1; T2Þ ¼ RF ðS1; S2Þ and this completes our proof.tu

Note that the RF distance between two cladograms T1

and T2 is at most the RF distance between any consistent full

differentiations of T1 and T2. Hence, this provides a linear

time method for obtaining an upper bound on the
RF distance between two area cladograms T1 and T2: We
first compute two mutually consistent full differentiations
and then compute their RF distance. We can compute two
mutually consistent full differentiations of two area clado-
grams in linear time and, since the second step also can be
performed in linear time [8], this is a linear time algorithm.
Similarly, by Theorem 3, we can compute the RF distance
between two area cladograms, T1 and T2, by computing the
RF distance between all the possible consistent full
differentiations of T1 and T2 and choosing the minimum.

Theorem 4. Let T1 and T2 be two unrooted area cladograms on
n leaves on the same set of areas. For each area ai appearing at
the leaves of T1 and T2, let both trees have �i leaves labeled
with area ai. Then, the RF distance between T1 and T2 can be
calculated in �ðn�k

i¼1ð�iÞ!Þ time.

Proof. The number of different consistent full differentia-
tions of A1 and A2 is �k

i¼1ð�iÞ!. Each such differentiation
can be obtained in OðnÞ time. Computing the RF distance
between two consistent full differentiations takes
�ðnÞ time [8]. tu

3.3 The MAAC Distance Metric between Area
Cladograms

In this section, we define the problem of computing the
largest common pruned subtree of two rooted area
cladograms and describe a distance metric based on the
size of a largest common pruned subtree. We call a largest
common pruned subtree a Maximum Agreement Area
Cladogram (MAAC); thus, the MAAC is analogous to the
maximum agreement subtree (MAST) of two phylogenies.

Let T be an area cladogram on a set L of leaves. The
restriction of T to a set of leaves L0 is the cladogram obtained
by deleting leaves in the set L� L0 from T and then
suppressing internal nodes of degree two (except the root, if
there is one).

Definition 9 (Maximum Agreement Area Cladogram

(MAAC) and MAAC distance). Let fT1; T2; . . . ; Tkg be a
set of rooted area cladograms, with Li the leaf set of tree Ti, for
i ¼ 1; 2; . . . ; k. Let �1 � L1 through �k � Lk be sets of leaves
of maximum cardinality such that the respective restrictions of
the trees T1; . . . ; Tk to the sets �1 . . .�k are all isomorphic, with
the isomorphisms preserving leaf labels. A restriction of any
tree Ti to such a subset of leaves �i is a maximum agreement
area cladogram (MAAC) for the cladograms T1 through Tk.
The size of the MAAC is defined to be the number of leaves in
the maximum agreement area cladogram and is denoted by
sizemaacðT1; T2; . . . ; TkÞ.

The MAAC distance between two trees T1 and T2 is
dMðT1; T2Þ ¼ maxðn1; n2Þ � sizemaacðT1; T2Þ, where n1 and
n2 are the number of leaves in T1 and T2, respectively.

The MAAC distance can be viewed as a generalization of
the maximum agreement subtree metric for phylogenies
[17], which, for two phylogenies on the same set of n labeled
leaves, was defined as n� sizemast, where sizemast is the size
of a maximum agreement subset of the two phylogenies.

Handling Widespread Taxa. For comparing cladograms
using maximum agreement area cladograms, leaves labeled
by more than one area can be treated thus: Each leaf labeled
by a group of areas can be split into many separate leaves
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(all having the same parent), each of which is labeled by a
single unique area from the group of areas.

We now show that the MAAC distance defines a metric
on the set of area cladograms.

Theorem 5. The MAAC distance dM is a metric on the set of all

area cladograms.

Proof. We begin with a simple observation about the
MAAC distance. Let T1 and T2 be area cladograms. It is
clear that dMðT1; T2Þ ¼ 0 if and only if T1 and T2 are
isomorphic and that dMðT1; T2Þ ¼ dMðT1; T2Þ. Hence, all
we need to do is to prove that dM satisfies the triangle
inequality.

So, let T1, T2, and T3 be three area cladograms with n1,
n2, and n3 leaves, respectively. We have to show that
dMðT1; T2Þ þ dMðT2; T3Þ � dMðT1; T3Þ. We begin by defin-
ing some notation.

Let Mij be the set of leaves in a MAAC of Ti and Tj
and mij ¼ jMijj. We also let nij ¼ maxfni; njg. Let dij ¼
dMðTi; TjÞ (i.e., dij is the MAAC distance between Ti and
Tj) so that dij ¼ nij �mij. Let m123 ¼ jM12 \M23 \M13j
and let m0ij ¼ mij �m123 so that mij ¼ m0ij þm123.

We have:

d12 þ d23 ¼ maxðn1; n2Þ �m12 þmaxðn2; n3Þ �m23

¼ maxðn1; n2Þ þmaxðn2; n3Þ

� ðm012 þm123 þm023 þm123Þ

� maxðn1; n2; n3Þ þ n2 � ðn2 þm123Þ

� maxðn1; n2; n3Þ �m123

� maxðn1; n3Þ �m13 ¼ d13:

ut

Note that twice the MAAC distance between two
cladograms is an upper bound on the number of insertions
and deletions of leaves necessary to transform one of the
cladograms to the other.

In Sections 4.1 and 4.2, we present polynomial-time
algorithms for computing a maximum agreement area
cladogram for two area cladograms. However, in Section 5,
we show that finding the MAAC of several area cladograms is
NP-hard, even if all area cladograms have bounded degrees.

An important feature of the MAAC definition is that we

do not require that all the trees in the given set contain the same

number of leaves or that they be labeled with the same set of areas

or even that they be consistent. Thus, the MAAC distance
metric is a more versatile metric for area cladograms than
the Robinson-Foulds distance. Further, as we show in the
next section, the MAAC of two trees can be computed in
polynomial time, in contrast to the result in Theorem 4 for
the RF distance.

4 ALGORITHMS FOR THE MAXIMUM AGREEMENT

AREA CLADOGRAM PROBLEM

In this section, we present several algorithms for the MAAC
of two area cladograms. In Section 4.1, we present a basic
dynamic programming algorithm which is based on an
algorithm for the MAST problem given in [28]. In

Section 4.2, we present a refined version of this algorithm
that is more efficient when the number of leaves with any
given label is not too large. For the problem of determining
if two area cladograms are isomorphic, we present a linear-
time algorithm in Section 4.3. Finally, to complement these
algorithmic results, in the next section we show that the
problem of computing the MAAC of k trees is NP-hard,
even if all trees are binary.

4.1 Basic Dynamic Programming Algorithm for
MAAC

In this section, we describe an algorithm for computing a
MAAC of two given rooted area cladograms. This is a
dynamic programming algorithm and is an adaptation to
MAAC of the first polynomial-time algorithm for the
phylogenetic rooted MAST algorithm presented by Steel
and Warnow [28]. We will first describe the recursive
structure of MAAC solutions which makes the problem
amenable to dynamic programming. We will then present
the MAAC algorithm in pseudocode and analyze its
running time.

The Basic Recursion in MAAC. In our description, we
let MAACðT; T 0Þ denote a maximum agreement cladogram
of the leaves of T and T 0. We describe the algorithm for the
case where T and T 0 are binary; extending this to the case
where T and T 0 are not binary is straightforward.

Let T and T 0 be two given binary rooted area
cladograms. Let v be a node in T and denote by Tv the
subtree of T rooted at v. Similarly, denote by T 0w the subtree
of T 0 rooted at a node w in T 0. Let v1 and v2 be the two
children of node v and let w1 and w2 be the two children of
w. The dynamic programming algorithm for MAAC
operates by computing MAACðTv; T 0wÞ for all pairs of nodes
ðv; wÞ in V ðT Þ � V ðT 0Þ “bottom-up.” We now show how to
reduce computing MAACðTv; T 0wÞ to computing a small
number of smaller MAAC computations, MAACðS; S0Þ,
where S and S0 are subtrees of Tv and T 0w, respectively, with
at least one of them being a proper subtree.

To begin with, MAACðTv; T 0wÞ is easy to compute when
either v or w is a leaf. Therefore, in the following discussion,
we assume neither v nor w is a leaf.

Let T � be a MAAC of Tv and T 0w. Then, there exist
homeomorphisms mapping T � to a rooted subtree of Tv and
to a rooted subtree of T 0w. In fact, because T and T 0 may
contain more than one leaf with the same label, T � might be
homeomorphically mapped to more than one rooted
subtree of Tv and T 0w; however, this cannot happen if there
is only one leaf with any given label.

Let p be the (not necessarily proper) farthest descendant
of v such that the root of T � is mapped to p. Similarly, let q
be the farthest descendant of w in T 0 such that the root of T �

is mapped to w. Then, MAACðTv; T 0wÞ is, in fact, equal to
MAACðTp; T 0qÞ.

The vertex p may actually be v or it might be a
descendant of v. Similarly, q may be w or some descendant
of w. Based on the location of p and q, we have the following
cases:

1. Vertex p is a proper descendent of v. In this case, Tp is a
proper subtree of Tv, and MAACðTv; T 0wÞ equals
MAACðTp; T 0wÞ. Since p is a proper descendant of v,
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MAACðTp; T 0wÞ either equals MAACðTv1
; T 0wÞ or

MAACðTv2
; T 0wÞ.

2. Vertex q is a proper descendent of w. In this case,
MAACðTv; T 0wÞ equals MAACðTv; T 0qÞ. Since q is a
proper descendant of w, MAACðTv; T 0qÞ either equals
MAACðTv; T 0w1

Þ or MAACðTv; T 0w2
Þ.

3. Vertex p equals v and vertex q equals w. Let T �1 and T �2
be the subtrees of the root of the MAAC T �. Then, T �1
is homeomorphic to a subtree of Tv1

(or to a subtree
of Tv2

; there is no loss of generality in assuming that
it is homeomorphic to a subtree of Tv1

). Similarly, T �2
is homeomorphic to a subtree of Tv2

. It cannot be
homeomorphic to a subtree of Tv1

since then T �

would be homeomorphic to a subtree of Tv1
, contra-

dicting the assumption that there is no proper
descendent p of v such that root of T � is mapped
to p. Arguing similarly, we can conclude that T �1 and
T �2 are homeomorphic to subtrees of T 0w1

and T 0w2
,

respectively. Now, since T � is a MAAC, we can
conclude that T �1 is a MAAC of Tv1

and T 0w1
and that

T �2 is a MAAC of Tv2
and T 0w2

. So, in this case, we
have reduced computing MAACðTv; T 0wÞ to comput-
ing MAACðTv1

; T 0w1
Þ and MAACðTv2

; T 0w2
Þ and then

taking their union.

The above discussion suggests a straightforward dy-

namic programming algorithm: We do not know which of

the above three cases is true, but we do know that one of

them is true. Hence, we solve the subproblems correspond-

ing to all three cases and then choose the largest solution.

Note that the algorithm described above is the same as the

MAST algorithm from [28], but the reason it is correct for

MAAC is somewhat different from the reason it is correct

for MAST.
We now describe this MAAC algorithm in pseudocode,

but, before we do so, we introduce some notation.
Notation For a node v in T1 or T2, let cðvÞ denote the set

of children of v and let AðvÞ denote the set of all labels of

leaves that descend from v. For each pair of nodes v 2 T1

and w 2 T2, we let Gv;w be a weighted complete bipartite

graph with bipartition ðcðvÞ; cðwÞÞ, where the weight of the

edge ðx; yÞ 2 Gv;w is the number of leaves in MAACðTx; TyÞ.
We denote by MWBMðGv;wÞ the maximum weighted

bipartite matching of Gv;w. We let V ðT Þ be the set of all

nodes of the tree T . In the pseudocode, the subroutine

DIAG corresponds to the first two cases in our discussion of

the MAST dynamic program and the subroutine MATCH

corresponds to the third case.

MATCH ðv; wÞ
1 Construct Gv;w

2 Construct E0 ¼ MWBMðGv;wÞ
3 Let E0 ¼ fðv1; w1Þ; ðv2; w2Þ; . . . ; ðvk; wkÞg
4 Construct tree M with root s such that MAACðTvi ; TwiÞ is

the ith child of s

5 return M

DIAGðv; wÞ
1 t1  largest MAACðTv; TxÞ such that x 2 cðwÞ
2 t2  largest MAACðTy; TwÞ such that y 2 cðvÞ
3 return the larger of t1 and t2

ALGORITHM MAAC ðT1; T2Þ
1 Let O be an ordering of V ðT1Þ � V ðT2Þ
2 such that if ðv1; w1Þ is before ðv2; w2Þ,
3 then v1 is not an ancestor of v2 and w1 is not an ancestor

of w2.

4 for ðv; wÞ in increasing order of O
5 do if v or w is a leaf

6 then MAACðTv; TwÞ  a node with label in

S ¼ AðvÞ \AðwÞ if S 6¼ ;; else ;
7 else MAACðTv; TwÞ  larger of MATCHðv; wÞ and

DIAGðv; wÞ
8 return MAACðTr1

; Tr2
Þ; r1 is the root of T1 and r2 is the

root of T2.

The Running Time of the MAAC Algorithm. The
running time of the above algorithm is Oðn2Þ for binary
trees as well as for trees of bounded degree d since there are
Oðn2Þ calls to MATCH and each call runs in OðdÞ time. If the
maximum degree of both trees is unbounded, the
Oðn2:5 lognÞ algorithm from [16] can be used to compute
the maximum weighted matching (MWBM) in the bipartite
graph. Thus, a straightforward bound on the running time
is Oðn4:5 lognÞ.

A careful analysis of the algorithm reveals that the
running time is, in fact, Oðn2:5 lognÞ. To obtain this bound,
we use the following more precise bound on the running
time of the MWBM algorithm in [16]: If the two sets of
vertices in the bipartition of the bipartite graph have p and
q vertices, then the running time of the algorithm in [16] is
Oðp � q �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpþ qÞ

p
logðpþ qÞÞ. The MAAC algorithm per-

forms the MWBM computation on graphs Gu;v, for each
pair u; v with u 2 V ðT1Þ and v 2 V ðT2Þ. Let n1 and n2 be the
number of leaves in T1 and T2, respectively, with
n ¼ maxðn1; n2Þ. Also, let du be the degree of node u in
either tree. If we let T ðn1; n2Þ denote the running time of the
MAAC algorithm, we have:

T ðn1; n2Þ � c
X
u2T1

X
v2T2

ðdudv
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdu þ dvÞ

p
logðdu þ dvÞÞ

� c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn1 þ n2Þ

p
logðn1 þ n2Þ

X
u2T1

du
X
v2T2

dv

� c n1n2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn1 þ n2Þ

p
logðn1 þ n2Þ

� cn2:5 logn:

4.2 Sparse Dynamic Program for MAAC

The MAAC algorithm given in Section 4.1 spends most of
its time computing maximum weighted bipartite matchings
in complete bipartite graphs, where the weight of each edge
in the bipartite graph represents the size of a MAAC
between some pair of rooted subtrees. For the MAST
problem, a faster version of this algorithm is presented in
[12] by Farach-Colton and Thorup. The speedup is achieved
by eliminating many edges in many of the bipartite graphs
constructed by the algorithm. In particular, observe that if
two subtrees do not share any leaf label, the size of their
MAAC is zero. Thus, if there are only a few leaves with any
given label, it is highly likely that many edge weights are
zero. Further, it turns out that several edges can be deleted
in many of the bipartite graphs without affecting the
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optimum solution. Farach-Colton and Thorup’s sparse
dynamic programming algorithm for MAST incorporates
these features into the Steel-Warnow algorithm, thereby
achieving a running time of Oðn2Þ [12].

In this section, we adapt the Farach-Colton-Thorup
MAST algorithm [12] to MAAC. We show that as long as
the number of leaves with any given label is Oðn1=2��Þ, the
algorithm runs in Oðn2Þ time, which matches the bound in
[12] for MAST, where there is only one leaf with a given
label in each tree. The worst-case running time of our
algorithm, however, is Oðn2:5 lognÞ, matching that of the
straightforward dynamic programming algorithm given in
the previous section.

Key Lemmas. The following discussion uses notation
from the straightforward MAAC algorithm given in the
previous section: For a given node v in a rooted tree T , we
let AðvÞ be the set of all labels of leaves that descend from v,
pðvÞ be the parent of v, and cðvÞ be the set of children of v.
For a given rooted tree T , we let V ðT Þ be the set of all nodes
of a tree.

For each internal node v of T1 and T2, among all children
of v, we choose the child having the greatest number of
descendent leaves to be the “heavy” child and all the
remaining children are “light” children. If there are many
nodes that have the same maximum number of descen-
dants, we designate one of them as the heavy child
arbitrarily. A node is “heavy” if it is the heavy child of its
parent and, otherwise, it is “light.”

For vertices u1 2 T1, u2 2 T2, consider the weighted
bipartite graph Gu1;u2

constructed by the basic MAAC
algorithm (see Section 4.1). In Gu1;u2

, we will let h1 and h2

denote the heavy child of u1 in T1 and the heavy child of u2

in T2, respectively. An edge in Gu1;u2
will be called “heavy-

heavy” if it is between h1 and h2; similarly, we will refer to
“heavy-light” and “light-light” edges.

We will denote by M the set of all bipartite graphs
encountered throughout the course of the algorithm. Also,
from now on, we will assume that we have modified all the
bipartite graphs in M to get rid of all zero-weight edges.

We first bound the total number of light-light edges
across all the bipartite graphs in M in Lemmas 1 and 2. In
Lemma 3, we show how to delete most of the heavy-light
edges in each bipartite graph in M without affecting the
value of the MWBM solution. Thus, we create, for each
bipartite graph G in M, a bipartite graph G0 with fewer
edges. We will call the set of all such reduced bipartite
graphs M0. All MWBM computations are performed only
on these reduced bipartite graphs in M0. Finally, in
Lemma 4, we bound the total number of edges across all
bipartite graphs in M0 and this helps us bound the total
running time of the algorithm.

As defined in Section 3.2, we let �i;j be the number of
leaves labeled with area ai in tree Tj.

Lemma 1. Each leaf in trees T1 and T2 has OðlognÞ ancestors
that are light nodes.

Proof. Consider a leaf l in T1. Let r be the root of T1. Suppose
that l has more than log2ðnÞ ancestors that are light
nodes. It is easy to see that if a node v is the light child of
pðvÞ, then jLðpðvÞÞj � 2jLðvÞj. Thus, if a node has more
than log2ðnÞ ancestors that are light, we would have

jLðrÞj > 2log2ðnÞ or jLðrÞj > n, which is a contradiction.
Therefore, l has at most log2ðnÞ light ancestors. The same
argument holds for a leaf l in T2. tu

Lemma 2. Across all bipartite graphs inM, the total number of

light-light edges is O
�
ð
P

ai2A �i;1�i;2Þ log2 n
�
.

Proof. The weight of an edge ðx; yÞ is nonzero if and only if

the two sets of descendent leaves LðxÞ and LðyÞ intersect.

Consider a label ai 2 A and let S1 and S2, respectively, be

the sets of leaves of T1 and T2 which are labeled with ai.

Note that jSjj ¼ �i;j; j ¼ 1; 2. A light ancestor of a pair of

leaves, one in S1 and one in S2, accounts for one light-

light edge across all graphs inM. By Lemma 1, there are

Oð�i;j lognÞ ancestors of elements of Sj, j ¼ 1; 2, that are

light. Therefore, there are at most Oð�i;1�i;2 log2 nÞ light-

light edges produced by elements of S1 and S2. Summing

the quantity over all labels ai, we get the desired upper

bound on the number of light-light edges. tu
Lemma 3. For each bipartite graph G ¼ ðV ;EÞ in M with

� light-light edges, we can reduce the number of edges in G to

get G0 ¼ ðV ;E0Þ such that MWBMðGÞ ¼MWBMðG0Þ and

jE0j � 3�þ 3.

Proof. Let V1 and V2 be the two parts of V and let h1 and h2

be the heavy nodes in V1 and V2, respectively. Let E� be

the set of light-light edges, with jE�j ¼ �. We partition

the sets V1 n fh1g and V2 n fh2g into two disjoint subsets

as follows: V1 n fh1g ¼ V �
1 [ V

�
1 and V2 n fh2g ¼ V �

2 [ V
�

2

such that v 2 V �
j iff there exists no edge e 2 E� such that

v is in e. Among all edges connecting h1 and an element

of V �
2 , we can delete all except the heaviest edge since no

maximum matching can contain them. The same reason-

ing applies for h2 and an element of V �
1 . So, we can

construct a new graph G0 with the same set of vertices:

The new set of edges E0 contains � light-light edges: one

possible edge between h1 and h2, two possible edges

between h1 and V �
2 , and h2 and V �

1 , and at most jV �
1 j þ

jV �
2 j � 2� edges between h1 and V �

2 , and h2 and V �
1 .

Therefore, jE0j � 3�þ 3 or the graph G0 contains at most

3�þ 3 edges. tu
We now present SP-MAAC, our sparse dynamic pro-

gramming algorithm for the MAAC problem. The differ-
ences between this algorithm and the earlier MAAC
algorithm are italicized.

SP-MATCHðv; wÞ
1 Construct Gv;w

2 Remove all zero-weight edges from G

3 For each heavy child, remove all edges incident to it except for

the heaviest one.

4 Construct E0 ¼ MWBMðGv;wÞ
5 Let E0 ¼ fðv1; w1Þ; ðv2; w2Þ; . . . ; ðvk; wkÞg
6 Construct tree M with root s such that

SP-MAACðTvi ; TwiÞ is the ith child of s.
7 return M

DIAGðv; wÞ
1 t1  largest SP-MAACðTv; TxÞ such that x 2 cðwÞ
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2 t2  largest SP-MAACðTy; TwÞ such that y 2 cðvÞ
3 return the larger of t1 and t2

ALGORITHM SP-MAACðT1; T2Þ
1 Choose a heavy child for each internal node of T1 and T2

2 Let O be an ordering of V ðT1Þ � V ðT2Þ
3 such that if ðv1; w1Þ is before ðv2; w2Þ,
4 then v1 is not an ancestor of v2 and w1 is not an ancestor

of w2.

5 for ðv; wÞ in increasing order of O
6 do if v or w is a leaf

7 then SP-MAACðTv; TwÞ  a node with label in

S ¼ AðvÞ \AðwÞ if S 6¼ ;; else ;
8 else SP-MAACðTv; TwÞ  larger of SP-MATCHðv; wÞ

and DIAGðv; wÞ
9 return SP-MAACðTr1

; Tr2
Þ; r1 is the root of T1 and r2 is

the root of T2.

Lemma 4. Across all graphs inM0, the total number of edges is

Oðminfð
P

ai2A �i;1�i;2Þ log2 n; n2gÞ.
Proof. By Lemmas 2 and 3, the total number of edges across all

graphs inM0 is Oðð
P

ai2A �i;1�i;2Þ log2 nÞ. This summation

can be shown to be �ðn2 log2 nÞ in the worst case. However,

the total number of edges is at most the number of edges in

all complete bipartite graphs, which isX
x2V ðT1Þ

X
y2V ðT2Þ

jcðxÞj � jcðyÞj ¼ Oðn1n2Þ

¼ Oðn2Þ:

Hence, the total number of edges across all graphs in
M0 is Oðminfð

P
ai2A �i;1�i;2Þ log2 n; n2gÞ. tu

As presented, the algorithm uses Oðn2Þ time to remove

all zero-weight edges from the bipartite graphs. However, it

is not difficult to maintain jV ðT2Þj queues of nonzero edges

incident to each internal node of T2 and update this queue

as we compute the MAAC in the ordering of O.
Running-time Analysis.

Theorem 6. Algorithm SP-MAAC computes the MAAC in

O
ffiffiffi
n
p

logn
� �

min
X
ai2A

�i;1�i;2

 !
log2 n; n2

( )
þ n2

 !
:

Proof. Let the total running time of SP-MAAC be

timeSP�MAAC. The algorithm spends a total of OðnÞ time

in Step 1 choosing a heavy child for each node and it

spends a total of Oðn2Þ time computing the ordering O.

Each call to DIAGðv; wÞ takes OðjcðvÞj þ jcðwÞjÞ time.

Over all the calls to DIAG, the total running time is

therefore Oðn2Þ. Let the time spent in all calls to SP-

MATCH be timeSP�MATCH. Therefore,

timeSP�MAAC ¼ Oðn2Þ þ timeSP�MATCH:

We now show how to bound timeSP�MATCH. We let

timeMWBM be the running time of a single call to

procedure MWBM in SP-MATCH. The MWBM compu-

tation is performed using the Gabow-Tarjan algorithm

[16]. This algorithm runs in Oð
ffiffiffiffiffiffiffi
jV j

p
jEj log jV jÞ on a

graph G ¼ ðV ;EÞ. We have:

timeSP�MATCH ¼
X

G¼ðV ;EÞ2M0
timeMWBMðGÞ

¼
X

G¼ðV ;EÞ2M0
O

ffiffiffiffiffiffiffi
jV j

p
jEj log jV j

� �

¼
X

G¼ðV ;EÞ2M0
O

ffiffiffi
n
p
jEj logn

� �

¼ O
ffiffiffi
n
p

logn
X

G¼ðV ;EÞ2M0
jEj

0
@

1
A

¼ O
ffiffiffi
n
p

logn
� �

min
X
ai2A

�i;1�i;2

 !
log2 n; n2

( ) !

from Lemma 4:

Hence,

timeSP�MAAC ¼

O
ffiffiffi
n
p

logn
� �

min
X
ai2A

�i;1�i;2

 !
log2 n; n2

( )
þ n2

 !
:

ut

Finally, we note the following two bounds for the

running time of the algorithm:

. It is not difficult to see that if every �i;j is Oðn1=2��Þ,
then timeSP�MAAC ¼ Oðn2Þ. Thus, as long as no leaf
label occurs a huge number of times, the algorithm is
as efficient as the Farach-Colton-Thorup MAST
algorithm, where it is assumed that every leaf label
occurs exactly once.

. In the worst case, the running time timeSP�MAAC

remains Oðn2:5 lognÞ, matching the time bound of
the basic MAAC algorithm given in the previous
section.

4.3 Testing Isomorphism between Two Rooted Area
Cladograms

The MAAC distance metric between area cladograms gives

us a polynomial-time algorithm for testing isomorphism:

We apply the maximum agreement area cladogram algo-

rithm from the previous section to compute the MAAC

distance between the two area cladograms, and we

conclude that the two cladograms are isomorphic if and

only if the distance is zero. However, we can do better: We

present a fast algorithm for testing isomorphism between

area cladograms without computing the MAAC distance

between the cladograms. The algorithm is adapted from the

algorithm for testing rooted tree isomorphism from [1].
The input to the algorithm consists of two rooted area

cladograms, T1 and T2, on n leaves (if the number of leaves

is different, then clearly they are not isomorphic). We

assume that the leaves are labeled with integers from 1

through n, not all distinct. The algorithm is based on

assigning an integer indexðuÞ to each node u in the tree.

When the node u is a leaf, the index is just its label. The

algorithm is as follows:
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1. Compute the height, the maximum distance between
the root and a leaf, of the two trees. If the heights are
not the same, then the trees are not isomorphic;
otherwise, let the height be h.

2. Based on the height, assign level numbers to the
nodes of the trees. The level number of a node at a
distance of d from the root is set to be h� d.

3. For each leaf u at level 0, set index½u	 to be the
leaf-label.

4. For each level i, in order, we compute index½v	 for
each node v at level i as follows:

. We define an ordered list of the indices of the
children of the node v, sorted in ascending
order. If v is a leaf, then its tuple consists of just
its label. Let Li be the list of tuples of nodes at
level i in T1. Let L0i be the corresponding list for
T2. Now, lexicographically sort Li and L0i to
obtain Si and S0i, respectively.

. Set index½v	 to be the rank of v’s tuple in the
sorted list Si. The ranks start from 1 and all
identical tuples receive the same rank. Indices
for vertices in T2 are assigned similarly.

. If Si and S0i are not identical, then declare T1 and
T2 to be nonisomorphic and quit.

5. If the roots of T1 and T2 are assigned the same index,
then the trees are isomorphic; otherwise, not.

Proof of Correctness. We first show that if the algorithm
declares two trees to be isomorphic, then they are indeed
so. The proof is by induction on the number of levels in
the trees. Suppose there is only one level, then the trees
have only one leaf each. If the algorithm declares the
trees to be isomorphic, then the leaves have the same
label and, hence, they are indeed isomorphic. Induc-
tively, assume that the algorithm correctly tests the
isomorphism of trees that have up to k levels. Suppose T1

and T2 have kþ 1 levels each. If the algorithm declares T1

and T2 to be isomorphic, then the tuples assigned to the
roots of T1 and T2 are identical, which means that, for
each node of T1 at level k, there is a node at level k in T2

that is assigned the same index and vice versa. From the
induction hypothesis, subtrees at level k that are
assigned identical indices are isomorphic. Hence, for
each subtree of T1 at level k, there is a level k subtree
isomorphic to it in T2 and vice versa. This implies that T1

and T2 are isomorphic themselves. It can be proved
similarly by induction that if T1 and T2 are isomorphic,
the algorithm declares them so. This completes our
proof. tu

Running Time. The running time of the above algorithm
for testing isomorphism is OðnÞ, where n is the number of
leaves in the input trees (see [1]).

5 MAAC FOR k TREES

In this section, we study the complexity of computing the
MAAC of many area-labeled trees.

In [2], Amir and Keselman show that computing the MAST
of just three trees with unbounded degrees is NP-hard by a

reduction from three-dimensional matching. Since the
MAAC problem is a less restricted version of the MAST
problem, computing the MAAC of three or more un-
bounded degree cladograms is also NP-hard. However,
polynomial time algorithms for computing MAST of
k trees with bounded degrees were first presented in [2]
and then, later, in [10]. We now establish that such a result
is not possible for MAAC unless P ¼ NP; more specifically,
we show that computing the MAAC of a set of k binary trees
is NP-hard. In view of this result, it would appear that
natural generalizations to MAAC of the approaches used to
compute the MAST of k trees with maximum degree d (in
[2] and [10]) would run in time exponential in both k and d.

5.1 NP-Completeness of k-Tree MAAC

The NP-completeness proof will use a reduction from
VERTEX-COVER and is adapted from the NP-completeness
proof of the Longest Common Subsequence (LCS) problem
for k sequences presented in [22]. We will use the following
description of the decision version of VERTEX-COVER.

— VERTEX-COVER

— Input: Graph G ¼ ðV ;EÞ and an integer k

— Question: Is there a subset S � V of at most k vertices

such that, for every edge e ¼ ðx; yÞ 2 E, fx; yg \ S 6¼ ;?
We will reduce VERTEX-COVER to the following

decision version of the problem of computing the MAAC
of many binary area-labeled trees:

— BIN-MAAC

— Input: set T of binary area-labeled trees, and an integer k.

— Question: Is jMAACðT Þj � k?

Theorem 7. BIN-MAAC is NP-complete.

Proof. BIN-MAAC is in NP since a naive algorithm can
simply guess a subset of leaves of each tree in T and
check if all induced trees are isomorphic in polynomial
time. Hence, it will suffice to show that VERTEX-COVER
reduces to BIN-MAAC.

Consider an instance ðG ¼ ðV ;EÞ; kÞ of VERTEX-
COVER. Let V ¼ fv1; v2; . . . ; vng and E ¼ fe1; e2; . . . ; emg.
We will construct a set T ¼ fT0; T1; . . . ; Tmg of ðmþ 1Þ
binary area-labeled trees such that G has a vertex cover
of size k if and only if jMAACðT Þj � n� k.

The set of areas with which the leaves of tree are
labeled is A ¼ fv1; v2; . . . ; vng.

The tree T0 is a binary tree on leaf set v1; v2; . . . ; vn,
with no nontrivial left subtrees. Thus, T0 is a rooted
“caterpillar” tree defined by the ordering on its leaves,
which we will assume is given by v1; v2; . . . ; vn. We use
the notation T0 nX to denote the tree obtained by
deleting the leaves in X from the tree T0 and suppressing
nodes with only one child.

Now, consider an edge e ¼ ðvx; vyÞ in the graph G,
with x < y. We will define the rooted tree Te as follows:
Te is obtained by “concatenating” the trees T0 n fvxg and
T0 n fvyg, where by “concatenation” we mean replacing
the deepest leaf of the first tree by a branching node
whose children are the second tree and the old leaf. Note,
therefore, that, for each i 6¼ x; y, node vi appears twice in
the tree Te, but that vx and vy each appear once.
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Furthermore, vx appears “below” vy (in the sense that the
parent of vy is an ancestor of vx). Fig. 7 illustrates this
construction.

Now, we show that G has a vertex cover of size k if
and only if jMAACðT Þj � n� k:

. (only if:) Suppose G has a vertex cover S of size k.

Let T � ¼ T0 n S. It is clear that jLðT �Þj ¼ n� k.

Therefore, it is enough to show that T � is an

agreement subtree of the set of trees

fTe : e 2 EðGÞg [ fT0g. Obviously, T � is a subtree
of T0. Now, consider an edge e ¼ ðvx; vyÞ 2 EðGÞ,
with x < y. The tree Te is the concatenation of T0 n
fvxg and T0 n fvyg in which the ancestor of vy lies

above that of vx. Thus, the top half of Te contains

all the vertices (in order) except for vx, and the

bottom half of Te contains all the vertices except

for vy. Since S is a vertex cover, at least one of vx
and vy is in S; without loss of generality, suppose
vx 2 S. Then, T � is a subtree of the top half of Te.

(If vy 2 S, we would deduce that T � is a subtree of

the bottom half of Te.)
. ( i f : ) I f jMAACðT Þj � n� k, t h e n l e t

S ¼ V n LðMAACðT ÞÞ. Because MAACðT Þ is a

subtree of T0, every vi labels only one leaf. That
implies jSj ¼ jV j � jLðMAACðT ÞÞj � k. It is suffi-

cient to show that S is a vertex cover of G in order

for G to have a vertex cover of size at most k.

Consider any edge e ¼ ðvx; vyÞ, x < y, and assume

that neither endpoint is in S; hence, both are

labels of leaves of MAACðT Þ. In the trees T0 and

Te, there is only one instance of label vx and one

instance of label vy. Because of the structure of T0,
the parent of the leaf labeled vx is above the leaf

labeled vy. However, in Te, the leaf labeled vx is

strictly below the parent of the leaf labeled vy.

This contradicts the assumption that both vx and

vy are in LðMAACðT ÞÞ. Therefore, for every

edge e, S contains at least one of its vertices and

S is a vertex cover of G. tu
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