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Cache-oblivious Dynamic Programming for
Bioinformatics

Rezaul Alam Chowdhury, Hai-Son Le, and Vijaya Ramachandran

Abstract— We present efficient cache-oblivious algorithms for
some well-studied string problems in bioinformatics including the
longest common subsequence, global pairwise sequence alignment
and 3-way sequence alignment (or median), both with affine
gap costs, andRNA secondary structure prediction with simple
pseudoknots.

For each of these problems we present cache-oblivious al-
gorithms that match the best-known time complexity, match
or improve the best-known space complexity, and improve
significantly over the cache-efficiency of earlier algorithms.

We present experimental results which show that our cache-
oblivious algorithms run faster than software and implementa-
tions based on previous best algorithms for these problems.

Index Terms— sequence alignment, median, RNA secondary
structure prediction, dynamic programming, cache-efficient,
cache-oblivious.

I. I NTRODUCTION

A LGORITHMS for sequence alignment and for RNA sec-
ondary structure prediction are some of the most widely

studied and widely-used methods in bioinformatics. Many ofthese
are dynamic programming algorithms that run in polynomial time
under the traditionalvon Neumann Modelof computation which
assumes a single layer of memory with uniform access cost, and
many have been further improved in their space usage, mainly
using a technique due to Hirschberg [23]. Modern computers,
however, differ significantly from the original von Neumann
architecture. Unlike von Neumann machines, memory on these
machines is typically organized in a hierarchy with registers in
the lowest level followed by several levels of caches (L1, L2
and possibly L3), RAM, and disk. The access time and size of
each level increases with its depth, and data is transferredin
blocks between adjacent levels. When executed on such a typical
modern computer algorithms designed for the traditional model
often cause the processor to stall while waiting for data to be
transferred from slower levels of memory. The situation is the
worst for large datasets that involve block transfers to andfrom
the disk. Therefore, in order to perform well on these machines
new algorithms must be designed that reduce the number of block
transfers between different levels of the memory hierarchy.

Cache-efficiency and cache-oblivious algorithms.The two-level
I/O model [1] is a simple abstraction of the memory hierarchy
that consists of a cache of sizeM , and an arbitrarily large main
memory partitioned into blocks of sizeB. An algorithm is said
to have caused a cache-miss if it references a block that doesnot
reside in the cache and must be fetched from the main memory.
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The cache complexity(or I/O complexity) of an algorithm is
measured in terms of the number of cache-misses it incurs and
thus the number of block transfers or I/O operations it causes.
Algorithms designed for this model often crucially depend on the
knowledge ofM andB, and thus do not adapt well when these
parameters change.

The ideal-cache model [18] is an extension of the two-level I/O
model with an additional requirement that algorithms must remain
oblivious of cache parameters, i.e., cache-oblivious. Themodel
assumes an optimal offline cache replacement policy, which can
be approximated to within a constant factor by standard cache
replacement methods such as LRU and FIFO. A well-designed
cache-oblivious algorithm is flexible and portable, and simultane-
ously adapts to all levels of a multi-level memory hierarchy.

A. Our Results

In this paper we present an efficient cache-oblivious framework
that solves a general class of recurrence relations in 2- and3-
dimensions that are amenable to solution by dynamic programs
with ‘local dependencies’. In a dynamic program with local
dependencies the value of each cell in the DP table depends
only on values in adjacent cells. In principle our frameworkcan
be generalized to any number of dimensions, although we study
explicitly only the 2- and 3-dimensional cases. We describeour
methodology using the simple and well-knownlongest common
subsequence(LCS) problem. We generalize this framework to
develop cache-oblivious algorithms for several well-known string
problems in bioinformatics, and show that our algorithms are
both theoretically and experimentally more efficient than previous
algorithms for these problems. Our results for the string problems
we consider are the following (recall thatB is the block transfer
size, andM is the size of the cache):

• Global pairwise alignmentwith affine gap costs: On a pair
of sequences of lengthn each our cache-oblivious algorithm
runs inO

“

n2
”

time, usesO (n) space and incursO
“

n2

BM

”

cache-misses.
• Median (i.e., optimal alignment of three sequences)with

affine gap costs: Our cache-oblivious algorithm runs in
O

“

n3
”

time andO
“

n2
”

space, and incurs onlyO
“

n3

B
√

M

”

cache-misses on three sequences of lengthn each.
• RNA secondary structure prediction with simple pseudoknots:

On an RNA sequence of lengthn, our cache-oblivious
algorithm runs inO

“

n4
”

time, usesO
“

n2
”

space and

incursO
“

n4

B
√

M

”

cache-misses.

Our cache-oblivious algorithms improve on the space usage
of traditional dynamic programs for each of the problems we
study, and match the space usage of the Hirschberg’s space-
reduced version [23] of these traditional DPs. However, ourspace
reduction is obtained through a divide-and-conquer strategy that
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is quite different from the method used in [23]. Hirschberg’s
approach, too, decomposes the problem into subproblems, but
uses a method that involves the application of traditional iterative
DP in both forward and backward directions. The applicationof
iterative DP results in inefficient cache usage. Moreover, the use
of both forward and backward DP, and particularly the need to
combine the results obtained from them, sometimes complicates
the implementation of Hirschberg’s method (e.g., for multiple
simultaneous recurrences or recurrences with multiple fields).
In contrast, our algorithm always applies DP in one direction
and is arguably simpler to implement. A method for applying
Hirschberg’s space-reduction using forward-only DP is given in
[17], but it involves repeated linear scans and thus is not cache-
efficient.

In our experimental study of the first two problems we compare
our implementations to publicly available software written by oth-
ers, and for the last one our comparison is to our implementation
of the best previous algorithm (due to Akutsu [3]). In general our
cache-oblivious algorithms outperformed the other algorithms for
all three problems.

In related work, in [13] we present parallel cache-oblivious
implementations of these algorithms for distributed and shared
caches, and formulticores. Additionally, we present cache-
oblivious sequential and parallel algorithms for solving several
dynamic programming recurrences with ‘non-local dependen-
cies’1 including those for pairwise sequence alignment with gen-
eral gap costs, and the basic RNA secondary structure prediction
(without pseudoknots) problem in [10], [8], [13].

B. Organization of the Paper

In Section II we describe our cache-oblivious framework for
solving dynamic programming problems with local dependencies:
in Section II-A we use the simple and well-known 2-dimensional
dynamic programming recurrence for finding a longest common
subsequence (LCS) to describe our methodology, in Section II-B
we formulate the generald-dimensional framework, in Section
II-C we establish its I/O lower bound, and in Section II-D we
apply this framework to obtain cache-oblivious algorithmsfor
global pairwise sequence alignment, median, and RNA secondary
structure prediction with simple pseudoknots. In Section III we
present our experimental results on the three problems.

Preliminary versions of the LCS results in Section II-A and the
I/O lower bound in Section II-C appeared in a conference [10].

II. CACHE-OBLIVIOUS DYNAMIC PROGRAMS WITH LOCAL

DEPENDENCIES

A. The LCS DP

In this section we describe our methodology using the simple
and well-known dynamic programming recurrence for the longest
common subsequence (LCS) problem.

A sequenceZ = z1z2 . . . zk is called asubsequenceof another
sequenceX = x1x2 . . . xn if there exists a strictly increasing
function f : [1, 2, . . . , k] → [1, 2, . . . , n] such that for alli ∈

[1, k], zi = xf(i). In the Longest Common Subsequence(LCS)
problem we are given two input sequences, and we need to find
a maximum-length subsequence common to both sequences.

1In a dynamic program with non-local dependencies values in some or all
cells in the DP table depend on values in non-adjacent cells.

Given two sequencesX = x1x2 . . . xn and Y = y1y2 . . . yn

(for simplicity, we assume equal-length sequences here), we
define c[i, j] (0 ≤ i, j ≤ n) to be the length of an LCS of
x1x2 . . . xi andy1y2 . . . yj . Thenc[n, n] is the length of an LCS
of X andY , and can be computed using the following recurrence
relation (see, e.g., [14]):

c[i, j] =

8

>

>

<

>

>

:

0 if i = 0 or j = 0,
c[i − 1, j − 1] + 1 if i, j > 0 ∧ xi = yj ,

max



c[i, j − 1],

c[i − 1, j]

ff

if i, j > 0 ∧ xi 6= yj .
(II.1)

We can rewrite the recurrence above in the following form:

c[i, j] =

8

>

>

<

>

>

:

h ( 〈 i, j 〉 ) if i = 0 or j = 0,

f

0

@

〈 i, j 〉, 〈 xi, yj 〉,

c[ i − 1 : i, j − 1 : j ]

\c[i, j]

1

A otherwise.
(II.2)

whereh (·) is an initialization function that always returns 0, and
f(·, ·, ·) is the function that computes the value of each cell based
on the values in adjacent cells as follows.

f

„

〈 i, j 〉, 〈 xi, yj 〉,

c[ i − 1 : i, j − 1 : j ] \ c[i, j]

«

=

8

<

:

c[i − 1, j − 1] + 1 if xi = yj ,

max



c[i, j − 1],

c[i − 1, j]

ff

otherwise.

Function f uses exactly one cell from its third argument to
compute the final value ofc[i, j], and we call that specific cell
the parent cellof c[i, j]. The traceback pathfrom any cellc[i, j]
is the path following the chain of parent cells throughc that ends
at somec[i′, j′] with i′ = 0 ∨ j′ = 0. An LCS can be extracted
from the traceback path starting atc[n, n].

All computations above are performed in the domain of non-
negative integers (i.e., the setN of natural numbers).

Recurrence II.2 gives the general form a a DP with local
dependencies in 2 dimensions. It can be evaluated iteratively in
O

“

n2
”

time, O
“

n2
”

space andO
“

n2/B
”

cache-misses. It
has been shown in [2], [24], [32] that the LCS problem cannot
be solved ino

“

n2
”

time if the elementary comparison operation
is of type ‘equal/unequal’ and the alphabet size is unrestricted.
However, if the alphabet size is fixed the theoretically fastest
known algorithm runs inO

“

n2

log n

”

time and space [33], though
this appears to be impractical to implement. Faster algorithms
exist for different special cases of the problem [6]. If the alphabet
size is unrestricted, this problem can be solved inO

“

hn2

log n

”

time
and space [15], whereh is the entropy of the sequences.

In most applications, however, the quadratic space required
by an LCS algorithm is a more constraining factor than its
quadratic running time [22]. Fortunately, there are linearspace
implementations [23], [29], [5] of the LCS recurrence, but the
cache complexity remainsΩ

“

n2

B

”

and the running time roughly
doubles. Hirschberg’s space-reduction technique [23] forthe
LCS recurrence has become the most widely used method for
reducing the space complexity of similar DP-based algorithms
in computational biology [34], [36], [42], [26]. However, if
a traceback path is not required it is easy to reduce space
requirement of the iterative algorithm toO (n) even without using
Hirschberg’s technique (see, e.g., [14]), and its cache-complexity
can be improved toO

“

n2

BM

”

using the cache-oblivious stencil-
computation technique [19].
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Fig. 1. (Cache-oblivious computation of traceback path (by function COMPUTE-TRACEBACK-PATH)) (a) The inputs are the two sequencesX andY , and
the entries on the left and the top boundaries of matrixQ ≡ c[ 1 : n, 1 : n ]. (b) Forward Pass: The output boundaries of three of the four quadrants of
Q are computed recursively (by calling COMPUTE-BOUNDARY) in the following order:Q11, Q12 and Q21. This order ensures that the input boundaries
of each quadrant are already available at the time it is processed by COMPUTE-BOUNDARY. (c) Backward Pass: The fragments of the traceback path are
extracted from the quadrant by calling COMPUTE-TRACEBACK-PATH on them recursively in the opposite order of the forward pass.

In the rest of this section we present a cache-oblivious algo-
rithm for solving recurrence II.2 along with a traceback path
in O

“

n2
”

time, O (n) space andO
“

n2

BM

”

cache misses. It
improves over the previous best cache-miss bound by at least
a factor ofM , and reduces space requirement by a factor ofn

when compared with the traditional iterative solution.

Cache-oblivious Algorithm for Solving Recurrence II.2. Our
algorithm COMPUTE-TRACEBACK-PATH works by decomposing
the given matrixc[ 1 : n, 1 : n ] into smaller submatrices,
and then recursively extracting the fragments of the traceback
path from them. For any such submatrix one can recursively
compute the entries on its output boundary (i.e., on its right and
bottom boundaries) provided the entries on its input boundary
(i.e., entries immediately outside of its left and top boundaries) are
already known. Since the submatrices share boundaries, when the
output boundaries of all submatrices are computed the problem
of finding the traceback path through the entire matrix is reduced
to the problem of recursively finding the fragments of the path
through the submatrices. Though we compute alln2 entries of
c, at any stage of recursion we only need to save the entries on
the boundaries of the submatrices and thus we use onlyO (n)

space. The divide and conquer strategy also improves locality
of computation and consequently leads to an efficient cache-
oblivious algorithm.

We describe below the two parts of our algorithm. The pseu-
docode for both parts are given in Figure 2. The initial call is to
COMPUTE-TRACEBACK-PATH on the two input sequences, which
computes the traceback path through the input matrix starting
at its bottom-right corner. This function uses the COMPUTE-
BOUNDARY routine for decomposing the input matrix into sub-
matrices each representing a smaller instance of the original
problem.

COMPUTE -BOUNDARY . Given the input boundary ofc[ i1 :

i2, j1 : j2 ] this function (Function 2.2) recursively computes
its output boundary. For simplicity of exposition we assumethat
i2 − i1 = j2 − j1 = 2q − 1 for some integerq ≥ 0.

If q = 0, the function can compute the output boundary directly
using recurrence II.2, otherwise it decomposes its quadratic

computation spaceQ (initially Q ≡ c[ 1 : n, 1 : n ]) into 4
quadrantsQi,j , 1 ≤ i, j ≤ 2, whereQi,j denotes the quadrant
that is i-th from the left andj-th from the top. It then computes
the output boundary of each quadrant recursively as the input
boundary of the quadrant becomes available during the process
of computation. After all recursive calls terminate, the output
boundary ofQ is composed from the output boundaries of the
quadrants.

Analysis. Let I1(n) be the cache-complexity of COMPUTE-
BOUNDARY on input sequences of lengthn each. If the sequences
are small enough so that the entire input of sizeO (n) completely
fits into the cache, then the only cache-misses incurred by the
function will be O

`

1 + n
B

´

in order to read the input into the
cache initially, and write the output to the main memory at
the end. In this case, the intermediate recursive function calls
will incur no additional cache-misses since the entire input is
already in the cache. However, if the the input is too large tofit
into the cache, the total number of cache-misses incurred bythe
function is the sum of the cache-misses incurred by the recursive
function calls, andO

`

1 + n
B

´

additional misses incurred while
saving/restoring intermediate outputs between recursivefunction
calls. Thus we have

I1(n) =



O
`

1 + n
B

´

if n ≤ αM ,
4I1

`

n
2

´

+ O
`

1 + n
B

´

otherwise;

whereα is a suitable constant such that computation involving two
input sequences of lengthαM each can be performed completely
inside the cache. Solving the recurrence we obtainI1(n) =

O
“

1 + n
B + n2

BM

”

for all n. It is straight-forward to show that

the algorithm runs inO
“

n2
”

time and usesO (n) space, and

the cache complexity reduces toO
“

n2

BM

”

when the input is too
large for the cache (i.e.,n = Ω(M)). In contrast, though the
standard iterative dynamic programming approach for computing
the output boundary has the same time and space complexities
(see, e.g., [14] for a standard technique that allows the DP to
be implemented inO (n) space), it incurs a factor ofM more
cache-misses.

COMPUTE -TRACEBACK -PATH . This is the main algorithm,
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FUNCTION 2.1: COMPUTE-TRACEBACK-PATH( X, Y, L, T, P )

Input. Herer = |X| = |Y | = 2t for some integert ∈ [1, p], andQ[ 0 : r, 0 : r ] ≡ c[ u−1 : u+r−1, v−1 : v +r−1 ], X = xuxu+1 . . . xu+r−1

andY = yvyv+1 . . . yv+r−1 for someu and v (1 ≤ u, v ≤ n− r + 1). The left and top boundaries ofQ[ 1 : r, 1 : r ] are inL (≡ Q[ 0, 0 : r ])
andT (≡ Q[ 0 : r, 0 ]), respectively. Current traceback path is given inP .

Output. Returns the updated traceback path.

1. if P ∩Q = ∅ return P

2. if r = 1 then updateP using recurrence II.2

3. else { For i, j ∈ [1, 2], the left, right, top and bottom boundaries of quadrantQij are denoted byLij , Rij , Tij

and Dij , respectively.X1 and X2 denote the 1st and the 2nd half ofX, respectively (similarly forY ).}

4. ExtractL1,j from L, andTi,1 from T , wherei, j ∈ [1, 2] { L2,j ≡ R1,j and Ti,2 ≡ Di,1 for i, j ∈ [1, 2] }

5. quadrant[ 1 : 4 ]← 〈 〈 1, 1 〉, 〈 1, 2 〉, 〈 2, 1 〉, 〈 2, 2 〉 〉

Forward Pass ( Compute Boundaries ):

6. for l← 1 to 3 do

7. 〈 i, j 〉 ← quadrant[ l ], 〈 Rij , Dij 〉 ← COMPUTE-BOUNDARY( Xi, Yj , L′
ij , T ′

ij )
n

L′
ij is the same asLij except that it contains one additional cell at the top.

Similarly, T ′
ij contains one more cell to its left thanTij .

o

Backward Pass ( Compute Traceback Path ):

8. for l← 4 downto 1 do

9. 〈 i, j 〉 ← quadrant[ l ], P ← COMPUTE-TRACEBACK-PATH( Xi, Yj , L′
ij , T ′

ij , P )

10. return P

COMPUTE-TRACEBACK-PATH ENDS

FUNCTION 2.2: COMPUTE-BOUNDARY( X, Y, L, T )

Input. Same as the input description of COMPUTE-TRACEBACK-PATH (Function 2.1).

Output. Returns an ordered tuple〈R, D〉, whereR (≡ Q[ r, 1 : r ]) andD (≡ Q[ 1 : r, r ]) are the right and bottom boundaries ofQ[ 1 : r, 1 : r ],
respectively.

1. if r = 1 then R = D← f2 ( 〈 u, v 〉, 〈 X, Y 〉, L ∪ T )

2. else

3. ExtractL1,j from L, andTi,1 from T , respectively, wherei, j ∈ [1, 2]

4. quadrant[ 1 : 4 ]← 〈 〈 1, 1 〉, 〈 1, 2 〉, 〈 2, 1 〉, 〈 2, 2 〉 〉

5. for l← 1 to 4 do

6. 〈 i, j 〉 ← quadrant[ l ], 〈 Rij , Dij 〉 ← COMPUTE-BOUNDARY( Xi, Yj , L′
ij , T ′

ij )

7. ComposeR from R2,j , andD from Di,2, respectively, wherei, j ∈ [1, 2]

8. return 〈 R, D 〉

COMPUTE-BOUNDARY ENDS

Fig. 2. Cache-oblivious algorithm for evaluating recurrence II.2 along with the traceback path. For convenience of exposition we assume that we only need
to computec[ 1 : n, 1 : n ] wheren = 2q for some nonnegative integerq. The initial call to COMPUTE-TRACEBACK-PATH is made withX = x1x2 . . . xn,
Y = y1y2 . . . yn, L ≡ c[ 0, 0 : n ], T ≡ c[ 0 : n, 0 ] andP = 〈(n, n)〉.

which recursively calls both itself and COMPUTE-BOUNDARY.
Given the input boundary ofc[ i1 : i2, j1 : j2 ] and the entry
point of the traceback path on the output boundary, this function
(Function 2.1) recursively computes the entire path. Recall that
a traceback runs backwards, that is, it enters the cube through
a point on the output boundary and exits through the input
boundary.

If q = 0, the traceback path can be updated directly using
recurrence II.2, otherwise it performs two passes: forwardand
backward. In the forward pass it computes the output boundaries
of all quadrants exceptQ2,2 as in COMPUTE-BOUNDARY. After
this pass the algorithm knows the input boundaries of all four
quadrants, and the problem reduces to recursively extracting
the fragments of the traceback path from each quadrant and
combining them. In the backward pass the algorithm starts atQ2,2

and updates the traceback path by calling itself recursively on the
quadrants in the reverse order of the forward pass. This backward
order of the recursive calls is essential since in order to find the
traceback path through a quadrant the algorithm requires anentry
point on its output boundary through which the path enters the

quadrant and initially this point is known for only one quadrant.
The quadrants are processed in the backward order because it
ensures that the exit point of the traceback path from one quadrant
can be used as the entry point of the path to the next quadrant in
the sequence.

Analysis. Let I2(n) be the cache-complexity of COMPUTE-
TRACEBACK-PATH on input sequences of lengthn each. We
observe that though the algorithm calls itself recursively4 times in
the backward pass, at most 3 of those recursive calls will actually
be executed and the rest will terminate at line 1 of the algorithm
(see Figure 2)) since the traceback path cannot intersect more
than 3 quadrants. Then using arguments similar to those usedin
determiningI1(n), we have,

I2(n) =



O
`

1 + n
B

´

if n ≤ γM ,
3I2

`

n
2

´

+ 3I1
`

n
2

´

+ O
`

1 + n
B

´

otherwise;

whereγ is a suitable constant such that that computation involving
sequences of lengthγM each can be performed completely
inside the cache. Solving the recurrence we obtainI2(n) =
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O
“

1 + n
B + n2

BM

”

for all n. The algorithm runs inO
“

n2
”

time

and usesO (n) space, andI2(n) reduces toO
“

n2

BM

”

provided
the inputs are too large to fit into the cache. When compared
with the cache-complexity of any existing algorithm for finding
the traceback path our algorithm improves it by at least a factor
of M , and improves the space complexity by a factor ofn when
compared against the standard dynamic programming solution.

Our algorithm can be easily extended to handle lengths that are
not powers of 2 within the same performance bounds. Thus we
have the following theorem.

Theorem 2.1:Given two sequencesX and Y of length n

each, recurrence II.2 can be solved and a traceback path can
be computed cache-obliviously inO

“

n2
”

time,O (n) space and

O
“

1 + n
B + n2

BM

”

cache misses.

If the sequences are long enough
“

i.e., n = Ω
`

M
´

”

, the cache

complexity of the algorithm reduces toO
“

n2

BM

”

.

B. A General Framework for DPs with Local Dependencies

Suppose we are given the following.

• d ≥ 2 sequencesSi = si,1si,2 . . . si,n, 1 ≤ i ≤ d, of lengthn

each, with symbols chosen from an arbitrary finite alphabet
Σ. We define the following (to be used later).

– Given integersij ∈ [0, n], j ∈ [1, d], we denote byi
the sequence ofd integersi1, i2, . . . , id; and by〈 i 〉 we
denote thed-dimensional vector〈 i1, i2, . . . , id 〉.

– By 〈 Si 〉 we denote thed-dimensional vector
〈 s1,i1 , s2,i2 , . . . , sd,id

〉 containing theij -th symbol
of Sj in j-th position, where eachij ∈ [1, n].

• An arbitrary setU .
• An initialization functionh(·) that accepts a vector〈 i 〉 as

input and outputs an element fromU .
• A function f(·, ·, ·) that accepts vectors〈 i 〉 and〈 Si 〉, and

an ordered set of2d − 1 elements fromΣ, and returns an
element ofU .

Now supposec[ 0 : n, 0 : n, . . . , 0 : n ] is a d-dimensional
matrix that can store elements from the given setU , and we
want to compute the entries ofc using the following dynamic
programming recurrence.

c[ i ] =

8

>

>

>

>

<

>

>

>

>

:

h ( 〈 i 〉 ) if ∃ ij = 0,

f

0

B

B

@

〈 i 〉, 〈 Si 〉, c

2

6

6

4

i1 − 1 : i1,

i2 − 1 : i2,

. . . ,

id − 1 : id

3

7

7

5

\ c[ i ]

1

C

C

A

otherwise.

(II.3)
Function f can be arbitrary except that it is allowed to use

exactly one cell from its third argument to compute the final value
of c[i1, i2, . . . , id] (though it can consider all cells), which we call
the parent cell ofc[i1, i2, . . . , id]. We also assume thatf does not
access any memory locations in addition to those passed to itas
inputs except possibly some constant size local variables.

Typically, two types of outputs are expected when evaluating
this recurrence:(i) the value of c[n, n, . . . , n], and (ii) the
traceback path starting fromc[n, n, . . . , n]. As in the case of LCS
recurrence, the traceback path from any cellc[i1, i2, . . . , id] is
the path following the chain of parent cells throughc that ends
at somec[i′1, i′2, . . . , i′d] with ∃ i′j = 0.

Each cell ofc can have multiple fields and in that casef must
compute a value for each field, though as before, it is allowedto
use exactly one field from its third argument to compute the final
value of any field inc[i1, i2, . . . , id]. The definition of traceback
path extends naturally to this case, i.e., when the cells have
multiple fields.

Recurrence II.2 in Section II-A gives the 2 dimensional version
of recurrence II.3 and below this recurrence are listedh and f

functions for the LCS recurrence.
Recurrence II.3 can be solved inO

“

nd
”

time,O
“

nd−1
”

space

andO
“

nd/B
”

cache-misses using Hirschberg’s technique [23].
A straight-forward extension of the cache-oblivious algorithm

given in Section II-A and Figure 2 for solving the 2D recurrence
II.2 solves the general recurrence II.3 along with a traceback path
for any arbitrary dimensiond ≥ 2. The algorithm is similar to
the 2D algorithm, but the computation space is ad-dimensional
hypercube, and the input and output boundaries are of dimension
d − 1. The algorithm works by decomposing the hypercube
into 2d sub-hypercubes, and computing the output boundaries of
these sub-hypercubes recursively in a sequence so that the output
boundaries of a sub-hypercube are computed only after its input
boundaries become available (possibly as outputs of recursive
calls earlier in the sequence). After the output boundariesof
all sub-hypercubes are computed, we can find the traceback
path through the entire hypercube by recursively extracting the
fragments of the path through the sub-hypercubes and stitching
them together. Thus we have the following theorem.

Theorem 2.2:Given d ≥ 2 sequencesSi, 1 ≤ i ≤ d, of
length n each, with symbols chosen from an arbitrary finite
alphabet, recurrence II.3 can be solved and a traceback pathcan
be computed cache-obliviously inO

“

nd
”

time, O
“

nd
”

space

andO

„

nd

BM
1

d−1

«

cache misses providedM = Ω
“

Bd−1
”

.

Details of the cache-oblvious algorithm ford = 3 as well as
pseudocode can be found in [9] and in the PhD thesis of the first
author [8].

C. I/O Lower Bound

The following theorem establishes that our cache-oblivious
algorithm for solving recurrence II.3 is cache-optimal:

Theorem 2.3:For any d ≥ 2, any algorithm that imple-
ments the computation defined by recurrence II.3, must perform

Ω

„

nd

BM
1

d−1

«

block transfers.

We obtain the lower bound in Theorem 2.3 using the I/O lower
bound proved by Hong & Kung [25] for executing the DAG
obtained by taking the product ofd directed line graphs. Let
L1 = (V, E) be a directed line graph, whereV = { 1, 2, . . . , n }

and E = { (i, i + 1) | i ∈ [1, n − 1] }. Nodes inL1 represent
operations, and edges represent data-flow. The node with no
incoming edges (i.e., node 1) is the uniqueinput and the node
with no outgoing edges (i.e., noden) is the uniqueoutput. For
d ≥ 2, Ld is obtained by taking the product ofd suchL1’s. Figure
3(b) showsL2. Corollary 7.1 in [25] gives the following lower
bound on the number of I/O operationsQ required to executeLd.

Corollary 7.1 in [25]. For the product Ld with d ≥ 2,

Q = Ω

„

nd

M
1

d−1

«

.
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(a)

56
56 57 8 56 9 56

(b)
Fig. 3. (I/O lower bound for DP implementing recurrence II.3) (a) Computational DAGG2 implementing recurrence II.3 ford = 2. The nodes colored
white represent input nodes.(b) Product graphL2 of two line graphs (L1), which is a subDAG of DAGG2 shown in Figure 3(a). Hence, I/O lower bound
for executingL2 also holds forG2.

The corollary above assumes that data is transferred to and
from the cache in blocks of size 1. For block sizeB, Q =

Ω

„

nd

BM
1

d−1

«

.

Now consider the computation DAGGd given by recurrence
II.3 for dimensiond. Figure 3(a) shows this DAG ford = 2.
It is easy to see thatLd is, in fact, a subDAG ofGd, and
hence I/O lower bound for executingLd also holds forGd.
Therefore, Theorem 2.3 follows from the corollary above under
the assumption that data is transferred in blocks of sizeB.

D. Applications of the Cache-oblivious Framework

In this section we apply the cache-oblivious framework de-
scribed in Section II-B to obtain cache-oblivious algorithms for
pairwise sequence alignment, median of three sequences, and
RNA secondary structure prediction with simple pseudoknots.

1) PAIRWISE GLOBAL SEQUENCE ALIGNMENT WITH

AFFINE GAP PENALTY : Sequence alignment plays a central role
in biological sequence comparison, and can reveal important rela-
tionships among organisms. Given two stringsX = x1x2 . . . xm

andY = y1y2 . . . yn over a finite alphabetΣ, an alignmentof X

and Y is a matchingM of sets{1, 2, . . . , m} and {1, 2, . . . , n}

such that if(i, j), (i′, j′) ∈ M and i < i′ hold thenj < j′ must
also hold [26]. Thei-th letter ofX or Y is said to be in agap if
it does not appear in any pair inM . Given agap penaltyg and
a mismatch costs(a, b) for each paira, b ∈ Σ, the basic (global)
pairwise sequence alignment problemasks for a matchingMopt

for which (m+n−|Mopt|)×g+
P

(a,b)∈Mopt
s(a, b) is minimized

[26].
For simplicity of exposition we will assumem = n for the rest

of this section.
The formulation of the basic sequence alignment problem fa-

vors a large number of small gaps while real biological processes
favor the opposite. The alignment can be made more realisticby
using anaffine gap penalty[20], [4] which has two parameters:
a gap introduction costgi and agap extension costge. A run of
k gaps incurs a total cost ofgi + ge × k.

In [20] Gotoh presented anO
“

n2
”

time andO
“

n2
”

space
DP algorithm for solving the global pairwise alignment problem
with affine gap costs. The algorithm incursO

“

n2

B

”

cache misses.
The space complexity of the algorithm can be reduced toO (n)

using Hirschberg’s space-reduction technique [34] or the diagonal

checkpointing technique described in [21]. Gotoh’s algorithm
solves the following DP recurrences.

D(i, j) =

8

<

:

G(0, j) + ge if i = 0 ∧ j > 0

min



D(i − 1, j),

G(i − 1, j) + gi

ff

+ ge if i > 0 ∧ j > 0.

(II.4)

I(i, j) =

8

<

:

G(i, 0) + ge if i > 0 ∧ j = 0

min



I(i, j − 1),

G(i, j − 1) + gi

ff

+ ge if i > 0 ∧ j > 0.

(II.5)

G(i, j) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

0 if i = 0 ∧ j = 0

gi + ge × j if i = 0 ∧ j > 0

gi + ge × i if i > 0 ∧ j = 0

min

8

<

:

D(i, j), I(i, j),

G(i − 1, j − 1)

+s(xi, yj)

9

=

;

if i > 0 ∧ j > 0.

(II.6)

The optimal alignment cost ismin {G(n, n), D(n, n), I(n,n)}

and an optimal alignment can be traced back from the smallest
of G(n, n), D(n, n) andI(n, n).

Cache-oblivious Implementation.Recurrences II.4 - II.6 can be
viewed as evaluating a single matrixc[ 0 : n, 0 : n ] with three
fields: D, I andG. These recurrences can be treated as a single
recurrence matching the general recurrence II.3 ford = 2 by
defining functionsh and f to output triplets with their 1st, 2nd
and 3rd entries containing values for theD, I and G fields of
c, respectively. For example,f

`

〈 i, j 〉, 〈 xi, yj 〉, c[ i − 1 :

i, j − 1 : j ] \ c[i, j]
´

returns a triplet〈 vD , vI , vG 〉, where,

vD = min
˘

c[ i − 1, j ].D, c[ i − 1, j ].G + gi

¯

+ ge,

vI = min
˘

c[ i, j − 1 ].I, c[ i, j − 1 ].G + gi

¯

+ ge

andvG = min



c[ i, j ].D, c[ i, j ].I,

c[ i − 1, j − 1 ].G + s(xi, yj)

ff

.

Therefore, function COMPUTE-BOUNDARY in Figure 2 can be
used to compute the optimal alignment cost cache-obliviously, and
COMPUTE-TRACEBACK-PATH can be used to extract the optimal
alignment. Thus the following claim follows from Theorem 2.1
in Section II-A.

Claim 2.1: Optimal global alignment of two sequences of
lengthn each can be performed cache-obliviously using an affine
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gap cost inO
“

n2
”

time,O (n) space andO
“

n2

BM

”

cache misses.

The cache-complexity of the our cache-oblivious algorithmis
a factor ofM improvement over previous algorithms [20], [34].

2) ALIGNMENT OF THREE SEQUENCES (M EDIAN ): Given
three sequencesX, Y and Z, the median problemasks for a
sequenceW such that the sum of the pairwise alignment costs
of W with X, Y andZ is minimized. The sequenceW is called
the medianof the three given sequences. In this section we will
assume affine gap costs for the alignments. The 3-way sequence
alignment can be obtained as the pairwise alignment of each of
X, Y andZ with the median sequenceW . Hence we will focus
on finding the median sequence.

In [28] Knudsen presented a dynamic programming algorithm
for optimal multiple alignment of any number of sequences
related by a tree under affine gap costs. The input sequences are
assumed to be at the leaves of the tree, and the optimal alignment
cost is the minimum sum of pairwise alignment costs of the
sequence pairs at the ends of each edge of the tree over all possible
ancestral sequences (i.e., the unknown sequences at the internal
nodes of the tree). ForN sequence of lengthn each, the algorithm
runs in O

“

16.81N nN
”

time and usesO
“

7.442N nN
”

space.
For N = 3, Knudsen’s algorithm solves the median problem in
O

“

n3
”

time and space, and incursO
“

n3

B

”

cache-misses. An
Ukkonen-based algorithm for the median problem is presented
in [38], which performs well especially for sequences whose(3-
way) edit distanceδ is small. This method performs DP on the
edit distance instead of sequence lengths. On average, it requires
O

“

n + δ3
”

time and space. A space-reduced version of the

algorithm usesO
“

n + δ2
”

space, but runs inO
“

n log δ + δ3
”

time on average [38].
Knudsen’s algorithm [28] for three sequences (say,X =

x1x2 . . . xn, Y = y1y2 . . . yn and Z = z1z2 . . . , zn) is a dy-
namic program over a three-dimensional matrixK. These three
sequences are assumed to be at the leaves of a star-shaped tree,
the root of which corresponds to the ancestor/median sequence
W . Each entryK(i, j, k) is composed of several fields, each
of which corresponds to an indel configuration that keeps track
of ongoing insertions/deletions in the alignment. In a multiple
alignment, if we compare the symbolsx and w at locationl of
X andW , respectively, they will be in one of the following three
states:(i) x is a residue andw is a gap (i.e., an insertion to
X), (ii) x is a gap andw is a residue (i.e., a deletion from
X), and (iii) either both of them are residues or both are gaps.
Thus if all three input sequences are considered, we will have
a total of 33 = 27 such possibilities, each of which is called
an indel configuration. However, 4 of those 27 configurations
are considered invalid since they lead to contradictory state
assignments for the sequences. HenceK(i, j, k) consists of only
23 fields. A residue configuration defines how the next three
symbols of the sequences will be matched. Each configuration
is a vectore = (e1, e2, e3, e4), whereei ∈ {0, 1}, 1 ≤ i ≤ 4. The
entry ei, 1 ≤ i ≤ 3, is 1 if the aligned symbol of sequencei is
a residue, and 0 otherwise. The last entrye4 corresponds to the
aligned symbol of the median sequence. A residue configuration
is valid provided at least one ofe1, e2 and e3 is 1, and if more
than one of them is 1 thene4 is also 1 (see [28] for the reasoning
behind these conditions). Thus only 10 of the24 = 16 possible
residue configurations are valid. We defineν(e, q′) = q if applying

the residue configuratione to the indel configurationq′ leads to
the indel configurationq. Knudsen’s algorithm uses the following
recurrence relation which for any indel configurationq computes
the field K(i, j, k)q from all fields K(i′, j′, k′)q′ such that for
some residue configuratione, ν(e, q′) = q, i′ = i−e1, j′ = j−e2

andk′ = k − e3.

K(i, j, k)q =

8

>

>

<

>

>

:

0 if i = j = k = 0 ∧ q = qo

∞ if i = j = k = 0 ∧ q 6= qo

min
e,q′:q=ν(e,q′)



K(i′, j′, k′)q′ + Ge,q′

+M(i′,j′,k′)→(i,j,k)

ff

otherwise.

(II.7)

where qo is the indel configuration where all symbols match,
M(i′,j′,k′)→(i,j,k) is the matching cost when going from align-
ment(xi′ , yj′ , zk′) to alignment(xi, yj , zk), andGe,q′ is the gap
cost of applyinge on q′.

The M and G matrices can be pre-computed. Therefore,
Knudsen’s algorithm runs inO

“

n3
”

time and space withO
“

n3

B

”

cache-misses.

Cache-oblivious Algorithm. In order to make recurrence II.7
match the general recurrence II.3 ford = 3 given in Section
II, we shift all symbols ofX, Y and Z one position to the
right, introduce a dummy symbol in front of each of those three
sequences, and obtain the following recurrence by modifying
recurrence II.7, wherec[i, j1, k]q = K(i − 1, j − 1, k − 1)q for
1 ≤ i, j, k ≤ n + 1 and anyq.

c[i, j, k]q =

8

>

>

>

>

>

<

>

>

>

>

>

:

∞ if i = 0 ∨ j = 0 ∨ k = 0

0 if i = j = k = 1 ∧ q = qo

∞ if i = j = k = 1 ∧ q 6= qo

min
e,q′:q=ν(e,q′)



c[i′, j′, k′]q′ + Ge,q

+M(i′,j′,k′)→(i,j,k)

ff

otherwise.

If i = 0 or j = 0 or k = 0 then c[i, j, k]q can be evaluated
using a functionh( 〈 i, j, k 〉 ) = ∞ as in the general recurrence
II.3. Otherwise the value ofc[i, j, k]q depends on the values ofi,
j, andk, values in some constant size arrays (G andM), and on
the cells to its left, back and top. Hence, in this case,c[i, j, k]q
can be evaluated using a function similar tof in recurrence II.3
for d = 3. This function is defined simply by the last three rows
of the recurrence forc[i, j, k]q. Therefore, the above recurrence
matches the 3-dimensional version of the general recurrence II.3,
and we claim the following using Theorem 2.2.

Claim 2.2: Optimal alignment of three sequences of lengthn

each can be performed and the median sequence under the optimal
alignment can be computed cache-obliviously using an affinegap
cost inO

“

n3
”

time,O
“

n2
”

space andO
“

n3

B
√

M

”

cache misses.

3) RNA SECONDARY STRUCTURE PREDICTION WITH

SIMPLE PSEUDOKNOTS: A single-stranded RNA can be viewed
as a stringX = x1x2 . . . xn over the alphabet{A, U, G, C} of
bases. An RNA strand tends to give rise to interesting structures
by forming complementary base pairswith itself. An RNA sec-
ondary structure(w/o pseudoknots) is a planar graph with the
nesting condition: if{xi, xj} and {xk, xl} form base pairs and
i < j, k < l and i < k hold then eitheri < k < l < j or
i < j < k < l [42], [39], [3]. An RNA secondary structure with
pseudoknotsis a structure where this nesting condition is violated
[39], [3].

In [3] Akutsu presented a DP to compute RNA secondary
structures with maximum number of base pairs in the presenceof
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simple pseudoknots(see [3] for definition) which runs inO
“

n4
”

time, O
“

n3
”

space andO
“

n4

B

”

cache-misses. In this Section

we improve its space and cache complexities toO
“

n2
”

and

O
“

n4

B
√

M

”

, respectively, without changing its time complexity.
We list below the DP recurrences used in Akutsu’s algorithm

[3]. For every pair(i0, k0) with 1 ≤ i0 ≤ k0 − 2 ≤ n − 2, recur-
rences II.8 - II.12 compute the maximum number of base pairs in
a pseudoknot with endpoints at thei0-th andk0-th residues. The
value computed by recurrence II.12, i.e.,Spseudo(i0, k0), is the
desired value. Recurrences II.8 - II.10 consider three locations
(i, j, k) (i0 − 1 ≤ i < j ≤ k ≤ k0) on the RNA at a time.
Recurrences II.8 and II.9 correspond to cases where{xi, xj}

and{xj , xk} form base pairs, respectively, while recurrence II.10
handles the case where neither{xi, xj} nor {xj , xk} forms a
base pair. The variableSMAX(i, j, k) in recurrence II.11 contains
the maximum score for the triple(i, j, k). In recurrences II.8
and II.9, v(xs, yt) = 1 if {xs, yt} form a base pair, otherwise
v(xs, yt) = −∞. All uninitialized entries are assumed to have
value 0.

SL(i, j, k) =

8

<

:

v(xi, xj) if i0 ≤ i < j ≥ k,
v(ai, aj)

+SMAX(i − 1, j + 1, k)
if i0 ≤ i < j < k.

(II.8)

SR(i, j, k) =

8

<

:

v(xj , xk) if i0 − 1 = i < j − 1 = k − 2,
v(aj , ak)

+SMAX (i, j + 1, k − 1)
if i0 ≤ i < j < k.

(II.9)

SM (i, j, k) = max

8

>

>

>

>

<

>

>

>

>

:

SL(i − 1, j, k),

SM (i − 1, j, k),

SMAX(i, j + 1, k),

SM (i, j, k − 1),

SR(i, j, k − 1)

9

>

>

>

>

=

>

>

>

>

;

if i0 ≤ i < j < k.

(II.10)

SMAX(i, j, k) = max { SL(i, j, k), SM (i, j, k), SR(i, j, k) }

(II.11)

Spseudo(i0, k0) = max
i0≤i<j<k≤k0

{ SMAX(i, j, k) } (II.12)

After computing all entries ofSMAX for a fixed i0, all
Spseudo(i0, k0) values for k0 ≥ i0 + 2 can be computed

using equation II.12 inO
“

n3
”

time and space andO
“

n3

B

”

cache-misses. Since there aren − 2 possible values fori0, all
Spseudo(i0, k0) can be computed inO

“

n4
”

time, O
“

n3
”

space

andO
“

n4

B

”

cache-misses.
Finally, the following recurrence computes the optimal score

S(1, n) for the entire structure.

S(i, j) = max



Spseudo(i, j), S(i + 1, j − 1) + v(ai, aj),

maxi<k≤j {S(i, k − 1), S(k, j)}

ff

(II.13)
Iterative evaluation of recurrence II.13 requiresO

“

n3
”

time

andO
“

n2
”

space, and incursO
“

n3

B

”

cache-misses [3] which is
sufficient for our purposes. This recurrence can be evaluated in
only O

“

n3

B
√

M

”

cache-misses without changing the other bounds
using the cache-oblivious GEP (Gaussian Elimination Paradigm)
framework we presented in [10], [11], [12].

Space Reduction.We now describe our space reduction result.
A similar method was suggested in [31]. Observe that evaluating
recurrence II.12 requires retaining allO

“

n3
”

values computed by
recurrence II.11. We avoid using this extra space by computing
all required Spseudo(i0, k0) values on the fly while evaluating
recurrence II.11. We achieve this goal by introducing recurrence
II.14, replacing recurrence II.12 with recurrence II.15 for S′

pseudo,
and usingS′

pseudo instead ofSpseudo for evaluating recurrence
II.13. Intuitively, the variableSP (i, j, k) in recurrence II.14 stores
the maximum score among all triples(i, j′, k) with j′ ≥ j. All
uninitialized entries in recurrences II.14 and II.15 are assumed to
have value−∞.

SP (i, j, k) =

8

<

:

max



SMAX (i, j, k),

SP (i, j + 1, k)

ff

if i0 ≤ i < j < k,

SP (i, j + 1, k) if i0 ≤ i ≥ j < k.
(II.14)

S′
pseudo(i0, k0)

= max

8

<

:

S′
pseudo(i0, k0 − 1),

max
i0≤i<k0−1

n

SP (i, i0 + 1, k0)
o

9

=

;

if k0 ≥ i0 + 2.

(II.15)
We claim that recurrence II.15 computes exactly the same

values as recurrence II.12.
Claim 2.3: For 1 ≤ i0 ≤ k0 − 2 ≤ n − 2, S′

pseudo(i0, k0) =

Spseudo(i0, k0).
Proof: (sketch) We obtain the following by simplifying

recurrence II.14.
SP (i, j, k)

=

8

>

<

>

:

max
max {i+1,j}≤j′<k

n

SMAX(i, j′, k)
o

if i0 ≤ i ∧ j < k,

−∞ otherwise.

Therefore,

max
i0≤i<k0−1

{SP (i, i0 + 1, k0)} = max
i0≤i<j<k0

{ SMAX(i, j, k0) }

We can now evaluateS′
pseudo(i0, k0) by induction onk0. For

k0 ≥ i0 + 2,

S′
pseudo(i0, k0) = max

8

<

:

S′
pseudo(i0, k0 − 1),

max
i0≤i<k0−1

n

SP (i, i0 + 1, k0)
o

9

=

;

= max

8

>

>

<

>

>

:

max
i0≤i<j<k≤k0−1

n

SMAX(i, j, k)
o

,

max
i0≤i<j<k0

n

SMAX (i, j, k0)
o

9

>

>

=

>

>

;

= max
i0≤i<j<k≤k0

n

SMAX(i, j, k)
o

= Spseudo(i0, k0)

Now observe that in order to evaluate recurrence II.15 we only
need the valuesSP (i, j, k) for j = i0 + 1, and each entry(i, j, k)

in recurrences II.8 - II.11 and II.14 depends only on entries(·, j, ·)

and (·, j + 1, ·). Therefore, we will evaluate the recurrences for
j = n first, then forj = n − 1, and continue downtoj = i0 + 1.
Observe that in order to evaluate forj = j′ we only need to retain
theO

“

n2
”

entries computed forj = j′ + 1. Thus for a fixedi0
all SP (i, i0 + 1, k) and consequently all relevantS′

pseudo(i0, k0)

can be computed using onlyO
“

n2
”

space, and the same space
can be reused for alln values ofi0.
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Cache-oblivious Algorithm. The evaluation of recurrences II.8
- II.11 and II.14 can be viewed as evaluating a singlen × n × n

matrix c with five fields: SL, SR, SM , SMAX and SP . If we
replace allj with n−j +1 in the resulting recurrence it conforms
to recurrence II.3 ford = 3. Therefore, for any fixedi0 we can use
our cache-oblivious algorithm to compute all entriesSP (i, i0 +

1, k) and consequently all relevantS′
pseudo(i0, k0) values. in

O
“

n3
”

time, O
“

n2
”

space andO
“

n3

B
√

M

”

cache-misses. All

S′
pseudo(i0, k0) values can be computed byn applications (i.e.,

once for eachi0) of the algorithm.
For any given pair(i0, k0) the pseudoknot with the optimal

score can be traced back cache-obliviously inO
“

n3
”

time,

O
“

n2
”

space andO
“

n3

B
√

M

”

cache-misses using our algorithm.
Thus from Theorem 2.2 we obtain the following claim.

Claim 2.4: Given an RNA sequence of lengthn, a secondary
structure that has the maximum number of base pairs in the pres-
ence of simple pseudoknots can be computed cache-obliviously
in O

“

n4
”

time, O
“

n2
”

space andO
“

n4

B
√

M

”

cache misses.

Extensions. In [3] the basic dynamic program for simple pseu-
doknots has been extended to handle energy functions based on
adjacent base pairs within the same time and space bounds. Our
cache-oblivious technique as described above can be adapted to
solve this extension within the same improved bounds as for the
basic DP. AnO

“

n4−δ
”

time approximation algorithm for the
basic DP has also been proposed in [3], and our techniques canbe
used to improve the space and cache complexity of the algorithm
to O

“

n2
”

(from O
“

n3
”

) and O
“

n4−δ

B
√

M

”

(from O
“

n4−δ

B

”

),
respectively.

III. E XPERIMENTAL RESULTS

In this section we present experimental results for the three
bioinformatics applications discussed in section II-D. Weused the
machines listed in Table I for our experiments. All machinesran
Ubuntu Linux 5.10. All our algorithms were implemented in C++
(compiled with g++ 3.3.4), while some software packages we
used for comparison were written in C (compiled withgcc3.3.4).
Optimization parameter -O3 was used in all cases. Each machine
was exclusively used for experiments, and only one processor was
used. TheCachegrindprofiler [40] was used for simulating cache
effects.

In order to reduce the overhead of recursion in the cache-
oblivious algorithms, in our implementations we did not runthe
recursion all the way down to sequence lengthr = 1. Instead
we stopped the recursion at a larger value ofr, and solved the
subproblem at that size using the traditional iterative method.
This is a commonly-used methodology: if we were to keep the
base case size at 1, the cost of the overheads associated witha
recursive call would far exceed the useful computation performed
during execution of the base case. Note that this unrelated to
the cache-size, except that one would want to use a base-case
size that is sufficiently small so that it does not overflow the
cache. The values ofr that we used werer = 256 for pairwise
alignment (PA-CO), andr = 64 for median (MED-CO) and for
RNA secondary structure with simple pseudo-knots (RNA-CO).
Details on the iterative methods used to solve the base casescan
be found in the theses [8], [30].

Our cache-oblivious algorithms outperformed currently avail-
able software and methods for all three applications. We describe

details of our experimental results below.

A. Pairwise Global Sequence Alignment with Affine Gap Penalty

We performed experimental evaluation of the implementations
listed in Table II: PA-CO is our implementation of our linear-
space cache-oblivious algorithm given in Section II-D.1, and
PA-FASTA is the implementation of the linear-space versionof
Gotoh’s algorithm [34] available in thefasta2package [35].

In most cases, for input sequence sizes ranging from 1,000
to over a million, PA-FASTA ran about 20%-30% slower than
PA-CO on AMD Opteron and up to 10% slower on Intel Xeon.
We note that most bioinformatics applications use relatively
short sequences of length less than10, 000, and this sequence
length falls within the range considered in figure 4, though our
experiments also considered much longer sequence pairs.

Random Sequences. We ran on randomly generated equal-length
string-pairs over{ A,C, G, T } on AMD Opteron 250 (see Figure
4(a)) and Intel P4 Xeon (see Figure 4(b)). We varied string
lengths from 1 K to 512 K. In our experiments PA-FASTA
always ran slower than PA-CO on AMD Opteron (around 27%
slower for sequences of length 512 K) and generally the relative
performance of PA-CO improved over PA-FASTA as the length
of the sequences increased. The trend was almost similar on Intel
Xeon except that the improvement of PA-CO over PA-FASTA
was more modest. We also obtained some anomalous results for
n ≈ 10, 000 which we believe is due to architectural affects (cache
misalignment of data in PA-FASTA).

Real-World Sequences. We ran PA-CO and PA-FASTA on CFTR
DNA sequences of lengths between 1.3 million to 1.8 million
[41] on AMD Opteron, and PA-FASTA ran 20%-30% slower
than PA-CO on these sequences (see Table III). Though proper
alignment of these genomic sequences require more sophisticated
cost functions, running times of PA-CO and PA-FASTA on these
sequences give us some idea on the relative performance of these
implementations on very long sequences.

Cache Performance.We measured the number of L1 and L2
cache-misses incurred by both PA-FASTA and PA-CO on random
sequences (see Figure 5). Though PA-FASTA causes fewer cache-
misses than PA-CO when the input fits into the cache, it incurs
significantly more misses than PA-CO as the input size grows
beyond cache size. On AMD Opteron PA-FASTA incurs up to 300
times more L1 misses and 2500 times more L2 misses than PA-
CO while on Intel Xeon the figures are 10 and 1000, respectively.
Observe that the larger the cache the larger the cache-miss ratio
which follows theoretical predictions since we know that PA-CO
should incur fewer cache-misses on larger caches while cache
performance of PA-FASTA should be independent of cache size.

B. Median of Three Sequences

In this section we report our experimental results for the
median problem (i.e., the problem of determining 3-way global
sequence alignment with affine gap penalty). We performed
experimental evaluation of the implementations listed in Table
IV: MED-CO implements our quadratic-space cache-oblivious
median algorithm described in Section II-D.2, MED-Knudsenis
Knudsen’s cubic-space median algorithm [28] implemented by
Knudsen himself [27], MED-ukk.alloc is theO

“

n + δ3
”

-space
(whereδ is the 3-way edit distance of sequences) Ukkonen-based
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Machine Processors Speed L1 Cache L2 Cache RAM

Intel P4 Xeon 2 3.06 GHz 8 KB (4-way, B = 64 B) 512 KB (8-way,B = 64 B) 4 GB

AMD Opteron 250 2 2.4 GHz 64 KB (2-way,B = 64 B) 1 MB (8-way, B = 64 B) 4 GB

AMD Opteron 850 8 2.2 GHz 64 KB (2-way,B = 64 B) 1 MB (8-way, B = 64 B) 32 GB

TABLE I

MACHINES USED FOR EXPERIMENTS; ON ALL MACHINES ONLY 1 PROCESSOR WAS USED.

Algorithm Comments Time Space Cache Misses

PA-CO our cache-oblivious algorithm (see Section II-D.1) O
`

n2
´

O (n) O
“

n2

BM

”

PA-FASTA linear-space implementation of Gotoh’s algorithm [34] available in fasta2[35] O
`

n2
´

O (n) O
“

n2

B

”

TABLE II

PAIRWISE SEQUENCE ALIGNMENT ALGORITHMS USED IN OUR EXPERIMENTS.

Running Times of Pairwise Sequence Algorithms (Normalizedw.r.t. Cache-Oblivious Algorithm) on Random Sequences:;<=> :;<?;@A;
(a) Runtimes on AMD Opteron 250

BCDBBCDEBCFBBCFEGCBBGCBEGCGBGCGEGCHBGCHEGCIB
G J H J K J D J GL J IH J LK J GHD J HEL J EGH JMNOPNQRN SNQTUV W X YZ[\\]\̂_]̀a b\cZ̀de]faghiZi_ ijklmno pii

(b) Runtimes on Intel P4 Xeon

qrstrqtrutrvtrw
trsurquruurv

t x u x v x s x tw x yu x wv x tus x uzw x ztu x{|}~|��| �|���� � � ������������ ���������������� ������� �
Fig. 4. Pairwise alignment on random sequences: All runningtimes are normalized w.r.t. that of PA-CO. Each data point isthe average of 3
independent runs on randomly generated strings over{ A, T, G, C }.

Sequence pairs with lengths

(106)

human/baboon (1.80/1.51)

human/chimp (1.80/1.32)

baboon/chimp (1.51/1.32)

human/rat (1.80/1.50)

rat/mouse (1.50/1.49)

Running times of pairwise alignment algorithms onCFTR DNA Sequences[41] (on AMD Opteron)

PA-CO (t1) PA-FASTA (t2) ratio (t2/t1)

17h 23m 20h 34m 1.18

15h 25m 19h 51m 1.29

12h 43m 16h 43m 1.31

18h 16m 24h 1m 1.31

13h 55m 16h 49m 1.21

TABLE III

PAIRWISE ALIGNMENT ALGORITHM REAL DATA : EACH ENTRY IN COLUMNS 2 AND 3 IS THE TIME FOR A SINGLE RUN.

Ratio of Cache Misses Incurred by PA-FASTA to that Incurred by PA-CO for Random Sequences��  ¡¢£¤ �¥  ¡¢£¤
(a) AMD Opteron 250

¦§¦¨¦§¨¦¨§¦¦¨¦§¦¦¨¦¦§¦¦¨©¦¦¦§¦¦¨¦©¦¦¦§¦¦
ª« ¬« ­« ®« ª̄« °¬« ­̄« ª¬®« ¬±̄«²³´µ³¶·³ ¸³¶¹º» ¼ ½ ¾¿ÀÁÂÃÃÄÅÀÆÇÈÉÊÂËËÈËÌÌ ÍÎÏÉÐÏÑÒÏÓÎÏÉÅÔÕ Ì

(b) Intel P4 Xeon

Ö×ÖØÖ×ØÖØ×ÖÖØÖ×ÖÖØÖÖ×ÖÖØÙÖÖÖ×ÖÖ
ÚÛ ÜÛ ÝÛ ÞÛ ÚßÛ àÜÛ ßÝÛ ÚÜÞÛ ÜáßÛâãäåãæçã èãæéêë ì í îïðñòóóôõðö÷øùúòûûøûüü ýþÿù�ÿ��ÿ�þÿùõ�� ü

Fig. 5. Ratio of cache-misses incurred by PA-FASTA to that incurred by PA-CO (see Table II) on random sequences for both L1and L2 caches.
Data was obtained using Cachegrind [40].
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median algorithm described in [38], and MED-ukk.checkp is the
space-reduced version of MED-ukk.alloc based on checkpointing
technique. Both algorithms were implemented by Powell [37].
Finally, MED-H is our quadratic-space implementation of Knud-
sen’s algorithm based on Hirschberg’s space-reduction technique,
which we consider at the end of this section.

We used a gap insertion cost of 3 (i.e.,gi = 3), a gap extension
cost of 1 (i.e.,ge = 1) and a mismatch cost of1 in all experiments.

We first compare the performance of our cache-oblivious
algorithm MED-CO with the three publicly available code: MED-
Knudsen, MED-ukk.alloc and MED-ukk.checkp. Overall MED-
Knudsen ran about 1.5-2.5 times slower than MED-CO on both
machines, and MED-ukk.alloc and MED-ukk.checkp were even
slower. Furthermore, due to their high space overhead MED-
Knudsen, MED-ukk.alloc and MED-ukk.checkp could not be run
on any machine for sequences longer than 640, while MED-
CO ran to completion on sequences of length over 1,000. We
summarize our results below.

Random Sequences. We ran all implementations on random
(equal-length) sequences of length64i, 1 ≤ i ≤ 16 on AMD
Opteron (see Figure 6(a)) and Intel Xeon (see Figure 6(b)).
On both machines MED-CO ran the fastest, and MED-Knudsen,
MED-ukk.alloc and MED-ukk.checkp crashed as they ran out of
memory for sequences longer than 384, 256 and 640, respectively.

On Intel Xeon, MED-CO ran at least1.45 times faster than
MED-Knudsen. Both MED-ukk.alloc and MED-ukk.checkp ran
at least2 times slower than MED-CO for length64, and continued
to slow down even further with increasing sequence length. They
ran up to3.3 times (for length256) and4.8 times (for length640)
slower than MED-CO, respectively. The trends were similar on
AMD Opteron and MED-CO ran at least2.5, 3.4 and 4.2 times
faster than MED-Knudsen, MED-ukk.alloc and MED-ukk.checkp,
respectively.

Real-World Sequences. We ran the algorithms on triplets of 16S
bacterial rDNA sequences from thePseudanabaena group[16]
(see Table V).

The triplets in Table V were formed by choosing at random
three sequences of length less than 500 from the group. We report
results for the same 5 triplets on both the Intel Xeon and Opteron
850. The trends were very similar on both machines.

The results show that our cache-oblivious algorithm MED-CO
has the best performance, since it runs to completion on all triplets
and is considerably faster than the other 3 methods in most cases.

The results also closely track theoretical predictions forall 4
algorithms. The theoretical analysis shows that the numberof
steps, space usage and cache misses for both MED-Knudsen and
MED-CO should increase with the product of the lengths of the
three sequences, and we note the overall running time for both
of these algorithms increases with this product on both the Intel
and AMD machines. However, MED-Knudsen ran around35–
50% slower than MED-CO on the Xeon and over twice as slow
on the Opteron 850.

On the other hand, the resource usage of the two Ukkonen-
based methods increases with the alignment cost, and hence these
methods are best suited for sequences with small alignment cost.
This again shows up in our results: On the Opteron 850, MED-
ukk.alloc is actually faster than our cache-oblivious MED-CO on
the triple 2, which has smallest alignment cost, but becauseof its
cubic space dependence on alignment cost, it is unable to runto

completion on the other triples. The more space-efficient MED-
ukk.checkp runs to completion on all triples, but its performance
degrades with the alignment cost, and even for triple 2, it runs
about 20% slower than MED-CO.

We ran the same triples on Opteron 850 with mismatch cost
set to 2 instead of 1, and we summarize the results here. This
increases the alignment cost, and as expected, the two Ukkonen-
based methods degraded significantly: MED-ukk.alloc did not
complete on any of the 5 triples, and MED-ukk.checkp ran 5 to
10 times slower than MED-CO. Also as expected, the runtimes
for MED-Knudsen and MED-CO were virtually unchanged from
the timings in Table V.

Overall, our experimental results suggest that MED-CO is
always a better choice than MED-Knudsen, and a better choice
than the two Ukkonen-based algorithms (MED-ukk.alloc and
MED-ukk.checkp) except when the alignment cost is very small.

Effects of Space-reduction and Cache-efficiency.In Figures
7(a) and 7(b) we plot the running times on triples of random
sequences of Knudsen’s algorithm (MED-Knudsen), our imple-
mentation of a Hirschberg-style space-reduced version of the
same algorithm (MED-H), and our space-efficient cache-oblivious
algorithm (MED-CO). As the plots show, after simply reducing
the space usage fromO

“

n3
”

(MED-Knudsen) toO
“

n2
”

(MED-
H), the median algorithm runs faster and can handle much longer
sequences. For space-intensive algorithms reducing spaceusage
can improve its cache performance significantly since now the
data fits in lower cache levels and thus incurs fewer cache-misses.

Although we were able to improve the performance of Knud-
sen’s algorithm significantly by reducing its space usage toO(n2)

we observe that our cache-oblivious, space-efficient algorithm for
median has better performance. On AMD Opteron the running
time of Knudsen’s algorithm improves by 40% after space-
reduction (MED-H), and our cache-oblivious implementation
(MED-CO) gives afurther 30% improvement. A similar trend
is observed on Intel P4 Xeon.

C. RNA Secondary Structure Prediction with Pseudoknots

We implemented the algorithms in Table VI for computing
all values ofSpseudo or S′

pseudo (i.e., we compute the optimal
scores only, we do not traceback the pseudoknots). We ran all
experiments on Intel Xeon using a single processor.

Overall RNA-QS ran about 50% slower than RNA-CO and
RNA-CS ran up to 7 times slower than RNA-CO for sequence
lengths it could handle. For sequences longer than 512 RNA-CS
could not be run due to lack of memory space. We summarize
our results below.
Random Sequences. We ran all three algorithms on randomly
generated string-pairs over{ A, U, G, C } (see Figure 8). The
lengths of the strings were varied from 64 to 2048. However, due
to lack of space RNA-CS could not be run for strings longer than
512. In our experiments RNA-CO ran the fastest while RNA-CS
was the slowest. Though both RNA-QS and RNA-CS have the
same time and cache-complexity, RNA-QS ran significantly faster
than RNA-CS (e.g.,≈ 4.5 times faster for length 512). We believe
this happened because even for small sequence lengths RNA-CS
overflows the L2 cache, and most of its data reside in the slower
RAM, while both RNA-QS and RNA-CO still work completely
inside the faster L2 cache. For strings of length 512 RNA-CO
ran about 35% faster than RNA-QS and about 7 times faster than
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Algorithm Comments Time Space
Cache
Misses

MED-CO our cache-oblivious algorithm (see Section II-D.2) O
`

n3
´

O
`

n2
´

O
“

n3

B
√

M

”

MED-Knudsen Knudsen’s implementation of his algorithm [27] O
`

n3
´

O
`

n3
´

O
“

n3

B

”

MED-ukk.alloc Powell’s implementation [37] of anO
`

δ3
´

-space Ukkonen-based algorithm
(δ = 3-way edit distance of sequences)

O
`

n + δ3
´

(avg.)
O

`

n + δ3
´

O
“

δ3

B

”

MED-ukk.checkp
Powell’s implementation [37] of anO

`

δ2
´

-space Ukkonen-based algorithm
(δ = 3-way edit distance of sequences)

O
`

n log δ + δ3
´

(avg.)
O

`

n + δ2
´

O
“

δ3

B

”

MED-H
our implementation of MED-Knudsen with Hirschberg’s space-reduction

(used in study of space reduction and cache efficiency) O
`

n3
´

O
`

n2
´

O
“

n3

B

”

TABLE IV

MEDIAN ALGORITHMS USED IN OUR EXPERIMENTS.

Performance of Median Algorithms (Normalized w.r.t. Cache-Oblivious Algorithm) on Random Sequences���	
��
��� ���	�����	�������������	���������
(a) Runtimes on AMD Opteron 250

��������������� ��!��
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(b) Runtimes on Intel P4 Xeon
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Fig. 6. Median on random data: Each data point is the average of 3 independent runs on random strings over{ A, T, G, C }.

Random triples of16S Bacterial rDNA Sequencesfrom the Pseuanabaena Group[16]

Intel Xeon: Running times in seconds ( runtime w.r.t. MED-CO )

No. Lengths Product of Lengths MED-CO MED-Knudsen MED-Ukk.alloc MED-Ukk.checkp Alignment Cost

1 342, 367, 389 ≈ 49× 106 451 ( 1.00 ) 611 ( 1.35 ) − ( − ) 863 ( 1.91 ) 339

2 367, 387, 388 ≈ 55× 106 487 ( 1.00 ) 722 ( 1.48 ) 512 ( 1.05 ) 601 ( 1.23 ) 299

3 378, 388, 403 ≈ 59× 106 529 ( 1.00 ) 752 ( 1.42 ) − ( − ) 769 ( 1.45 ) 324

4 342, 370, 474 ≈ 60× 106 531 ( 1.00 ) 764 ( 1.44 ) − ( − ) 1, 701 ( 3.20 ) 432

5 370, 388, 447 ≈ 64× 106 553 ( 1.00 ) 824 ( 1.49 ) − ( − ) − ( − ) 336

Opteron 850: Running times in seconds ( runtime w.r.t. MED-CO )

No. Lengths Product of Lengths MED-CO MED-Knudsen MED-Ukk.alloc MED-Ukk.checkp Alignment Cost

1 342, 367, 389 ≈ 49× 106 445 ( 1.00 ) 937 ( 2.11 ) − ( − ) 831 ( 1.87 ) 339

2 367, 387, 388 ≈ 55× 106 493 ( 1.00 ) 1, 057 ( 2.14 ) 427 ( 0.87 ) 572 ( 1.16 ) 299

3 378, 388, 403 ≈ 59× 106 528 ( 1.00 ) 1, 133 ( 2.15 ) − ( − ) 740 ( 1.40 ) 324

4 342, 370, 474 ≈ 60× 106 528 ( 1.00 ) 1, 151 ( 2.18 ) − ( − ) 1, 636 ( 3.10 ) 432

5 370, 388, 447 ≈ 64× 106 562 ( 1.00 ) − ( − ) − ( − ) 798 ( 1.42 ) 336

TABLE V

MEDIAN ON REAL DATA : THE TRIPLETS WERE FORMED BY CHOOSING RANDOM SEQUENCES OF LENGTH LESS THAN 500. EACH NUMBER OUTSIDE

PARENTHESES IN COLUMNS4–7 IS THE TIME FOR A SINGLE RUN, AND THE RATIO OF THAT RUNNING TIME TO THE CORRESPONDING RUNNING TIME FOR

MED-CO IS GIVEN WITHIN PARENTHESES. A ‘−’ IN A COLUMN DENOTES THAT THE CORRESPONDING ALGORITHM COULD NOT BE RUN DUE TO HIGH

SPACE OVERHEAD.



IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, MANUSCRIPT ID ?????????? 13

Improvements in the Running Time of a Median Algorithm (MED- Knudsen) on Random Sequences

with Space-reduction (MED-H) and Cache-efficiency (MED-CO)

(Normalized w.r.t. MED-CO)����������� �����������
(a) Runtimes on AMD Opteron 250

���������������������������
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(b) Runtimes on Intel P4 Xeon

ÇÈÇÇÈÉÊÈÇÊÈÉ
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Fig. 7. Improvements in the performance of a median algorithm (i.e., MED-Knudsen: Knudsen’s implementation of his algorithm [28]) as its space
requirement is reduced (with a Hirschberg-style implementation of Knudsen’s algorithm (MED-H)), and as both its spaceusage and cache performance
are improved using our cache-oblivious median algorithm (MED-CO). Each data point is the average of 3 independent runs on random strings over
{ A, T, G, C }.

Algorithm Comments Time Space
Cache
Misses

RNA-CO
cache-oblivious algorithm

(see Section II-D.3) O
`

n4
´

O
`

n2
´

O
“

n4

B
√

M

”

RNA-CS
Akutsu’s original

cubic-space algorithm [3] O
`

n4
´

O
`

n3
´

O
“

n4

B

”

RBA-QS

our iterative quadratic
-space implementation
of Akutsu’s algorithm
(see Section II-D.3)

O
`

n4
´

O
`

n2
´

O
“

n4

B

”

TABLE VI

ALGORITHMS FORRNA SECONDARY STRUCTURE PREDICTION USED IN

OUR EXPERIMENTS.

Runtimes (w.r.t. CO Algorithm) for Random Sequences on Intel P4 Xeonûüýþÿ� ûüýþÿ�ûüýþ��
���������������
	��
��������
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Fig. 8. RNA secondary structure prediction with simple pseudoknots
on random data: All running times are normalized w.r.t. RNA-CO. Each
data point is the average of 3 independent runs on random strings over
{ A, U, G, C }.

RNA-CS. The performance of RNA-CO improved over that of
both RNA-CS and RNA-QS as the length increased.

Real-World Sequences. We ran all three implementations on a
set of 24 bacterial 5S rRNA sequences obtained from [7]. The
average length of the sequences was 118, and the average running
times of RNA-CS, RNA-QS and RNA-CO on each sequence were
1.46 sec, 0.45 sec and 0.35 sec, respectively. We also ran RNA-QS
and RNA-CO on a set of 10 bacterial (spirochaetes) 16S rRNA
sequences of average length 1509. The RNA-CS implementation
could not be run on these sequences due to space limitations.On
these sequences RNA-CO took 1 hour 38 minutes while RNA-QS
took 2 hours 38 minutes on the average (see Table III-C).

IV. CONCLUSION

In this paper we have presented a general cache-oblivious
framework for a class of widely encountered dynamic program-
ming problems with local dependencies, and applied it to obtain
efficient cache-oblivious algorithms for three important string
problems in bioinformatics, namely global pairwise sequence
alignment and median (both with affine gap costs), and RNA
secondary structure prediction with simple pseudoknots. We have

shown that our algorithms are faster, both theoretically and
experimentally, than previous algorithms for these problems.

Our framework can be applied to several other dynamic pro-
gramming problems in bioinformatics including local alignment,
generalized global alignment with intermittent similarities, mul-
tiple sequence alignment under several scoring functions such as
‘sum-of-pairs’ objective function and RNA secondary structure
prediction with simple pseudoknots using energy functionsbased
on adjacent base pairs.
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