Theory Comput. Systen82, 327-359 (1999)

Theory of
Computing
Systems

© 1999 Springer-Verlag
New York Inc.

Can a Shared-Memory Model Serve as a Bridging Model for
Parallel Computation?*

P. B. Gibbong, Y. Matias! T and V. Ramachandran

linformation Sciences Research Center, Bell Laboratories (Lucent Technologies),
600 Mountain Avenue, Murray Hill, NJ 07974, USA
gibbons@research.bell-labs.com

2Department of Computer Sciences, University of Texas at Austin,
Austin, TX 78712, USA
vir@cs.utexas.edu

Abstract. There has been a great deal of interest recently in the development
of general-purpose bridging models for parallel computation. Models such as the
BsPandLogp have been proposed as more realistic alternatives to the widely used
PRAM model. ThesspandLogp models imply a rather different style for designing
algorithms when compared with theam model. Indeed, while many consider data
parallelism as a convenient style, and the shared-memory abstraction as an easy-
to-use platform, the bandwidth limitations of current machines have diverted much
attention to message-passing and distributed-memory models (suchsss trel

LogP) that account more properly for these limitations.

In this paper we consider the question of whether a shared-memory model can
serve as an effective bridging model for parallel computation. In particular, can a
shared-memory model be as effective as, saygir@ As a candidate for a bridging
model, we introduce the Queuing Shared-MemaygM) model, which accounts
for limited communication bandwidth while still providing a simple shared-memory
abstraction. We substantiate the ability of them to serve as a bridging model by
providing a simple work-preserving emulation of thev on both thessp, and on a
related model, théd, x)-BsP. We present evidence that the features ofgh® are
essential to its effectiveness as a bridging model. In addition, we describe scenarios

* A preliminary version of this paper appearedRmc. 9th ACM Sympon Parallel Algorithms and
Architecturespages 72—83, June 1997. The third author was supported in part by NSF Grant CCR/GER-90-
23059.

T Current address: Tel-Aviv University, Ramat Aviv, Tel-Aviv 69978, Israel. matias@math.tau.ac.il.

328 P. B. Gibbons, Y. Matias, and V. Ramachandran

in which the high-leveysm more accurately models certain machines than the more
detailedsspandLogpr models. Finally, we present algorithmic results for ¢y,

as well as general strategies for mapping algorithms designed festha PRAM
models onto th&@sm model. Our main conclusion is that shared-memory models
can potentially serve as viable alternatives to existing message-passing, distributed-
memory bridging models.

1. Introduction

Afundamental challenge in parallel processing is to develop effective models for parallel
computation, at suitable levels of abstraction. Effective and widely used models would
provide standards that could be relied upon by application programmers, algorithm
designers, software vendors, and hardware vendors, making parallel machines cheaper
to build and easier to use. Effective models must balance simplicity, accuracy, and broad
applicability. In particular, a simple, “bridging” model, i.e., a model that spans the
range from algorithm design to architecture to hardware, is an especially desirable one.
A number of models for parallel computation have been proposed and studied in the
last 20 years. Primary among them are the parallel random access maeking (
model [29], [48], [43], [65], inwhich processors execute in lock-step and communicate by
reading and writing locations in a shared memory, and network-based models (hypercube,
butterfly, arrays, etc. [51]), in which processors communicate by sending messages to
their neighbors in the given network. Theam model, although simple and well suited
for developing parallel algorithms, is considered by many to be too high level, failing
to model parallel machines accurately. Network-based models are considered by many
to be too low level, failing to be broadly applicable, and not reflective of the current
generation of parallel machines. Thus, a number of alternative, intermediate models
have been proposed and studied in recent years. These abstract models differ in what
aspects of parallel machines are exposed. Some focus on dealing with asynchrony in
a shared-memory context (e.g., [8], [20], [21], [28], [32], [35], [49], [57], and [61]).
Others focus on accounting for the overheads in accessing the shared memory [2], [3],
[25], [32], [41], [44], [52], [56] or in sending messages [5], [9], [10], [22], [23], [39],
[53], [55], [69]. Several models are primarily concerned with the memory hierarchy,
especially disk 10 [6], [62], [72]). Others focus on contention at the memory location
[28], [36] or memory module [60], [7], [27]. Finally, a few models incorporate powerful
aggregate communication primitives [14], [18].

Given this plethora of models, it is natural to seek to distinguish a few models with
the most promise, and concentrate on these models. Advocates such as Vishkin [71],
Kennedy [50], Smith [67], and Blelloch [15] have long presented arguments in support
of the shared-memory abstraction. On the other hand, shared-memory models have
been criticized for years for failing to model essential realities of parallel machines. In
particular, theeraAM model has been faulted for completely failing to model bandwidth
limitations of parallel machines. Until recently, there were few attractive alternatives,
so shared-memory models such asrRemM remained the most widely used models for
the design and analysis of parallel algorithms (see, e.g., [43], [48], and [65]). However,
in the last few years, new alternatives such ass$re[69] andLogp [22] models have

Can a Shared-Memory Model Serve as a Bridging Model for Parallel Computation? 329

gained considerable popularity. These abstract network models support point-to-point
message-passing, can directly support a distributed-memory abstraction, and account
for bandwidth limitations using a parametgr> 1, that reflects thgap between the

local instruction rate and the communication rate. Given these new, more realistic models,
there is atemptation to declare all shared-memory models too unrealistic, and not worthy
of further study or consideration.

In this paper we challenge this perception and consider the question of whether
a shared-memory model can in fact serve as an effective bridging model for parallel
computation. In particular, can a shared-memory model be as effective as, ssg2he
As a candidate for a bridging model, we introduce the Queuing Shared-Meswy (
model, which accounts for limited communication bandwidth while still providing a
simple shared-memory abstraction. In a nutshell gt model consists of processors
with individual private memory as well as a global shared memory. Access to shared
memory is more expensive than access to local memory or a computation step, as char-
acterized by a gap parametgyreflecting bandwidth limitations. The choice of them
model is based on the observation that while overheads due to latency, synchronization,
and memory granularity can be effectively diminished by using slackness and pipelining,
the bandwidth overhead is inherent and hence should be accounted for directly. Thus,
the QsM is envisioned as a “minimal” shared-memory model that can be competitive
with thessp. Similarly, the memory contention rule of tsmis the queuing contention
rule, as in theQRQw PRAM[36]. This rule is strong enough to provide them with an
expressive power comparable with that of #8®, but it is not too strong to prevent a
fast and efficient emulation of th@sm on theBspPwith the techniques we use.

As advocated in [69], [71], and elsewhere, one reasonable goal for a high-level,
shared-memory model is that it allows for efficient emulation on lower-level, seemingly
more realistic, models. If the overheads in the emulation are small, then the high-level
model becomes an attractive general-purpose bridging model. We substantiate the ability
oftheQsmto serve as a bridging model by providing a simple work-preserving emulation
of theQsmon both thessp, and on a related model, tlig, x)-BsP[16], and arguing for
the practicality of this emulation. Thus tkesm can be effectively realized on machines
that can effectively realize ttesp, as well as on machines that are better modeled by the
(d, x)-Bsp. We also describe scenarios in which the high-lex&V is more suited for
analyzing algorithms on certain machines than the more detadledndLogr models,
due to the fact that the memory layout is different than the one perceived bgrlagd
LOgP.

We present several algorithmic results for tygv. We note that angrew [48] or
QRQW PRAMalgorithm can be mapped onto them with a factor ofg increase in time
and work, wherg is the bandwidth (gap) parameter of them. We also show that for
many linear-workQrQw PRAM algorithms, this increase in work in tlgsm algorithm
is unavoidable, and we present some other lower bounds faytkieWe consider the
mapping of thessp onto theQsm when the bandwidth parametey, is the same for
both models. We show that many, though not Bfip algorithms map onto thesm
step-by-step, resulting in algorithms whose time and work bounds match the bounds
on aBsP whose latency parametdr, is set to 1. We also present a work-preserving
randomized emulation of thgsp on theQsm with a logarithmic slowdown. This result
implies that anyn-processosspPalgorithm that takes timg(n) (whenL is setto 1) can

330 P. B. Gibbons, Y. Matias, and V. Ramachandran

be mapped onto th@smto run in timeO(t(n) Ilg n) w.h.p. usingn/Ig n processors, and
more generally on @-processopsmto run in timeO(t(n) - (n/p + Ign)) w.h.p.

Our main conclusion is that shared-memory models can potentially serve as viable
alternatives to existing message-passing or distributed-memory bridging models. While
this paper focuses on a shared-memory model that would be competitive witkrhe
a similar approach can be taken with regard to other message-passing bridging models
mentioned above (or others), that may emphasize other features than the ones emphasized
by thesspr.

The rest of the paper is organized as follows. Some advantages of shared-memory
models as bridging models are discussed in Section 2. In Section 3 we descriseithe
model, and qualitatively compare it with previous models, and, in particular, with the
BSP. In Section 4 we present work-preserving emulations ofgbie on theBspand on
the (d, x)-BsP, and discuss the practicality of these emulations. In Section 5 we provide
a few scenarios where thgsMm is a more accurate model than the more detaiis®
andLogp. Section 6 presents algorithmic results and issues related to algorithm design
on theQsm. Section 7 explores the merits of incorporating into ¢fsa1 model distinct
bandwidth gaps at the processors and the memories.

Finally, we refer the reader to the position paper [33], which provides a nontechnical
overview of much of this work in arguing the importance of shared-memory models in
general and thesm model in particular.

2. Advantages of Shared-Memory Models as Bridging Models

A bridging model should provide an abstraction that is on the one hand easy to use by
algorithm designers and programmers, and on the other hand can be realized by hardware
and system software at a variety of price versus performance points. In this section we
describe several contexts under which the shared-memory abstraction is an attractive
choice for a bridging model in this regard.

We consider a (pure) shared-memory model to be one in which the processors com-
municate by reading and writing locations in a shared memory that is equally accessible
by all processors. The shared memory is viewed as a collection of independent cells:
the contention encountered in accessing a shared memory cell is a function only of the
number of processors also accessing the same cell. There is no visible partitioning of the
memory, and no sources of contention due to such partitioningPRA® is a classic
example of a shared-memory model.

The shared-memory abstraction refers to the interprocessor communication. As
part of its local private state, a processor may have additional memory such as registers,
buffers, cache, and local memory banks. A shared-memory model may be asynchronous.
It may also have explicit charges for communication, modeling various overheads in
reading or writing a shared memory that is not local to, and may be physically quite
remote from, the processor requesting the read or write. Thus it is a mistake to view
“shared-memory model” as a synonym faam.

The shared-memory abstraction is arguably easier to use than a message-passing or
distributed-memory abstraction, and, in certain important contexts, can be realized by
a wider range of machines. In what follows, we elaborate on three of the advantages

Can a Shared-Memory Model Serve as a Bridging Model for Parallel Computation? 331

of the shared-memory abstraction over the message-passing and distributed-memory
abstractions.

Smooth Transition from Sequential to SMP to MPFPhe shared-memory abstraction

is similar to the view of memory in sequential programming (the familiar feaite
semantics). It is also the abstraction of choice for the small symmetric multiprocessors
(SMPs) found in current microprocessors. There are high-performance parallel machines
such asthe Cray C90, Cray J90, and Tera MTA that also directly support a shared-memory
abstraction. Thus as a bridging model, it provides for the smoothest transition from
sequential programming to programming small SMPs to programming larger parallel
machines (MPPs). Code can be debugged on a smaller, simpler, and cheaper machine,
before running it on a larger, more expensive machine; this will often significantly reduce
the overall debugging time. In short, the shared-memory abstraction offers ease of use
in designing algorithms and programs that span a variety of machine sizes, and it has
also been realized by machines that span a variety of machine sizes. This contrasts with
message-passing and explicit distributed-memory, which are not directly supported by
any sequential machine or SMP.

Portability Across Memory Architectures The shared-memory abstraction is also at-
tractive for developing algorithms that span a variety of memory architectures. Since the
layout of memory is hidden in the model, the target machine can support the model in
a variety of ways beyond that made visible in message-passing or distributed-memory
machines. For example, the target machine may choose to map memory locations dy-
namically to processors as the computation proceeds, as in a cache-only memory archi-
tecture Coma) [68]. In general, the target machine is free to implement a variety of cache
and memory consistency protocols (e.g., [31]), since the model does not presuppose a
particular memory layout. The shared-memory abstraction is more relevant to parallel
machines, such as the Cray C90, Cray J90, SGI Power Challenge, and Tera MTA, that
have many more memory banks than processors in order to compensate for the slow
cycle times of memories. This point is addressed further later in the paper in Section 5.

Important Platform for Algorithmic Ideas Finally, it is evident that a simple model

with a shared-memory abstraction provides a useful platform for studying fundamen-
tal algorithmic issues. Many algorithms for more complex models are adaptations of
algorithms first developed for a simple shared-memory model. There are numerous ex-
amples, covering a wide range of problem domains, including sorting [18], [30], [44],
[37], connected components [38], [42], computational geometry [66], FFT [22], and
string matching [24]. Designing an algorithm directly for the more complex model is
typically a more daunting task than first developing the algorithmic insights on a simple
shared-memory model and only then adapting them to the more complex model. Note
that for any algorithm designed for a high-level bridging model (whether shared-memory,
message-passing or distributed-memory), it may be desirable to consider a more com-
plex, lower-level model when making important performance-enhancing refinements.
The shared-memory abstraction is desirable when such refinements are not necessary
(i.e., whenever the algorithm performance is acceptable) since it is easier to use, and, as
discussed above, it is still useful even if such refinements are necessary.

332 P. B. Gibbons, Y. Matias, and V. Ramachandran
3. Theq@sm Model
In this section we describe tlgssm model, and elaborate on some of its features.

Definition 3.1. The QsMm (Queuing Shared-Memayynodel consists of a number of
identical processors, each with its own private memory, communicating by reading and
writing locations in a shared memory. Processors execute a sequence of synchronized
phases, each consisting of an arbitrary interleaving of the following operations:

1. Shared-memory reads: Each processopies the contents gf shared-memory
locations into its private memory. The value returned by a shared-memory read
can only be used in a subsequent phase.

2. Shared-memory writes: Each procedsarites tow; shared-memory locations.

3. Local computation: Each processqrerformsc; RAM operations involving only
its private state and private memory.

Concurrent reads or writes (but not both) to the same shared-memory location are per-
mitted in a phase. In the case of multiple writers to a locatipan arbitrary write tox
succeeds in writing the value presenkiat the end of the phase.

The restrictions that (i) values returned by shared-memory reads cannot be used
in the same phase and that (ii) the same shared-memory location cannot be both read
and written in the same phase reflect the intended emulation afskemodel on a
MIMD machine. In this emulation, the shared-memory reads and writes at a processor are
issued in a pipelined manner, to amortize against the delay (latency) on such machines in
accessing the shared memory, and could complete any time during the phase, although
they are not guaranteed to complete until the end of the phase. Thus, we do not allow a
value read from shared memory to be used during the phase since the value may not be
available until the end of the phase. Also if we allow a shared-memory location to be
both read and written in the same phase, then the value read could be either the initial
value or the updated value since we make no assumption about when a read or write
completes within the phase. On the other hand, each of the local compute operations are
assumed to take unit time in the intended emulation, and hence the values they compute
can be used within the same phase.

Each shared-memory location can be read or written by any number of processors
in a phase, as in a concurrent-read concurrent-wrieM model; however, in theswm
model, there is a cost for such contention. In particular, the cost for a phase will depend
on the maximum contention to a location in the phase, defined as follows.

Definition 3.2. The maximum contentionf a Qsm phase is the maximum, over all
locationsx, of the number of processors readixgr the number of processors writing
X. A phase with no reads or writes is defined to have maximum contention one.

One can view the shared memory of ttevmodel as a collection of queues, one per
shared-memory location; requests to read or write a location queue up and are serviced
one at a time. The maximum contention is the maximum delay encountered in a queue.
The cost for a phase depends on the maximum contention, the maximum number of

Can a Shared-Memory Model Serve as a Bridging Model for Parallel Computation? 333

local operations by a processor, and the maximum number of shared-memory reads or
writes by a processor. To reflect the limited communication bandwidth on most parallel
machines, thesm model provides a parameter> 1, that reflects thgapbetween the

local instruction rate and the communication rate.

Definition 3.3. Consider @smMphase with maximum contenti@nLetmg, = max {c; }

for the phase, i.e., the maximum over all processafsits number of local operations,
and letm,, = max{1, max{r;, w;}} for the phase. Then the time cost for the phase is
max{Mop, g - Mr,,, « }.* Thetimeof aQsmalgorithm is the sum of the time costs for its
phases. Thevork of aQsmalgorithm is its processor—time product.

Note that although the model charggser shared-memory request at a given
processor (thg-m,,, terminthe cost metric), itonly charges 1 per shared-memory request
at a given location (the term in the cost metric).Note also that our model considers
contention only at individual memory locations, not at memory modules. Even though
both of these features give more power to ¢ than would appear to be warranted
by current technology, our emulation results in Section 4 show that we can obtain a
work-preserving emulation of thesm on theBspwith only a modest slowdown. Thus,
these features do capture the computational power achievable by current technology.
The discussion in Section 4 provides some intuition for this rather surprising result.

The particular instance of tigsm model in which the gap parametegr,equals 1 is
essentially the queue-read queue-wrigr@w) PRAM model defined by the authors [36].
Previous work on the@rQw PRAM[36], [34], [16] has been focused primarily on con-
tention issues, unlike this paper, which is primarily concerned with bridging models and
bandwidth issues.

3.1. Model Comparison

Table 1 compares thesm model with a number of other models in the literature. The
first column of the table gives the name of the model. The second column indicates
the synchrony assumption of the modsdck-stegndicates that the processors are fully
synchronized at each step, with no cost for the synchronizaigdk-synchronyndicates
that there is asynchronous execution between synchronization barriers. Typically the
barriers involve all the processors, although this is not necessarily required. Models that
permit more general asynchrony are denotedsysichronous

The third column indicates the type of interprocessor communication assumed by
the model. A model is considered to beared memorpnly if it meets the standards
for a pure shared-memory abstraction outlined in Section 2, i.e., that the memory is
viewed as a collection of independent cells that are equally accessible by all processors.
If the processors communicate by reading and writing locations in a memory that is
partitioned, the model is considered to bdistributed-memorynodel. For example, the

1 Alternatively, the time cost could g + g - mry, + «; this affects the bounds by at most a factor of
3, and the results in [16] show that, at least for certain machines, taking the maximum is more accurate than
taking their sum.

2 This issue is explored further in Section 7.

334 P. B. Gibbons, Y. Matias, and V. Ramachandran

Table 1. A comparison of several models of parallel computation.

Model Synchrony Communication Parameters*
PRAM [29] Lock-step Shared memory p
Module Parallel Computempc) [60] Lock-step Distributed memory p
LPRAM [3] Lock-step Shared memory p, ¢
Phase PrAM [32] Bulk-synchrony Shared memory p.¢,s
XPRAM [70] Bulk-synchrony Message passing p,g, L
Bulk-Synchronous ParalleBép) [69] Bulk-synchrony Message passing p.g, L
Postal model [10] Asynchronous Message passing p, ¢
LogP model [22] Asynchronous Message passing p,g,¢,0
QRQW Asynchronou$rAM [35] Asynchronous Shared memory p
QRQW PRAM[36] Bulk-synchrony Shared memory o]
Block Distributed Memory&pm) [44] Bulk synchrony Distributed memory p,g,L,B
PRAM(m) model [56] Lock-step Shared memory p,m
Interval model [55] Bulk synchrony Message passing p, |
Queuing Shared MemorpEm) Bulk-synchrony Shared memory p.g

*This column indicates the parameters of the model, where the number of processors,is the
communication latency (i.e., the time to deliver a message point-to-point or to access the shared memory),
sis the cost for a barrier synchronization among all the proceskdssa single parameter that accounts

for the sum of¢ ands, g is the bandwidth gap (i.e., the rate at which processors can perform local
operations divided by the rate at which the processors can sustain interprocessor or processor-memory
communication)p is the overhead at the processor to send or receive a me&athe block size (i.e.,

the number of consecutive cells sent on a write or retrieved on a easijhe number of shared-memory

cells available for both reading and writing, ahds the maximum of, g, ands.

BDM model [44] is distributed memory since the contention encountered by aread request
depends on the number of other requests to the same memory moduleesbage-
passingmodels shown in this table deliver messages point-to-point: this abstraction
hides the details of how the message is routed through the interprocessor communication
network, and hence is similar to the distributed-memory abstraction.

The fourth column indicates the parameters in the model. The description of these
parameters is given in the table footnote. Some models, such agthe model,
account separately for computation steps and communication steps. This can be viewed
as having a separate latency parameter, as indicated in the table.

Unlike the previous models shown in Table 1, ttem provides bulk-synchrony, a
shared-memory abstraction, and just two parameters. In all, the key featuregsfthe
that make it an attractive candidate for a bridging model are:

1. Shared-memory abstraction. The Qsm provides the simplicity of a shared-
memory abstraction in which the shared memory is viewed as a collection of in-
dependent cells, nonlocal to the processors. The advantages of a shared-memory
abstraction were discussed in Section 2.

2. Bulk-synchrony. The@sm supports bulk-synchronous operation, in which pro-
cessors operate asynchronously between barrier synchronizations. As in models
such as theHASE LPRAM[32], the algorithm dictates the points at which barriers
occur. This allows @smalgorithm to synchronize less frequently than algorithms
designed for a lock-step model, which makes for a more efficient mapping of the

Can a Shared-Memory Model Serve as a Bridging Model for Parallel Computation? 335

algorithm tomiMmb machines. The model does not allow for general asynchronous
algorithms. Permitting general asynchrony can lead to algorithms that run faster
onMIMD machines. However, any asynchronous model that reasonably reflects
real machines is considerably more difficult to use.

3. Few parameters.For simplicity, it is desirable for bridging models to have only
a few parameters. As evidenced by [22], [30], [47], and elsewhere, having ad-
ditional parameters in a model can make it quite difficult to obtain a concise
analysis of an algorithm. On the other hand, it is desirable to have whatever
parameters are essential for a desired level of accuracy in modeling machines
realizing the bridging model. Theswm has only two parameters: one reflecting
the number of processors and one reflecting the limited communication band-
width. In the intended emulation of the modellmb machines, the latency of
communication is hidden by having each physical processor emulate a number
of Qsm processors. Formally, we consider the emulation of higher-level models
on lower-level models (such as thep), in order to make claims about the cost,
or lack thereof, of ignoring certain parameters in the higher-level model. The
results in the next section provide evidence that a parameter reflecting limited
bandwidth should be in a high-level model, and that other communication pa-
rameters are not necessary. For this reason, we believg that better choice
for a second parameter than thes, L, or | parameters found in other models.

4. Queue contention metric.The queue-read queue-wri@RQw) contention rule
of the Qsm model more accurately reflects the contention properties of par-
allel machines with simple, noncombining interconnection networks than ei-
ther the well-studied exclusive-read exclusive-wriggw) or concurrent-read
concurrent-write RCW) rules. As argued in [36], therReEw rule is too strict,
and thecrcw rule ignores the large performance penalty of high contention
steps. Indeed, for most existing machines, including the Cray T3E, Cray C90,
Cray J90, IBM SP2, Intel Paragon, MasPar MP-2 (global router), Tera MTA,
and Thinking Machines CM-5 (data network), the contention properties of the
machine are well approximated by theQwrule. TheQrQw contention metric
can lead to faster algorithms, since it does not ignore the aforementioned penalty
for high contention steps and yet it allows for low-contention algorithms that are
not permitted under therew rule.

5. Work-preserving emulation onBsp. TheBspis a distributed-memory, message-
passing model that is gaining acceptance as a bridging model for parallel com-
putation. Thus a work-preserving emulation of th&mv on theBsPis a strong
validating point for this shared-memory model. This key feature is discussed in
Section 3.2.

6. Work-preserving emulation of BsP. In addition to the work-preserving emula-
tion of QsM on BSPwe observe that there is a work-preserving mapping in the
reverse direction as well. Margsp algorithms map onto thesmin a step-by-
step manner with performance corresponding to the case when the periodicity
parameter on thespis set to 1. While it is possible fasp algorithms not to
have this property, we also present a work-preserving emulation et the
QsM with only a small slowdown. This emulation holds for afip algorithms.

This is discussed in more detail in Sections 3.2 and 6.

336 P. B. Gibbons, Y. Matias, and V. Ramachandran

TheprPrAaM(m) model shares many of the same goals ag$emodel. As shown in
the table, theerAM(m) provides a shared-memory abstraction and just two parameters:
one for the number of processors and one that captures the limited communication
bandwidth § = p/m). However, theerRAM(m) model is suitable only for lower bounds.
First, having onlym < p shared-memory locations is a large burden on the algorithm
designer; no machines provide this restriction. Second, the model assumes that input is
in a read-only memory that can be accessed by all processors without any bandwidth
limitations; this undercharges the cost of such accesses for existing machines. Third,
the model provides unlimited contention to timeshared-memory locations at no extra
charge; this too is unrealistic for existing machines. Due to these features, the model
does not seem to have an efficient emulation on lower-level models suchesifibe
model is intended for lower bounds, and indeed lower bounds proved fer#mm)
model imply lower bounds for a large number of other models.

Mapping Parameters to Machines There have been several papers reporting values for
various model parameters on existing parallel machines. For example, Martin et al. [58]
reported values for thg, £, ando parameters from theogp model on three platforms: the
Berkeley NOW cluster, the Intel Paragon, and the Meiko CS-2. On the Berkeley NOW
cluster,g = 5.8 microseconds(s), ¢ = 5.0 us, ando = 2.9 us. On the Intel Paragon,
g="7.6us,f=6.5us,ando = 1.8 us. On the Meiko CS-J = 13.6 uSs,¢ = 7.5 us,

ando = 1.7 us. Since the local instruction rate at a processor is tens of nanoseconds per
instruction or faster, the normalized values for these parameters are in the hundreds to
a few thousand. In contrast, Blelloch et al. [17] considered two shared-memory vector
multiprocessors, reporting (normalized) gap parameter valugs-ofl.2 for the Cray

C90 andg = 1.8 for the Cray J90.

3.2. Comparison wittBsp

In this section we compare thgsm and theBsp in terms of their effectiveness as a
bridging model for parallel computation. We choose to comparethewith the Bsp
rather than theogr model since th@smis a bulk-synchronous model like tBsp(and
unlike theLogP) model.

Thessp(Bulk-Synchronous Parallel) model [69], [70] consistp@rocessgimem-
ory components communicating by sending point-to-point messages. The interconnec-
tion network supporting this communication is characterized by a bandwidth parameter
g and a latency parameter. A BSPcomputation consists of a sequence of “supersteps”
separated by bulk synchronizations. In each superstep the processors can perform local
computations and send and receive a set of messages. Messages are sent in a pipelined
fashion, and messages sentin one superstep will arrive prior to the start of the next super-
step. The time charged for a superstep is calculated as follows;; et the amount of
local work performed by processian a given superstep. Lst(r;) be the number of mes-
sages sent (received) by processdretw = maogp:1 wi, andh = ma>gp:l(max(s ,1)).
Then the costT, of a superstep is defined to le= max(w, g-h, L).2 Although the

3 Alternatively, the time isv + g - h + L; this affects the bounds by at most a factor of 3, and the results
in [16] show that, at least for certain machines, taking the maximum of the three terms is more accurate than
taking their sum.

Can a Shared-Memory Model Serve as a Bridging Model for Parallel Computation? 337

Table 2. Some emulations of higher-level models on #is® model.

Model emulated On model With slackness Work-preserving?
EREW PRAM BSKg, L) > max(ig p, L/9) Inefficient by a factor ofy
QRQW PRAM BSKg, L) > max(g p, L/9) Inefficient by a factor ofy
CRCW PRAM BSKg, L) > max(p**, L/g) Inefficient by a factor ofy

QsMm(g) BSHg, L) > maxglg p, L/9) Yes

The result forgsm is new. The emulations are randomized and the bounds are obtained
with high probability inp.

BSPis a message-passing model, it can also be viewed as a distributed-memory model
where each memory component serves as a memory bank.

To compare the cost metrics of tBepand theQsm, we consider the distributed-
memory view of th&@spand a superstep comprised of local work, read requests, and write
requests. We can equate the twparameters, ana; with ¢; (and hencev with mgy).

Lethg = ma\)gp:1 s, the maximum number of re@drite requests by any one processor,
and leth, = ma>gp:l ri, the maximum number of re@drite requests to any one memory
bank Thesspcharges the maximum af, g - hg, g - hy, andL. TheQsm, on the other
hand, charges the maximum of, g - hs, and«, wherex € [1..h] is the maximum
number of readwrite requests to any one memdogationand is not multiplied byg.

One important measure of a bridging model is its ability to be emulated by important
lower-level models. Table 2 presents some known emulation results of higher-level mod-
els on thessp. Theparallel slacknesg an emulation is the number of processors in the
higher-level model per processor in theP model. An emulation isvork-preservingf
both models perform the same amount of work, to within constant factors. The first three
rows show emulation results on tBep of the EREW PRAM[69], the QRQW PRAM [36]
and thecrcw PRAM[69]; note that none of these three models have a work-preserving
emulation on th@spif g is not a constant. In the case of tbRcw PRAM, even for eBsP
with gap parameter that is a constant, a work-preserving emulation as#tieknown
only with a parallel slackness that is very large, i.e., polynomigb.itn contrast, the
QsMdoes have a work-preserving emulation assawith the same gap parameter, for
anyg, using only modest slackness and small constants. This result will be shown in the
next section.

The emulation resultimplies that any algorithm designed ognecan be mapped
onto theBsrin a work-preserving manner with only a modest slowdown. Sinceghe
has fewer parameters than &P, and does not deal with memory partitioning details,
for most problems it should be easier to design algorithms o#methan on thessp.
Moreover, the emulation result implies that any machine that can realizs#model
can also realize thesm model, given the additional system software needed for the
(simple) emulation algorithm.

Many algorithms designed for tlBsphave as their goal to minimize the number of
supersteps (e.g., [37]). In contrast, tyev does not account for the number of supersteps
(e.g., there is nd. parameter in th&@sm model). Ignoring the number of supersteps
simplifies the model, and it can be somewhat formally justified by the emulation result,
which shows that any twQsm algorithms with the samesm time bound will have the

338 P. B. Gibbons, Y. Matias, and V. Ramachandran

samesspPtime bound when emulated on thsp, regardless of the number of supersteps
in the respective algorithms.

One can also consider the mappingssP algorithms onto th&sm. Many of the
Bspalgorithms reported in the literature have a simple version on$ivcorresponding
to the case when the latenty= 1. As shown in Section 6 it is possible, in principle,
to havesspalgorithms that do not map back to themin a work- and time-preserving
manner. Such algorithms would exploit the fact thasaprocessor

(i) could receive a piece of information that it did not specifically request, or
(i) could access, as a unit-time local computation, a value (not requested by it) that
was written into its local memory bank by another processor in an earlier step.

These features are appropriate in contexts where a processor can send a message directly
to a processor at any time, or can write remotely into a processor’s local portion of the
shared memory. On thgsm a processor would need to initiate a read for any piece of
information that it receives; further, that access will be charged a cagtbthe time
the processor reads it in addition to a cosgdfeing applied at the time the value was
written into the shared-memory location.

While the features listed above could indicate thatgheis in some ways more
powerful than thepsw, it may not be desirable for a general-purpose bridging model
to incorporate these features. In general, there will be features such as these arising
due to contrasts between message passing and shared memory, between coherent and
noncoherent caches, between update and invalidation-based coherence protocols, etc.
Any choice of these features may not be representative of a wide range of parallel
machines. Moreover, as discussed in Section 2, current designers of parallel processors
often hide the memory partitioning information from the processors since this can be
changed dynamically at runtime. As a result an algorithm that is designed, say, using
this additional power of thespover theQsm may not be that widely applicable.

In Section 6 we show that Bspthat does not exploit features (i) and (ii) can be
emulated on @sMusing a simple, deterministic, time- and work-preserving algorithm.
We also show that ang-componentssp, even one that exploits these features, has
a work-preserving emulation on@sm with the same gap parameter, with a modest
slowdown ofO(lgn/(1+ L/g)), with high probability inn; this emulation uses a fairly
involved algorithm.

Thus, overall, a case can be made thatghe is effective in modeling the essential
features of th@spwhile remaining at a higher level of abstraction.

4. Emulations of @sM on BSP Models

The(d, x)-BSP[16] is a model similar to the (distributed-memory view of tissp, but

it provides a more detailed modeling of memory bank contention and delay. In [16]
it is argued that, for shared-memory machines with a high-bandwidth communication
network and more memory banks than processorsgthe-Bspis a more accurate model
than theBsp. Such machines include Cray C90, Cray J90, and Tera MTA (experimental
validation of this accuracy claim is provided for Cray C90 and Cray J90)(dhe-BSP

is parametrized by five parameters,g, L, d andx, wherep, g, andL are as in the

Can a Shared-Memory Model Serve as a Bridging Model for Parallel Computation? 339

original Bsp model, thedelay dis the “gap” parameter at the memory banks, and the
expansionxis the ratio of memory banks to processors (i.e., there-grenemory banks).
Consider a superstep whards the maximum local work performed by a processgr,

is the maximum number of readrite requests by a processor, ands the maximum
number of reagwrite requests to a memory bank. Then the tifie charged by the
(d, x)-Bspfor this superstep i$ = max(w, g-hs, d-h,, L). The originalsspcan be
viewed as dd, x)-BsPwith d = g andx = 1.

In this section we present two emulations of ti&v on the(d, x)-BspP. The first
emulation is for a so-calldolalanced(d, x)-Bsp, in whichx > d/g, and is work optimal.
Since thesspis a balancedd, x)-Bsp, this optimal emulation applies also for thep.

The second emulation is for anbalancedd, x)-BSP, inwhichx < d/g. This emulation
suffers from work inefficiency which is proportional to the “imbalance-factf{gx).
We show by a lower bound argument that this overhead is unavoidable.

The two emulations are in fact identical, and differ only in sfecknesparameter.
We first present the algorithm, followed by the different analysis for the two cases
mentioned above, and concluding with the lower bound.

4.1. The Emulation Algorithm

A work-preserving emulation of a modé&l on a modelB provides a formal proof that
model A can be realized on mod@& with only a constant factor overhead in work. If
model B is considered to be reflective of an interesting class of parallel machines, then
such an emulation supports the usefodis a bridging modehs long as the emulation
can be considered “practicdl For theQsm on the(d, x)-Bsp (and hence on thesp),
we present a very simple emulation algorithm and then discuss its practicality in some
detail.

The emulation algorithm of a-processoRsm on ap-processord, X)-BSp, v > p,
is quite simple, and it is similar to emulations that were previously proposed for the
PRAM. Unlike previous emulations, our analysis needs to handle the gap parameter in
the emulated machine.

e The shared address space of ¢®v is randomly hashed into thep memory
banks of thgd, x)-Bsp(or to thep memory modules of thesP).

e In each phase, each processor of tthex)-Bspemulatesy/ p processors of the
QSM.

In the work-preserving emulation, each phasa time tj on theQsm is emulated on

the (d, x)-BsP (or simply theBsP) in time O((v/p) - t;), regardless of the distribution

of shared memory reads and writes. The needed parallel slackri@sss modest, and

does not depend on the maximum contention in a phase (which may be much larger than
v/p).

The mapping of thegsm shared memory among the machine’s memory banks
assumes the machine supports a single address space. Many recent machines (e.g., Cray
T3E) provide hardware support for a single address space; for other machines (e.g., IBM
SP-2), it can be emulated in software with some overhead.

Note that if a computer system already hashes the data using a pseudorandom hash
function, then the emulation is nothing but the straightforward implementation of an

340 P. B. Gibbons, Y. Matias, and V. Ramachandran

algorithm whose parallelism is larger than the number of processors. Several parallel
database systems already hash their data using pseudorandom hash functions. The Tera
MTA provides hardware support for hash functions to be used for pseudorandom mapping
of memory locations to memory banks; the FujiggtWP on the Meiko node already

has optional hardware hashing. For other machines, computing a pseudorandom hash
in software is feasible. For example, it is shown in [16] that the overhead to compute a
certain provably good (i.e., 2-universal) pseudorandom hash function on the Cray C90
averages 1.8 clock cycles. Also as noted in [16], for some algorithms it is possible to get
the same effect without memory hashing, by randomly permuting the input and some of
the intermediate results. In others, the nature of the algorithm results in random mapping
without any additional steps.

Itis well known that hashing destroys spatial locality, but not temporal locality. Spa-
tial locality enables long messages to be sent between components, thereby minimizing
overheads on many machines. Some models, sugibnapi4], LogcP([5], andBsF [12],

[11], account for advantages in long messages; most othersQseng.Bsp, (d, X)-BSP,
andLogp, do not. Thus theysm shares with thessp, (d, x)-Bsp, andLogP models a
disregard for spatial locality. Spatial locality can also arise in initial data placement.
Here the input can be assumed to be distributed among the private memoriegsifithe
processors as among the local memories oBgre (d, X)-BSP, Or LOGP processors.

The emulation ob/ p virtual processors by each physical processor can be done by
a variety of techniques. The primary technique is multithreading, in which each virtual
processor is its own process, and the physical processor context switches between these
processes. The Tera MTA provides hardware support for this multithreading, minimiz-
ing the context switching costs. Alternatively, such multithreading can be performed in
software. Note that in thesm, as in other bulk-synchronous models, each virtual pro-
cessor issues a series of memory requests in a phase. Instead of context switching at each
memory request, the multithreading can be performed by executing all the code for the
first virtual processor in this phase, then switching to the second virtual processor, and so
forth, so that only/ p context switches are needed for the entire phase (this description
assumes that storing values returning in response to shared-memory read requests does
not require a context switch).

In order to minimize the overheads, it is very important to minimize the amount of
parallel slackness required. In the worst case, multithreadipgrocesses per machine
processor results iy p times the storage demand at each level of the processor's memory
hierarchy, possibly resulting in various thrashing effects. The emulation Qfthen the
BsSPrequires only magg lg p, L /g) slackness; on th@l, x)-Bsp, as little as magd, L /g)
slackness may be required. Note that lth@ term matches the limit on multithreading
imposed by theogp model [22].

Thus, overall, the constants hidden by the big-O notation in the emulation result
are small, and hence the emulation can arguably be considered practical. (In fact, this
emulation is a fundamental component in the design of the Tera MTA.)

4.2. Work-Preservinghsm Emulation on(d, x)-Bsp

The following theorem presents an emulation of ¢f&v on a(d, x)-Bsp for the case
whenx > d/g, whereg is the gap parameter for both them and the(d, x)-Bsp. The

Can a Shared-Memory Model Serve as a Bridging Model for Parallel Computation? 341

emulation is work-preserving for any (i.e., the work performed on th@l, x)-BspPis
within constant factors of the work performed on th&v).

Theorem 4.1(Work-Preservinghsm Emulation). Consider a p-processad, x)-BSP
with gap parameter g and periodicity factor such that¢ < x < p¢, for some constant
€ > 0,whered =d/g > 1.Let

dlgp if dy <x<2dg,
§=1 dlgp/lgx/dg) if 2dg <X < pdy,
d if x> pdy.

Then for all p’ > max($, L/g) - p, each step of an algorithm for thé-processomsm
with gap parameter g with time cost t can be emulated on the p-procé&sor-BsrPin
oW(p'/p) - t) time wh.p.

This result is not implied by previous simulation results for grw PRAM[36],
[16], since these previous results considered starrefassh models with no gap param-
eter andBspor (d, x)-BsPmodels with a small constant gap parameter (that was hence
ignored as part of the big-O notation). The question of how the work-efficiengyoand
slowdown of the emulation depended upon the gap parameters was not studied. Since
we are considering the same gap parametefor the Qsm as for theBsp, one might
conjecture that considering the gap parameter does not substantially alter the bounds of
the simulations without the gap parameter. However, note thap$lvemodel charges
« for contentionk, regardless of the gap or delay parameters, and indegiastep
with timet can have /g memory requests per processor and maximum contentian
contrast, in such cases tBepcharges at leag - t and the(d, x)-Bsp charges at least
d - t. Viewing the mapping of memory locations to memory banks as tossing weighted
balls into bins (where the weight of a ball corresponds to the contention of the location),
this implies a different mix of balls than considered in previous emulations.

Before we present the proof of this theorem, we note that in the origérbly =
x = 1, so from the above theorem we obtain the following corollary:

Corollary 4.2 (Work-Preservinghsm Emulation). A p'-processorQsm with gap pa-
rameter g can be emulated on a p-processsrwith gap parameter g and periodicity
parameter L in a work-preserving mannetwp. provided p > max(glg p, L/g) - p.

Proof of Theorend.1. We now prove the theorem. The proof is similar to that in [16],
extended and adjusted to account properly for the gap parameter @sthand to
improve upon the results for large valuesxgfeven for the previously studied case of
g=1.

The shared memory of thgsm is randomly hashed onto tH& = x - p memory
banks of thed, x)-Bsp. In the emulation algorithm, eacl, x)-BSPprocessor executes
the operations of’/ p QSM processors.

342 P. B. Gibbons, Y. Matias, and V. Ramachandran

We first assume tha¢ > 2d,. Thus,

~gq_lop
~ lg(x/dg)
Consider theth step of thepsm algorithm, with time cost;. Letc > 0 be some
arbitrary constant, and let = max{c + € + 1, e}. We will show that this step can be
emulated on théd, x)-BsPin time at mosw (p’/ p)t; with probability at least - p~¢.
Note that by thegsm cost metricti > g, and the maximum number of local operations
at a processor in this step s The local computation of thesm processors can be
performed on théd, x)-BsSPin time (p’/p)t;, since eachid, x)-BsSpprocessor emulates
P’/ P QSM processors.
By the definition of thegsm cost metric, we have that, the maximum number of
requests to the same location, is at mpsandhs, the maximum number of requests
by any one processor, is at mdstg. For the sake of simplicity in the analysis, we
add dummy memory requests to each processor as needed so that it sendd;¢gactly
memory requests this step. The dummy requests for a processor are to dummy memory
locations, with processdrsending all its dummy requests to dummy locatfoin this
way, the maximum number of requests to the same locatiorgmains at mosgf, and
the total number of requestsZs= p't; /g.

@)

Letiy, iz, ..., im be the different memory locations accessed in this step (including
dummy locations), and let; be the number of accesses to locatipnl < j < m.
Note thatZszl kj = Z. Consider a memory bank Forj = 1,..., m, letx; be an

indicator binary random variable which is 1 if memory locatipiis mapped onto the
memory banks, and is 0 otherwise. Thu®rob (x; = 1) = 1/B. Leta; = «j/t; g
is the normalized contention to locatign Sincex < tj, we have thay; € (0, 1]. Let
Vg = ij:lajxj; Wz, the normalized request load to bagkis the weighted sum of
Bernoulli trials. The expected value f is

T 1&g 1 Z p p
E IIJ = —J=— —J=—~—= ! e .
(%) J; B ij;ti Xp t xptg xpg

Let hf be the total number of requests to locations mapped to Bai& show that
it is highly unlikely thath? greatly exceeds this expected value, we use the following
theorem by Raghavan and Spencer, which provides a tail inequality for the weighted
sum of Bernoulli trials:

Theorem 4.3[63]. Leta,...,an be reals in(0, 1]. Let X, ..., Xm be independent
Bernoulli trials withE (x;) = pj. Let Wy = >, gX;. If E(W) > 0, then for any
v >0,

v E(¥s)
e) . @)

Prob (Vs > (1+v)E (¥p)) < <(1T)(1+“)

We apply Theorem 4.3 with; = 1/B, and set

v:aa—l,

Can a Shared-Memory Model Serve as a Bridging Model for Parallel Computation? 343

implying

_ 1 p/ _ap/
(1+v)E(wﬂ)_adg <pg = dp’ 3)

Therefore,

Prob(W >a_p/) (2.0 < e >(””)E(‘l‘ﬁ) @ <a_x)ap’/dp
B dp (1+v) od,

[> ¢ X\ PP o gl /x| CY/DmaxeL/g
=@ = E)

% = g
[x ><dg] <i>(—a/d)8 [(é)] (i>—a(lg p/lg(x/dg))
- dy - dy
= p,a < pf(c+6+1) _ LC_H) [x gfpé] pf(c+1)'
pc X

Note that

m
hf:ZXjkj = Wg - 1.
i—1

Therefore,

/ t. —(c+1)
Prob(h’f>apt'><p .

dp X

Leth, = maxs hf. Then

/4. /. —(c+1)
prob (h > P4} < B.Prob hf‘>apt' <B.P =p°
dp dp X

Thetime of th&d, x)-BSpstep to emulatesmstepi is T, =max((p’/p)ti, g(p’/p)(ti/9),
d- hy, L). Sincet; > g, we have thatp’/p)ti > (p’/p)g > L and hence it follows
from the above that

Prob (Ti <« <%)t.) >1-p°

We next consider the case whelg < x < 2d,, and thereforé = dlg p. In this
case we take = max{c + C+ 1, 2e}, and the proof proceeds as above except that we
make use of the fact that

ax \ —eP/dp
(_) < 27aP/dp < p-(@/dmaxdigpl/g) p-algp _ o
ed - - - '

This completes the proof of Theorem 4.1 O

344 P. B. Gibbons, Y. Matias, and V. Ramachandran

4.3. Emulating@esmon Unbalancedd, x)-BsP

We next consider the case where the bandwidth at the memory banks is less than the
bandwidth at the processors and network, kes<; dyg. We present an emulation whose
work bound is within a constant factor of the best possible.

Theorem 4.4(Qsmon Unbalancedd, x)-BsP). Considera p-processdd, X)-BSPwith
gap parameter g and periodicity factor, such thatl < x < min{dg, pé}, for some
constantc > 0, where ¢ = d/g. Then for all p’ > max(xglg p,d,L/g) - p, each
step of an algorithm for the'gprocessomQsm with parameter g with time costt can be
emulated on the p-processat, x)-BsPin O((dg/x) - (p'/p) - t) time wh.p.

Proof. As in the proof of Theorem 4.1, the shared memory ofglse is randomly
hashed onto th8 = x - p memory banks of théd, x)-BsP. In the emulation algorithm,
each(d, x)-BsPprocessor executes the operationg@fp QsMm processors.

Consider theth step of thegsm algorithm, with time cost;. Letc > 0 be some
arbitrary constant, and let = max{c + € + 1, 2e}. We will show that this step can
be emulated on théd, x)-BsSP in time at most mai(p’/p)ti, a(dg/X)(p'/P)ti} with
probability at least - p~¢.

The proof proceeds exactly as in the proof of Theorem 4.1: we add dummy requests
as needed, define indicator binary random variakjlder each memory bank, define
Wg, and show thakE (\IJ;;) = p'/(xpg). We apply the Raghavan and Spencer theorem
(Theorem 4.3), but witlh = o — 1. This yields

Prob (\Ifﬁ > 2P)
Xp

o\ —@P'/XPY [a > 2€]
() =
e

2—(a/xg) maxxglg p,d.L/9)

A

c —(c+1)
< p@ < pcterD [x <<p] p ‘

X

It follows as in the previous proof that
Prob (hr . 2P ti) <pS
Xpg

whereh, is the maximum number of readrite requests to a memory bank. The time,
Ti, of the (d, x)-BSP superstep to emulatgsm stepi is max(p’/p)ti, g(p’/p)ti/9),
d-h, L).Sincet; > gandp’/p > L/g, we have that

Prob(Ti smax{g-ti , a~9£-ti}) >1—-p°
p X pg

The theorem follows. O

4.4. A Lower Bound

The following lower bound shows that the work bound in Theorem 4.4 is tight, as well as
showing the importance of having a gap parameter omthe In particular, it implies

Can a Shared-Memory Model Serve as a Bridging Model for Parallel Computation? 345

that aPRAM has an inherent inefficiency overheadypfvhen emulated onsspPor (d, x)-
BsPwith a gap parametag. Likewise, it implies thag is the minimum gap parameter
that should be assigned to themin order to allow for work-efficient emulation on a
BsPand(d, x)-BSP.

Observation 4.5. Let p > p. Any emulation of one step of thé-grocessoQsmwith
gap parameter gwith time cost t on the p-processat, x)-BsPwith gap parameter g
and periodicity factor L requires &= max(t - (g/g’) - [p’/p],d - [tp’/(Xpg)]) time in
the worst case

Proof. Consider a step in which each of thbeQsm processors perforrtyg’ memory
requests, such that gilt /g’ requests are to distinct locations in the shared memory. Since
there arem = p't/g’ locations distributed amongp memory banks, then regardless
of the mapping of locations to banks, there exists at least one pariich is mapped

to by at leasfm/xp] locations. Also, eackd, x)-Bsp processor sends’/p] - (t/9)
shared-memory requests. Therefore, the time oridhe)-Bspis at leasfT . O

5. Improved Accuracy Through the Qsm Abstraction

The shared-memory abstraction of f@v hides the details of the partitioning of memory
into memory modules/components on existing machines. This partitioning is explicit in
message-passing or distributed-memory models such @&s#w Logp. Thus theQsm
provides a higher-level of abstraction, while & andLogr seemingly provide more
accurate modeling of memory module contention.

In this section we draw attention to machines for whichgbe andLogr models
fail to model memory module contention accurately, whereag#vecan lead to a more
accurate accounting. For the former, we refer to results in Blelloch et al. [16], whereas
for the latter we leverage Theorem 4.1 and experimental results in [16]. We also present
a simple illustrative example.

5.1. The Problem of Memory Layout Mismatch

Standard message-passing or distributed-memory models sucteas émelLogpr have
the property that the number of memory components is equal to the number of processors.
On the other hand, several computer manufacturers, motivated by the increasing diver-
gence between processor speeds and memory speeds, have designed parallel machines
with many more memory banks than processors. For example, the 16-processor Cray
C90 has 1024 memory banks, the 16-processor Cray J90 has 512 memory banks, the
18-processor SGI Power Challenge has 64 memory banks, and the 256-processor Tera
MTA will have 32K memory banks. For these machines, (hex)-BspP[16] (described
in Section 4) is a more accurate model thangbeor Logp since it explicitly accounts
for both (i) thebank delayd, which is the bandwidth gap parameter at a memory bank,
and (ii) thebank expansiarx, which is the ratio of memory banks to processors.

Blelloch et al. showed experimentally that tle, x)-Bsp models the Cray C90
and Cray J90 quite accurately, even though the model ignores many details about these

346 P. B. Gibbons, Y. Matias, and V. Ramachandran

7 140 a
§ 2o} |
&)
g 100} /B
3 BP
5 80})
% L+ (dx)BSP
)
-)
g a0t I
g e BSP.LOGP
H D D '"-A.”'.A—‘“—.."" e — Eaad /’

9 e e oo+ ot o2t " et il L T |

0.01 " -

Fraction of requests at one location (k/ pS)

Fig. 1. Inaccuracies in thesp and theLogp predictions, due to assuming the wrong memory layout and
underestimating the cost of memory-bank contention. This figure is from [16].

machines. They also showed that accounting for the memory-bank delay is critical in
predicting running times of algorithms with high memory contention. Therefore, in some
situations th@spand theLogp provide a poor prediction of an algorithm’s performance,
while the(d, x)-BsPprovides a good one. An example is shown in Figure 1 for the Cray
J90. In this figure, predicted and measured performance are shown on a set of memory
access patterns extracted from a trace of Greiner’s algorithm for finding the connected
components of a graph [38]. Measured times on an eight-processor Cray J90 for several
patterns are shown with squares. Predicted times are given fod tlg-BSP, BSP, and

LogP. The contention is given on a logarithmic scale indicating the ratio between the
maximum contentionk, and the total number of requests; S (p is the number of
processors an8is the number of requests sent by each processor).

5.2. Suitability ofgsmto Cray-Like Machines

The @sMm is a more high-level model than thesp or Logp, which in turn are more
high-level models than thel, x)-Bsp. Nevertheless, we argue that them is a better
model for machines such as the Cray C90 and Cray J90 thamsther the Logp,

since its shared-memory abstraction does not assume a particular memory layout. In
particular, Theorem 4.1 shows that any algorithm designed foghewill map in

a work-preserving manner onto tfig, x)-BSp given a reasonable amount of parallel
slackness, and thus onto these machines. This is becaugsMiemst metric accounts

for contention to locations, and hence can be translated (via hashing) to a memory layout
of any granularity. Thus the abstraction of memory components to shared memory,
as assumed in thesm, makes it more robust to changes in the number of memory
components.

In contrast, message-passing or distributed-memory models sucteastmelogp
account only for the aggregated contention per processor, and hence reveal insufficient
information to enable a work-preserving emulation unless the slacknesg is d/g.

(When the slackness is x > d/g, then thep-processor distributed-memory model is
emulated on &d, x)-BsPwith at mostp memory banks.)

Can a Shared-Memory Model Serve as a Bridging Model for Parallel Computation? 347

As a simple example illustrating the above discussion, consider the following two
memory access patterng, and B, occurring in an algorithm designed for tiesp.
Suppose processors send one message eactBBPaomponentC, for some arbitrary
k. In access patterA, all requests are directed to the same memory location. In access
patternB, each request is directed to a different memory location withifthe cost on
the Bsp of each access pattern is the same, nangel, as in each case the requests
are aggregated. Now suppose that the algorithm is run on a machine well modeled by
the (d, x)-BsP, with x > k. On the(d, x)-BSP, the requests irA are always mapped
to the same memory bank, but the requestB inould be mapped to different banks,
depending on the mapping @, x)-BSPbanks taBspcomponents. This results in a cost
on the(d, x)-Bspof max(g, d - k) for A but a cost of anywhere from mex d - k) to
max(g, d) for B, a potentially large distinction.

An algorithm designed for theswm would distinguish betweek requests to the
same location versusrequests to different locations, charging rigyk) for A andg
for B. Moreover, Theorem 4.1 implies that using a random mappingsef memory
locations to thgd, x)-BsSP memory banks guarantees that, with high probability, there
are no surprises in terms of memory-bank contention when the algorithm is run on a
machine well modeled by th@l, x)-BspP. In any such mapping, the requestsAnwill
be mapped to the sanid, X)-BsP memory bank, and hence are rightfully aggregated,
whereas the requests Bwill likely be mapped to different memory banks, and hence
are rightfully not aggregated. Thus while the metric of theP may not be consistent
with that of the(d, x)-BsP, theQsM maintains close consistency with tfa x)-BSP.

6. Algorithmic Issues

As a shared-memory model, them offers a simple high-level medium for the design of
parallel algorithms that can take into consideration effective use of limited bandwidth.
In this section we present some algorithmic results and techniques fosthas well

as general strategies to map algorithms developed on some other models @gm.the

In general thegsm is to be used for direct algorithm design that makes effective
use of limited bandwidth. However, since we would like to leverage on the extensive
literature onPRAM algorithms, in Section 6.1 we discuss the mappin@RHw PRAM
anderRew PRAMalgorithms onto the@sm. In Section 6.2 we present some lower bounds,
and in Section 6.3 we present some dirgs# algorithms that are faster than the ones
obtained by the generkrAM mapping.

Itis also important to consider the mappingssPalgorithms onto theswm, for two
reasons: First, a good mapping result of this type will allow us to leverage on the results
and techniques that were developed forgsemodel. Second, it will demonstrate that
the expressive power @ismis no less than that of thesp. We study this issue in Sections
6.4 and 6.5. In view of a simple lower bound @f(n - g) that we prove in Section 6.2
on the time needed to readitems from global memory into thesm processors, for
these algorithms we assume that the input is distributed among the local memories of
the processors in a suitable way. In Section 6.4 we show thagsmglgorithm that is
“well behaved” (as defined in that section) can be adapted in a simple way gsthe
with no loss in performance. In that section we also argueghmtlgorithms that are

348 P. B. Gibbons, Y. Matias, and V. Ramachandran

not “well behaved” use certain features of #&Pthat are not quite representative of a
large class of parallel machines. For completeness on the issue of expressive power, in
Section 6.5 we show a general randomized work-preserving emulat&spPain Qsm.
Unlike the simple adaptation for “well-behaved” algorithms, this emulation consists of
a fairly involved algorithm and results in logarithmic slowdown. Overall these results
demonstrate that any algorithm designeddgep could also be designed on tlkpswm,
without substantial loss of efficiency.

Finally, in Section 6.6 we discuss the importance of the queuing metric for memory
accesses in thesm model, and note that it is central to its effectiveness as a shared-
memory bridging model.

First, we consider the property eélf-simulatiorfor the Qsm, i.e., the problem of
simulating ap-processopsMon ap’-processonsm, wherep’ < p. The availability of
an efficient self-simulation is an important feature for parallel models of computation,
since it implies that an algorithm written for a large number of processors is readily
portable into a smaller number of processors, without loss of efficiency.

Observation 6.1. Given aQsm algorithm that runs in time t using p processptise
same algorithm can be made to run on &ppocessorQsm, where p < p, in time
O(t - p/p), i.e, while performing the same amount of work

The efficient self-simulation is achieved by the standard strategy of mapping the
processors in the original algorithm uniformly among thavailable processors. In the
following we state the performance ofy@@m algorithm in terms of the fastest tinién)
achievable within a given work bound(n). When we make such a statement we imply,
due to Observation 6.1, that for amywe have an expliciQsm algorithm that runs in
O(t(n) + w(n)/p) time usingp processors.

In the following we assume that the value of the gap paranggietess tham, the
size of the input; in practice we expegto be much smaller tham

6.1. MappingPrRAM Algorithms onto the&sm

A naive emulation of @RQw PRAMalgorithm (or areEREW PRAMalgorithm, which is a
special case) on@sM with the same number of processors results in an algorithm that
is slower by a factor of). This is stated in the following observation.

Observation 6.2. Consider aQsm with gap parameter g

1. AQrRQW PRAMalgorithm that runs in time t with p processors igamalgorithm
that runs in time at most-tg with p processors

2. A QrQw PRAMalgorithm in the work—time framework that runs in time t while
performing workw immediately implies @sm algorithm that runs in time at
most t- g withw/t processors

Thus the linear-worlQrQw PRAM algorithms given in [36] and [34] foleader
electionlinear compactionmultiple compactiofioad balancingandhashingas well as
the extensive collection of linear-work logarithmic-tireREw PRAMalgorithms reported
in the literature, all translate intgsM algorithms with workO(n - g) on inputs of length

Can a Shared-Memory Model Serve as a Bridging Model for Parallel Computation? 349

n with a slowdown by a factor of at mogt We show in Section 6.2 that this increase in
work by a factor ofg on theQsm may be unavoidable if the input items are not a priori
distributed across th@sm processors.

There are two other avenues through which we can hope to obtain useful results for
the @sm over those obtained through the mappingyafyw PrRAMalgorithms. First, we
can consider tailoringsm algorithms to its cost metric for the gap parameter, thereby
obtaining an improved running time for the algorithm. Second, we can relax the require-
ment that the input be placed in global memory, and allow the input to be distributed
across the local memories of the processors in a suitable way. This would conform to
the initial state foBspalgorithms, and in fact mosispalgorithms map back to thesm
in a natural way in this case.

We address each of these in turn in Sections 6.3 and 6.4, respectively. However,
first, in the next section, we mention some lower bounds fogte model.

6.2. Lower Bounds

If ndistinct items need to be read from or written into shared memorympcessor
Qswm, then the work performed by thgsm is Q(n - g) regardless of the number of
processors used. To see this we note that the result is immedipte-ifn since the
QsM has to execute at least one steppli n, then some processor needs to read or
write [n/p] distinct items, and hence that processor spends®ifia/ p) - g). Sincep
processors are used, the work, which is defined as the processor—time pradiet)is

A similar observation holds for the case whedistinct memory locations are accessed.
We state this in the following.

Observation 6.3. Consider aQsm with gap parameter g

1. Any algorithm in which n distinct items need to be read from or written into
global memory must perform wofk(n - g).

2. Any algorithm that needs to perform a read or write on n distinct global memory
locations must perform work (n - g).

By Observations 6.2 and 6.3, the linear-wakQw PRAMalgorithms for problems
in which the input of lengtin resides in global memory translate into algorithms with
asymptotically optimal work on theswm that run with a slowdown of with respect to
the correspondingrQw PRAMalgorithm.

The following lower bounds for theswm are given in [1]. ThecRcw PRAM lower
bound result of Beame andasfad [13] gives a lower bound for tineelementparity,
summationlist ranking, andsorting problems of2(g - lgn/Iglg n) time on theQsm
for either deterministic or randomized algorithms when the number of processors is
polynomial inn, the size of the input. Also given in that paper is a simple lower bound
with a matching upper bound @f(ng) for theone-to-allproblem in which one processor
hasn distinct values in its local memory of which théh value needs to be read by
processor, 1 <i <n.

A lower bound of©2 (g Ig n/Ig g) for broadcasting tm processors is given in [1]; in
contrast to an earlier lower bound for this problem ongbkegiven in [45] this lower
bound holds even if processors can acquire knowledge through nonreceipt of messages

350 P. B. Gibbons, Y. Matias, and V. Ramachandran

(i.e., by reading memory locations that weat updated by a recent write operation). We
note that the same lower bound on time holds for the problem of broadcastinggimory
locationssince any algorithm that broadcastsntanemory locations can broadcast to
n processors in additiong units of time. Further, by Observation &3(ng) work is
necessary since writes todistinct global memory locations are required.

6.3. Some Faster Algorithms for thgsm

By pipelining reads and writes to memory from different processors to amortize against
the delay due to the gap paramegeat processors, it is possible to obtain an algorithm
for the Qsm that runs faster thag times the running time for the faste3kQw PRAM
algorithm. As an example of an algorithm that is optimized for @ls&, consider the
leader electiorproblem in which the input is a Booleamarray, and the output is the
first location in the array with value 1, if such a location exists, and is O otherwise.
The fastesQrow PrRAMalgorithm for this problem is just the “binary treeRew PRAM
method that halves the number of candidates in each mfréginds withO(n) work
(there is a faster algorithm on tlerRQw PRAM but that algorithm is not known to map
onto thegsmwith a slowdown of onlyg). ThisQrQw PrRAMalgorithm will map on to the
QsMas a0(glgn) time algorithm withO(gn) work. However, we can optimize further

for theQsm by replacing the normal “binary tree” method by géry tree.” This takes
advantage of the fact that requests at the memory are processed every time step, while at
the processors a request can be sent only aystgps. The time taken by this algorithm

to solve the leader election problem on tiv is O(glg n/lg g) while still performing
O(gn) work. If the input is distributed evenly amomy/(glgn/lg g) processors, then

the time isO(glgn/Ig g) and the work iO(n).

A similar strategy applies to thieroadcastingproblem in which the value at one
location in memory needs to be transmittedntprocessors. Again, theRQW PRAM
algorithm of choice for this problem is a “binary tree” broadcasting method that takes
O(Ig n) time with O(nIg n) work. This algorithm will map onto thesmas aO(glgn)
time algorithm withO (gnlg n) work. By optimizing along the lines of the algorithm for
leader election, we can derive an algorithm to broadcasptmcessors on thesm that
runs inO(glgn/lg g) while performingO((gnlgn)/lg g) work. By the lower bound
cited in Section 6.2, this result is optimal.

We can solve the related problentbadcasting to n memory locatioimsthe above
time bound ofO(glgn/Ig g) but with O(ng) work. For this, we use = nlgg/lgn
processors and broadcast to fherocessors in tim®©(glgn/lg g). We then spend an
additionalO(glg n/Ig g) time to have each processor write intanldg g locations. As
noted in Section 6.2 we have a matching lower bound on both the running time and the
work.

We now consider the problem of sorting on them. The problem of designing
highly parallel algorithms for sorting keys from a totally ordered set is a well-studied
one. On the&eEREW PRAM there are two know (Ig n) time, O(nIg n) work algorithms
for general sorting [4, 19]; these deterministic algorithms match the asymptotic lower
bounds for general sorting on tarRewandcREw PRAMModels. Both of these algorithms
map onto theysmto run in O(glg n) time andO(gnlg n) work using Observation 6.2.
Unfortunately, these two algorithms are not as simple and practical as one would like.

Can a Shared-Memory Model Serve as a Bridging Model for Parallel Computation? 351

Goodrich [37] gives an algorithm for thespbased on [19] that performs wofB((L +
gn) lgn/lg(n/p)+nlgn)with p processors. Since this algorithm is an adaptation of [19]
it is again a fairly complicated algorithm.

Among sorting algorithms that are fairly simple, the fas®sh Ig n) work algo-
rithm on theEREW PRAMIs anO(lg? n) time randomized quicksort algorithm (see, e.g.,
[43]), and on theQrQw PRAM a randomized,/n-sample sort algorithm that runs in
O(lg?n/lglgn) time, O(nlg n) work, andO(n) space [34].

On theq@swm, the randomized sample sort algorithm can be mapped ontQdie
to performO(nlgn) work provided the computation is very coarse-grained, i.e., the
number of processongis polynomially small imn andg = o(lg n); this Qsm algorithm
is essentially the same as thsp algorithm based on sample sort [30]. If we look for
a highly parallel sorting algorithm that is fairly simple, an adaptation ofghew
PRAM sample sort algorithm appears to be the fastest. A straightforward analysis of
this algorithm on thepsm using Observation 6.2 results in an algorithm that runs in
O(g - lg?n/IgIg n) time while performingO(g - nlg n) work. However, an analysis of
the algorithm directly for thesmshows thatit runs i® (Ig? n/Ig Ig n+glg n) time while
performingO(gnlg n) work. Thus, ifg is moderately large, specificall (g n/Iglgn),
the sample sort algorithm will run within the same time and work bounds (randomized)
as the more involved algorithms obtained by mapping the asymptotically optikaal
PRAM algorithms onto th&@sm. The improvement in running time for tlgsm sample
sort algorithm in comparison with tlgRQwW PRAMSample sort comes from the fact that
the ®(lg? n/Iglg n) term in the time bound is only due to the bound on the contention
at memory locations in a dart-throwing step. Sincegls® model charges only time
for contentiork, this term is not multiplied by in the time bound.

6.4. MappingsspAlgorithms onto thesm

We now turn to the issue of mappimgp algorithms onto th@sm. For this we assume
that the inputis distributed across themprocessors to conform to the input distribution
for the Bsp algorithm; alternatively one can add the tengy p to the time bound for
theQsmalgorithm to take into account the time needed to distribute the input located in
global memory across the private memories ofdlsel processors.

Many of thesspPalgorithms reported in the literature can be mapped back apdize
using the version of the algorithm that results whea 1. For instance, for the-element
summation, parity, and prefix sums problems, e algorithm that takes timégd +
L) g4 n, minimized by choosing > 2 appropriatelyd = [L/g] if L > gandd = 2
if L < g) maps onto th@smas a simpleD(g g n) time algorithm that perform® (ng)
work. Similarly thesspsorting algorithm of [30] and the matrix multiplication algorithms
of [69] and [59] map onto thesMm step by step with a performance corresponding to the
case wherL = 1 in thesspalgorithms.

The @sMm algorithms in the above paragraph are obtained by the following simple
strategy to map each step of thepalgorithm onto theysmto run in the time the step
would take on th@spif L = 1. A message sent by processoo a memory locatiom
of processolj on theBsris written into shared-memory locati@f, m) by processor
in the@smand then read by processprWe refer to aaspalgorithm aswvell behavedf
it can be mapped onto thgsm in the above manner.

352 P. B. Gibbons, Y. Matias, and V. Ramachandran

The mapping onto thesm needed for a well-behavegsp algorithm may not be
possible if, in thesspalgorithm, aBspPprocessor

(i) could receive a piece of information that it did not specifically request, and its
future behavior depends on whether or not it receives this piece of information;
or

(i) could access, as a unit-time local computation, a value (not requested by it) that
was written into its local memory bank by another processor in an earlier step.

On theQsM a processor would need to initiate a read for any piece of information that it
receives; further, that access will be charged a cogtatfthe time the processor reads

it in addition to a cost ofy being applied at the time the value was written into the
shared-memory location.

We now give an example ofesPcomputation that is not well behaved. The elements
of an arrayA[1..n] are distributed uniformly ovep BSP processors. Each processor
applies a certain function to its local inputs, and thereby generates som&ipajrs
wherev is the new value foA[i]. The new values generated have the property that each
processor generates no more thaanch values, and there are no more thaew updates
generated for each block of inputs assigned to a processor, where(n/p); other
than these two restrictions, the indiéesf the locations in the arras whose values are
changed are arbitrary. These new values are updated @sttry sending a-relation
in cg time units. Then in additional/ p time eachBsP processor determines the new
values of all of its local inputs by reading the corresponding local memory locations.
This computation takes tim@(cg + n/p) on theBsp. If we implement this algorithm
step by step on@swm, the updated values will be written into a copy of the argy..n]
in shared memory, and eadsm processor then needs to read these updated values.
Since it is not known ahead of time which values were updated, @artprocessor
would need to read from global memory, the current value of each aftpelements
of A[i] that it has in local memory. This will tak® (gn/ p) time, which is larger than
the running time on thespsincec = o(n/p).

While the above example indicates that #s®is in some ways more powerful than
the Qswm, it may not be desirable for a general-purpose bridging model to incorporate
these features of tresP, as argued in Section 3.2.

Fortunately, many of thespalgorithms reported in the literature have simple com-
munication patterns that map onto th&v by the simple strategy described above. Also,
as shown in the next subsection, there is a randomized strategy that can nmegrany
algorithm onto thepsmin a work-preserving manner, provided a logarithmic slowdown
is acceptable.

6.5. A Work-Preserving Emulation esPonQsm

In this section we describe a randomized work-preserving emulationretamponent
BSP on aQsM with O(lg n) slowdown that works with high probability in (i.e., the
probability of failure is ¥n®, for somes > 0). For this emulation we assume that the
input is distributed across the local memories of¢ise processors in the same manner
as in thesspalgorithm.

In the emulation we use the shared memory of ¢ise! only for the purpose of

Can a Shared-Memory Model Serve as a Bridging Model for Parallel Computation? 353

realizing theh-relation performed by thesp in each step, and eaatsm processor

copies into its private memory any message that was sent to the local memory of the
correspondingspPprocessor in that step. The algorithm is reminiscent of a randomized
CRQW PRAMalgorithm for integer sorting given in [34]. It proceeds by using the shared
memory to sort the messages being sent in the current step according to their destination.
Each processor then reads the messages being sent to it from an appropriate subarray
in the shared memory and writes it into the corresponding location in its local memory.
The details of the emulation algorithm are given below.

1. Compute the total number of messad@sto be sent by all processors as follows:
Construct an array;[1..n] in shared memory, wittA[i] containing the number
of messages being sent by processand computé/ as the sum of the elements
in this array. This step can be performed deterministicali@g g n) time and
O(M + g - n) work (note thatM < n - h, whereh is the maximum number of
messages sent or received by any processor iBgmstep).

If M > n/Ign, then execute steps 2—9 below.

2. Construct a samplgof the messages to be sent by choosing each message inde-
pendently with probability 2lg® M. The size of the sample will b®(M/Ig® M)

w.h.p.

3. Sortthe sample deterministically according to destination using a standard sorting
algorithm, e.g., Cole’s merge-sort; this tak®&y Ig M) time andO(g- M /Ig? M)
work.

4. Group the destinations into groups of sizé My and determine the number
of messages destined for each group. This can be computed by a prefix sums
computation that take®(glg M) time andO(gM) work.

5. Letk; be the number of elements in the sample destined fori tthegroup.
Obtain a high probability bound on the total number of messages to each group
asri = O(maxki, 1) - Ig®M). Make Ig' M copies of each;, and place the
duplicate values of thg in an arrayR[1..n] such thatR][i] contains the bound
for the group that contains destinatiorl < i < n. This step can be performed
in O(g(1+Iglg M/Ig g)) time andO(ng) work using a broadcasting algorithm
for eachr;.

. In parallel, for eacln, all processors with a message to a destinaticead the
value of this bound fronR[i]; this takes time< ghandO(g - M) work.

. Use an algorithm for multiple compaction to get the messages in each group
into a linear-sized array for that group; this takegylg M) time andO(g - M)
work by the adaptation of the randomizedQw PrRAM algorithm for multiple
compaction given in [34] to thesm using Observation 6.2.

8. Perform a stable sort within each group according to the individual destination;
this can be performed i®(glg M) time andO(gM) work deterministically
using anEREW PRAMradix-sort algorithm within each group.

9. Move the messages into an output afrRyf sizeM sorted according to destina-
tion in O(gh) time andO (M) work. Create an arraB of sizen that contains the
number of messages to each destination, and the starting point in the output array
for messages to that destination; this can be done by computing prefix sums on

»

~

354 P. B. Gibbons, Y. Matias, and V. Ramachandran

an appropriatél-array and take®(glg M) time andO(g- M) work. Processor
i reads this value fromB[i] and then reads the messages destined for it from the
output array in timeD(gh) and workO(g - M).

If M < n/Ign, thenwe sortthe messages deterministically according to their destination;
this takes timeD (g Ig n) and O(gn) work. We then perform step 9 above.

SinceM < n - h, the abovegsm algorithm runs inO(g(h + Ign)) time while
performing O(ghn) work. High-probability bounds for the randomized steps in the
above algorithm are shown in [34]. SincesProutes arh-relation inO(gh + L) time
while performingO(n(gh + L)) work, this is a work-preserving emulation ofsgp
h-relation, with a slowdown 0©O(1+ Ign/(h + L/Q)).

In summary we have the following result.

Lemma 6.4. Consider a step of an n-compona#r with gap g and latency L that
involves routing an h-relatiarOn aQsmwith gap parameter g this step can be emulated
with high probability in n in a work-preserving manner with a slowdown afL@
lgn/(h+L/9)).

The probability that the emulation will fail to perform according to the stated bounds
is less than An?, for somes > 0, whose value depends on parameters of the algorithm
such as the constants in the sizes of arrays used in steps 5 and 7. Ties®,afgorithm
takes no more thamr steps, for any, 0 < ¢ < §, then the probability that the emulation
of any one of its steps on @sm fails is polynomially small inn. This leads to the
following theorem.

Theorem 6.5. An algorithm that runs in time(h) on an n-componergsp with gap
parameter g and periodicity factor,lwhere t(n) < c-n”, for some constants ¢ > 0,
can be emulated with high probability onggsm with the same gap parameter g to run
in time O(t(n) - [glgn/L7) with n/[glgn/L7 processors when & g, and otherwise
in time O(t(n) - Ig n) with n/Ig n processors

6.6. On the Queuing Memory Contention Rule for them

We note that a work-preserving emulation oBsP with g = 1 is not known on the
EREW PRAMIf the slowdown is to be bounded hyolylog(n). If such an emulation is
discovered, it will give rise to randomized linear work polylog time algorithms on the
EREW PRAMfor certain problems, such as computing a random permutation, for which
such an algorithm is not known currently. Therefore, even thoughemesy PRAM is
often referred to as a stronger model thanghe its expressive power may actually be
inferior, in some cases.

On the other hand, for the more powerf®@cw PRAMthere appears to be a mismatch
in the reverse direction since no work-preserving emulation@®@w PRAMON aBSP
with g = 1 is known if the slowdown is to be bounded pwlylog(n). Thus, if either
the EREW PRAMOr theCRCW PRAMIS augmented with the gap parameter, the resulting
model is not known to have as strong a correspondence &stres we have shown for

Can a Shared-Memory Model Serve as a Bridging Model for Parallel Computation? 355

the @sm. In other words, the queuing memory contention rule forghe, in contrast
to the exclusive or concurrent rules, is crucial in order for it to serve as a bridging
shared-memory model.

7. Gap Parameter at Memory

TheQsMhas a gap parametgmat the processors, but no gap parameter at the memory—
each request at memory is serviced in unit time once it reaches the head of its queue.
One could argue that another gap paramefer processing memory accesses would be

a desirable feature in a general-purpose model, since many currently available parallel
machines have different gap parameters at processors and at memory banks. We refer to
this model a®sm(g, d). The following result is shown in [64].

Observation 7.1[64]. Thereis adeterministic work-preserving emulatiogefi(g, d’)
on Qsm(g, d) with slowdown @[d/d'7).

The above observation shows that very little generality is lost in assuming that
the gap parameter at memory is 1 rather than some other galtliee only potential
drawback is that an algorithm designed for th&v(g, 1) (which is the standardsm
model) may not achieve the full level of speed-up attainablesw(g, d), due to the
slowdown in the emulation mentioned in the observation. The advantage in not having
a gap parametat at memory is that we have a simpler model with fewer parameters.
We believe that the simplicity achieved in not having a gap parandetdémemory far
outweighs the drawback of not achieving the best possible speed-up for a specific value
of d.

We define thes-Qsm (the symmetricQsm) to be the mode@sm(g, g). This is the
special case ajsm(g, d) with the same gap parametgat both processors and memory.
This model has the same number of parameters a®$ive and could serve as an
alternative to theysm. The main difference between the two models is the asymmetry
in the application of the gap parameter at processor and memory in the cas@ekithe
versus the symmetry in this application in th@sm. As a result, the fastest speed-up
achievable for a given problem can be slightly different in the two models, e.g., on the
s-QsM broadcasting a bit to memory locations has the tight time bound®(fg Ig n) in
contrast to the tight bound éf(g Ig n/Ig g) for theQsm. (Several other lower bounds for
QsSMands-Qsm are given in [54].) However, except for this difference, s and the
s-QsM are essentially interchangeable models. Specificallyptwecan emulate the-
QsmMwith no slowdown and, as follows from Observation 7.1, there is a work-preserving
emulation of thepsm on thes-Qsm with slowdownO(g).

8. Conclusion
Developing effective models for parallel computation, at suitable levels of abstraction,

remains a fundamental challenge in parallel processingeShandLogr models have
gained considerable popularity as high-level “bridging models” for parallel computation,

356 P. B. Gibbons, Y. Matias, and V. Ramachandran

and indeed they have many attractive features and have proven to be effective in many
scenarios. We have described a new model, the Queuing Shared-Meyasijynfodel,

which in many cases may be an attractive alternative as a bridging model for parallel
computation. In contrast to ttespandLogr models, thegsm model provides a shared-
memory abstraction. The model has a simple queuing metric for shared-memory access,
and only two parametersg; the number of processors, agdthe bandwidth gap—

yet it can be efficiently emulated on both tBep and (d, x)-BsP models, using an
arguably practical emulation. Thus them can be effectively realized on machines that
can effectively realize thesp, as well as on machines that are better modeled by the
(d, x)-Bsp. We have presented evidence that both the queuing metric and the bandwidth
parameter are essential to themM's effectiveness as a bridging model. In addition, we
have described several algorithms for tfgv, as well as general strategies for mapping
EREW PRAM, QRQW PRAM andBspPalgorithms onto th@sm.

We conclude that a model such as tygm can serve the role of a bridging model
for parallel computation while preserving the high-level abstraction of a shared-memory
model. On the other hand, as discussed in this paper, there are tradeoffs in any bridging
model, and scenarios in which another moasiR Logp, etc.) may be preferred. Thus
the choice of a best bridging model remains open to debate.

Future research should consider further algorithmic technigues that may be useful
for this model, as well as experimental validation of the model. Such validation may
reveal the primary importance of features not present in eithep#ive BSP, or Logr.

For example, each of these models defines a single bandwidth parameter that reflects a
per-processor bandwidth limitation; other recent work has considered variants of these
models with an aggregate bandwidth limitation [1] or a hierarchical bandwidth limitation
that accounts for network proximity [52], [25], [26], [46], [73]. Per-processor bandwidth
limitations better model machines in which each processor has access to its “share”
of the network bandwidth and no more, as well as machines for which the primary
network bottleneck, in the absence of hot-spots, is in the processor-network interface.
As a second example, each of these models ignores the memory hierarchy at a processor,
assuming a unit-time charge for local operations regardless of the local working set
size. A possible feature to consider is to limit the size of the private memories on
the @swm, or to have two levels of memory hierarchy on tgr or Logp. Third, as
discussed in Section 4, each of these models disregards spatial locality. Variants of
the Bsp and Logp that account for spatial locality include [44],[5], [46], and [11]. In
machines supporting a single address space, the unit of data transfer between components
is typically either a cache line or a page, and hence opportunities to exploit spatial locality
are restricted to that level of granularity. A possible enhancement faytkievould be

to have the shared memory partitioned into small, fixed-sized blocks of locations that
could be accessed efficiently; the realization of suapss on a distributed-memory
machine would map these blocks pseudorandomly onto the memory banks. Finally, each
of these models ignores the effects of the cache coherence protocol used in most shared-
memory multiprocessors to maintain consistency among the various cached copies of
shared-memory data. It would be interesting to studysa model that incorporates

and accounts for a standard invalidation-based cache coherence protocol [40]. Should
it become necessary to include additional features as part of a bridging modgsmhe

may be more suited for augmentation thangbeor Logp, since it is simpler, with fewer
parameters.

Can a Shared-Memory Model Serve as a Bridging Model for Parallel Computation? 357

References

[1] M. Adler, P. B. Gibbons, Y. Matias, and V. Ramachandran. Modeling parallel bandwidth: local vs.
global restrictions. IrProc. 9th ACM Sympon Parallel Algorithms and Architecturepages 94-105,
June 1997.

[2] A.Aggarwal, A. K. Chandra, and M. Snir. On communication latency in PRAM computatiofsoln
1st ACM Sympon Parallel Algorithms and Architecturepages 11-21, June 1989.

[3] A.Aggarwal, A.K.Chandra, and M. Snir. Communication complexity of PRAMmoretical Computer
Science71(1):3-28, 1990.

[4] M. Ajtai, J. Komlos, and E. Szemeredi. Sortingdig n parallel stepsCombinatorica3(1):1-19, 1983.

[5] A. Alexandrov, M. F. lonescu, K. E. Schauser, and C. Sheiman. LogGP: incorporating long messages
into the LogP model—one step closer towards a realistic model for parallel computat®mclrvth
ACM Sympon Parallel Algorithms and Architecturepages 95-105, July 1995.

[6] B.Alpern,L.Carter,and E. Feig. Uniform memory hierarchie®iloc. 31st IEEE Symyon Foundations
of Computer Scien¢pages 600—608, October 1990.

[7] R.J. Anderson and G. L. Miller. Optical Communication for Pointer Based Algorithms. Technical
Report CRI 88-14, Computer Science Department, University of Southern California, Los Angeles,
CA, 1988.

[8] Y. Aumann and M. O. Rabin. Clock construction in fully asynchronous parallel systems and PRAM
simulation. InProc. 33rd IEEE Sympon Foundations of Computer Scienpages 147-156, October
1992.

[9] A. Bar-Noy, J. Bruck, C. T. Ho, S. Kipnis, and B. Schieber. Computing global combine operations in
the multi-port postal model. Iffroc. 5th IEEE Sympon Parallel and Distributed Processingages
336-343, December 1993.

[10] A.Bar-Noy and S. Kipnis. Designing broadcasting algorithms in the postal model for message-passing
systems. IrProc. 4th ACM Sympon Parallel Algorithms and Architecturepages 13-22, June—July
1992.

[11] A. Baumker and W. Dittrich. Fully dynamic search trees for an extension of the BSP moékebdn
8th ACM Sympon Parallel Algorithms and Architecturepages 233-242, June 1996.

[12] A. Baumker, W. Dittrich, and F. Meyer auf der Heide. Truly Efficient Parallel Algorithms: 1-Optimal
Multisearch for an Extension of the BSP Model. Technical Report, University of Paderborn, 1996.

[13] P. Beame and J.astad. Optimal bounds for decision problems on the CRCW PRJMinal of the
ACM, 36(3):643-670, July 1989.

[14] G. E. Blelloch.Vector Models for Data-Parallel Computinghe MIT Press, Cambridge, MA, 1990.

[15] G. E. Blelloch. Programming parallel algorithn@ommunications of the ACN89(3):85-97, 1996.

[16] G. E. Blelloch, P. B. Gibbons, Y. Matias, and M. Zagha. Accounting for memory bank contention
and delay in high-bandwidth multiprocessdEEE Transactions on Parallel and Distributed Systems
8(9):943-958, 1997. Preliminary version appearBiioc. 7th ACM Sympon Parallel Algorithms and
Architectures pages 84-94, July 1995.

[17] G. E. Blelloch, P. B. Gibbons, Y. Matias, and M. Zagha. Accounting for memory bank contention
and delay in high-bandwidth multiprocessd&EE Transactions on Parallel and Distributed Systems
8(9):943-958, 1997.

[18] G.E.Blelloch, C.E. Leiserson, B. M. Maggs, C. G. Plaxton, S. J. Smith, and M. Zagha. A comparison of
sorting algorithms for the Connection Machine CM-2Plroc. 3rd ACM Sympon Parallel Algorithms
and Architecturespages 3-16, July 1991.

[19] R.Cole. Parallel merge so&IAM Journal on Computind.7(4):770-785, 1988.

[20] R. Cole and O. Zajicek. The APRAM: incorporating asynchrony into the PRAM modélrdn 1st
ACM Sympon Parallel Algorithms and Architecturepages 169-178, June 1989.

[21] R. Cole and O. Zajicek. The expected advantage of asynchroRyom 2nd ACM Sympon Parallel
Algorithms and Architecturepages 85-94, July 1990.

[22] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos, R. Subramonian, and T. von
Eicken. LogP: towards a realistic model of parallel computatioRrbt. 4h ACM SIGPLAN Sympn
Principles and Practices of Parallel Programmingages 1-12, May 1993.

[23] R. Cypher and S. Konstantinidou. Bounds on the efficiency of message-passing protocols for parallel

computers. IProc. 5th ACM Sympon Parallel Algorithms and Architecturgsages 173-181, June—July
1993.

358

[24]

[25]
[26]
[27]
[28]
[29]
[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]
[38]
[39]
[40]
[41]
[42]
[43]
[44]

[45]
[46]

[47]

[48]

[49]

P. B. Gibbons, Y. Matias, and V. Ramachandran

A. Czumaj, Z. Galil, L. Gasieniec, K. Park, and W. Plandowski. Work-time-optimal parallel algorithms
for string problems. IrProc. 27th ACM Sympon Theory of Computingpages 713-722, May-June
1995.

P.delaTorre and C. P. Kruskal. Towards a single model of efficient computation in real parallel machines.
Future Generation Computer Syster8s395-408, 1992.

P. de la Torre and C. P. Kruskal. Submachine locality in the bulk synchronous settigdrEuro-

Par '96, pages 352-358, August 1996.

M. Dietzfelbinger and F. Meyer auf der Heide. Simple, efficient shared memory simulatiofsdn

5th ACM Sympon Parallel Algorithms and Architecturepages 110-119, June—July 1993.

C. Dwork, M. Herlihy, and O. Waarts. Contention in shared memory algorithmBrda 25h ACM
Sympon Theory of Computingages 174-183, May 1993.

S. Fortune and J. Wyllie. Parallelism in random access machin®sotn10th ACM Sympon Theory

of Computingpages 114-118, May 1978.

A. V. Gerbessiotis and L. Valiant. Direct bulk-synchronous parallel algoritdmsnal of Parallel and
Distributed Computing22:251-267, 1994.

K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. Hennessy. Memory consistency
and event ordering in scalable shared-memory multiprocessoPsotn 17th International Sympon
Computer Architecturgpages 1526, May 1990.

P. B. Gibbons. A more practical PRAM model. Rroc. 1st ACM Sympon Parallel Algorithms and
Architecturespages 158-168, June 1989. Full version in The Asynchronous PRAM: a semi-synchronous
model for shared memory MIMD machines, Ph.D. thesis, University of California, Berkeley 1989.

P. B. Gibbons. What good are shared-memory model&tdn 1996/CPP Workshop on Challenges

for Parallel Processingpages 103—-114, August 1996. Invited position paper.

P. B. Gibbons, Y. Matias, and V. Ramachandran. Efficient low-contention parallel algoritborsal

of Computer and System Sciendg®(3):417-442, 1996. Special issue devoted to selected papers from
the 1994 ACM Symp. on Parallel Algorithms and Architectures.

P. B. Gibbons, Y. Matias, and V. Ramachandran. The Queue-Read Queue-Write Asynchronous PRAM
model.Theoretical Computer SciencEd6:3-29, 1998.

P. B. Gibbons, Y. Matias, and V. Ramachandran. The Queue-Read Queue-Write PRAM model: account-
ing for contention in parallel algorithm&IAM Journal on Computindl999. To appear. Preliminary
version appears iRroc. 5th ACM-SIAM Sympmn Discrete Algorithmspages 638—648, January 1994.

M. Goodrich. Communication-efficient parallel sorting.Rroc. 28th ACM Sympon Theory of Com-
puting, pages 247-256, May 1996.

J. Greiner. A comparison of data-parallel algorithms for connected componeteclth ACM Symp

on Parallel Algorithms and Architecturepages 16—-25, June 1994.

S. Hambrusch and A. Khokhar.3Can architecture-independent model for coarse-grained parallel
machines. IrProc. 6th IEEE Sympon Parallel and Distributed Processingages 544-551, 1994.

J. Hennessy and D. Patters@umputer ArchitectureA Quantitative Approactsecond edition. Morgan
Kaufmann, San Francisco, CA, 1996.

T. Heywood and S. Ranka. A practical hierarchical model of parallel computation: I. The riodeial

of Parallel and Distributed Computing 6:212-232, 1992.

T.-S. Hsu, V. Ramachandran, and N. Dean. Parallel implementation of algorithms for finding con-
nected components in graphs.Pnoc. AMS/DIMACS Parallel Implementation Challenge Workshop

IIl, pages 395-416. DIMACS Series. American Mathematical Society, Providence, RI, 1997.

J. HH. An Introduction to Parallel AlgorithmsAddison-Wesley, Reading, MA, 1992.

J. HH and K. W. Ryu. The Block Distributed Memory Model. Technical Report UMIACS-TR-94-5,
Institute for Advanced Computer Studies, University of Maryland, College Park, MD, January 1994.

B. H. H. Juurlink. Ph.D. Thesis, Leiden University, 1996.

B. H. H. Juurlink. and H. A. G. Wijshoff. The E-BSP model: incorporating general locality and unbal-
anced communication into the BSP Model Rroc. Euro-Par '96, pages 339-347, August 1996.

R. Karp, A. Sahay, E. Santos, and K.E. Schauser. Optimal broadcast and summation in the LogP model.
In Proc. 5th ACM Sympon Parallel Algorithms and Architecturepages 142-153, June—July 1993.

R. M. Karp and V. Ramachandran. Parallel algorithms for shared-memory machines. In J. van Leeuwen,
editor, Handbook of Theoretical Computer Sciengelume A, pages 869-941. Elsevier, Amsterdam,
1990.

Z. M. Kedem, K. V. Palem, M. O. Rabin, and A. Raghunathan. Efficient program transformations for

Can a Shared-Memory Model Serve as a Bridging Model for Parallel Computation? 359

[50]
[51]
[52]
(53]

[54]

[55]
[56]
[57]

(58]

[59]
[60]
[61]
[62]
[63]
[64]

[65]
(66]

[67]
[68]
(69]
[70]
[71]
[72]

(73]

resilient parallel computation via randomization.Rroc. 24h ACM Sympon Theory of Computing
pages 306-317, May 1992.

K. Kennedy. A research agenda for high performance computing softwabeveloping a Computer
Science Agenda for High-Performance Computjpeges 106—-109. ACM Press, New York, 1994.

F. T. Leighton.Introduction to Parallel Algorithms and ArchitectureArrays - Trees- Hypercubes
Morgan Kaufmann, San Mateo, CA, 1992.

C. E. Leiserson and B. M. Maggs. Communication-efficient parallel algorithms for distributed random-
access machineslgorithmica 3(1):53-77, 1988.

P. Liu, W. Aiello, and S. Bhatt. An atomic model for message-passin@rdae. 5th ACM Sympon
Parallel Algorithms and Architecturepages 154-163, June—July 1993.

P. D. MacKenzie and V. Ramachandran. Computational bounds for fundamental problems on general-
purpose parallel models. Rroc. 10th ACM Sympon Parallel Algorithms and Architecturepages
152-163, June-July 1998.

B. M. Maggs, L. R. Matheson, and R. E. Tarjan. Models of parallel computation: a survey and synthesis.
In Proc. 28h Hawaii International Confon System Sciencgsages II: 6170, January 1995.

Y. Mansour, N. Nisan, and U. Vishkin. Trade-offs between communication throughput and parallel time.
In Proc. 26th ACM Sympon Theory of Computingages 372-381, 1994.

C. Martel, A. Park, and R. Subramonian. Work-optimal asynchronous algorithms for shared memory
parallel computersSIAM Journal on Computin@1(6):1070-1099, 1992.

R.P.Martin, A. M. Vahdat, D. E. Culler,and T. E. Anderson. Effects of communication latency, overhead,
and bandwidth in a cluster architecture.Rroc. 24th International Sympon Computer Architecture
pages 8597, June 1997.

W. F. McColl. A BSP Realization of Strassen’s Algorithm. Technical Report, Computing Laboratory,
Oxford University, May 1995.

K. Melhorn and U. Vishkin. Randomized and deterministic simultaitons of PRAMSs by parallel machines
with restricted granularity of parallel memorig&cta Informatica 21:339-374, 1984.

N. Nishimura. Asynchronous shared memory parallel computatid®rda 2nd ACM Symyon Parallel
Algorithms and Architecturepages 76—84, July 1990.

M. H. Nodine and J. S. Vitter. Large-scale sorting in parallel memorieBrde. 3rd ACM Sympon
Parallel Algorithms and Architecturepages 29-39, July 1991.

P. Raghavan. Probabilistic construction of deterministic algorithms: approximating packing integer
programsJournal of Computer and System Scien@&3s130-143, 1988.

V. Ramachandran. A general purpose shared memory model for parallel computattdgodithms

for Parallel ProcessingVol. 105. IMA Volumes in Mathematics and Its Applications. Springer-Verlag,
New York, in press.

J. H. Reif, editorA Synthesis of Parallel AlgorithmMorgan Kaufmann, San Mateo, CA, 1993.

J. H. Reif and S. Sen. Randomized algorithms for binary search and load balancing on fixed con-
nection networks with geometric applications.Rroc. 2nd ACM Sympon Parallel Algorithms and
Architectures pages 327-337, July 1990.

B. Smith. Invited lecture, 7th ACM Symp. on Parallel Algorithms and Architectures, July 1995.

P. Stenstin, T. Joe, and A. Gupta. Comparative performance evaluation of cache-coherent NUMA and
COMA architectures. IfProc. 1%th International Sympon Computer Architecturgpages 80-91, May
1992.

L. G. Valiant. A bridging model for parallel computaticBommunications of the ACN33(8):103-111,

1990.

L. G. Valiant. General purpose parallel architectures. In J. van Leeuwen, étfitathbook of Theoretical
Computer Scienc&/olume A, pages 943-972. Elsevier, Amsterdam, 1990.

U. Vishkin. A parallel-design distributed-implementation (PDDI) general purpose comphéanetical
Computer Scien¢82:157-172, 1984.

J. S. Vitter and E. A. M. Shriver. Optimal disk 1/0O with parallel block transferPhac. 22nd ACM
Sympon Theory of Computingages 159-169, May 1990.

H. A. G. Wijshoff and B. H. H. Juurlink. A quantitative comparison of parallel computation models. In
Proc. 8th ACM Sympon Parallel Algorithms and Architecturepages 13-24, June 1996.

Received Novembéd, 1997 and in final form Septemb&1, 1998.

