
Theory Comput. Systems32, 327–359 (1999) Theory of
Computing

Systems
© 1999 Springer-Verlag

New York Inc.

Can a Shared-Memory Model Serve as a Bridging Model for
Parallel Computation?∗

P. B. Gibbons,1 Y. Matias,1 † and V. Ramachandran2

1Information Sciences Research Center, Bell Laboratories (Lucent Technologies),
600 Mountain Avenue, Murray Hill, NJ 07974, USA
gibbons@research.bell-labs.com

2Department of Computer Sciences, University of Texas at Austin,
Austin, TX 78712, USA
vlr@cs.utexas.edu

Abstract. There has been a great deal of interest recently in the development
of general-purpose bridging models for parallel computation. Models such as the
BSPandLogP have been proposed as more realistic alternatives to the widely used
PRAM model. TheBSPandLogP models imply a rather different style for designing
algorithms when compared with thePRAM model. Indeed, while many consider data
parallelism as a convenient style, and the shared-memory abstraction as an easy-
to-use platform, the bandwidth limitations of current machines have diverted much
attention to message-passing and distributed-memory models (such as theBSPand
LogP) that account more properly for these limitations.

In this paper we consider the question of whether a shared-memory model can
serve as an effective bridging model for parallel computation. In particular, can a
shared-memory model be as effective as, say, theBSP? As a candidate for a bridging
model, we introduce the Queuing Shared-Memory (QSM) model, which accounts
for limited communication bandwidth while still providing a simple shared-memory
abstraction. We substantiate the ability of theQSM to serve as a bridging model by
providing a simple work-preserving emulation of theQSM on both theBSP, and on a
related model, the(d, x)-BSP. We present evidence that the features of theQSM are
essential to its effectiveness as a bridging model. In addition, we describe scenarios

∗ A preliminary version of this paper appeared inProc. 9th ACM Symp. on Parallel Algorithms and
Architectures, pages 72–83, June 1997. The third author was supported in part by NSF Grant CCR/GER-90-
23059.

† Current address: Tel-Aviv University, Ramat Aviv, Tel-Aviv 69978, Israel. matias@math.tau.ac.il.

328 P. B. Gibbons, Y. Matias, and V. Ramachandran

in which the high-levelQSMmore accurately models certain machines than the more
detailedBSPandLogP models. Finally, we present algorithmic results for theQSM,
as well as general strategies for mapping algorithms designed for theBSPor PRAM

models onto theQSM model. Our main conclusion is that shared-memory models
can potentially serve as viable alternatives to existing message-passing, distributed-
memory bridging models.

1. Introduction

A fundamental challenge in parallel processing is to develop effective models for parallel
computation, at suitable levels of abstraction. Effective and widely used models would
provide standards that could be relied upon by application programmers, algorithm
designers, software vendors, and hardware vendors, making parallel machines cheaper
to build and easier to use. Effective models must balance simplicity, accuracy, and broad
applicability. In particular, a simple, “bridging” model, i.e., a model that spans the
range from algorithm design to architecture to hardware, is an especially desirable one.
A number of models for parallel computation have been proposed and studied in the
last 20 years. Primary among them are the parallel random access machine (PRAM)
model [29], [48], [43], [65], in which processors execute in lock-step and communicate by
reading and writing locations in a shared memory, and network-based models (hypercube,
butterfly, arrays, etc. [51]), in which processors communicate by sending messages to
their neighbors in the given network. ThePRAM model, although simple and well suited
for developing parallel algorithms, is considered by many to be too high level, failing
to model parallel machines accurately. Network-based models are considered by many
to be too low level, failing to be broadly applicable, and not reflective of the current
generation of parallel machines. Thus, a number of alternative, intermediate models
have been proposed and studied in recent years. These abstract models differ in what
aspects of parallel machines are exposed. Some focus on dealing with asynchrony in
a shared-memory context (e.g., [8], [20], [21], [28], [32], [35], [49], [57], and [61]).
Others focus on accounting for the overheads in accessing the shared memory [2], [3],
[25], [32], [41], [44], [52], [56] or in sending messages [5], [9], [10], [22], [23], [39],
[53], [55], [69]. Several models are primarily concerned with the memory hierarchy,
especially disk I/O [6], [62], [72]). Others focus on contention at the memory location
[28], [36] or memory module [60], [7], [27]. Finally, a few models incorporate powerful
aggregate communication primitives [14], [18].

Given this plethora of models, it is natural to seek to distinguish a few models with
the most promise, and concentrate on these models. Advocates such as Vishkin [71],
Kennedy [50], Smith [67], and Blelloch [15] have long presented arguments in support
of the shared-memory abstraction. On the other hand, shared-memory models have
been criticized for years for failing to model essential realities of parallel machines. In
particular, thePRAM model has been faulted for completely failing to model bandwidth
limitations of parallel machines. Until recently, there were few attractive alternatives,
so shared-memory models such as thePRAM remained the most widely used models for
the design and analysis of parallel algorithms (see, e.g., [43], [48], and [65]). However,
in the last few years, new alternatives such as theBSP[69] andLogP [22] models have

Can a Shared-Memory Model Serve as a Bridging Model for Parallel Computation? 329

gained considerable popularity. These abstract network models support point-to-point
message-passing, can directly support a distributed-memory abstraction, and account
for bandwidth limitations using a parameter,g ≥ 1, that reflects thegap between the
local instruction rate and the communication rate. Given these new, more realistic models,
there is a temptation to declare all shared-memory models too unrealistic, and not worthy
of further study or consideration.

In this paper we challenge this perception and consider the question of whether
a shared-memory model can in fact serve as an effective bridging model for parallel
computation. In particular, can a shared-memory model be as effective as, say, theBSP?
As a candidate for a bridging model, we introduce the Queuing Shared-Memory (QSM)
model, which accounts for limited communication bandwidth while still providing a
simple shared-memory abstraction. In a nutshell, theQSM model consists of processors
with individual private memory as well as a global shared memory. Access to shared
memory is more expensive than access to local memory or a computation step, as char-
acterized by a gap parameter,g, reflecting bandwidth limitations. The choice of theQSM

model is based on the observation that while overheads due to latency, synchronization,
and memory granularity can be effectively diminished by using slackness and pipelining,
the bandwidth overhead is inherent and hence should be accounted for directly. Thus,
the QSM is envisioned as a “minimal” shared-memory model that can be competitive
with theBSP. Similarly, the memory contention rule of theQSMis the queuing contention
rule, as in theQRQW PRAM[36]. This rule is strong enough to provide theQSM with an
expressive power comparable with that of theBSP, but it is not too strong to prevent a
fast and efficient emulation of theQSM on theBSPwith the techniques we use.

As advocated in [69], [71], and elsewhere, one reasonable goal for a high-level,
shared-memory model is that it allows for efficient emulation on lower-level, seemingly
more realistic, models. If the overheads in the emulation are small, then the high-level
model becomes an attractive general-purpose bridging model. We substantiate the ability
of theQSMto serve as a bridging model by providing a simple work-preserving emulation
of theQSM on both theBSP, and on a related model, the(d, x)-BSP[16], and arguing for
the practicality of this emulation. Thus theQSM can be effectively realized on machines
that can effectively realize theBSP, as well as on machines that are better modeled by the
(d, x)-BSP. We also describe scenarios in which the high-levelQSM is more suited for
analyzing algorithms on certain machines than the more detailedBSPandLogP models,
due to the fact that the memory layout is different than the one perceived by theBSPand
LogP.

We present several algorithmic results for theQSM. We note that anyEREW [48] or
QRQW PRAMalgorithm can be mapped onto theQSM with a factor ofg increase in time
and work, whereg is the bandwidth (gap) parameter of theQSM. We also show that for
many linear-workQRQW PRAMalgorithms, this increase in work in theQSM algorithm
is unavoidable, and we present some other lower bounds for theQSM. We consider the
mapping of theBSP onto theQSM when the bandwidth parameter,g, is the same for
both models. We show that many, though not all,BSP algorithms map onto theQSM

step-by-step, resulting in algorithms whose time and work bounds match the bounds
on aBSP whose latency parameter,L, is set to 1. We also present a work-preserving
randomized emulation of theBSPon theQSM with a logarithmic slowdown. This result
implies that anyn-processorBSPalgorithm that takes timet (n) (whenL is set to 1) can

330 P. B. Gibbons, Y. Matias, and V. Ramachandran

be mapped onto theQSM to run in timeO(t (n) lg n) w.h.p. usingn/lg n processors, and
more generally on ap-processorQSM to run in timeO(t (n) · (n/p+ lg n)) w.h.p.

Our main conclusion is that shared-memory models can potentially serve as viable
alternatives to existing message-passing or distributed-memory bridging models. While
this paper focuses on a shared-memory model that would be competitive with theBSP,
a similar approach can be taken with regard to other message-passing bridging models
mentioned above (or others), that may emphasize other features than the ones emphasized
by theBSP.

The rest of the paper is organized as follows. Some advantages of shared-memory
models as bridging models are discussed in Section 2. In Section 3 we describe theQSM

model, and qualitatively compare it with previous models, and, in particular, with the
BSP. In Section 4 we present work-preserving emulations of theQSM on theBSPand on
the(d, x)-BSP, and discuss the practicality of these emulations. In Section 5 we provide
a few scenarios where theQSM is a more accurate model than the more detailedBSP

andLogP. Section 6 presents algorithmic results and issues related to algorithm design
on theQSM. Section 7 explores the merits of incorporating into theQSM model distinct
bandwidth gaps at the processors and the memories.

Finally, we refer the reader to the position paper [33], which provides a nontechnical
overview of much of this work in arguing the importance of shared-memory models in
general and theQSM model in particular.

2. Advantages of Shared-Memory Models as Bridging Models

A bridging model should provide an abstraction that is on the one hand easy to use by
algorithm designers and programmers, and on the other hand can be realized by hardware
and system software at a variety of price versus performance points. In this section we
describe several contexts under which the shared-memory abstraction is an attractive
choice for a bridging model in this regard.

We consider a (pure) shared-memory model to be one in which the processors com-
municate by reading and writing locations in a shared memory that is equally accessible
by all processors. The shared memory is viewed as a collection of independent cells:
the contention encountered in accessing a shared memory cell is a function only of the
number of processors also accessing the same cell. There is no visible partitioning of the
memory, and no sources of contention due to such partitioning. ThePRAM is a classic
example of a shared-memory model.

The shared-memory abstraction refers to the interprocessor communication. As
part of its local private state, a processor may have additional memory such as registers,
buffers, cache, and local memory banks. A shared-memory model may be asynchronous.
It may also have explicit charges for communication, modeling various overheads in
reading or writing a shared memory that is not local to, and may be physically quite
remote from, the processor requesting the read or write. Thus it is a mistake to view
“shared-memory model” as a synonym forPRAM.

The shared-memory abstraction is arguably easier to use than a message-passing or
distributed-memory abstraction, and, in certain important contexts, can be realized by
a wider range of machines. In what follows, we elaborate on three of the advantages

Can a Shared-Memory Model Serve as a Bridging Model for Parallel Computation? 331

of the shared-memory abstraction over the message-passing and distributed-memory
abstractions.

Smooth Transition from Sequential to SMP to MPP. The shared-memory abstraction
is similar to the view of memory in sequential programming (the familiar read/write
semantics). It is also the abstraction of choice for the small symmetric multiprocessors
(SMPs) found in current microprocessors. There are high-performance parallel machines
such as the Cray C90, Cray J90, and Tera MTA that also directly support a shared-memory
abstraction. Thus as a bridging model, it provides for the smoothest transition from
sequential programming to programming small SMPs to programming larger parallel
machines (MPPs). Code can be debugged on a smaller, simpler, and cheaper machine,
before running it on a larger, more expensive machine; this will often significantly reduce
the overall debugging time. In short, the shared-memory abstraction offers ease of use
in designing algorithms and programs that span a variety of machine sizes, and it has
also been realized by machines that span a variety of machine sizes. This contrasts with
message-passing and explicit distributed-memory, which are not directly supported by
any sequential machine or SMP.

Portability Across Memory Architectures. The shared-memory abstraction is also at-
tractive for developing algorithms that span a variety of memory architectures. Since the
layout of memory is hidden in the model, the target machine can support the model in
a variety of ways beyond that made visible in message-passing or distributed-memory
machines. For example, the target machine may choose to map memory locations dy-
namically to processors as the computation proceeds, as in a cache-only memory archi-
tecture (COMA) [68]. In general, the target machine is free to implement a variety of cache
and memory consistency protocols (e.g., [31]), since the model does not presuppose a
particular memory layout. The shared-memory abstraction is more relevant to parallel
machines, such as the Cray C90, Cray J90, SGI Power Challenge, and Tera MTA, that
have many more memory banks than processors in order to compensate for the slow
cycle times of memories. This point is addressed further later in the paper in Section 5.

Important Platform for Algorithmic Ideas. Finally, it is evident that a simple model
with a shared-memory abstraction provides a useful platform for studying fundamen-
tal algorithmic issues. Many algorithms for more complex models are adaptations of
algorithms first developed for a simple shared-memory model. There are numerous ex-
amples, covering a wide range of problem domains, including sorting [18], [30], [44],
[37], connected components [38], [42], computational geometry [66], FFT [22], and
string matching [24]. Designing an algorithm directly for the more complex model is
typically a more daunting task than first developing the algorithmic insights on a simple
shared-memory model and only then adapting them to the more complex model. Note
that for any algorithm designed for a high-level bridging model (whether shared-memory,
message-passing or distributed-memory), it may be desirable to consider a more com-
plex, lower-level model when making important performance-enhancing refinements.
The shared-memory abstraction is desirable when such refinements are not necessary
(i.e., whenever the algorithm performance is acceptable) since it is easier to use, and, as
discussed above, it is still useful even if such refinements are necessary.

332 P. B. Gibbons, Y. Matias, and V. Ramachandran

3. TheQSM Model

In this section we describe theQSM model, and elaborate on some of its features.

Definition 3.1. The QSM (Queuing Shared-Memory) model consists of a number of
identical processors, each with its own private memory, communicating by reading and
writing locations in a shared memory. Processors execute a sequence of synchronized
phases, each consisting of an arbitrary interleaving of the following operations:

1. Shared-memory reads: Each processori copies the contents ofri shared-memory
locations into its private memory. The value returned by a shared-memory read
can only be used in a subsequent phase.

2. Shared-memory writes: Each processori writes towi shared-memory locations.
3. Local computation: Each processori performsci RAM operations involving only

its private state and private memory.

Concurrent reads or writes (but not both) to the same shared-memory location are per-
mitted in a phase. In the case of multiple writers to a locationx, an arbitrary write tox
succeeds in writing the value present inx at the end of the phase.

The restrictions that (i) values returned by shared-memory reads cannot be used
in the same phase and that (ii) the same shared-memory location cannot be both read
and written in the same phase reflect the intended emulation of theQSM model on a
MIMD machine. In this emulation, the shared-memory reads and writes at a processor are
issued in a pipelined manner, to amortize against the delay (latency) on such machines in
accessing the shared memory, and could complete any time during the phase, although
they are not guaranteed to complete until the end of the phase. Thus, we do not allow a
value read from shared memory to be used during the phase since the value may not be
available until the end of the phase. Also if we allow a shared-memory location to be
both read and written in the same phase, then the value read could be either the initial
value or the updated value since we make no assumption about when a read or write
completes within the phase. On the other hand, each of the local compute operations are
assumed to take unit time in the intended emulation, and hence the values they compute
can be used within the same phase.

Each shared-memory location can be read or written by any number of processors
in a phase, as in a concurrent-read concurrent-writePRAM model; however, in theQSM

model, there is a cost for such contention. In particular, the cost for a phase will depend
on the maximum contention to a location in the phase, defined as follows.

Definition 3.2. The maximum contentionof a QSM phase is the maximum, over all
locationsx, of the number of processors readingx or the number of processors writing
x. A phase with no reads or writes is defined to have maximum contention one.

One can view the shared memory of theQSMmodel as a collection of queues, one per
shared-memory location; requests to read or write a location queue up and are serviced
one at a time. The maximum contention is the maximum delay encountered in a queue.
The cost for a phase depends on the maximum contention, the maximum number of

Can a Shared-Memory Model Serve as a Bridging Model for Parallel Computation? 333

local operations by a processor, and the maximum number of shared-memory reads or
writes by a processor. To reflect the limited communication bandwidth on most parallel
machines, theQSM model provides a parameter,g ≥ 1, that reflects thegapbetween the
local instruction rate and the communication rate.

Definition 3.3. ConsideraQSMphasewithmaximumcontentionκ. Letmop = maxi {ci }
for the phase, i.e., the maximum over all processorsi of its number of local operations,
and letmrw = max{1,maxi {ri , wi }} for the phase. Then the time cost for the phase is
max

{
mop, g ·mrw, κ

}
.1 Thetimeof aQSM algorithm is the sum of the time costs for its

phases. Theworkof a QSM algorithm is its processor–time product.

Note that although the model chargesg per shared-memory request at a given
processor (theg·mrw term in the cost metric), it only charges 1 per shared-memory request
at a given location (theκ term in the cost metric).2 Note also that our model considers
contention only at individual memory locations, not at memory modules. Even though
both of these features give more power to theQSM than would appear to be warranted
by current technology, our emulation results in Section 4 show that we can obtain a
work-preserving emulation of theQSM on theBSPwith only a modest slowdown. Thus,
these features do capture the computational power achievable by current technology.
The discussion in Section 4 provides some intuition for this rather surprising result.

The particular instance of theQSM model in which the gap parameter,g, equals 1 is
essentially the queue-read queue-write (QRQW) PRAM model defined by the authors [36].
Previous work on theQRQW PRAM[36], [34], [16] has been focused primarily on con-
tention issues, unlike this paper, which is primarily concerned with bridging models and
bandwidth issues.

3.1. Model Comparison

Table 1 compares theQSM model with a number of other models in the literature. The
first column of the table gives the name of the model. The second column indicates
the synchrony assumption of the model:Lock-stepindicates that the processors are fully
synchronized at each step, with no cost for the synchronization.Bulk-synchronyindicates
that there is asynchronous execution between synchronization barriers. Typically the
barriers involve all the processors, although this is not necessarily required. Models that
permit more general asynchrony are denoted asasynchronous.

The third column indicates the type of interprocessor communication assumed by
the model. A model is considered to beshared memoryonly if it meets the standards
for a pure shared-memory abstraction outlined in Section 2, i.e., that the memory is
viewed as a collection of independent cells that are equally accessible by all processors.
If the processors communicate by reading and writing locations in a memory that is
partitioned, the model is considered to be adistributed-memorymodel. For example, the

1 Alternatively, the time cost could bemop+ g ·mrw + κ; this affects the bounds by at most a factor of
3, and the results in [16] show that, at least for certain machines, taking the maximum is more accurate than
taking their sum.

2 This issue is explored further in Section 7.

334 P. B. Gibbons, Y. Matias, and V. Ramachandran

Table 1. A comparison of several models of parallel computation.

Model Synchrony Communication Parameters*

PRAM [29] Lock-step Shared memory p
Module Parallel Computer (MPC) [60] Lock-step Distributed memory p
LPRAM [3] Lock-step Shared memory p, `
PhaseLPRAM [32] Bulk-synchrony Shared memory p, `, s
XPRAM [70] Bulk-synchrony Message passing p, g, L
Bulk-Synchronous Parallel (BSP) [69] Bulk-synchrony Message passing p, g, L
Postal model [10] Asynchronous Message passing p, `
LogP model [22] Asynchronous Message passing p, g, `,o
QRQWAsynchronousPRAM [35] Asynchronous Shared memory p
QRQW PRAM[36] Bulk-synchrony Shared memory p
Block Distributed Memory (BDM) [44] Bulk synchrony Distributed memory p, g, L , B
PRAM(m) model [56] Lock-step Shared memory p,m
Interval model [55] Bulk synchrony Message passing p, I

Queuing Shared Memory (QSM) Bulk-synchrony Shared memory p, g

∗This column indicates the parameters of the model, wherep is the number of processors,` is the
communication latency (i.e., the time to deliver a message point-to-point or to access the shared memory),
s is the cost for a barrier synchronization among all the processors,L is a single parameter that accounts
for the sum of` and s, g is the bandwidth gap (i.e., the rate at which processors can perform local
operations divided by the rate at which the processors can sustain interprocessor or processor-memory
communication),o is the overhead at the processor to send or receive a message,B is the block size (i.e.,
the number of consecutive cells sent on a write or retrieved on a read),m is the number of shared-memory
cells available for both reading and writing, andI is the maximum of̀ , g, ands.

BDM model [44] is distributed memory since the contention encountered by a read request
depends on the number of other requests to the same memory module. Themessage-
passingmodels shown in this table deliver messages point-to-point: this abstraction
hides the details of how the message is routed through the interprocessor communication
network, and hence is similar to the distributed-memory abstraction.

The fourth column indicates the parameters in the model. The description of these
parameters is given in the table footnote. Some models, such as theLPRAM model,
account separately for computation steps and communication steps. This can be viewed
as having a separate latency parameter, as indicated in the table.

Unlike the previous models shown in Table 1, theQSM provides bulk-synchrony, a
shared-memory abstraction, and just two parameters. In all, the key features of theQSM

that make it an attractive candidate for a bridging model are:

1. Shared-memory abstraction.The QSM provides the simplicity of a shared-
memory abstraction in which the shared memory is viewed as a collection of in-
dependent cells, nonlocal to the processors. The advantages of a shared-memory
abstraction were discussed in Section 2.

2. Bulk-synchrony. TheQSM supports bulk-synchronous operation, in which pro-
cessors operate asynchronously between barrier synchronizations. As in models
such as thePHASE LPRAM[32], the algorithm dictates the points at which barriers
occur. This allows aQSMalgorithm to synchronize less frequently than algorithms
designed for a lock-step model, which makes for a more efficient mapping of the

Can a Shared-Memory Model Serve as a Bridging Model for Parallel Computation? 335

algorithm toMIMD machines. The model does not allow for general asynchronous
algorithms. Permitting general asynchrony can lead to algorithms that run faster
on MIMD machines. However, any asynchronous model that reasonably reflects
real machines is considerably more difficult to use.

3. Few parameters.For simplicity, it is desirable for bridging models to have only
a few parameters. As evidenced by [22], [30], [47], and elsewhere, having ad-
ditional parameters in a model can make it quite difficult to obtain a concise
analysis of an algorithm. On the other hand, it is desirable to have whatever
parameters are essential for a desired level of accuracy in modeling machines
realizing the bridging model. TheQSM has only two parameters: one reflecting
the number of processors and one reflecting the limited communication band-
width. In the intended emulation of the model onMIMD machines, the latency of
communication is hidden by having each physical processor emulate a number
of QSM processors. Formally, we consider the emulation of higher-level models
on lower-level models (such as theBSP), in order to make claims about the cost,
or lack thereof, of ignoring certain parameters in the higher-level model. The
results in the next section provide evidence that a parameter reflecting limited
bandwidth should be in a high-level model, and that other communication pa-
rameters are not necessary. For this reason, we believe thatg is a better choice
for a second parameter than the`, s, L, or I parameters found in other models.

4. Queue contention metric.The queue-read queue-write (QRQW) contention rule
of the QSM model more accurately reflects the contention properties of par-
allel machines with simple, noncombining interconnection networks than ei-
ther the well-studied exclusive-read exclusive-write (EREW) or concurrent-read
concurrent-write (CRCW) rules. As argued in [36], theEREW rule is too strict,
and theCRCW rule ignores the large performance penalty of high contention
steps. Indeed, for most existing machines, including the Cray T3E, Cray C90,
Cray J90, IBM SP2, Intel Paragon, MasPar MP-2 (global router), Tera MTA,
and Thinking Machines CM-5 (data network), the contention properties of the
machine are well approximated by theQRQWrule. TheQRQWcontention metric
can lead to faster algorithms, since it does not ignore the aforementioned penalty
for high contention steps and yet it allows for low-contention algorithms that are
not permitted under theEREWrule.

5. Work-preserving emulation onBSP.TheBSPis a distributed-memory, message-
passing model that is gaining acceptance as a bridging model for parallel com-
putation. Thus a work-preserving emulation of theQSM on theBSP is a strong
validating point for this shared-memory model. This key feature is discussed in
Section 3.2.

6. Work-preserving emulation of BSP. In addition to the work-preserving emula-
tion of QSM on BSPwe observe that there is a work-preserving mapping in the
reverse direction as well. ManyBSPalgorithms map onto theQSM in a step-by-
step manner with performance corresponding to the case when the periodicity
parameter on theBSP is set to 1. While it is possible forBSP algorithms not to
have this property, we also present a work-preserving emulation of theBSPon the
QSM with only a small slowdown. This emulation holds for allBSPalgorithms.
This is discussed in more detail in Sections 3.2 and 6.

336 P. B. Gibbons, Y. Matias, and V. Ramachandran

ThePRAM(m) model shares many of the same goals as theQSM model. As shown in
the table, thePRAM(m) provides a shared-memory abstraction and just two parameters:
one for the number of processors and one that captures the limited communication
bandwidth (g = p/m). However, thePRAM(m) model is suitable only for lower bounds.
First, having onlym < p shared-memory locations is a large burden on the algorithm
designer; no machines provide this restriction. Second, the model assumes that input is
in a read-only memory that can be accessed by all processors without any bandwidth
limitations; this undercharges the cost of such accesses for existing machines. Third,
the model provides unlimited contention to them shared-memory locations at no extra
charge; this too is unrealistic for existing machines. Due to these features, the model
does not seem to have an efficient emulation on lower-level models such as theBSP. The
model is intended for lower bounds, and indeed lower bounds proved for thePRAM(m)
model imply lower bounds for a large number of other models.

Mapping Parameters to Machines. There have been several papers reporting values for
various model parameters on existing parallel machines. For example, Martin et al. [58]
reported values for theg, `, andoparameters from theLogPmodel on three platforms: the
Berkeley NOW cluster, the Intel Paragon, and the Meiko CS-2. On the Berkeley NOW
cluster,g = 5.8 microseconds (µs),` = 5.0µs, ando = 2.9µs. On the Intel Paragon,
g = 7.6µs,` = 6.5µs, ando= 1.8µs. On the Meiko CS-2,g = 13.6µs,` = 7.5µs,
ando= 1.7µs. Since the local instruction rate at a processor is tens of nanoseconds per
instruction or faster, the normalized values for these parameters are in the hundreds to
a few thousand. In contrast, Blelloch et al. [17] considered two shared-memory vector
multiprocessors, reporting (normalized) gap parameter values ofg = 1.2 for the Cray
C90 andg = 1.8 for the Cray J90.

3.2. Comparison withBSP

In this section we compare theQSM and theBSP in terms of their effectiveness as a
bridging model for parallel computation. We choose to compare theQSM with theBSP

rather than theLogP model since theQSM is a bulk-synchronous model like theBSP(and
unlike theLogP) model.

TheBSP(Bulk-Synchronous Parallel) model [69], [70] consists ofpprocessor/mem-
ory components communicating by sending point-to-point messages. The interconnec-
tion network supporting this communication is characterized by a bandwidth parameter
g and a latency parameterL. A BSPcomputation consists of a sequence of “supersteps”
separated by bulk synchronizations. In each superstep the processors can perform local
computations and send and receive a set of messages. Messages are sent in a pipelined
fashion, and messages sent in one superstep will arrive prior to the start of the next super-
step. The time charged for a superstep is calculated as follows. Letwi be the amount of
local work performed by processori in a given superstep. Letsi (ri) be the number of mes-
sages sent (received) by processori . Letw = maxp

i=1wi , andh = maxp
i=1(max(si , ri)).

Then the cost,T , of a superstep is defined to beT = max(w, g · h, L).3 Although the

3 Alternatively, the time isw+ g · h+ L; this affects the bounds by at most a factor of 3, and the results
in [16] show that, at least for certain machines, taking the maximum of the three terms is more accurate than
taking their sum.

Can a Shared-Memory Model Serve as a Bridging Model for Parallel Computation? 337

Table 2. Some emulations of higher-level models on theBSPmodel.

Model emulated On model With slackness Work-preserving?

EREW PRAM BSP(g, L) ≥ max(lg p, L/g) Inefficient by a factor ofg
QRQW PRAM BSP(g, L) ≥ max(lg p, L/g) Inefficient by a factor ofg
CRCW PRAM BSP(g, L) ≥ max(p1+ε, L/g) Inefficient by a factor ofg

QSM(g) BSP(g, L) ≥ max(g lg p, L/g) Yes

The result forQSM is new. The emulations are randomized and the bounds are obtained
with high probability inp.

BSP is a message-passing model, it can also be viewed as a distributed-memory model
where each memory component serves as a memory bank.

To compare the cost metrics of theBSP and theQSM, we consider the distributed-
memory view of theBSPand a superstep comprised of local work, read requests, and write
requests. We can equate the twog parameters, andwi with ci (and hencew with mop).
Let hs = maxp

i=1 si , the maximum number of read/write requests by any one processor,
and lethr = maxp

i=1 ri , the maximum number of read/write requests to any one memory
bank. TheBSPcharges the maximum ofw, g · hs, g · hr , andL. TheQSM, on the other
hand, charges the maximum ofw, g · hs, andκ, whereκ ∈ [1..hr] is the maximum
number of read/write requests to any one memorylocationand is not multiplied byg.

One important measure of a bridging model is its ability to be emulated by important
lower-level models. Table 2 presents some known emulation results of higher-level mod-
els on theBSP. Theparallel slacknessin an emulation is the number of processors in the
higher-level model per processor in theBSPmodel. An emulation iswork-preservingif
both models perform the same amount of work, to within constant factors. The first three
rows show emulation results on theBSPof the EREW PRAM[69], theQRQW PRAM[36]
and theCRCW PRAM[69]; note that none of these three models have a work-preserving
emulation on theBSPif g is not a constant. In the case of theCRCW PRAM, even for aBSP

with gap parameter that is a constant, a work-preserving emulation on theBSPis known
only with a parallel slackness that is very large, i.e., polynomial inp. In contrast, the
QSM does have a work-preserving emulation on aBSPwith the same gap parameter, for
anyg, using only modest slackness and small constants. This result will be shown in the
next section.

The emulation result implies that any algorithm designed on theQSMcan be mapped
onto theBSPin a work-preserving manner with only a modest slowdown. Since theQSM

has fewer parameters than theBSP, and does not deal with memory partitioning details,
for most problems it should be easier to design algorithms on theQSM than on theBSP.
Moreover, the emulation result implies that any machine that can realize theBSPmodel
can also realize theQSM model, given the additional system software needed for the
(simple) emulation algorithm.

Many algorithms designed for theBSPhave as their goal to minimize the number of
supersteps (e.g., [37]). In contrast, theQSMdoes not account for the number of supersteps
(e.g., there is noL parameter in theQSM model). Ignoring the number of supersteps
simplifies the model, and it can be somewhat formally justified by the emulation result,
which shows that any twoQSM algorithms with the sameQSM time bound will have the

338 P. B. Gibbons, Y. Matias, and V. Ramachandran

sameBSPtime bound when emulated on theBSP, regardless of the number of supersteps
in the respective algorithms.

One can also consider the mapping ofBSP algorithms onto theQSM. Many of the
BSPalgorithms reported in the literature have a simple version on theQSMcorresponding
to the case when the latencyL = 1. As shown in Section 6 it is possible, in principle,
to haveBSPalgorithms that do not map back to theQSM in a work- and time-preserving
manner. Such algorithms would exploit the fact that aBSPprocessor

(i) could receive a piece of information that it did not specifically request, or
(ii) could access, as a unit-time local computation, a value (not requested by it) that

was written into its local memory bank by another processor in an earlier step.

These features are appropriate in contexts where a processor can send a message directly
to a processor at any time, or can write remotely into a processor’s local portion of the
shared memory. On theQSM a processor would need to initiate a read for any piece of
information that it receives; further, that access will be charged a cost ofg at the time
the processor reads it in addition to a cost ofg being applied at the time the value was
written into the shared-memory location.

While the features listed above could indicate that theBSP is in some ways more
powerful than theQSM, it may not be desirable for a general-purpose bridging model
to incorporate these features. In general, there will be features such as these arising
due to contrasts between message passing and shared memory, between coherent and
noncoherent caches, between update and invalidation-based coherence protocols, etc.
Any choice of these features may not be representative of a wide range of parallel
machines. Moreover, as discussed in Section 2, current designers of parallel processors
often hide the memory partitioning information from the processors since this can be
changed dynamically at runtime. As a result an algorithm that is designed, say, using
this additional power of theBSPover theQSM may not be that widely applicable.

In Section 6 we show that aBSP that does not exploit features (i) and (ii) can be
emulated on aQSM using a simple, deterministic, time- and work-preserving algorithm.
We also show that anyn-componentBSP, even one that exploits these features, has
a work-preserving emulation on aQSM with the same gap parameter, with a modest
slowdown ofO(lg n/(1+ L/g)), with high probability inn; this emulation uses a fairly
involved algorithm.

Thus, overall, a case can be made that theQSM is effective in modeling the essential
features of theBSPwhile remaining at a higher level of abstraction.

4. Emulations ofQSM on BSPModels

The(d, x)-BSP[16] is a model similar to the (distributed-memory view of the)BSP, but
it provides a more detailed modeling of memory bank contention and delay. In [16]
it is argued that, for shared-memory machines with a high-bandwidth communication
network and more memory banks than processors, the(d, x)-BSPis a more accurate model
than theBSP. Such machines include Cray C90, Cray J90, and Tera MTA (experimental
validation of this accuracy claim is provided for Cray C90 and Cray J90). The(d, x)-BSP

is parametrized by five parameters,p, g, L ,d andx, wherep, g, andL are as in the

Can a Shared-Memory Model Serve as a Bridging Model for Parallel Computation? 339

original BSP model, thedelay d is the “gap” parameter at the memory banks, and the
expansionx is the ratio of memory banks to processors (i.e., there arex·pmemory banks).
Consider a superstep wherew is the maximum local work performed by a processor,hs

is the maximum number of read/write requests by a processor, andhr is the maximum
number of read/write requests to a memory bank. Then the time,T , charged by the
(d, x)-BSPfor this superstep isT = max(w, g · hs, d · hr , L). The originalBSPcan be
viewed as a(d, x)-BSPwith d = g andx = 1.

In this section we present two emulations of theQSM on the(d, x)-BSP. The first
emulation is for a so-calledbalanced(d, x)-BSP, in whichx ≥ d/g, and is work optimal.
Since theBSPis a balanced(d, x)-BSP, this optimal emulation applies also for theBSP.
The second emulation is for anunbalanced(d, x)-BSP, in whichx < d/g. This emulation
suffers from work inefficiency which is proportional to the “imbalance-factor,”d/(gx).
We show by a lower bound argument that this overhead is unavoidable.

The two emulations are in fact identical, and differ only in theslacknessparameter.
We first present the algorithm, followed by the different analysis for the two cases
mentioned above, and concluding with the lower bound.

4.1. The Emulation Algorithm

A work-preserving emulation of a modelA on a modelB provides a formal proof that
model A can be realized on modelB with only a constant factor overhead in work. If
modelB is considered to be reflective of an interesting class of parallel machines, then
such an emulation supports the use ofA as a bridging model,as long as the emulation
can be considered “practical.” For theQSM on the(d, x)-BSP (and hence on theBSP),
we present a very simple emulation algorithm and then discuss its practicality in some
detail.

The emulation algorithm of av-processorQSM on ap-processor(d, x)-BSP, v ≥ p,
is quite simple, and it is similar to emulations that were previously proposed for the
PRAM. Unlike previous emulations, our analysis needs to handle the gap parameter in
the emulated machine.

• The shared address space of theQSM is randomly hashed into thexp memory
banks of the(d, x)-BSP(or to thep memory modules of theBSP).
• In each phase, each processor of the(d, x)-BSPemulatesv/p processors of the

QSM.

In the work-preserving emulation, each phasei of time ti on theQSM is emulated on
the (d, x)-BSP (or simply theBSP) in time O((v/p) · ti), regardless of the distribution
of shared memory reads and writes. The needed parallel slackness,v/p, is modest, and
does not depend on the maximum contention in a phase (which may be much larger than
v/p).

The mapping of theQSM shared memory among the machine’s memory banks
assumes the machine supports a single address space. Many recent machines (e.g., Cray
T3E) provide hardware support for a single address space; for other machines (e.g., IBM
SP-2), it can be emulated in software with some overhead.

Note that if a computer system already hashes the data using a pseudorandom hash
function, then the emulation is nothing but the straightforward implementation of an

340 P. B. Gibbons, Y. Matias, and V. Ramachandran

algorithm whose parallelism is larger than the number of processors. Several parallel
database systems already hash their data using pseudorandom hash functions. The Tera
MTA provides hardware support for hash functions to be used for pseudorandom mapping
of memory locations to memory banks; the Fujitsuµ-VP on the Meiko node already
has optional hardware hashing. For other machines, computing a pseudorandom hash
in software is feasible. For example, it is shown in [16] that the overhead to compute a
certain provably good (i.e., 2-universal) pseudorandom hash function on the Cray C90
averages 1.8 clock cycles. Also as noted in [16], for some algorithms it is possible to get
the same effect without memory hashing, by randomly permuting the input and some of
the intermediate results. In others, the nature of the algorithm results in random mapping
without any additional steps.

It is well known that hashing destroys spatial locality, but not temporal locality. Spa-
tial locality enables long messages to be sent between components, thereby minimizing
overheads on many machines. Some models, such asBDM [44], LogGP[5], andBSP∗ [12],
[11], account for advantages in long messages; most others, e.g.,QSM, BSP, (d, x)-BSP,
and LogP, do not. Thus theQSM shares with theBSP, (d, x)-BSP, andLogP models a
disregard for spatial locality. Spatial locality can also arise in initial data placement.
Here the input can be assumed to be distributed among the private memories of theQSM

processors as among the local memories of theBSP, (d, x)-BSP, or LogP processors.
The emulation ofv/p virtual processors by each physical processor can be done by

a variety of techniques. The primary technique is multithreading, in which each virtual
processor is its own process, and the physical processor context switches between these
processes. The Tera MTA provides hardware support for this multithreading, minimiz-
ing the context switching costs. Alternatively, such multithreading can be performed in
software. Note that in theQSM, as in other bulk-synchronous models, each virtual pro-
cessor issues a series of memory requests in a phase. Instead of context switching at each
memory request, the multithreading can be performed by executing all the code for the
first virtual processor in this phase, then switching to the second virtual processor, and so
forth, so that onlyv/p context switches are needed for the entire phase (this description
assumes that storing values returning in response to shared-memory read requests does
not require a context switch).

In order to minimize the overheads, it is very important to minimize the amount of
parallel slackness required. In the worst case, multithreadingv/p processes per machine
processor results inv/p times the storage demand at each level of the processor’s memory
hierarchy, possibly resulting in various thrashing effects. The emulation of theQSMon the
BSPrequires only max(g lg p, L/g) slackness; on the(d, x)-BSP, as little as max(d, L/g)
slackness may be required. Note that theL/g term matches the limit on multithreading
imposed by theLogP model [22].

Thus, overall, the constants hidden by the big-O notation in the emulation result
are small, and hence the emulation can arguably be considered practical. (In fact, this
emulation is a fundamental component in the design of the Tera MTA.)

4.2. Work-PreservingQSM Emulation on(d, x)-BSP

The following theorem presents an emulation of theQSM on a(d, x)-BSP for the case
whenx ≥ d/g, whereg is the gap parameter for both theQSM and the(d, x)-BSP. The

Can a Shared-Memory Model Serve as a Bridging Model for Parallel Computation? 341

emulation is work-preserving for anyg (i.e., the work performed on the(d, x)-BSP is
within constant factors of the work performed on theQSM).

Theorem 4.1(Work-PreservingQSM Emulation). Consider a p-processor(d, x)-BSP

with gap parameter g and periodicity factor L, such that dg ≤ x ≤ pc̄, for some constant
c̄ > 0, where dg = d/g ≥ 1. Let

δ =
 d lg p if dg ≤ x ≤ 2dg,

d lg p/lg(x/dg) if 2dg ≤ x ≤ pdg,

d if x ≥ pdg.

Then, for all p′ ≥ max(δ,L/g) · p, each step of an algorithm for the p′-processorQSM

with gap parameter g with time cost t can be emulated on the p-processor(d, x)-BSPin
O((p′/p) · t) time w.h.p.

This result is not implied by previous simulation results for theQRQW PRAM[36],
[16], since these previous results considered standardPRAM models with no gap param-
eter andBSPor (d, x)-BSPmodels with a small constant gap parameter (that was hence
ignored as part of the big-O notation). The question of how the work-efficiency and/or
slowdown of the emulation depended upon the gap parameters was not studied. Since
we are considering the same gap parameter,g, for the QSM as for theBSP, one might
conjecture that considering the gap parameter does not substantially alter the bounds of
the simulations without the gap parameter. However, note that theQSM model charges
κ for contentionκ, regardless of the gap or delay parameters, and indeed aQSM step
with time t can havet/g memory requests per processor and maximum contentiont . In
contrast, in such cases theBSPcharges at leastg · t and the(d, x)-BSPcharges at least
d · t . Viewing the mapping of memory locations to memory banks as tossing weighted
balls into bins (where the weight of a ball corresponds to the contention of the location),
this implies a different mix of balls than considered in previous emulations.

Before we present the proof of this theorem, we note that in the originalBSP, dg =
x = 1, so from the above theorem we obtain the following corollary:

Corollary 4.2 (Work-PreservingQSM Emulation). A p′-processorQSM with gap pa-
rameter g can be emulated on a p-processorBSPwith gap parameter g and periodicity
parameter L in a work-preserving manner w.h.p. provided p′ ≥ max(g lg p,L/g) · p.

Proof of Theorem4.1. We now prove the theorem. The proof is similar to that in [16],
extended and adjusted to account properly for the gap parameter in theQSM and to
improve upon the results for large values ofx, even for the previously studied case of
g = 1.

The shared memory of theQSM is randomly hashed onto theB = x · p memory
banks of the(d, x)-BSP. In the emulation algorithm, each(d, x)-BSPprocessor executes
the operations ofp′/p QSM processors.

342 P. B. Gibbons, Y. Matias, and V. Ramachandran

We first assume thatx ≥ 2dg. Thus,

δ ≥ d
lg p

lg(x/dg)
. (1)

Consider thei th step of theQSM algorithm, with time costti . Let c > 0 be some
arbitrary constant, and letα = max{c+ c̄+ 1,e}. We will show that this step can be
emulated on the(d, x)-BSPin time at mostα(p′/p)ti with probability at least 1− p−c.
Note that by theQSM cost metric,ti ≥ g, and the maximum number of local operations
at a processor in this step isti . The local computation of theQSM processors can be
performed on the(d, x)-BSPin time (p′/p)ti , since each(d, x)-BSPprocessor emulates
p′/p QSM processors.

By the definition of theQSM cost metric, we have thatκ, the maximum number of
requests to the same location, is at mostti , andhs, the maximum number of requests
by any one processor, is at mostti /g. For the sake of simplicity in the analysis, we
add dummy memory requests to each processor as needed so that it sends exactlyti /g
memory requests this step. The dummy requests for a processor are to dummy memory
locations, with processor̀sending all its dummy requests to dummy location`. In this
way, the maximum number of requests to the same location,κ, remains at mostti , and
the total number of requests isZ = p′ti /g.

Let i1, i2, . . . , im be the different memory locations accessed in this step (including
dummy locations), and letκj be the number of accesses to locationi j , 1 ≤ j ≤ m.
Note that

∑m
j=1 κj = Z. Consider a memory bankβ. For j = 1, . . . ,m, let xj be an

indicator binary random variable which is 1 if memory locationi j is mapped onto the
memory bankβ, and is 0 otherwise. Thus,Prob

(
xj = 1

) = 1/B. Let aj = κj /ti ; aj

is the normalized contention to locationj . Sinceκ ≤ ti , we have thataj ∈ (0,1]. Let
9β =

∑m
j=1 aj xj ; 9β , the normalized request load to bankβ, is the weighted sum of

Bernoulli trials. The expected value of9β is

E
(
9β
) = m∑

j=1

aj

B
= 1

xp

m∑
j=1

κj

ti
= 1

xp
· Z

ti
= p′ ti

x p ti g
= p′

xpg
.

Let hβr be the total number of requests to locations mapped to bankβ. To show that
it is highly unlikely thathβr greatly exceeds this expected value, we use the following
theorem by Raghavan and Spencer, which provides a tail inequality for the weighted
sum of Bernoulli trials:

Theorem 4.3[63]. Let a1, . . . ,am be reals in(0,1]. Let x1, . . . , xm be independent
Bernoulli trials with E

(
xj
) = ρj . Let9β =

∑m
j=1 aj xj . If E

(
9β
)
> 0, then, for any

ν > 0,

Prob
(
9β > (1+ ν)E (9β)) < (

eν

(1+ ν)(1+ν)
)E(9β)

. (2)

We apply Theorem 4.3 withρj = 1/B, and set

ν = α x
dg
− 1,

Can a Shared-Memory Model Serve as a Bridging Model for Parallel Computation? 343

implying

(1+ ν)E (9β) = α x
dg
· p′

xpg
= αp′

dp
. (3)

Therefore,

Prob
(
9β >

αp′

dp

)
[(2),(3)]
<

(
e

(1+ ν)
)(1+ν)E(9β)

[(3)]=
(
αx
edg

)−αp′/dp

[α ≥ e]≤
(

x
dg

)−αp′/dp [x > dg]
≤

(
x
dg

)(−α/d)max(δ,L/g)

[x > dg]
≤

(
x
dg

)(−α/d)δ [(1)]≤
(

x
dg

)−α(lg p/lg(x/dg))

= p−α ≤ p−(c+c̄+1) = p−(c+1)

pc̄

[x ≤ pc̄]≤ p−(c+1)

x
.

Note that

hβr =
m∑

j=1

xj kj = 9β · ti .

Therefore,

Prob
(

hβr >
α p′ ti
d p

)
<

p−(c+1)

x
.

Let hr = maxβ hβr . Then

Prob
(

hr >
α p′ ti
d p

)
≤ B · Prob

(
hβr >

α p′ ti
d p

)
< B · p−(c+1)

x
= p−c.

The time of the(d, x)-BSPstep to emulateQSMstepi isTi =max((p′/p)ti ,g(p′/p)(ti /g),
d · hr , L). Sinceti ≥ g, we have that(p′/p)ti ≥ (p′/p)g ≥ L and hence it follows
from the above that

Prob
(

Ti ≤ α
(

p′

p

)
ti

)
≥ 1− p−c.

We next consider the case wheredg ≤ x ≤ 2dg, and thereforeδ = d lg p. In this
case we takeα = max{c+ c̄+ 1,2e}, and the proof proceeds as above except that we
make use of the fact that(

αx
edg

)−αp′/dp

≤ 2−αp′/dp ≤ 2−(α/d)max(d lg p,L/g) ≤ 2−α lg p = p−α.

This completes the proof of Theorem 4.1

344 P. B. Gibbons, Y. Matias, and V. Ramachandran

4.3. EmulatingQSM on Unbalanced(d, x)-BSP

We next consider the case where the bandwidth at the memory banks is less than the
bandwidth at the processors and network, i.e.,x < dg. We present an emulation whose
work bound is within a constant factor of the best possible.

Theorem 4.4(QSM on Unbalanced (d, x)-BSP). Considera p-processor(d, x)-BSPwith
gap parameter g and periodicity factor L, such that1 ≤ x < min

{
dg, pc̄

}
, for some

constantc̄ > 0, where dg = d/g. Then, for all p′ ≥ max(xg lg p,d,L/g) · p, each
step of an algorithm for the p′-processorQSM with parameter g with time cost t can be
emulated on the p-processor(d, x)-BSP in O((dg/x) · (p′/p) · t) time w.h.p.

Proof. As in the proof of Theorem 4.1, the shared memory of theQSM is randomly
hashed onto theB = x · p memory banks of the(d, x)-BSP. In the emulation algorithm,
each(d, x)-BSPprocessor executes the operations ofp′/p QSM processors.

Consider thei th step of theQSM algorithm, with time costti . Let c > 0 be some
arbitrary constant, and letα = max{c+ c̄+ 1,2e}. We will show that this step can
be emulated on the(d, x)-BSP in time at most max{(p′/p)ti , α(dg/x)(p′/p)ti } with
probability at least 1− p−c.

The proof proceeds exactly as in the proof of Theorem 4.1: we add dummy requests
as needed, define indicator binary random variablesxj for each memory bankj , define
9β , and show thatE

(
9β
) = p′/(xpg). We apply the Raghavan and Spencer theorem

(Theorem 4.3), but withν = α − 1. This yields

Prob
(
9β >

αp′

xp

)
<
(α

e

)−αp′/xpg [α ≥ 2e]≤ 2−(α/xg)max(xg lg p,d,L/g)

≤ p−α ≤ p−(c+c̄+1) [x < pc̄]
<

p−(c+1)

x
.

It follows as in the previous proof that

Prob
(

hr >
α p′ ti
x pg

)
< p−c,

wherehr is the maximum number of read/write requests to a memory bank. The time,
Ti , of the(d, x)-BSPsuperstep to emulateQSM stepi is max((p′/p)ti , g(p′/p)(ti /g),
d · hr , L). Sinceti ≥ g and p′/p ≥ L/g, we have that

Prob
(

Ti ≤ max

{
p′

p
· ti , α · dx

p′

pg
· ti
})
≥ 1− p−c.

The theorem follows.

4.4. A Lower Bound

The following lower bound shows that the work bound in Theorem 4.4 is tight, as well as
showing the importance of having a gap parameter on theQSM. In particular, it implies

Can a Shared-Memory Model Serve as a Bridging Model for Parallel Computation? 345

that aPRAM has an inherent inefficiency overhead ofg, when emulated on aBSPor (d, x)-
BSPwith a gap parameterg. Likewise, it implies thatg is the minimum gap parameter
that should be assigned to theQSM in order to allow for work-efficient emulation on a
BSPand(d, x)-BSP.

Observation 4.5. Let p′ ≥ p. Any emulation of one step of the p′-processorQSM with
gap parameter g′ with time cost t on the p-processor(d, x)-BSPwith gap parameter g
and periodicity factor L requires T= max(t · (g/g′) · dp′/pe,d · dtp′/(xpg′)e) time in
the worst case.

Proof. Consider a step in which each of thep′ QSM processors performt/g′ memory
requests, such that allp′t/g′ requests are to distinct locations in the shared memory. Since
there arem = p′t/g′ locations distributed amongxp memory banks, then regardless
of the mapping of locations to banks, there exists at least one bankj which is mapped
to by at leastdm/xpe locations. Also, each(d, x)-BSPprocessor sendsdp′/pe · (t/g′)
shared-memory requests. Therefore, the time on the(d, x)-BSPis at leastT .

5. Improved Accuracy Through the QSM Abstraction

The shared-memory abstraction of theQSMhides the details of the partitioning of memory
into memory modules/components on existing machines. This partitioning is explicit in
message-passing or distributed-memory models such as theBSPor LogP. Thus theQSM

provides a higher-level of abstraction, while theBSPandLogP seemingly provide more
accurate modeling of memory module contention.

In this section we draw attention to machines for which theBSPandLogP models
fail to model memory module contention accurately, whereas theQSMcan lead to a more
accurate accounting. For the former, we refer to results in Blelloch et al. [16], whereas
for the latter we leverage Theorem 4.1 and experimental results in [16]. We also present
a simple illustrative example.

5.1. The Problem of Memory Layout Mismatch

Standard message-passing or distributed-memory models such as theBSPandLogPhave
the property that the number of memory components is equal to the number of processors.
On the other hand, several computer manufacturers, motivated by the increasing diver-
gence between processor speeds and memory speeds, have designed parallel machines
with many more memory banks than processors. For example, the 16-processor Cray
C90 has 1024 memory banks, the 16-processor Cray J90 has 512 memory banks, the
18-processor SGI Power Challenge has 64 memory banks, and the 256-processor Tera
MTA will have 32K memory banks. For these machines, the(d, x)-BSP[16] (described
in Section 4) is a more accurate model than theBSPor LogP since it explicitly accounts
for both (i) thebank delay, d, which is the bandwidth gap parameter at a memory bank,
and (ii) thebank expansion, x, which is the ratio of memory banks to processors.

Blelloch et al. showed experimentally that the(d, x)-BSP models the Cray C90
and Cray J90 quite accurately, even though the model ignores many details about these

346 P. B. Gibbons, Y. Matias, and V. Ramachandran

Fig. 1. Inaccuracies in theBSP and theLogP predictions, due to assuming the wrong memory layout and
underestimating the cost of memory-bank contention. This figure is from [16].

machines. They also showed that accounting for the memory-bank delay is critical in
predicting running times of algorithms with high memory contention. Therefore, in some
situations theBSPand theLogPprovide a poor prediction of an algorithm’s performance,
while the(d, x)-BSPprovides a good one. An example is shown in Figure 1 for the Cray
J90. In this figure, predicted and measured performance are shown on a set of memory
access patterns extracted from a trace of Greiner’s algorithm for finding the connected
components of a graph [38]. Measured times on an eight-processor Cray J90 for several
patterns are shown with squares. Predicted times are given for the(d, x)-BSP, BSP, and
LogP. The contention is given on a logarithmic scale indicating the ratio between the
maximum contention,k, and the total number of requests,p · S (p is the number of
processors andS is the number of requests sent by each processor).

5.2. Suitability ofQSM to Cray-Like Machines

The QSM is a more high-level model than theBSP or LogP, which in turn are more
high-level models than the(d, x)-BSP. Nevertheless, we argue that theQSM is a better
model for machines such as the Cray C90 and Cray J90 than theBSP or the LogP,
since its shared-memory abstraction does not assume a particular memory layout. In
particular, Theorem 4.1 shows that any algorithm designed for theQSM will map in
a work-preserving manner onto the(d, x)-BSP given a reasonable amount of parallel
slackness, and thus onto these machines. This is because theQSM cost metric accounts
for contention to locations, and hence can be translated (via hashing) to a memory layout
of any granularity. Thus the abstraction of memory components to shared memory,
as assumed in theQSM, makes it more robust to changes in the number of memory
components.

In contrast, message-passing or distributed-memory models such as theBSPandLogP

account only for the aggregated contention per processor, and hence reveal insufficient
information to enable a work-preserving emulation unless the slackness is≥ x ≥ d/g.
(When the slackness is≥ x ≥ d/g, then thep-processor distributed-memory model is
emulated on a(d, x)-BSPwith at mostp memory banks.)

Can a Shared-Memory Model Serve as a Bridging Model for Parallel Computation? 347

As a simple example illustrating the above discussion, consider the following two
memory access patterns,A and B, occurring in an algorithm designed for theBSP.
Supposek processors send one message each to aBSPcomponentC, for some arbitrary
k. In access patternA, all requests are directed to the same memory location. In access
patternB, each request is directed to a different memory location withinC. The cost on
the BSP of each access pattern is the same, namely,g · k, as in each case the requests
are aggregated. Now suppose that the algorithm is run on a machine well modeled by
the (d, x)-BSP, with x ≥ k. On the(d, x)-BSP, the requests inA are always mapped
to the same memory bank, but the requests inB could be mapped to different banks,
depending on the mapping of(d, x)-BSPbanks toBSPcomponents. This results in a cost
on the(d, x)-BSP of max(g,d · k) for A but a cost of anywhere from max(g,d · k) to
max(g,d) for B, a potentially large distinction.

An algorithm designed for theQSM would distinguish betweenk requests to the
same location versusk requests to different locations, charging max(g, k) for A andg
for B. Moreover, Theorem 4.1 implies that using a random mapping ofQSM memory
locations to the(d, x)-BSPmemory banks guarantees that, with high probability, there
are no surprises in terms of memory-bank contention when the algorithm is run on a
machine well modeled by the(d, x)-BSP. In any such mapping, the requests inA will
be mapped to the same(d, x)-BSP memory bank, and hence are rightfully aggregated,
whereas the requests inB will likely be mapped to different memory banks, and hence
are rightfully not aggregated. Thus while the metric of theBSP may not be consistent
with that of the(d, x)-BSP, theQSM maintains close consistency with the(d, x)-BSP.

6. Algorithmic Issues

As a shared-memory model, theQSMoffers a simple high-level medium for the design of
parallel algorithms that can take into consideration effective use of limited bandwidth.
In this section we present some algorithmic results and techniques for theQSM as well
as general strategies to map algorithms developed on some other models onto theQSM.

In general theQSM is to be used for direct algorithm design that makes effective
use of limited bandwidth. However, since we would like to leverage on the extensive
literature onPRAM algorithms, in Section 6.1 we discuss the mapping ofQRQW PRAM

andEREW PRAMalgorithms onto theQSM. In Section 6.2 we present some lower bounds,
and in Section 6.3 we present some directQSM algorithms that are faster than the ones
obtained by the genericPRAM mapping.

It is also important to consider the mapping ofBSPalgorithms onto theQSM, for two
reasons: First, a good mapping result of this type will allow us to leverage on the results
and techniques that were developed for theBSPmodel. Second, it will demonstrate that
the expressive power ofQSMis no less than that of theBSP. We study this issue in Sections
6.4 and 6.5. In view of a simple lower bound ofÄ(n · g) that we prove in Section 6.2
on the time needed to readn items from global memory into theQSM processors, for
these algorithms we assume that the input is distributed among the local memories of
the processors in a suitable way. In Section 6.4 we show that anyBSPalgorithm that is
“well behaved” (as defined in that section) can be adapted in a simple way to theQSM

with no loss in performance. In that section we also argue thatBSPalgorithms that are

348 P. B. Gibbons, Y. Matias, and V. Ramachandran

not “well behaved” use certain features of theBSPthat are not quite representative of a
large class of parallel machines. For completeness on the issue of expressive power, in
Section 6.5 we show a general randomized work-preserving emulation ofBSPon QSM.
Unlike the simple adaptation for “well-behaved” algorithms, this emulation consists of
a fairly involved algorithm and results in logarithmic slowdown. Overall these results
demonstrate that any algorithm designed forBSP could also be designed on theQSM,
without substantial loss of efficiency.

Finally, in Section 6.6 we discuss the importance of the queuing metric for memory
accesses in theQSM model, and note that it is central to its effectiveness as a shared-
memory bridging model.

First, we consider the property ofself-simulationfor theQSM, i.e., the problem of
simulating ap-processorQSM on ap′-processorQSM, wherep′ < p. The availability of
an efficient self-simulation is an important feature for parallel models of computation,
since it implies that an algorithm written for a large number of processors is readily
portable into a smaller number of processors, without loss of efficiency.

Observation 6.1. Given aQSM algorithm that runs in time t using p processors, the
same algorithm can be made to run on a p′-processorQSM, where p′ < p, in time
O(t · p/p′), i.e., while performing the same amount of work.

The efficient self-simulation is achieved by the standard strategy of mapping thep
processors in the original algorithm uniformly among thep′ available processors. In the
following we state the performance of aQSM algorithm in terms of the fastest timet (n)
achievable within a given work boundw(n). When we make such a statement we imply,
due to Observation 6.1, that for anyp we have an explicitQSM algorithm that runs in
O(t (n)+ w(n)/p) time usingp processors.

In the following we assume that the value of the gap parameterg is less thann, the
size of the input; in practice we expectg to be much smaller thann.

6.1. MappingPRAM Algorithms onto theQSM

A naive emulation of aQRQW PRAMalgorithm (or anEREW PRAMalgorithm, which is a
special case) on aQSM with the same number of processors results in an algorithm that
is slower by a factor ofg. This is stated in the following observation.

Observation 6.2. Consider aQSM with gap parameter g.

1. A QRQW PRAMalgorithm that runs in time t with p processors is aQSMalgorithm
that runs in time at most t· g with p processors.

2. A QRQW PRAMalgorithm in the work–time framework that runs in time t while
performing workw immediately implies aQSM algorithm that runs in time at
most t· g withw/t processors.

Thus the linear-workQRQW PRAM algorithms given in [36] and [34] forleader
election, linear compaction,multiple compaction, load balancing, andhashing, as well as
the extensive collection of linear-work logarithmic-timeEREW PRAMalgorithms reported
in the literature, all translate intoQSM algorithms with workO(n · g) on inputs of length

Can a Shared-Memory Model Serve as a Bridging Model for Parallel Computation? 349

n with a slowdown by a factor of at mostg. We show in Section 6.2 that this increase in
work by a factor ofg on theQSM may be unavoidable if the input items are not a priori
distributed across theQSM processors.

There are two other avenues through which we can hope to obtain useful results for
theQSM over those obtained through the mapping ofQRQW PRAMalgorithms. First, we
can consider tailoringQSM algorithms to its cost metric for the gap parameter, thereby
obtaining an improved running time for the algorithm. Second, we can relax the require-
ment that the input be placed in global memory, and allow the input to be distributed
across the local memories of the processors in a suitable way. This would conform to
the initial state forBSPalgorithms, and in fact mostBSPalgorithms map back to theQSM

in a natural way in this case.
We address each of these in turn in Sections 6.3 and 6.4, respectively. However,

first, in the next section, we mention some lower bounds for theQSM model.

6.2. Lower Bounds

If n distinct items need to be read from or written into shared memory on ap-processor
QSM, then the work performed by theQSM is Ä(n · g) regardless of the number of
processors used. To see this we note that the result is immediate ifp ≥ n since the
QSM has to execute at least one step. Ifp < n, then some processor needs to read or
write dn/pe distinct items, and hence that processor spends timeÄ((n/p) · g). Sincep
processors are used, the work, which is defined as the processor–time product, isÄ(ng).
A similar observation holds for the case whenn distinct memory locations are accessed.
We state this in the following.

Observation 6.3. Consider aQSM with gap parameter g.

1. Any algorithm in which n distinct items need to be read from or written into
global memory must perform workÄ(n · g).

2. Any algorithm that needs to perform a read or write on n distinct global memory
locations must perform workÄ(n · g).

By Observations 6.2 and 6.3, the linear-workQRQW PRAMalgorithms for problems
in which the input of lengthn resides in global memory translate into algorithms with
asymptotically optimal work on theQSM that run with a slowdown ofg with respect to
the correspondingQRQW PRAMalgorithm.

The following lower bounds for theQSM are given in [1]. TheCRCW PRAM lower
bound result of Beame and H˚astad [13] gives a lower bound for then-elementparity,
summation, list ranking, andsorting problems ofÄ(g · lg n/lg lg n) time on theQSM

for either deterministic or randomized algorithms when the number of processors is
polynomial inn, the size of the input. Also given in that paper is a simple lower bound
with a matching upper bound of2(ng) for theone-to-allproblem in which one processor
hasn distinct values in its local memory of which thei th value needs to be read by
processori , 1≤ i ≤ n.

A lower bound ofÄ(g lg n/lg g) for broadcasting ton processors is given in [1]; in
contrast to an earlier lower bound for this problem on theBSPgiven in [45] this lower
bound holds even if processors can acquire knowledge through nonreceipt of messages

350 P. B. Gibbons, Y. Matias, and V. Ramachandran

(i.e., by reading memory locations that werenotupdated by a recent write operation). We
note that the same lower bound on time holds for the problem of broadcasting ton memory
locationssince any algorithm that broadcasts ton memory locations can broadcast to
n processors in additionalg units of time. Further, by Observation 6.3Ä(ng) work is
necessary since writes ton distinct global memory locations are required.

6.3. Some Faster Algorithms for theQSM

By pipelining reads and writes to memory from different processors to amortize against
the delay due to the gap parameterg at processors, it is possible to obtain an algorithm
for the QSM that runs faster thang times the running time for the fastestQRQW PRAM

algorithm. As an example of an algorithm that is optimized for theQSM, consider the
leader electionproblem in which the input is a Booleann-array, and the output is the
first location in the array with value 1, if such a location exists, and is 0 otherwise.
The fastestQRQW PRAMalgorithm for this problem is just the “binary tree”EREW PRAM

method that halves the number of candidates in each of lgn rounds withO(n) work
(there is a faster algorithm on theCRQW PRAM, but that algorithm is not known to map
onto theQSMwith a slowdown of onlyg). ThisQRQW PRAMalgorithm will map on to the
QSM as aO(g lg n) time algorithm withO(gn) work. However, we can optimize further
for theQSM by replacing the normal “binary tree” method by a “g-ary tree.” This takes
advantage of the fact that requests at the memory are processed every time step, while at
the processors a request can be sent only everyg steps. The time taken by this algorithm
to solve the leader election problem on theQSM is O(g lg n/lg g) while still performing
O(gn) work. If the input is distributed evenly amongn/(g lg n/lg g) processors, then
the time isO(g lg n/lg g) and the work isO(n).

A similar strategy applies to thebroadcastingproblem in which the value at one
location in memory needs to be transmitted ton processors. Again, theQRQW PRAM

algorithm of choice for this problem is a “binary tree” broadcasting method that takes
O(lg n) time with O(n lg n) work. This algorithm will map onto theQSM as aO(g lg n)
time algorithm withO(gn lg n)work. By optimizing along the lines of the algorithm for
leader election, we can derive an algorithm to broadcast ton processors on theQSM that
runs in O(g lg n/lg g) while performingO((gn lg n)/lg g) work. By the lower bound
cited in Section 6.2, this result is optimal.

We can solve the related problem ofbroadcasting to n memory locationsin the above
time bound ofO(g lg n/lg g) but with O(ng) work. For this, we usep = n lg g/lg n
processors and broadcast to thep processors in timeO(g lg n/lg g). We then spend an
additionalO(g lg n/lg g) time to have each processor write into lgn/lg g locations. As
noted in Section 6.2 we have a matching lower bound on both the running time and the
work.

We now consider the problem of sorting on theQSM. The problem of designing
highly parallel algorithms for sortingn keys from a totally ordered set is a well-studied
one. On theEREW PRAM, there are two knownO(lg n) time, O(n lg n) work algorithms
for general sorting [4, 19]; these deterministic algorithms match the asymptotic lower
bounds for general sorting on theEREWandCREW PRAMmodels. Both of these algorithms
map onto theQSM to run in O(g lg n) time andO(gn lg n) work using Observation 6.2.
Unfortunately, these two algorithms are not as simple and practical as one would like.

Can a Shared-Memory Model Serve as a Bridging Model for Parallel Computation? 351

Goodrich [37] gives an algorithm for theBSPbased on [19] that performs workO((L +
gn) lg n/lg(n/p)+n lg n)with p processors. Since this algorithm is an adaptation of [19]
it is again a fairly complicated algorithm.

Among sorting algorithms that are fairly simple, the fastestO(n lg n) work algo-
rithm on theEREW PRAMis anO(lg2 n) time randomized quicksort algorithm (see, e.g.,
[43]), and on theQRQW PRAM, a randomized

√
n-sample sort algorithm that runs in

O(lg2 n/lg lg n) time, O(n lg n) work, andO(n) space [34].
On theQSM, the randomized sample sort algorithm can be mapped onto theQSM

to performO(n lg n) work provided the computation is very coarse-grained, i.e., the
number of processorsp is polynomially small inn andg = o(lg n); this QSM algorithm
is essentially the same as theBSP algorithm based on sample sort [30]. If we look for
a highly parallel sorting algorithm that is fairly simple, an adaptation of theQRQW

PRAM sample sort algorithm appears to be the fastest. A straightforward analysis of
this algorithm on theQSM using Observation 6.2 results in an algorithm that runs in
O(g · lg2 n/lg lg n) time while performingO(g · n lg n) work. However, an analysis of
the algorithm directly for theQSMshows that it runs inO(lg2 n/lg lg n+g lg n) time while
performingO(gn lg n)work. Thus, ifg is moderately large, specifically,Ä(lg n/lg lg n),
the sample sort algorithm will run within the same time and work bounds (randomized)
as the more involved algorithms obtained by mapping the asymptotically optimalEREW

PRAM algorithms onto theQSM. The improvement in running time for theQSM sample
sort algorithm in comparison with theQRQW PRAMsample sort comes from the fact that
the2(lg2 n/lg lg n) term in the time bound is only due to the bound on the contention
at memory locations in a dart-throwing step. Since theQSM model charges onlyκ time
for contentionκ, this term is not multiplied byg in the time bound.

6.4. MappingBSPAlgorithms onto theQSM

We now turn to the issue of mappingBSPalgorithms onto theQSM. For this we assume
that the input is distributed across theQSMprocessors to conform to the input distribution
for the BSP algorithm; alternatively one can add the termng/p to the time bound for
theQSM algorithm to take into account the time needed to distribute the input located in
global memory across the private memories of theQSM processors.

Many of theBSPalgorithms reported in the literature can be mapped back on theQSM

using the version of the algorithm that results whenL = 1. For instance, for then-element
summation, parity, and prefix sums problems, theBSPalgorithm that takes time(gd+
L) lgd n, minimized by choosingd ≥ 2 appropriately (d = dL/ge if L > g andd = 2
if L ≤ g) maps onto theQSM as a simpleO(g lg n) time algorithm that performsO(ng)
work. Similarly theBSPsorting algorithm of [30] and the matrix multiplication algorithms
of [69] and [59] map onto theQSM step by step with a performance corresponding to the
case whenL = 1 in theBSPalgorithms.

The QSM algorithms in the above paragraph are obtained by the following simple
strategy to map each step of theBSPalgorithm onto theQSM to run in the time the step
would take on theBSPif L = 1. A message sent by processori to a memory locationm
of processorj on theBSPis written into shared-memory location(j,m) by processori
in theQSM and then read by processorj . We refer to aBSPalgorithm aswell behavedif
it can be mapped onto theQSM in the above manner.

352 P. B. Gibbons, Y. Matias, and V. Ramachandran

The mapping onto theQSM needed for a well-behavedBSP algorithm may not be
possible if, in theBSPalgorithm, aBSPprocessor

(i) could receive a piece of information that it did not specifically request, and its
future behavior depends on whether or not it receives this piece of information;
or

(ii) could access, as a unit-time local computation, a value (not requested by it) that
was written into its local memory bank by another processor in an earlier step.

On theQSM a processor would need to initiate a read for any piece of information that it
receives; further, that access will be charged a cost ofg at the time the processor reads
it in addition to a cost ofg being applied at the time the value was written into the
shared-memory location.

We now give an example of aBSPcomputation that is not well behaved. The elements
of an arrayA[1..n] are distributed uniformly overp BSP processors. Each processor
applies a certain function to its local inputs, and thereby generates some pairs(i, v),
wherev is the new value forA[i]. The new values generated have the property that each
processor generates no more thancsuch values, and there are no more thancnew updates
generated for each block of inputs assigned to a processor, wherec = o(n/p); other
than these two restrictions, the indicesi of the locations in the arrayA whose values are
changed are arbitrary. These new values are updated on theBSPby sending ac-relation
in cg time units. Then in additionaln/p time eachBSP processor determines the new
values of all of its local inputs by reading the corresponding local memory locations.
This computation takes timeO(cg+ n/p) on theBSP. If we implement this algorithm
step by step on aQSM, the updated values will be written into a copy of the arrayA[1..n]
in shared memory, and eachQSM processor then needs to read these updated values.
Since it is not known ahead of time which values were updated, eachQSM processor
would need to read from global memory, the current value of each of then/p elements
of A[i] that it has in local memory. This will take2(gn/p) time, which is larger than
the running time on theBSPsincec = o(n/p).

While the above example indicates that theBSPis in some ways more powerful than
the QSM, it may not be desirable for a general-purpose bridging model to incorporate
these features of theBSP, as argued in Section 3.2.

Fortunately, many of theBSPalgorithms reported in the literature have simple com-
munication patterns that map onto theQSMby the simple strategy described above. Also,
as shown in the next subsection, there is a randomized strategy that can map anyBSP

algorithm onto theQSM in a work-preserving manner, provided a logarithmic slowdown
is acceptable.

6.5. A Work-Preserving Emulation ofBSPon QSM

In this section we describe a randomized work-preserving emulation of ann-component
BSP on aQSM with O(lg n) slowdown that works with high probability inn (i.e., the
probability of failure is 1/nδ, for someδ > 0). For this emulation we assume that the
input is distributed across the local memories of theQSM processors in the same manner
as in theBSPalgorithm.

In the emulation we use the shared memory of theQSM only for the purpose of

Can a Shared-Memory Model Serve as a Bridging Model for Parallel Computation? 353

realizing theh-relation performed by theBSP in each step, and eachQSM processor
copies into its private memory any message that was sent to the local memory of the
correspondingBSPprocessor in that step. The algorithm is reminiscent of a randomized
CRQW PRAMalgorithm for integer sorting given in [34]. It proceeds by using the shared
memory to sort the messages being sent in the current step according to their destination.
Each processor then reads the messages being sent to it from an appropriate subarray
in the shared memory and writes it into the corresponding location in its local memory.
The details of the emulation algorithm are given below.

1. Compute the total number of messages,M , to be sent by all processors as follows:
Construct an arrayA[1..n] in shared memory, withA[i] containing the number
of messages being sent by processori , and computeM as the sum of the elements
in this array. This step can be performed deterministically inO(g lg n) time and
O(M + g · n) work (note thatM ≤ n · h, whereh is the maximum number of
messages sent or received by any processor in thisBSPstep).

If M ≥ n/lg n, then execute steps 2–9 below.

2. Construct a sampleSof the messages to be sent by choosing each message inde-
pendently with probability 1/lg3 M . The size of the sample will beO(M/lg3 M)
w.h.p.

3. Sort the sample deterministically according to destination using a standard sorting
algorithm, e.g., Cole’s merge-sort; this takesO(g lg M) time andO(g·M/lg2 M)
work.

4. Group the destinations into groups of size lg3 M and determine the number
of messages destined for each group. This can be computed by a prefix sums
computation that takesO(g lg M) time andO(gM) work.

5. Let ki be the number of elements in the sample destined for thei th group.
Obtain a high probability bound on the total number of messages to each group
as ri = O(max(ki ,1) · lg3 M). Make lg3 M copies of eachri , and place the
duplicate values of theri in an arrayR[1..n] such thatR[i] contains the bound
for the group that contains destinationi,1 ≤ i ≤ n. This step can be performed
in O(g(1+ lg lg M/lg g)) time andO(ng) work using a broadcasting algorithm
for eachri .

6. In parallel, for eachi , all processors with a message to a destinationi read the
value of this bound fromR[i]; this takes time≤ gh andO(g · M) work.

7. Use an algorithm for multiple compaction to get the messages in each group
into a linear-sized array for that group; this takesO(g lg M) time andO(g · M)
work by the adaptation of the randomizedQRQW PRAM algorithm for multiple
compaction given in [34] to theQSM using Observation 6.2.

8. Perform a stable sort within each group according to the individual destination;
this can be performed inO(g lg M) time andO(gM) work deterministically
using anEREW PRAMradix-sort algorithm within each group.

9. Move the messages into an output arrayR of sizeM sorted according to destina-
tion in O(gh) time andO(M)work. Create an arrayB of sizen that contains the
number of messages to each destination, and the starting point in the output array
for messages to that destination; this can be done by computing prefix sums on

354 P. B. Gibbons, Y. Matias, and V. Ramachandran

an appropriateM-array and takesO(g lg M) time andO(g ·M)work. Processor
i reads this value fromB[i] and then reads the messages destined for it from the
output array in timeO(gh) and workO(g · M).

If M < n/lg n, then we sort the messages deterministically according to their destination;
this takes timeO(g lg n) andO(gn) work. We then perform step 9 above.

Since M ≤ n · h, the aboveQSM algorithm runs inO(g(h + lg n)) time while
performing O(ghn) work. High-probability bounds for the randomized steps in the
above algorithm are shown in [34]. Since aBSProutes anh-relation inO(gh+ L) time
while performingO(n(gh+ L)) work, this is a work-preserving emulation of aBSP

h-relation, with a slowdown ofO(1+ lg n/(h+ L/g)).
In summary we have the following result.

Lemma 6.4. Consider a step of an n-componentBSP with gap g and latency L that
involves routing an h-relation. On aQSMwith gap parameter g this step can be emulated
with high probability in n in a work-preserving manner with a slowdown of O(1 +
lg n/(h+ L/g)).

The probability that the emulation will fail to perform according to the stated bounds
is less than 1/nδ, for someδ > 0, whose value depends on parameters of the algorithm
such as the constants in the sizes of arrays used in steps 5 and 7. Thus, if aBSPalgorithm
takes no more thannε steps, for anyε,0< ε < δ, then the probability that the emulation
of any one of its steps on aQSM fails is polynomially small inn. This leads to the
following theorem.

Theorem 6.5. An algorithm that runs in time t(n) on an n-componentBSP with gap
parameter g and periodicity factor L, where t(n) ≤ c ·nγ , for some constants c, γ > 0,
can be emulated with high probability on aQSM with the same gap parameter g to run
in time O(t (n) · dg lg n/Le) with n/dg lg n/Le processors when L≥ g, and otherwise
in time O(t (n) · lg n) with n/lg n processors.

6.6. On the Queuing Memory Contention Rule for theQSM

We note that a work-preserving emulation of aBSP with g = 1 is not known on the
EREW PRAMif the slowdown is to be bounded bypolylog(n). If such an emulation is
discovered, it will give rise to randomized linear work polylog time algorithms on the
EREW PRAMfor certain problems, such as computing a random permutation, for which
such an algorithm is not known currently. Therefore, even though theEREW PRAM is
often referred to as a stronger model than theBSP, its expressive power may actually be
inferior, in some cases.

On the other hand, for the more powerfulCRCW PRAMthere appears to be a mismatch
in the reverse direction since no work-preserving emulation of aCRCW PRAMon aBSP

with g = 1 is known if the slowdown is to be bounded bypolylog(n). Thus, if either
theEREW PRAMor theCRCW PRAMis augmented with the gap parameter, the resulting
model is not known to have as strong a correspondence to theBSPas we have shown for

Can a Shared-Memory Model Serve as a Bridging Model for Parallel Computation? 355

the QSM. In other words, the queuing memory contention rule for theQSM, in contrast
to the exclusive or concurrent rules, is crucial in order for it to serve as a bridging
shared-memory model.

7. Gap Parameter at Memory

TheQSMhas a gap parameterg at the processors, but no gap parameter at the memory—
each request at memory is serviced in unit time once it reaches the head of its queue.
One could argue that another gap parameterd for processing memory accesses would be
a desirable feature in a general-purpose model, since many currently available parallel
machines have different gap parameters at processors and at memory banks. We refer to
this model asQSM(g,d). The following result is shown in [64].

Observation 7.1[64]. There isadeterministicwork-preservingemulationofQSM(g,d′)
on QSM(g,d) with slowdown O(dd/d′e).

The above observation shows that very little generality is lost in assuming that
the gap parameter at memory is 1 rather than some other valued. The only potential
drawback is that an algorithm designed for theQSM(g,1) (which is the standardQSM

model) may not achieve the full level of speed-up attainable onQSM(g,d), due to the
slowdown in the emulation mentioned in the observation. The advantage in not having
a gap parameterd at memory is that we have a simpler model with fewer parameters.
We believe that the simplicity achieved in not having a gap parameterd at memory far
outweighs the drawback of not achieving the best possible speed-up for a specific value
of d.

We define thes-QSM (the symmetricQSM) to be the modelQSM(g, g). This is the
special case ofQSM(g,d) with the same gap parameterg at both processors and memory.
This model has the same number of parameters as theQSM, and could serve as an
alternative to theQSM. The main difference between the two models is the asymmetry
in the application of the gap parameter at processor and memory in the case of theQSM

versus the symmetry in this application in thes-QSM. As a result, the fastest speed-up
achievable for a given problem can be slightly different in the two models, e.g., on the
s-QSM broadcasting a bit ton memory locations has the tight time bound of2(g lg n) in
contrast to the tight bound of2(g lg n/lg g) for theQSM. (Several other lower bounds for
QSM ands-QSM are given in [54].) However, except for this difference, theQSM and the
s-QSM are essentially interchangeable models. Specifically, theQSM can emulate thes-
QSMwith no slowdown and, as follows from Observation 7.1, there is a work-preserving
emulation of theQSM on thes-QSM with slowdownO(g).

8. Conclusion

Developing effective models for parallel computation, at suitable levels of abstraction,
remains a fundamental challenge in parallel processing. TheBSPandLogP models have
gained considerable popularity as high-level “bridging models” for parallel computation,

356 P. B. Gibbons, Y. Matias, and V. Ramachandran

and indeed they have many attractive features and have proven to be effective in many
scenarios. We have described a new model, the Queuing Shared-Memory (QSM) model,
which in many cases may be an attractive alternative as a bridging model for parallel
computation. In contrast to theBSPandLogP models, theQSM model provides a shared-
memory abstraction. The model has a simple queuing metric for shared-memory access,
and only two parameters—p, the number of processors, andg, the bandwidth gap—
yet it can be efficiently emulated on both theBSP and (d, x)-BSP models, using an
arguably practical emulation. Thus theQSM can be effectively realized on machines that
can effectively realize theBSP, as well as on machines that are better modeled by the
(d, x)-BSP. We have presented evidence that both the queuing metric and the bandwidth
parameter are essential to theQSM’s effectiveness as a bridging model. In addition, we
have described several algorithms for theQSM, as well as general strategies for mapping
EREW PRAM, QRQW PRAM, andBSPalgorithms onto theQSM.

We conclude that a model such as theQSM can serve the role of a bridging model
for parallel computation while preserving the high-level abstraction of a shared-memory
model. On the other hand, as discussed in this paper, there are tradeoffs in any bridging
model, and scenarios in which another model (BSP, LogP, etc.) may be preferred. Thus
the choice of a best bridging model remains open to debate.

Future research should consider further algorithmic techniques that may be useful
for this model, as well as experimental validation of the model. Such validation may
reveal the primary importance of features not present in either theQSM, BSP, or LogP.
For example, each of these models defines a single bandwidth parameter that reflects a
per-processor bandwidth limitation; other recent work has considered variants of these
models with an aggregate bandwidth limitation [1] or a hierarchical bandwidth limitation
that accounts for network proximity [52], [25], [26], [46], [73]. Per-processor bandwidth
limitations better model machines in which each processor has access to its “share”
of the network bandwidth and no more, as well as machines for which the primary
network bottleneck, in the absence of hot-spots, is in the processor–network interface.
As a second example, each of these models ignores the memory hierarchy at a processor,
assuming a unit-time charge for local operations regardless of the local working set
size. A possible feature to consider is to limit the size of the private memories on
the QSM, or to have two levels of memory hierarchy on theBSP or LogP. Third, as
discussed in Section 4, each of these models disregards spatial locality. Variants of
the BSP and LogP that account for spatial locality include [44],[5], [46], and [11]. In
machines supporting a single address space, the unit of data transfer between components
is typically either a cache line or a page, and hence opportunities to exploit spatial locality
are restricted to that level of granularity. A possible enhancement for theQSM would be
to have the shared memory partitioned into small, fixed-sized blocks of locations that
could be accessed efficiently; the realization of such aQSM on a distributed-memory
machine would map these blocks pseudorandomly onto the memory banks. Finally, each
of these models ignores the effects of the cache coherence protocol used in most shared-
memory multiprocessors to maintain consistency among the various cached copies of
shared-memory data. It would be interesting to study aQSM model that incorporates
and accounts for a standard invalidation-based cache coherence protocol [40]. Should
it become necessary to include additional features as part of a bridging model, theQSM

may be more suited for augmentation than theBSPor LogP, since it is simpler, with fewer
parameters.

Can a Shared-Memory Model Serve as a Bridging Model for Parallel Computation? 357

References

[1] M. Adler, P. B. Gibbons, Y. Matias, and V. Ramachandran. Modeling parallel bandwidth: local vs.
global restrictions. InProc. 9th ACM Symp. on Parallel Algorithms and Architectures, pages 94–105,
June 1997.

[2] A. Aggarwal, A. K. Chandra, and M. Snir. On communication latency in PRAM computations. InProc.
1st ACM Symp. on Parallel Algorithms and Architectures, pages 11–21, June 1989.

[3] A. Aggarwal, A. K. Chandra, and M. Snir. Communication complexity of PRAMs.Theoretical Computer
Science, 71(1):3–28, 1990.

[4] M. Ajtai, J. Komlos, and E. Szemeredi. Sorting inc lg n parallel steps.Combinatorica, 3(1):1–19, 1983.
[5] A. Alexandrov, M. F. Ionescu, K. E. Schauser, and C. Sheiman. LogGP: incorporating long messages

into the LogP model—one step closer towards a realistic model for parallel computation. InProc. 7th
ACM Symp. on Parallel Algorithms and Architectures, pages 95–105, July 1995.

[6] B. Alpern,L. Carter, andE. Feig.Uniform memoryhierarchies. InProc. 31st IEEESymp.on Foundations
of Computer Science, pages 600–608, October 1990.

[7] R. J. Anderson and G. L. Miller. Optical Communication for Pointer Based Algorithms. Technical
Report CRI 88-14, Computer Science Department, University of Southern California, Los Angeles,
CA, 1988.

[8] Y. Aumann and M. O. Rabin. Clock construction in fully asynchronous parallel systems and PRAM
simulation. InProc. 33rd IEEE Symp. on Foundations of Computer Science, pages 147–156, October
1992.

[9] A. Bar-Noy, J. Bruck, C. T. Ho, S. Kipnis, and B. Schieber. Computing global combine operations in
the multi-port postal model. InProc. 5th IEEE Symp. on Parallel and Distributed Processing, pages
336–343, December 1993.

[10] A. Bar-Noy and S. Kipnis. Designing broadcasting algorithms in the postal model for message-passing
systems. InProc. 4th ACM Symp. on Parallel Algorithms and Architectures, pages 13–22, June–July
1992.

[11] A. Baumker and W. Dittrich. Fully dynamic search trees for an extension of the BSP model. InProc.
8th ACM Symp. on Parallel Algorithms and Architectures, pages 233–242, June 1996.

[12] A. Baumker, W. Dittrich, and F. Meyer auf der Heide. Truly Efficient Parallel Algorithms: 1-Optimal
Multisearch for an Extension of the BSP Model. Technical Report, University of Paderborn, 1996.

[13] P. Beame and J. H˚astad. Optimal bounds for decision problems on the CRCW PRAM.Journal of the
ACM, 36(3):643–670, July 1989.

[14] G. E. Blelloch.Vector Models for Data-Parallel Computing. The MIT Press, Cambridge, MA, 1990.
[15] G. E. Blelloch. Programming parallel algorithms.Communications of the ACM, 39(3):85–97, 1996.
[16] G. E. Blelloch, P. B. Gibbons, Y. Matias, and M. Zagha. Accounting for memory bank contention

and delay in high-bandwidth multiprocessors.IEEE Transactions on Parallel and Distributed Systems,
8(9):943–958, 1997. Preliminary version appears inProc. 7th ACM Symp. on Parallel Algorithms and
Architectures, pages 84–94, July 1995.

[17] G. E. Blelloch, P. B. Gibbons, Y. Matias, and M. Zagha. Accounting for memory bank contention
and delay in high-bandwidth multiprocessors.IEEE Transactions on Parallel and Distributed Systems,
8(9):943–958, 1997.

[18] G. E. Blelloch, C. E. Leiserson, B. M. Maggs, C. G. Plaxton, S. J. Smith, and M. Zagha. A comparison of
sorting algorithms for the Connection Machine CM-2. InProc. 3rd ACM Symp. on Parallel Algorithms
and Architectures, pages 3–16, July 1991.

[19] R. Cole. Parallel merge sort.SIAM Journal on Computing, 17(4):770–785, 1988.
[20] R. Cole and O. Zajicek. The APRAM: incorporating asynchrony into the PRAM model. InProc. 1st

ACM Symp. on Parallel Algorithms and Architectures, pages 169–178, June 1989.
[21] R. Cole and O. Zajicek. The expected advantage of asynchrony. InProc. 2nd ACM Symp. on Parallel

Algorithms and Architectures, pages 85–94, July 1990.
[22] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos, R. Subramonian, and T. von

Eicken. LogP: towards a realistic model of parallel computation. InProc. 4th ACM SIGPLAN Symp. on
Principles and Practices of Parallel Programming, pages 1–12, May 1993.

[23] R. Cypher and S. Konstantinidou. Bounds on the efficiency of message-passing protocols for parallel
computers. InProc. 5th ACM Symp.on Parallel Algorithms and Architectures, pages 173–181, June–July
1993.

358 P. B. Gibbons, Y. Matias, and V. Ramachandran

[24] A. Czumaj, Z. Galil, L. Ga̧sieniec, K. Park, and W. Plandowski. Work-time-optimal parallel algorithms
for string problems. InProc. 27th ACM Symp. on Theory of Computing, pages 713–722, May-June
1995.

[25] P. de la Torre and C. P. Kruskal. Towards a single model of efficient computation in real parallel machines.
Future Generation Computer Systems, 8:395–408, 1992.

[26] P. de la Torre and C. P. Kruskal. Submachine locality in the bulk synchronous setting. InProc. Euro-
Par ’96, pages 352–358, August 1996.

[27] M. Dietzfelbinger and F. Meyer auf der Heide. Simple, efficient shared memory simulations. InProc.
5th ACM Symp. on Parallel Algorithms and Architectures, pages 110–119, June–July 1993.

[28] C. Dwork, M. Herlihy, and O. Waarts. Contention in shared memory algorithms. InProc. 25th ACM
Symp. on Theory of Computing, pages 174–183, May 1993.

[29] S. Fortune and J. Wyllie. Parallelism in random access machines. InProc. 10th ACM Symp. on Theory
of Computing, pages 114–118, May 1978.

[30] A. V. Gerbessiotis and L. Valiant. Direct bulk-synchronous parallel algorithms.Journal of Parallel and
Distributed Computing, 22:251–267, 1994.

[31] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. Hennessy. Memory consistency
and event ordering in scalable shared-memory multiprocessors. InProc. 17th International Symp. on
Computer Architecture, pages 15–26, May 1990.

[32] P. B. Gibbons. A more practical PRAM model. InProc. 1st ACM Symp. on Parallel Algorithms and
Architectures, pages 158–168, June 1989. Full version in The Asynchronous PRAM: a semi-synchronous
model for shared memory MIMD machines, Ph.D. thesis, University of California, Berkeley 1989.

[33] P. B. Gibbons. What good are shared-memory models? InProc. 1996ICPP Workshop on Challenges
for Parallel Processing, pages 103–114, August 1996. Invited position paper.

[34] P. B. Gibbons, Y. Matias, and V. Ramachandran. Efficient low-contention parallel algorithms.Journal
of Computer and System Sciences, 53(3):417–442, 1996. Special issue devoted to selected papers from
the 1994 ACM Symp. on Parallel Algorithms and Architectures.

[35] P. B. Gibbons, Y. Matias, and V. Ramachandran. The Queue-Read Queue-Write Asynchronous PRAM
model.Theoretical Computer Science, 196:3–29, 1998.

[36] P. B. Gibbons, Y. Matias, and V. Ramachandran. The Queue-Read Queue-Write PRAM model: account-
ing for contention in parallel algorithms.SIAM Journal on Computing, 1999. To appear. Preliminary
version appears inProc. 5th ACM–SIAM Symp. on Discrete Algorithms, pages 638–648, January 1994.

[37] M. Goodrich. Communication-efficient parallel sorting. InProc. 28th ACM Symp. on Theory of Com-
puting, pages 247–256, May 1996.

[38] J. Greiner. A comparison of data-parallel algorithms for connected components. InProc. 6th ACM Symp.
on Parallel Algorithms and Architectures, pages 16–25, June 1994.

[39] S. Hambrusch and A. Khokhar. C3: an architecture-independent model for coarse-grained parallel
machines. InProc. 6th IEEE Symp. on Parallel and Distributed Processing, pages 544–551, 1994.

[40] J. Hennessy and D. Patterson.Computer Architecture: A Quantitative Approach, second edition. Morgan
Kaufmann, San Francisco, CA, 1996.

[41] T. Heywood and S. Ranka. A practical hierarchical model of parallel computation: I. The model.Journal
of Parallel and Distributed Computing, 16:212–232, 1992.

[42] T.-S. Hsu, V. Ramachandran, and N. Dean. Parallel implementation of algorithms for finding con-
nected components in graphs. InProc. AMS/DIMACS Parallel Implementation Challenge Workshop
III , pages 395–416. DIMACS Series. American Mathematical Society, Providence, RI, 1997.

[43] J. JáJá.An Introduction to Parallel Algorithms. Addison-Wesley, Reading, MA, 1992.
[44] J. JáJá and K. W. Ryu. The Block Distributed Memory Model. Technical Report UMIACS-TR-94-5,

Institute for Advanced Computer Studies, University of Maryland, College Park, MD, January 1994.
[45] B. H. H. Juurlink. Ph.D. Thesis, Leiden University, 1996.
[46] B. H. H. Juurlink. and H. A. G. Wijshoff. The E-BSP model: incorporating general locality and unbal-

anced communication into the BSP Model. InProc. Euro-Par ’96, pages 339–347, August 1996.
[47] R. Karp, A. Sahay, E. Santos, and K.E. Schauser. Optimal broadcast and summation in the LogP model.

In Proc. 5th ACM Symp. on Parallel Algorithms and Architectures, pages 142–153, June–July 1993.
[48] R. M. Karp and V. Ramachandran. Parallel algorithms for shared-memory machines. In J. van Leeuwen,

editor,Handbook of Theoretical Computer Science, Volume A, pages 869–941. Elsevier, Amsterdam,
1990.

[49] Z. M. Kedem, K. V. Palem, M. O. Rabin, and A. Raghunathan. Efficient program transformations for

Can a Shared-Memory Model Serve as a Bridging Model for Parallel Computation? 359

resilient parallel computation via randomization. InProc. 24th ACM Symp. on Theory of Computing,
pages 306–317, May 1992.

[50] K. Kennedy. A research agenda for high performance computing software. InDeveloping a Computer
Science Agenda for High-Performance Computing, pages 106–109. ACM Press, New York, 1994.

[51] F. T. Leighton.Introduction to Parallel Algorithms and Architectures: Arrays · Trees· Hypercubes.
Morgan Kaufmann, San Mateo, CA, 1992.

[52] C. E. Leiserson and B. M. Maggs. Communication-efficient parallel algorithms for distributed random-
access machines.Algorithmica, 3(1):53–77, 1988.

[53] P. Liu, W. Aiello, and S. Bhatt. An atomic model for message-passing. InProc. 5th ACM Symp. on
Parallel Algorithms and Architectures, pages 154–163, June–July 1993.

[54] P. D. MacKenzie and V. Ramachandran. Computational bounds for fundamental problems on general-
purpose parallel models. InProc. 10th ACM Symp. on Parallel Algorithms and Architectures, pages
152–163, June–July 1998.

[55] B. M. Maggs, L. R. Matheson, and R. E. Tarjan. Models of parallel computation: a survey and synthesis.
In Proc. 28th Hawaii International Conf. on System Sciences, pages II: 61–70, January 1995.

[56] Y. Mansour, N. Nisan, and U. Vishkin. Trade-offs between communication throughput and parallel time.
In Proc. 26th ACM Symp. on Theory of Computing, pages 372–381, 1994.

[57] C. Martel, A. Park, and R. Subramonian. Work-optimal asynchronous algorithms for shared memory
parallel computers.SIAM Journal on Computing, 21(6):1070–1099, 1992.

[58] R. P. Martin, A. M. Vahdat, D. E. Culler, and T. E. Anderson. Effects of communication latency, overhead,
and bandwidth in a cluster architecture. InProc. 24th International Symp. on Computer Architecture,
pages 85–97, June 1997.

[59] W. F. McColl. A BSP Realization of Strassen’s Algorithm. Technical Report, Computing Laboratory,
Oxford University, May 1995.

[60] K. Melhorn and U. Vishkin. Randomized and deterministic simultaitons of PRAMs by parallel machines
with restricted granularity of parallel memories.Acta Informatica, 21:339–374, 1984.

[61] N. Nishimura. Asynchronous shared memory parallel computation. InProc. 2nd ACM Symp. on Parallel
Algorithms and Architectures, pages 76–84, July 1990.

[62] M. H. Nodine and J. S. Vitter. Large-scale sorting in parallel memories. InProc. 3rd ACM Symp. on
Parallel Algorithms and Architectures, pages 29–39, July 1991.

[63] P. Raghavan. Probabilistic construction of deterministic algorithms: approximating packing integer
programs.Journal of Computer and System Sciences, 37:130–143, 1988.

[64] V. Ramachandran. A general purpose shared memory model for parallel computation. InAlgorithms
for Parallel Processing, Vol. 105. IMA Volumes in Mathematics and Its Applications. Springer-Verlag,
New York, in press.

[65] J. H. Reif, editor.A Synthesis of Parallel Algorithms. Morgan Kaufmann, San Mateo, CA, 1993.
[66] J. H. Reif and S. Sen. Randomized algorithms for binary search and load balancing on fixed con-

nection networks with geometric applications. InProc. 2nd ACM Symp. on Parallel Algorithms and
Architectures, pages 327–337, July 1990.

[67] B. Smith. Invited lecture, 7th ACM Symp. on Parallel Algorithms and Architectures, July 1995.
[68] P. Stenstr¨om, T. Joe, and A. Gupta. Comparative performance evaluation of cache-coherent NUMA and

COMA architectures. InProc. 19th International Symp. on Computer Architecture, pages 80–91, May
1992.

[69] L. G. Valiant. A bridging model for parallel computation.Communications of the ACM, 33(8):103–111,
1990.

[70] L. G. Valiant. General purpose parallel architectures. In J. van Leeuwen, editor,Handbook of Theoretical
Computer Science, Volume A, pages 943–972. Elsevier, Amsterdam, 1990.

[71] U. Vishkin. A parallel-design distributed-implementation (PDDI) general purpose computer.Theoretical
Computer Science, 32:157–172, 1984.

[72] J. S. Vitter and E. A. M. Shriver. Optimal disk I/O with parallel block transfer. InProc. 22nd ACM
Symp. on Theory of Computing, pages 159–169, May 1990.

[73] H. A. G. Wijshoff and B. H. H. Juurlink. A quantitative comparison of parallel computation models. In
Proc. 8th ACM Symp. on Parallel Algorithms and Architectures, pages 13–24, June 1996.

Received November11, 1997,and in final form September21, 1998.

