
Implementation of Parallel Graph Algorithms on a

Massively Parallel SIMD Computer

with Virtual Processing

Tsan-sheng Hsu�y & Vijaya Ramachandran�

Department of Computer Sciences
University of Texas at Austin

Austin, TX 78712

Nathaniel Dean
Combinatorics and Optimization Research

Bell Communications Research
Morristown, NJ 07960

July 22, 1993

Abstract

We describe our implementation of several PRAM graph algorithms on the massively par-
allel computer MasPar MP-1 with 16,384 processors. Our implementation incorporated virtual
processing and we present extensive test data.

In a previous project [13], we reported the implementation of a set of parallel graph algo-
rithms with the constraint that the maximum input size was restricted to be no more than the
physical number of processors on the MasPar. The MasPar language MPL that we used for
our code does not support virtual processing. In this paper, we describe a method of simulat-
ing virtual processors on the MasPar. We re-coded and �ne-tuned our earlier parallel graph
algorithms to incorporate the usage of virtual processors. Under the current implementation
scheme, there is no limit on the number of virtual processors that one can use in the program
as long as there is enough main memory to store all the data required during the computation.
We also give two general optimization techniques to speed up our computation.

We tested our code with virtual processing on test graphs with various edge densities. We
also compared the performance data for our parallel code with the performance data of sequential
code for these problems. We found that the extra overhead for simulating virtual processors is
moderate and the performance of our code tracks theoretical predictions quite well, although
real-time speed-ups are quite small since the MasPar processors are rather slow. In addition,
our parallel code using virtual processing runs on much larger size inputs than our sequential
code.

Key words and phrases: parallel algortithms, graph algorithms, implementation, virtual

processing, MasPar.
�Supported by NSF Grant CCR-90-23059 and Texas Advanced Research Projects Grant 003658480.
yAlso supported by an IBM graduate fellowship.

1



1 Introduction

This paper describes an on-going project for implementing parallel graph algorithms on the

massively parallel machine MasPar MP-1. There has been a fair amount of prior work on

implementing parallel algorithms on massively parallel machines [1, 5, 9, 10, 11, 25, 29] since

the completion of the �rst phase of our project reported in [13]. However, most of this

work has been targeted towards solving problems that are highly structured and are not

very di�cult to scale up. The focus of our work is on solving graph-theoretical problems for

which the algorithms require large amounts of non-oblivious memory accesses.

In [13], we reported the implementation of several parallel graph algorithms on the Mas-

Par MP-1 using the parallel language MPL [19, 20] which is an extension of the C language.

The MPL language provides a very e�cient way of using the MasPar with the drawback

of requiring the speci�cation of the physical organization of the processors used in the pro-

gram. Our implementation in [13] used an edge list data structure to store the input graph.

An undirected edge (u; v) was stored twice as one directed edge from u to v and another

directed edge from v to u. Each of the two copies of an undirected edge was stored in one

processor along with a node. As a result, we could only handle the case when the input

graph has no more than nproc nodes and nproc

2 edges where nproc is the maximum number

of processors that we can use in the system. The machine that we used, the MasPar MP-1,

had nproc = 16,384 processors. In the current paper, we report the second phase of this

work, which consisted of implementing these algorithms to handle inputs of size greater than

16,384. A major advantage in using massively parallel machines with virtual processing is

that we can solve problems on large-sized inputs that cannot be handled by conventional

sequential machines.

Several parallel machines o�er the convenience of using virtual processors in their high-

level programming languages. For example, the Connection Machine [18] o�ers the support

of using virtual processors with the assistance of the hardware and microcodes in the C�

programming language. The parallel Fortran language used in the MasPar also supports

the usage of virtual processors. However, these supports for using virtual processors come

with the penalty of having a very large overhead. Programs that want to achieve a high

percentage of machine utilization are either coded in low level programming language (e.g.

the Paris language in the Connection Machine [5]) or coded in a language that does not

support virtual processing (e.g. the MPL language in the MasPar [13, 29]). We have used

the latter approach in the current work.

Our results are reported in the following sections which are organized as follows. Section 2

gives our implementation strategy and the programming environment of the MasPar MP-

1. Section 3 gives a high-level description of our implementation. Section 4 describes our

strategy in mapping the PRAM model and in mapping virtual processors onto the MP-

2



1. Section 5 describes the implementation details of our parallel graph algorithms library.

Section 6 gives performance analysis. Finally, Section 7 gives the conclusion and possible

future work.

2 Preliminaries

2.1 Implementation Strategy

Several strategies can be used to implement parallel algorithms on a parallel computer. One

possible strategy is to implement di�erent algorithms for di�erent architectures. Since par-

allel machines are widely diverse in their architectures, one can take advantage of the special

properties o�ered by an architecture and �ne-tune the algorithms to run well on a particular

machine. For parallel algorithms using this approach, see [17, 30]. However, this time-

consuming process must be carried out each time a new architecture arrives. This approach

may be useful for some of the very important subroutines used in the machine (e.g. sorting

[5, 29]). However, for complicated combinatorial problems, reinventing di�erent algorithms

for di�erent architectures tends not to be a feasible solution. As the problems get more

complicated, it takes longer time to derive e�cient algorithms. Further, we feel that this is

not a very good strategy as one often discovers that the fundamental algorithmic techniques

underlying the parallel algorithms for most problems are independent of the particular par-

allel machine being used. Thus one should study and utilize these basic techniques to assist

the implementation of parallel algorithms.

In view of the above, a natural strategy is to use parallel algorithms developed on an

abstract parallel machine model. Several abstract models that are closely related to real

parallel machine architectures have been proposed [4, 8, 12, 33]. Instead of using a new model,

we have performed a direct implementation of parallel algorithms based on the popular

PRAM model [14, 15, 32]. Although the PRAM is an idealized theoretical model that does

not capture the real cost of performing inter-processor communications on the MasPar, we

believe that it provides a good abstract model for developing parallel algorithms. Parallel

algorithms developed on the PRAM model are often very modular in structure (or have

parallel primitives). Problems are solved by calling these parallel primitives. For solving

undirected graph problems, a set of parallel primitives required for constructing an ear

decomposition has proved to be very useful [31, 37]. Our parallel implementation follows

this approach. We �rst built a kernel which consists of commonly used routines in parallel

graph algorithms. Then we implemented e�cient parallel graph algorithms developed on

the PRAM model by calling routines in the kernel.

Our experience with implementing PRAM graph algorithms on the MASPAR MP-1 as

reported in this paper and in [13] supports our viewpoint that e�cient PRAM algorithms

are adaptable to run on real machines. The basic primitives should be �ne-tuned for the real

3



machine, but the overall structure of a complex PRAM algorithm can be mapped directly

on to the real machine.

2.2 Programming Environment

The MasPar computer [21] is a �ne-grained massively parallel single-instruction-multiple-

data (SIMD) computer. All of its parallel processors synchronously execute the same in-

struction at the same time. A simpli�ed version of its architecture is shown in Figure 1. For

details, see [3].

Each physical processor (called a PE) is a 4-bit CPU with 64 kilobytes of main memory

and a unique ID ranging from 0 to 16,383. Through the emulation of microcode, each PE

can perform operations on 8-bit, 16-bit, 32-bit, and 64-bit data. There are two types of

inter-processor communication available. First, PE's are organized as a two-dimensional

wrap-around mesh. Each PE can communicate with its 8 nearest neighbors. This is called

the XNET connection. Second, 16 PE's (a 4� 4 sub-mesh) are grouped into a cluster. The

1024 clusters are organized as a 10-dimensional hypercube with each cluster representing a

node in the hypercube. This is called the global router. Processors can communicate with

each other by using the global router. Mesh communications are about 200 times faster

than global routing requests for transmitting 32-bit data [20, 28]. The MasPar also has an

Array Control Unit (ACU) for controlling the PE's and executing sequential instructions.

The MasPar PE is a very slow processor. In comparison, SUN SPARC II is more than 200

times faster than a MasPar PE, while SUN SPARC 10/41 is more than 230 times faster.

We used the MPL high-level programming language for coding our programs. The current

version of the MPL compiler [19, 20] is an extension of the ANSI C language [16] with data

parallel constructs and a library of parallel primitives. (For details of the MPL language,

see [23, 24]. An introduction to MPL is also given in [26].) In MPL, a variable can be

declared with or without the attribute plural. A plural variable has a local copy (possibly

with di�erent values) in each PE, while a variable without the plural attribute has only

one copy in the ACU. During each computation step, each PE decides whether or not to

participate in the current computation by the value of a local 
ag. A PE that participates

in a computation step is called active. Any step that uses plural variables will be executed

by each active PE. For details, see [13, 26]. It is important to note that the current version

of the MPL language does not support the use of virtual processors. Thus we had to design

and implement our own scheme for virtual processing.

3 High-Level Description of Our Implementation

In our earlier implementation of parallel graph algorithms without virtual processing [13], we

�rst provided a general mapping between the architecture of the MasPar and the schematic

4



Global Router

ACU-PE I/O bus interface

ACU

Front End Processor

local memory
(Array Control Unit)

Sequentialize I/O request from PE
Broadcast from ACU

local memory

local memory

local memory local memory

local memorylocal memorylocal memory

local memory

PE 0
PE 1 PE nxproc-1

PE nxproc
PE nxproc+1 PE

2*nxproc-1

PE nproc-1

Xnet connections

DPU

Figure 1: System architecture for the MasPar MP-1 computer.

5



structure of the PRAM model. This mapping scheme took advantage of some of the special

properties of the MasPar, although it was not �ne-tuned for each individual routine. This

mapping scheme will be described in Section 4.1. (This approach has been used in simulating

PRAM algorithms on various parallel architectures, e.g. see the section on simulating PRAM

algorithms in [17]. However, most of the previous results do not have any implementation

details and provide no performance data.) Using this mapping, we then coded each simple

parallel primitive on the MasPar. While coding each primitive, we utilized the special

properties of the MasPar to �ne-tune our code. Since each parallel primitive is very easy to

code, one would expect the �ne-tuning step to be much simpler than the �ne-tuning step of

a complicated algorithm. We implemented a set of parallel graph algorithms without virtual

processing by calling the parallel primitives we coded and routines provided in the system

library as reported in [13].

Due to the constraints imposed by the programming environment on the MasPar, the

above implementation requires the size of the input to be no more than the number of

available physical processors. However, the parallel primitives coded can be used with any

number of processors by invoking Brent's scheduling principle [6, 15] to simulate several

virtual processors on one physical processor. To do this, we extended our mapping scheme

to handle the allocation and simulation of virtual processors. The extended mapping will be

described in Section 4.2.

Using our original code when no virtual processors are used [13] as a blueprint and

the extended mapping as a guideline, we transformed our code to handle the allocation of

virtual processors. Since the MPL language does not support virtual processing, we had to

implement our own scheme for virtual processing. To do this, we re-coded and �ne-tuned

the set of parallel primitives identi�ed in [13] and several system library routines to handle

the allocation of virtual processors e�ciently. Then we implemented a set of parallel graph

algorithms by calling these parallel primitives and system routines. The primitives and graph

algorithms we implemented are described in Section 5.

4 Mapping Strategy

In this section, we brie
y describe the mapping scheme we used in [13] to map the PRAM

model onto the MasPar architecture. We then describe the mapping scheme we used in

allocating virtual processors.

4.1 Mapping of the PRAM Model onto the MasPar Architecture

We brie
y summarize the mapping scheme used in [13] to map a PRAM onto the MasPar

architecture when the two machines have the same number of processors. We mapped part

of the local memory in each PE and the local memory of the ACU onto the PRAM global

6



ACU

local memory of

the ACU

local memory

of each PE

global memory for the PRAM

global
data bank

local
data bank

PE PE PE

a Random Access Machine for the PRAM

Figure 2: Mapping of the MasPar architecture onto the PRAM model.

memory. The major di�erence between the PRAM model and the MasPar architecture is

the issue of global memory access. We partitioned the local memory bank of each PE into

two halves. One half, which we call the global data bank of each PE, was mapped onto part

of the global memory bank and the other half, which we call the local data bank of each PE,

was used for storing local data for local computations. The entire local memory of the ACU

was made part of the global memory of the PRAM model. When implementing a PRAM

algorithm on the MasPar architecture, we put information that is most frequently used by

a certain RAM into the global data bank of that particular PE. We put common read-only

data into the local memory bank of the ACU and arranged for the ACU to broadcast the

needed data to all PE's. We illustrate the mapping in Figure 2. More details of this mapping

can be found in [13].

4.2 Mapping of the Virtual Processors onto the MasPar Architecture

In our programs, each virtual processor (or VPE) is given a unique ID ranging from 0 to

vnproc � 1, where vnproc is the number of virtual processors. (Note that nproc is the

number of physical processors and they are organized as an nxproc� nyproc mesh. For the

machine that we used, nproc = 16,384 and nxproc = nyproc = 128.) The number of virtual

processors per physical processor is vpr =
l
vnproc

nproc

m
. The virtual processors are arranged into

a 2-dimensional vnxproc� vnyproc mesh.

For our implementation, we used the so-called hierarchical partitioning scheme [22]. Each

physical processor simulated a vpr�1 sub-mesh of virtual processors. Thus given an nxproc�

nyproc 2-dimensional mesh, the virtual machine being simulated is an (nxproc�vpr)�nyproc

2-dimensional mesh. (The implementation of bitonic sort [29] with virtual processing used

the same mapping scheme as ours.) We illustrate the mapping in Figure 3. The reason for

our choice is that in our implementation of parallel algorithms, we frequently need to use

operations that can utilize the locality of data (e.g. the pre�x sum (scan) operator [4]). This

type of data partitioning enables us to preserve the locality of data.

Once our code decided on the vpr value, each plural variable allocated in the code in

7



a physical processor

a virtual processor

Figure 3: Mapping of 4 virtual processors onto each PE.

[13] was transformed into a plural array of vpr elements in our new code. (The selection of

the vpr value is discussed at the end of Section 5.1.3.) The ith element in the jth physical

processor corresponded to the local copy of virtual processor (j�1)�vpr+i. Variables used in

the code in [13] without the plural attribute were not changed in our new code. An extra 
ag

(called active) in each virtual processor was allocated in our new code to indicate whether

its corresponding virtual processor was active during each step of computation. Thus given

a plural variable data and a VPE with the ID w, the local copy of data was stored in the

(w mod vpr)th element of the local array data in the PE with the ID
j

w
vpr

k
.

5 Implementation of Parallel Graph Algorithms

In this section, we �rst describe the implementation of several data structures. Then we

describe the parallel graph algorithms library that we have built.

5.1 Data Structures

5.1.1 Array and Linked List

Given the value of vpr, we mapped a global memory array used in a PRAM algorithm onto

the MasPar by putting the ith element of the array into the ith VPE. Thus this element will

be allocated in the (i mod vpr)th element of a local array on the (
j

i

vpr

k
)th physical processor.

We mapped a linear linked list used in a PRAM algorithm by putting each element in the

list into a di�erent VPE. Pointers in PRAM were replaced by the ID's of VPE's.

5.1.2 Tree

We represented an edge in an undirected tree by two directed edges of opposite directions.

A tree was represented by a list of directed edges. In implementing the tree data structure

on the MasPar, we put one directed edge in one VPE with the requirement that the set of

edges that are incoming to the same vertex have to be allocated on a consecutive segment of

VPE's. Each of the two copies of an undirected edge kept a reverse pointer which pointed

to the location of the other copy of the same edge. Using this representation, we can use

8



the XNET connection to perform inter-processor communications needed for computing an

Euler tour on a tree. Since computing an Euler tour is one of the most common subroutines

on trees used by parallel graph algorithms, we saved time by using this mapping.

5.1.3 Undirected Graph

In our implementation without virtual processing [13], a general undirected graph was rep-

resented by a list of edges. Each edge had two copies with the two end points interchanged.

We placed an edge on a MasPar PE with the requirement that the two copies of the edge

have to be located on adjacent PE's. The reason for using this data structure was twofold.

First, we wanted a tree to be represented by a list of edges such that edges incident on a

node were allocated in a continuous segment of processors for the ease of �nding an Euler

tour in a tree. Representing an undirected edge by its two corresponding directed versions

was consistent with the representation of a tree. Second, undirected graph algorithms often

needed to perform operations on nodes based on information stored on the edges incident on

them. Since an undirected edge has two end points, each edge had to perform operations on

each of its two end points. Thus we needed two processors to handle one undirected edge.

When virtual processing was involved, the natural candidate for our mapping was to allocate

each copy of an edge on a di�erent VPE.

Let m and n be the numbers of (undirected) edges and nodes in the input graph, respec-

tively. Using the naive strategy for allocating undirected graphs described in the previous

paragraph, we determined the value of vpr by computing the least power of 2 that is greater

than or equal to
l
2m+2
nproc

m
. Edges were allocated among virtual processors with the ID's from

2 to 2m+1. (For the easy of programming, we did not use the �rst two virtual processors for

storing edges.) The ith node was allocated to the virtual processor with the ID i. Initially,

we coded the routine for �nding a spanning forestz with virtual processing using this simple

strategy.

In the case when m was much greater than n, this type of data allocation scheme was not

balanced since only a small portion of the machine was performing computations related to

nodes. The other drawback in using this type of allocation came from the types of operations

that were usually used in parallel graph algorithms. It is often the case that information

related to edges incident on a node v had to be collected to produce data that will be stored

in the processor that was allocated for v. In performing these operations, data will compete

with each other to reach a small segment of processors that are physically connected to each

other. The delay for this type of inter-processor communications was very large. In order to

improve the performance of our code, we considered alternative strategies.

zIn this paper, a spanning forest of a graph G is a maximal subgraph of G (w.r.t. the edges in G) that is a forest.

9



Dynamic Load Balancing One possible solution for the above problem was to compute

di�erent vpr values for nodes and for edges. However, for this we would have to revise

our code for parallel primitives such that each primitive knew whether it was performing

operations on edges or on nodes. Also, the code for our graph algorithms would have to be

changed. This would result in a more complicated implementation. Instead of going through

such a serious revision, we came up with the following simple method that did not require

us to change other programs. We �rst computed the number of virtual processors per node

to be nfactor =
j
vpr�nproc

n

k
. We then allocated the ith node to the (i � nfactor)th virtual

processor. We had to make sure that the node numbers referred to in each edge are changed

accordingly. This was done by multiplying nfactor to every node number used in the edge

list. We then performed all of our computations as if the number of nodes is n � nfactor.

(This is equivalent to adding n � (nfactor� 1) isolated vertices into the input graph.) After

performing the computation, data related to nodes allocated in every other nfactor virtual

processors was collected. By performing simple preprocessing and post-processing, we evenly

distributed all nodes and did not have to track the value of vpr during each operation. Our

previous code for �nding a spanning forest with virtual processing could be used with minor

modi�cation.

Note that we could apply the same technique to several data structures used in our

programs. For example, our graph algorithms often found a spanning forest in the input

graph and obtained an Euler tour of each of the tree in the spanning forest. The total number

of edges in the Euler tours of the forest was 2n � 2. We could apply the same technique to

achieve a better load balancing by evenly distributing tour edges among physical processors.

Our graph algorithms also performed range minimum queries on an array of elements whose

size was 2n � 2. We could also use this technique to achieve a better load balancing by

evenly distributing elements in the array among physical processors.

We tested the implementation of our parallel program for �nding a spanning forest on

graphs of three di�erent edge densities: (1) dense graphs where m = n2

4 ; (2) intermediate-

density graphs where m = n1:5; (3) sparse graphs where m = 3n
2 . Performance data is

shown in Figure 4 for this problem with and without the usage of dynamic load balancing.

Figure 4 shows that by using dynamic load balancing, our parallel program ran about 12

times faster than our parallel program without dynamic load balancing on dense graphs. On

intermediate-density graphs, it was about 8 times faster. On sparse graphs, it was about

1.5 times faster. We would expect this type of behavior as dynamic load balancing provides

more help as the graph gets denser.

10



0

50

100

150

200

250

300

0 10 20 30 40 50 60 70 80 90

s
e
c
o
n
d
s

n + m (in units of 10000)

Finding a Spanning Forest (m = 3n/2)

without load balancing
with load balancing

0

20

40

60

80

100

120

0 10 20 30 40 50 60

s
e
c
o
n
d
s

n + m (in units of 10000)

Finding a Spanning Forest (m = n^(3/2))

without load balancing
with load balancing

0

50

100

150

200

250

300

0 10 20 30 40 50 60

s
e
c
o
n
d
s

n + m (in units of 10000)

Finding a Spanning Forest (m = n^2/4)

without load balancing
with load balancing

Figure 4: Illustrating the performance data for
our parallel program for �nding a spanning for-
est in graphs with and without dynamic load
balancing.

0

50

100

150

200

250

300

0 20 40 60 80 100 120 140

S
e
c
o
n
d
s

n + m (in units of 10000)

Finding a Spanning Forest (m = 3n/2)

with load balancing only
plus compressed data structure

0

5

10

15

20

25

30

35

0 20 40 60 80 100 120

S
e
c
o
n
d
s

n + m (in units of 10000)

Finding a Spanning Forest (m = n^(3/2))

with load balancing only
plus compressed data structure

0

5

10

15

20

25

0 20 40 60 80 100 120

S
e
c
o
n
d
s

n + m (in units of 10000)

Finding a Spanning Forest (m = n^2/4)

with load balancing only
plus compressed data structure

Figure 5: Illustrating the performance data
for our parallel program for �nding connected
components in graphs with and without the
use of compressed data structure. Both pro-
grams were run using the same amount of
memory per physical processor. Note that
we can run inputs whose sizes are twice as
large using the compressed data structure for
graphs.

11



Compressed Data Structure A major goal of our implementation was to run inputs whose

sizes are as large as possible. Since we have a limited amount of memory space per physical

processor, we wanted to minimize the amount of space used by each edge without paying

too much overhead in computation. It turns out that except for the case of representing

a tree for �nding an Euler tour, we can easily simulate the e�ect of having two processors

handling one undirected edge by performing computations twice, one from each direction.

Thus our program only allocated one processor to handle each edge. A side e�ect of this

allocation scheme is that we had to write an expansion routine to convert this compressed

representation into the tree format if we needed to build an Euler tour. In summary, our

program �rst allocated vpr virtual processors per physical processor, where vpr is the least

power of 2 that is greater than or equal to
l

m
nproc

m
. In the case when 2n > vpr � nproc and

a spanning tree format was needed, we doubled the value of vpr and called the expansion

routine to transform the compressed data structure into the normal graph representation.

The performance data for running our program with and without the usage of compressed

data structures for graphs to �nd a spanning forest are illustrated in Figure 5. Figure 5 shows

that our program ran at about the same speed with or without the usage of compressed data

structures on dense graphs and intermediate-density graphs. Note that by using compressed

data structures, we could double the size of the largest graph we could handle. For sparse

graphs, we had to pay a little overhead in using compressed data structures. Since the

overhead was small, we decided to use compressed data structures for graphs though the

code became a bit longer. Thus when allocating vpr virtual processors to each physical

processor, we could run our programs on graphs with vpr �nproc nodes and vpr �nproc edges

if we did not require the usage of a spanning forest in the program. We could run programs

on graphs with vpr�nproc

2 nodes and vpr � nproc edges if we had to use a spanning forest

representation during the computation. Without the usage of compressed data structures,

we could only run our programs on graphs with half the number of edges.

5.2 The Parallel Graph Algorithms Library

To build our parallel graph algorithms library, we �rst wrote a kernel that includes all of

the commonly used subroutines for designing parallel graph algorithms. Then we built our

graph application programs by calling routines in the kernel and routines provided in the

system library. The structure of the whole library is shown in Figure 6.

5.2.1 Routines in the System Library and the Kernel

We brie
y describe the routines in the kernel. All of these routines are based on PRAM

algorithms that run in O(log n) time for an input of size n. Although some of them are

not theoretically optimal algorithms in that they perform �(n log n) work, they are within

12



rotation routines list ranking

query routine for
range minimum

build table for
range minimum

segmented rotation

least common
ancestor

preorder numbering

build
Euler tour

spanning forest spanning forest

ear decomposition

strong orientation

finding all
cut edges

commonly used subroutines

graph application routines

(kernel)

connected components

ear decomposition
open system library

sorting

prefix summing

inter−processor

data combining

communication

minimum

Figure 6: The structure of the routines we built for the parallel graph algorithms library. The
kernel of the library will be used by the application routines. In our coding, we also use routines
provided in the system library. An arrow from one node to another node means the routine at the
tail of the arrow (upper) is used by the routine at the head of the arrow (lower).

an O(log n) factor of optimality, and they are very simple. These routines are as follows.

(1) List ranking [15]. (2) Rotation. This routine rotates the data stored in a processor

with ID i to the processor with ID (i + d) mod P , where d is an input to the routine and

P is the number of PE's in the system. (3) Segmented rotation. We store data in each

processor and partition the set of processors into sequences of consecutive segments. This

routine rotates the data stored in each processor within each segment. Data within each

segment are rotated in a way similar to the rotation routine described in (2). (4) Range

minimum [36]. (5) Euler tour construction [36]. (6) Preorder numbering [36]. (7) Least

common ancestor [36].

When implementing the above routines in the kernel without virtual processing [13], we

also used the following routines that are provided in the system library. (1) Sorting. (2)

Pre�x sums. (3) Inter-processor communication. (4) Data combining. In our implementa-

tion of parallel algorithm with virtual processing, we also used the above routines. Since the

MasPar does not provide virtual processing for these system routines, we coded and �ne-

tuned all of these routines with virtual processing except sorting. For sorting with virtual

processing, we used the package developed in [29]. Since the sorting package in [29] can only

handle the case when the number of virtual processors simulated by each physical processor

is a power of two, our code inherited the same restriction.

13



5.2.2 Graph Application Routines

We implemented parallel algorithms for the following problems using the above kernel. (1)

Spanning forest [2]. (2) Minimum cost spanning forest [2]. (3) Cut edges [31]. (4) Ear

decomposition of a two-edge connected undirected graph [31]. (5) Open ear decomposition

of a biconnected undirected graph [31] (this algorithm was not implemented in [13]). (6)

Strong orientation of a two-edge connected undirected graph [31].

6 Performance Analysis

We tested our code by generating test graphs and measuring the performance of the code

on these test graphs. In addition to testing our parallel code for the problems listed in

Section 5.2.2, we also took the implementation of their corresponding sequential algorithms

described in [13] and tested them on large inputs using SUN SPARC workstations. The

corresponding sets of performance data were compared and studied. Note that a MasPar

MP-1 PE is about 200 times slower than a SUN SPARC II and about 230 times slower than

a SUN SPARC 10/41. Thus it is to be expected that the performance of our sequential

programs will be faster than our parallel programs in some cases, though the speed-up of

our parallel implementation was quite good, given the parameters of the MasPar MP-1.

One noteworthy feature of our parallel implementation is that it could handle inputs whose

sizes are much larger than the the sizes of the input that can be handled by our sequential

implementation.

The organization of this section is as follows. We �rst describe the method we used in gen-

erating test graphs. Then we describe the way we tested our programs and the curve-�tting

scheme we performed on the sets of performance data. Finally, we analyze the performance

data. Since no curve-�tting was performed in our earlier work without virtual processing

[13], for completeness, we include the data from [13] in our performance analysis using curve

�tting.

6.1 Generation of Test Graphs

We tested our programs using graphs of three di�erent edge densities as described in Sec-

tion 5.1.3 and [13]. For testing the code for �nding a spanning forest and a minimum

spanning forest, we generated test graphs from the class of random graphs Gn;m as described

in [13]. In addition, a random cost in the range from 0 to 99,999 (with repetition) on each

edge, instead of from 0 to 999 as used in [13], was generated for testing the routine for �nding

a minimum spanning forest.

Test graphs with a given edge density, a given size, and a given property (e.g. biconnec-

tivity) were generated using a similar method described in [13]. We generated a biconnected

test graph with n vertices and m edges by �rst generating an empty graph with n vertices.

14



We then chose a random length k, 3 � k � n, and k isolated vertices at random. We ran-

domly permuted these k vertices and constructed a simple cycle by adding an edge between

every two adjacent vertices in the random permutation and by adding an edge between the

�rst and the last vertices in the permutation. After that, we added non-trivial open ears

of random lengths to connect all isolated vertices. To add a non-trivial open ear, we chose

a random length l, 1 � l � x, where x is the number of remaining isolated vertices. We

randomly picked two non-isolated vertices u and v (without repetition). We then randomly

permuted l isolated vertices and constructed a simple path by adding an edge between every

two adjacent vertices in the random permutation. We added an edge between u and the

�rst vertex in the above permutation and another edge between v and the last vertex in the

above permutation. After connecting all isolated vertices, we randomly added edges until

all m edges were generated. A two-edge connected test graph with n vertices and m edges

was generated in a similar fashion by \growing" ears that could possibly be cycles [13]. The

test graphs for �nding cut edges were generated as in [13].

6.2 Testing Scheme

For each size and sparsity, we generated four di�erent test graphs. We ran each program on

each test graph for 10 iterations and recorded the average of the 40 trials. The results are

plotted in �gures 7 { 18.

We had access to a MasPar MP-1 machine with 16,384 processors and 32 kilobytes of

available memory per processor. (The other 32 kilobytes of memory in each processor was

not available to us.) We were able to test all of our programs except the one for �nding

an open ear decomposition for the value of vpr up to 64. We were only able to run our

parallel program for �nding an open ear decomposition for the value of vpr = 32. Note that

for testing dense graphs and intermediate-density graphs, we could run programs on graphs

with m = vpr � 16,384. For testing sparse graphs (m = 3
2n), we could only run inputs with

m = 3
4
�vpr �16,384 since a tree data structure is required in the computation and we needed

2n = 4
3m virtual processors to represent it. Our parallel programs for �nding a spanning

forest and for �nding a minimum spanning forest used 24 kilobytes per physical processor

when the value of vpr was 64. The rest of the programs used 32 kilobytes for the largest-sized

inputs that we have tested. We spent about 2 months to obtain all of our performance data.

We ran the set of sequential algorithms implemented in [13] on a SUN SPARC 10/41

machine with 32 megabytes of memory and about 80 megabytes of swapping space on input

sizes greater than 16,384. We tested the sequential programs on larger and larger inputs until

either the programs complained that the usage of the memory is too much or we waited more

than 1 day while there was only one active job running on the machine. For sparse graphs,

our sequential programs ran out of available memory before we could obtain performance

data that was worse than the corresponding parallel program. However, on dense graphs

15



and intermediate-density graphs, our parallel algorithms run much faster (in real CPU time)

than their sequential counterparts. The likely reason is that we use a depth-�rst search in

our sequential programs, which is a recursive program whose depth of recursion could be as

large as the number of nodes in the graph.

Our sequential programs were implemented with the help of the graph package NETPAD

[7] developed in Bellcore as described in [13]. NETPAD uses a lot of extra memory in

creating a standard graph data structure. Thus we might save space by coding the sequential

algorithms from scratch. We also note that the turn-around time (wall-clock time) for each

of our sequential programs was very large when we used more than 80% of the main memory

even if the system had only one job active, though our time measurement routine would

report only a small fraction of the turn-around time. For example, for �nding a minimum

spanning forest sequentially on graphs with 300,000 edges, the time measurement routine

reported a total usage of 110 seconds for 10 iteration of our program. However, the turn-

around time was about 20 hours. We conjecture the reason might be that the architecture

of SPARC 10/41 handles swapping poorly. We were unable to �nd better routines for

measuring the performance of our sequential programs on the SPARC 10/41. For 5 of our

6 parallel programs, we were able to obtain sequential performance data that was worse

than their parallel counterpart by testing large inputs. For the sequential algorithm for

�nding a minimum spanning forest, the turn-around time was too long when the input

graph had more than 300,000 edges. As a result, we did not obtain further performance

data for �nding a minimum spanning forest such that we could observe the place where the

sequential performance was worse than the parallel performance as shown in other programs.

Overall, we spent more than 2 months in getting all of the performance data for our sequential

programs. For all problems, we could handle input whose sizes are 4 to 5 times larger using

our parallel code.

The performance data when the input size is within 16,384 is taken from [13]. In [13],

sequential programs were run on a SPARC II workstation for input sizes up to 16,384;

parallel programs without virtual processing were run on a MasPar MP-1 computer with

16,384 processors using 4 kilobytes of memory per PE.

6.3 Least-Squares Curve Fitting

We applied the least-squares �t package in Mathematica [38] to the data we obtained. We

used the following method to �nd the �tted curves for our performance data. We �rst derived

the theoretical asymptotical running time for our parallel program. For example, our code

for �nding a spanning forest in a graph with n nodes and m edges runs in O(n
p
� log3 n) time

using p processors since we used an O(log2 n) time bitonic sorting routine in implementing

global concurrent write operations. We �rst used Mathematica to �nd coe�cients c0, c1, c2,

c3 and c4 such that the function c0+ c1 �x+ c2 � x � log x+ c3 � x � log
2 x+ c4 �x � log

3 x best �t

16



the set of experimental data that we obtained with virtual processing. For the data obtained

without virtual processing, we used the function c0 + c1 � log x+ c2 � log
2 x+ c3 � log

3 x.

If any of the coe�cients was negative, we forced the negative coe�cient ci with the largest

integer i to be zero and perform the �tting once again. We iterated this process until all

coe�cients were not negative. We also performed the least-squares �t for performance data

of the sequential programs when the amount of memory used in the program was within the

capacity of the main memory.

To test the goodness of the curve we obtained, we computed the average error as the

square root of 1
k
�
Pk

i=1(
yi�f(xi)
f(xi)

)2, where k is the number of experimental data points, f is

the function that describes the �tted curve and yi is the experimental value when the input

size is xi.

6.4 Analysis

In Section 6.4.1 through Section 6.4.6, we present the performance of our code for each of

our six graph problems. The data for programs without virtual processing is taken from [13].

In the following, x denotes the size of the input and x0 is the size of the input in units of

10,000. In interpreting the following data, note that we present the �tting curves in terms of

x when no virtual processors are used and in terms of x0 when virtual processors are used.

There is a further compression by a factor of 2 due to the compressed data structure when

virtual processors are used. The function value of each �tted curve is the running time in

seconds.

6.4.1 Finding a Spanning Forest

For the parallel implementation, we modi�ed the CRCW PRAM algorithm in [2] for �nding

connected components to �nd a spanning forest of the input graph. The original algorithm

partitions the set of vertices into a set of disjoint sets such that vertices in each set are in

the same connected component. Initially, the algorithm puts a vertex in each set. During

the execution, the algorithm merges two sets of vertices if they are detected to be in the

same connected component. Our program selects an edge connecting a vertex in one set to a

vertex in the other set while merging these two disjoint vertex sets. The sequential algorithm

that we implemented is the simple linear time depth-�rst search algorithm.

The performance data without and with virtual processing are shown in Figures 7 and

8 respectively. The �tted curves for the parallel performance data without virtual process-

ing are 0:0003 log3 x (with 8:9% average error), 0:000095 log3 x + 0:11 (with 4:2% average

error), and 0:00011 log3 x+ 0:11 (with 5:5% average error). for sparse graphs, intermediate-

density graphs and dense graphs respectively. The corresponding �tted curves for the

sequential performance data are 0:000023x (with 5:7% average error), 0:000011x (with

17



4:4% average error), and 0:00001x (with 4:1% average error). The corresponding �tted

curves for the parallel performance data with virtual processing are 0:0014x0 log3 x0+ 1:32x0

+1:41 (with 7:1% average error), 0:0000091x0 log3 x0 + 0:27x0 + 0:028 (with 3:2% average

error), and 0:000074x0 log3 x0 + 0:15x0 + 0:45 (with 9:1% average error). The corresponding

�tted curves for the sequential performance data when the data is within the main memory

are 0:17x0, 0:17x0, and 0:15x0.

6.4.2 Finding a Minimum Spanning Forest

For the parallel implementation, we modi�ed the algorithm in [2] for �nding connected

components to �nd a minimum cost spanning forest for the input graph. This algorithm

also partitions the graph into disjoint sets of vertices. In addition, for each current set

of vertices, we compute a minimum edge with exactly one end point in the set using the

concurrent write operation. This edge determines which other set of vertices is to be merged

with its set. Once the merge is completed, the edge that caused the merging is marked as

one of the edges in the minimum cost spanning forest. For sequential implementation, we

implemented the O(n + m log n)-time Kruskal's algorithm [35] for �nding a minimum cost

spanning forest. Although faster algorithms are known for this problem, we implemented

Kruskal's algorithm for its simplicity.

The performance data without and with virtual processing are shown in Figures 9 and 10

respectively. The �tted curves for the parallel performance data without virtual processing

are 0:00033 log3 x+0:12 (with 4:5% average error), 0:00022 log3 x+0:095 (with 6:3% average

error), and 0:00021 log3 x+0:058 (with 9:6% average error). for sparse graphs, intermediate-

density graphs and dense graphs respectively. The corresponding �tted curves for the se-

quential performance data are 0:0000057x log x (with 9:9% average error), 0:0000014x log x+

0:0000042x+0:011 (with 10:4% average error), and 0:00000093x log x+0:0000044x+0:0099

(with 8:9% average error). The corresponding �tted curves for the parallel performance

data with virtual processing are 0:0015x0 log3 x0 + 0:78x0 + 2:46 (with 14% average error),

0:00037x0 log3 x0 + 0:68x0 + 0:11 (with 0:00021x0 log3 x0 + 0:67x0 (with 7:2% average error).

The corresponding �tted curves for the sequential performance data when the data is within

the main memory are 0:1x0 log x0 + 5:44, 0:056x0 log x0 + 1:78, and 0:049x0 log x0 + 1:22.

6.4.3 Finding All Cut Edges

Our parallel implementation is based on [31]. We �rst obtained a rooted spanning tree T

for the input graph G. (The current version of the program requires G to be connected.)

A cut edge is a tree edge (u; v), where u is the parent of v and there is no non-tree edge

(x; y) in G such that either x or y is a descendant of v or equal to v and the least common

ancestor of x and y is a proper ancestor of v. This can be determined by using the Euler

18



tour technique and the range minimum queries. For sequential implementation, we used a

linear time algorithm for �nding all cut edges in the graph based on depth-�rst search [31].

The performance data without and with virtual processing are shown in Figures 11 and 12

respectively. The �tted curves for the parallel performance data without virtual processing

are 0:0004 log3 x+0:013 (with 8:1% average error), 0:00014 log3 x+0:18 (with 3:6% average

error), and 0:00015 log3 x+ 0:17 (with 3:8% average error). for sparse graphs, intermediate-

density graphs and dense graphs respectively. The corresponding �tted curves for the se-

quential performance data are 0:000023x + 0:00049 (with 5:7% average error), 0:000011x +

0:00035 (with 4:0% average error), and 0:00001x+0:000051 (with 5:4% average error). The

corresponding �tted curves for the parallel performance data with virtual processing are

0:0019x0 log3 x0 + 1:44x0 + 1:59 (with 10:2% average error), 0:00018x0 log3 x0 + 0:61x0 + 0:27

(with 2:9% average error), and 0:00043x0 log3 x0 + 0:49x0 + 0:73 (with 3:7% average error).

The corresponding �tted curves for the sequential performance data when the data is within

the main memory are 0:22x0, 0:18x0, and 0:16x0.

6.4.4 Finding an Ear Decomposition

For the parallel implementation, we used the PRAM parallel algorithm in [31] for �nding

an ear decomposition on a 2-edge connected graph by calling the sorting routine, routines

in the kernel and the routine for �nding a spanning forest. For sequential implementation,

we used a linear time algorithm for �nding an ear decomposition based on depth-�rst search

[31].

The performance data without and with virtual processing are shown in Figures 13 and 14

respectively. The �tted curves for the parallel performance data without virtual processing

are 0:0004 log3 x+0:021 (with 7:7% average error), 0:00014 log3 x+0:19 (with 3:5% average

error), and 0:00015 log3 x+ 0:18 (with 3:8% average error). for sparse graphs, intermediate-

density graphs and dense graphs respectively. The corresponding �tted curves for the se-

quential performance data are 0:000093x (with 13:4% average error), 0:000084x (with 4:9%

average error), and 0:000083x (with 4:9% average error). The corresponding �tted curves

for the parallel performance data with virtual processing are 0:0014x0 log3 x0 + 1:43x0 + 0:36

(with 5:0% average error), 0:00036x0 log3 x0 + 0:33x0 + 0:2 (with 11:0% average error), and

0:00064x0 log3 x0 + 0:21x0 + 0:91 (with 5:9% average error). The corresponding �tted curves

for the sequential performance data when the data is within the main memory are 0:57x0,

0:72x0, and 0:68x0.

6.4.5 Finding an Open Ear Decomposition

For the parallel implementation, we used the PRAM algorithm in [31] for �nding an open

ear decomposition. This routine is obtained by modifying the ear decomposition algorithm

19



mentioned in the previous section. The sequential ear decomposition algorithm mentioned

in the previous section [31] also �nds an open ear decomposition on a biconnected graph.

The performance data without and with virtual processing are shown in Figures 15 and 16

respectively. The �tted curves for the parallel performance data without virtual processing

are 0:00041 log3 x+0:26 (with 5:8% average error), 0:00033 log3 x+0:27 (with 7:8% average

error), and 0:00017 log3 x+ 0:44 (with 4:8% average error). for sparse graphs, intermediate-

density graphs and dense graphs respectively, where x is the size of the input and the

function value is the running time in seconds. The corresponding �tted curves for the parallel

performance data with virtual processing are 0:0017x0 log3 x0 + 1:59x0 + 0:24 (with 13:9%

average error), 0:0014x0 log3 x0+1:03x0+0:36 (with 9:0% average error), and 0:0024x0 log3 x0+

0:057x0 log x0+0:96x0+0:5 (with 7:1% average error). Note that the sequential performance

data for �nding an open ear decomposition is the same as the sequential performance data

for �nding an ear decomposition. We will not restate them here.

6.4.6 Finding a Strong Orientation

For the parallel implementation, we �rst obtained an ear decomposition for the input graph.

Then we directed the edges of each ear so that each ear forms a directed path or a directed

cycle. Observe that the ear decomposition algorithm �rst obtained rooted spanning tree

T . The edges in an ear are of the form (v1; v2), (v2; v3), : : : , (vk�1; vk), (vk; ur), (ur; ur�1),

(ur�1; ur�2), : : : , (u2; u1), where (vi; vi+1) is a tree edge and vi is the parent of vi+1 in T , for

1 � i < k; (ui+1; ui) is a tree edge and ui+1 is the parent of ui in T , for 1 < i � r; (vk; ur)

is a non-tree edge. Thus we directed every non-tree edge (u; v) from u to v where u has a

smaller ID than that of v. Then we assigned directions to tree edges in such a way that

the edges in an ear formed a directed path or directed cycle and the �rst two ears together

formed a directed cycle. For sequential implementation, we used a linear time algorithm for

�nding a strong orientation based on a recursive version of depth-�rst search [34].

The performance data without and with virtual processing are shown in Figures 17 and 18

respectively. The �tted curves for the parallel performance data without virtual processing

are 0:00039 log3 x+0:033 (with 7:7% average error), 0:00015 log3 x+0:18 (with 4:6% average

error), and 0:00016 log3 x+ 0:17 (with 4:1% average error). for sparse graphs, intermediate-

density graphs and dense graphs respectively, where x is the size of the input and the function

value is the running time in seconds. The corresponding �tted curves for the sequential

performance data are 0:000025x (with 5:6% average error), 0:000016x + 0:00028 (with 4:7%

average error), and 0:000015x + 0:0005 (with 7:3% average error). The corresponding �tted

curves for the parallel performance data with virtual processing are 0:0021x0 log3 x0+1:39x0+

1:78 (with 5:8% average error), 0:00012x0 log3 x0 + 0:42x0 + 0:032 (with 2:6% average error),

and 0:00058x0 log3 x0 + 0:23x0 + 0:89 (with 5:1% average error). The corresponding �tted

curves for the sequential performance data when the data is within the main memory are

20



m = 3n=2 m = n3=2 m = n2=4
no vpr vpr = 16 no vpr vpr = 16 no vpr vpr = 16

m = 8,191 m = 262,142 m = 8,191 m = 262,142 m = 8,191 m = 262,142

(seconds) (seconds) (seconds) (seconds) (seconds) (seconds)

Spanning Forest 1.01 74.86 0.41 7.23 0.39 5.35

Minimum Spanning Forest 1.05 51.97 0.73 18.58 0.70 19.69
All Cut Edges 1.17 83.36 0.61 17.92 0.57 15.85
Ear Decomposition 1.19 72.54 0.60 11.32 0.58 8.71

Open Ear Decomposition 1.47 90.35 1.11 33.69 0.94 33.50
Strong Orientation 1.20 75.35 0.63 11.61 0.60 9.06

Table 1: Performance data for our parallel programs with and without virtual processing. The
data for parallel programs without virtual processing is from [13].

0:31x0, 0:25x0, and 0:22x0.

6.5 Overhead for Implementing Virtual Processors

We compared the amount of time used by our parallel programs with and without virtual

processing. The performance data is shown in Table 1. Note that we ran 5 of our 6 programs

for the value of vpr up to 64 using no more than half of the available memory in the

system. The one program that we could run only up to the value of vpr = 32, was the

open ear decomposition routine. Also, when vpr = 32, our code for open ear decomposition

could not handle inputs of size 32 � 16,384 on sparse graphs. (See Section 6.2 for details.)

Hence in Table 1, we use vpr = 16 to show the performance of our parallel code when the

virtual processors simulated in each physical processor were all active. The performance

data with no virtual processing is from [13]. Our implementation of parallel algorithms with

virtual processing had excellent speed-ups on dense graphs and intermediate-density graphs

in relation to the implementation without virtual processing. For example, for �nding an ear

decomposition on dense graphs, we used 15 times more CPU time with virtual processing

while handling graphs that were 32 times larger. For sparse graphs, the overhead was fairly

large. The reason might be that for sparse graphs, using virtual processors increased the

degree of concurrency when concurrent read or write is used. Since we could not o�set it by

the use of dynamic load balancing, our implementation had a big overhead on sparse graphs.

We also note that the overhead for implementing the open ear decomposition algorithms is

about twice as large as the overhead for implementing other algorithms.

7 Conclusion and Future Work

We have implemented a set of parallel algorithms for undirected graphs on the MasPar

MP-1 to handle sizes of the input that are larger than the number of available physical

processors. We tested our parallel programs on inputs whose sizes were up to 64 times larger

than the number of physical processors and compared their performance with corresponding

21



sequential programs. Note that by using the full con�guration of the current machine, we can

simulate up to 128 virtual processors per physical processor. However, sharing the machine

with other users limited us to use only half of the available memory in each processor. Thus

if the full machine had been available, we could have run our programs on graphs with one

million nodes and two million edges.

We note the following observations.

� By using the high-level structure of the PRAM algorithms as building blocks, our

coding and debugging e�ort was relatively small. We wrote more than 12,000 lines

of parallel code for the set of parallel graph algorithms that we implemented with

virtual processing. All of the work reported here (include testing) was done within one

year. Note that 4,000 lines of parallel code were written in 12 weeks in [13] for the

same set of parallel programs with no virtual processing. We consider our strategy for

implementing parallel graph algorithms to be promising.

� We examined the variation in data we obtained on the four di�erent test graphs of a

given size and a given edge density. Most of the data points (> 90%) were within 7%

of their average values. Less than 5% of the data points were more than 15% away

from their average values.

� We compared the experimental data points with the computed points on the �tted

curves. For programs without virtual processing, the average error for �tted curves on

sparse graphs was usually larger than the average error for �tted curves on dense graphs

and intermediate-density graphs. The average error was about 10% for all data sets

with virtual processing. We also note that the average error for �tted curves on dense

graphs and intermediate-density graphs without virtual processing is almost the same

whether we �t the data with functions dominated by log3 x or dominated by log2 x,

though we used functions dominated by log3 x in the paper. However, the average

error for sparse graphs is about twice as large if we use functions dominated with log2 x

instead of log3 x. With virtual processing, the best �t in all cases was obtained when

the function was dominated by x0 log3 x0.

Our �tted curves �t quite well on the experimental performance data. The �tted curves

showed that the dominant term in our parallel code was log3 n both with and without

virtual processing. We conjecture the reason might be that our graph algorithms usually

compute by performing O(log n) iterations and if each iteration takes �(log2 n) time,

the overall time complexity is O(log3 n).

� Sequential implementations usually performed badly when a fraction of their data were

placed out of the main memory. Note that our sequential programs used extra memory

because we used NETPAD. Thus the biggest size inputs that one can run on a SPARC

10/41 would be somewhat larger than what we have shown here if a more e�cient

22



coding of the graph data structure is used.

� Although each MasPar MP-1 PE is much slower than the SPARC workstation, we found

that in most of the cases, parallel programs in fact runs faster in real time compared

to sequential programs. In particular, our parallel programs were much faster on dense

graphs and intermediate-density graphs than on sparse graphs. We traced our parallel

program for �nding a spanning forest and noticed that by using our dynamic load

balancing technique, the performance of a concurrent read or write was not too bad on

a dense graph compared to the performance of the same operations on a sparse graph.

Recall that our algorithm for �nding a spanning forest obtained a spanning forest by

repeatedly growing forests in parallel in a loop until the size of any tree in the current

forest could not be expended. For dense graphs, the parallel algorithms terminated in

fewer iterations than on sparse graphs. Thus the running time was much smaller on

dense graphs than on sparse graphs. Our parallel code can also handle much larger

inputs than our sequential code.

� We found that our sequential program for �nding a spanning forest used about 45

megabytes of memory on the largest-sized inputs. Our parallel program used no more

than 24 kilobytes of memory per physical processor on inputs whose sizes were more

than 4 times larger than the size of the largest inputs for the sequential program. Since

there are 16,384 physical processors in the MasPar MP-1, the total memory used in our

parallel program was no more than 384 megabytes. Hence we used about 8 times more

memory in our parallel programs while we could run inputs whose sizes were 4 times

larger than the largest input size on the SPARC 10/41. In most cases, when testing

the largest size inputs, our parallel code ran faster than their sequential counterparts

on dense graphs and intermediate-density graphs even when the input size was 4 times

larger.

� The current architecture of the MasPar MP-1 is not adequate to run programs that

require a lot of memory per physical processor. The limitation of only having 64 kilo-

bytes of memory per physical processor prevents us from running inputs of larger sizes.

No support from the operating system for using virtual memory also inhibits us from

running larger examples. It is reported in [27] that the new MasPar MP-2 upgrades the

raw computation power of each individual processor while keeping its communication

hardware and limitation of memory space unchanged. For our application, we feel that

the amount of memory in each processor should be increased and the bandwidth of

the communication channel should be enlarged before the upgrading of the processor

computation power.

There are many avenues for future work. We list some of them.

� The lack of a good graph manipulation package like NETPAD for handling large graphs

23



makes it di�cult to debug our programs. In [13], NETPAD was able to help the

debugging and testing of our parallel implementation after we built an interface to use

it on the MasPar. In our current implementation, the sizes of the graphs became too

large for NETPAD to handle. Work should be done for graph manipulation (especially

visualization) packages on large graphs.

� Our current implementation requires that vpr, the number of virtual processors simu-

lated by each physical processor, be a power of 2 because of a bitonic sorting package

[29] that we are using. We would like to replace this sorting package by a sorting

routine that can simulate any number of virtual processors per physical processor.

� We note that our current implementation has a very large overhead on sparse graphs.

More work has to be done to improve the running time on graphs that are very sparse.

24



References

[1] R. Anderson and J. Setubal. On the parallel implementation of Goldberg's maximum


ow algorithm. In Proc. 4th ACM Symp. on Parallel Algorithms and Architectures,

pages 168{177, 1992.

[2] B. Awerbuch and Y. Shiloach. New connectivity and MSF algorithms for shu�e-

exchange network and PRAM. IEEE Tran. on Computers, pages 1258{1263, October

1987.

[3] T. Blank. The MasPar MP-1 architecture. In Proc. of COMPCON Spring 90 { 35th

IEEE Computer Society International Conference, pages 20{40, 1990.

[4] G. E. Blelloch. Scan Primitives and Parallel Vector Models. PhD thesis, M.I.T., October

1989.

[5] G. E. Blelloch, C. E. Leiserson, B. M. Maggs, C. G. Plaxton, S. J. Smith, and M. Zagha.

A comparison of sorting algorithms for the Connection Machine CM-2. In Proc. 3th

ACM Symp. on Parallel Algorithms and Architectures, pages 3{16, 1991.

[6] R. P. Brent. The parallel evaluation of general arithmetic expressions. J. ACM, 21:201{

206, 1974.

[7] N. Dean, M. Mevenkamp, and C. L. Monma. NETPAD: An interface graphics system for

network modeling and optimization. In Proc. Computer Science & Operations Research:

New Developments in their Interfaces, pages 231{243. Pergamon Press, 1992.

[8] E. Dekel, D. Nassimi, and S. Sahni. Parallel matrix and graph algorithms. SIAM J.

Comput., 10:657{675, 1981.

[9] B. Dixon and A. K. Lenstra. Factoring integers using SIMD sieves. Manuscript, 1992.

[10] B. Dixon and A. K. Lenstra. Massively parallel elliptic curve factoring. Manuscript,

1992.

[11] W. Hightower, J. Prins, and J. Reif. Implementations of randomized sorting on large

parallel machines. In Proc. 4th ACM Symp. on Parallel Algorithms and Architectures,

pages 158{167, 1992.

[12] W. D. Hillis and G. L. Steele Jr. Data parallel algorithms. Communications of the

ACM, 29:1170{1183, 1986.

[13] T.-s. Hsu, V. Ramachandran, and N. Dean. Implementation of parallel graph algorithms

on the MasPar. In AMS Proc. of DIMACS Workshop on Computational Support for

25



Discrete Math., to appear. Also available as TR-92-38, Dept. of Comp. Sci., Univ. of

Texas at Austin.

[14] J. J�aJ�a. An Introduction to Parallel Algorithms. Addison-Wesley, 1992.

[15] R. M. Karp and V. Ramachandran. Parallel algorithms for shared-memory machines.

In J. van Leeuwen, editor, Handbook of Theoretical Computer Science, pages 869{941.

North Holland, 1990.

[16] B. W. Kernighan and D. M. Ritchie. The C Programming language. Prentice Hall,

Englewood Cli�s, NJ, 1988. Second Edition.

[17] F. T. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays, Trees,

Hypercubes. Morgan Kaufmann, 1992.

[18] C. Leiserson, Z. S. Abuhamdeh, D. Douglas, C. R. Feynmann, M. Ganmukhi, J. Hill,

W. D. Hillis, B. Kuszmaul, M. St. Pierre, D. Wells, M. Wong, S-W Yang, and R. Zak.

The network architecture of the Connection Machine CM-5. In Proc. 4th ACM Symp.

on Parallel Algorithms and Architectures, pages 272{287, 1992.

[19] MasPar Computer Co.MasPar Parallel Application Language (MPL) Reference manual,

version 2.0 edition, March 1991.

[20] MasPar Computer Co. MasPar Parallel Application Language (MPL) User Guide,

version 2.0 edition, March 1991.

[21] MasPar Computer Co. MasPar System Overview, version 2.0 edition, March 1991.

[22] MasPar Computer Co. MasPar Data Display Library (MPDDL) Reference manual,

version 3.0, rev. a6 edition, July 1992.

[23] MasPar Computer Co.MasPar Parallel Application Language (MPL) Reference manual,

version 3.0, rev. a3 edition, July 1992.

[24] MasPar Computer Co. MasPar Parallel Application Language (MPL) User Guide,

version 3.1, rev. a3 edition, November 1992.

[25] B. Narendran and P. Tiwari. Polynomial root-�nding: Analysis and computational

investigation of a parallel algorithm. In Proc. 4th ACM Symp. on Parallel Algorithms

and Architectures, pages 178{187, 1992.

[26] R. Pickering and J. Cook. A �rst course in programming the DECmpp/Sx. Technical

report, para//lab, Dept. of Informatics, Univ. of Bergen, N-5020 Bergen, Norway, 1993.

Series of Parallel Processing: A Self-Study Introduction.

26



[27] L. Prechelt. Comparison of MasPar MP-1 and MP-2 communication operations. Tech-

nical Report 16/93, Institute f�ur Programmstrukturen und Datenorganisation, Fakult�at

f�ur Informatik, Universit�at Karlsruhe, Germany, April 1993.

[28] L. Prechelt. Measurements of MasPar MP-1216A communication operations. Technical

Report 01/93, Institute f�ur Programmstrukturen und Datenorganisation, Fakult�at f�ur

Informatik, Universit�at Karlsruhe, Germany, January 1993.

[29] J. F. Prins and J. A. Smith. Parallel sorting of large arrays on the MasPar MP-1. In

Proc. 3rd Symp. on the Frontiers of Massively Parallel Computation, pages 59{64, 1990.

[30] M. J. Quinn. Designing E�cient Algorithms for Parallel Computers. McGraw-Hill,

1987.

[31] V. Ramachandran. Parallel open ear decomposition with applications to graph bicon-

nectivity and triconnectivity. In J. H. Reif, editor, Synthesis of Parallel Algorithms,

pages 275{340. Morgan-Kaufmann, 1993.

[32] J. H. Reif, editor. Synthesis of Parallel Algorithms. Morgan-Kaufmann, 1993.

[33] J. T. Schwartz. Ultracomputers. ACM Trans. on Programming Languages and Systems,

2:484{521, October 1980.

[34] R. E. Tarjan. Depth-�rst search and linear graph algorithms. SIAM J. Comput., 1:146{

160, 1972.

[35] R. E. Tarjan. Data Structures and Network Algorithms. SIAM Press, Philadelphia, PA,

1983.

[36] R. E. Tarjan and U. Vishkin. An e�cient parallel biconnectivity algorithm. SIAM J.

Comput., 14:862{874, 1985.

[37] U. Vishkin. Structural parallel algorithmics. In Proc. 18th ICALP, volume LNCS #510,

pages 363{380. Springer-Verlag, 1991.

[38] S. Wolfram. MathematicaTM A System for Doing Mathematics by Computer. Addison-

Wesley, 1988.

27



0

0.2

0.4

0.6

0.8

1

1.2

1.4

4000 8000 12000 16000

S
e
c
o
n
d
s

2 * (# of edges)

Finding a Spanning Forest (m = (3/2)n)

MasPar
0.0003 log^3(X)

SPARC II
0.000023 X

0

0.1

0.2

0.3

0.4

0.5

0.6

4000 8000 12000 16000

S
e
c
o
n
d
s

2 * (# of edges)

Finding a Spanning Forest (m = n^(3/2))

MasPar
0.11 + 0.000095 log^3(X)

SPARC II
0.000011 X

0

0.1

0.2

0.3

0.4

0.5

0.6

4000 8000 12000 16000

S
e
c
o
n
d
s

2 * (# of edges)

Finding a Spanning Forest (m = (n^2)/4)

MasPar
0.11 + 0.00011 log^3(X)

SPARC II
0.00001 X

Figure 7: Relative performance of the sequen-
tial program on a SPARC II workstation and
the parallel program on the MasPar MP-1 for
�nding connected components without virtual
processing.

0

50

100

150

200

250

300

350

0 20 40 60 80 100 120 140

s
e
c
o
n
d
s

n + m (in units of 10000)

Finding a Spanning Forest (m = 3n/2))

MasPar MP-1 (16384 PE’s)
1.4+X’+10^(-3)X’log^3 X’

SPARC 10/41

0

10

20

30

40

50

60

0 20 40 60 80 100 120

s
e
c
o
n
d
s

n + m (in units of 10000)

Finding a Spanning Forest (m = n^(3/2))

MasPar MP-1 (16384 PE’s)
0.03+0.3X’+9*10^(-6)X’log^3 X’

SPARC 10/41

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100 120

s
e
c
o
n
d
s

n + m (in units of 10000)

Finding a Spanning Forest (m = n^2/4)

MasPar MP-1 (16384 PE’s)
0.5+0.15X’+7*10^(-5)X’log^3 X’

SPARC 10/41

Figure 8: Relative performance of the sequen-
tial program on a SUN SPARC 10/41 worksta-
tion and the parallel program on the MasPar
MP-1 for �nding a spanning forest with vir-
tual processing. The least-squares-�t curves
for the performance data of the sequential pro-
gram when < 80% of the main memory are
used are 0:17x, 0:17x, and 0:15x, respectively,
from the top to the bottom.

28



0

0.5

1

1.5

2

4000 8000 12000 16000

S
e
c
o
n
d
s

2 * (# of edges)

Minimum Spanning Forest (m = (3/2)n)

MasPar
0.12+0.00033log^3 X

SPARC II
0.0000057 X log(X)

0

0.2

0.4

0.6

0.8

1

4000 8000 12000 16000

S
e
c
o
n
d
s

2 * (# of edges)

Minimum Spanning Forest (m = n^(3/2))

MasPar
0.095+0.0002log^3 X

SPARC II
0.01+0.000004X+0.000001Xlog X

0

0.2

0.4

0.6

0.8

1

4000 8000 12000 16000

S
e
c
o
n
d
s

2 * (# of edges)

Minimum Spanning Forest (m = (n^2)/4)

MasPar
0.058 + 0.00021 log^3(X)

SPARC II
0.009+0.000004X+9*10^(-8)XlogX

Figure 9: Relative performance of the sequen-
tial program on a SPARC II workstation and
the parallel program on the MasPar MP-1 for
�nding a minimum spanning forest without
virtual processing.

0

50

100

150

200

250

300

350

0 20 40 60 80 100 120 140 160 180

s
e
c
o
n
d
s

n+m (in units of 10000)

Minimum Spanning Forest (m = 3n/2))

MasPar MP-1 (16384 PE’s)
2.5+0.8X’+0.002*10^(-3)X’log^3 X’

SPARC 10/41

0

20

40

60

80

100

120

0 20 40 60 80 100 120

s
e
c
o
n
d
s

n+m (in units of 10000)

Minimum Spanning Forest (m = n^(3/2))

MasPar MP-1 (16384 PE’s)
0.1+0.7X’+0.0004*X’*log^3 X’

SPARC 10/41

0

20

40

60

80

100

120

0 20 40 60 80 100 120

s
e
c
o
n
d
s

n+m (in units of 10000)

Minimum Spanning Forest (m = n^2/4)

MasPar MP-1 (16384 PE’s)
0.7X’+2*10^(-4)*X’*log^3 X’

SPARC 10/41

Figure 10: Relative performance of the se-
quential program on a SUN SPARC 10/41
workstation and the parallel program on the
MasPar MP-1 for �nding a minimum span-
ning forest with virtual processing. The least-
squares-�t curves for the performance data of
the sequential program when < 80% of the
main memory are used are 5:44 + 0:20x logx,
1:78 + 0:11x logx, and 1:22 + 0:10x logx, re-
spectively, from the top to the bottom.

29



0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

4000 8000 12000 16000

S
e
c
o
n
d
s

2 * (# of edges)

Finding All Cut Edges (m = (3/2)n)

MasPar
0.013 + 0.0004 * log^3(X)

SPARC II
0.00049 + 0.000023 X

0

0.2

0.4

0.6

0.8

1

4000 8000 12000 16000

S
e
c
o
n
d
s

2 * (# of edges)

Finding All Cut Edges (m = n^(3/2))

MasPar
0.18 + 0.00014 * log^3(X)

SPARC II
0.00035 + 0.000011 X

0

0.2

0.4

0.6

0.8

1

4000 8000 12000 16000

S
e
c
o
n
d
s

2 * (# of edges)

Finding All Cut Edges (m = (n^2)/4)

MasPar
0.17 + 0.00015 * log^3(X)

SPARC II
0.000051 + 0.00001 X

Figure 11: Relative performance of the sequen-
tial program on a SPARC II workstation and
the parallel program on the MasPar MP-1 for
�nding all cut edges without virtual process-
ing.

0

50

100

150

200

250

300

350

400

0 20 40 60 80 100 120 140

s
e
c
o
n
d
s

n+m (in units of 10000)

Finding All Cut Edges (m = 3n/2))

MasPar MP-1 (16384 PE’s)
1.6+1.4X’+2*10^(-3)X’log^3 X’

SPARC 10/41

0

20

40

60

80

100

0 20 40 60 80 100 120

s
e
c
o
n
d
s

n+m (in units of 10000)

Finding All Cut Edges (m = n^(3/2))

MasPar MP-1 (16384 PE’s)
0.3+0.6X’+2*10^(-4)X’log^3 X’

SPARC 10/41

0

20

40

60

80

100

0 20 40 60 80 100 120

s
e
c
o
n
d
s

n+m (in units of 10000)

Finding All Cut Edges (m = n^2/4)

MasPar MP-1 (16384 PE’s)
0.7+0.5X’+4*10^(-4)X’log^3 X’

SPARC 10/41

Figure 12: Relative performance of the sequen-
tial program on a SUN SPARC 10/41 worksta-
tion and the parallel program on the MasPar
MP-1 for �nding all cut edges with virtual pro-
cessing. The least-squares-�t curves for the
performance data of the sequential program
when < 80% of the main memory are used are
0:22x, 0:18x, and 0:16x, respectively, from the
top to the bottom.

30



0

0.5

1

1.5

2

4000 8000 12000 16000

S
e
c
o
n
d
s

2 * (# of edges)

Ear Decomposition (m = (3/2)n)

MasPar
0.021+3.94*10^(-4)*log^3(X)

SPARC II
0.000093 X

0

0.5

1

1.5

2

4000 8000 12000 16000

S
e
c
o
n
d
s

2 * (# of edges)

Ear Decomposition (m = n^(3/2))

MasPar
0.19 + 0.00014 log^3(X)

SPARC II
0.000084 X

0

0.5

1

1.5

2

4000 8000 12000 16000

S
e
c
o
n
d
s

2 * (# of edges)

Ear Decomposition (m = (n^2)/4)

MasPar
0.18 + 0.00015 * log^3(X)

SPARC II
0.000083 X

Figure 13: Relative performance of the sequen-
tial program on a SPARC II workstation and
the parallel program on the MasPar MP-1 for
�nding an ear decomposition on a two-edge
connected graph without virtual processing.

0

50

100

150

200

250

300

350

0 20 40 60 80 100 120 140

s
e
c
o
n
d
s

n+m (in units of 10000)

Ear Decomposition (m = 3n/2))

MasPar MP-1 (16384 PE’s)
0.4+X’+10^(-3)X’log^3 X’

SPARC 10/41

0

20

40

60

80

100

0 20 40 60 80 100 120

s
e
c
o
n
d
s

n+m (in units of 10000)

Ear Decomposition (m = n^(3/2))

MasPar MP-1 (16384 PE’s)
0.2+0.3X’+4*10^(-4)X’log^3 X’

SPARC 10/41

0

20

40

60

80

100

0 20 40 60 80 100 120

s
e
c
o
n
d
s

n+m (in units of 10000)

Ear Decomposition (m = n^2/4)

MasPar MP-1 (16384 PE’s)
0.9+0.2X’+6*10^(-4)X’log^3 X’

SPARC 10/41

Figure 14: Relative performance of the sequen-
tial program on a SUN SPARC 10/41 worksta-
tion and the parallel program on the MasPar
MP-1 for �nding an ear decomposition with
virtual processing. The least-squares-�t curves
for the performance data of the sequential pro-
gram when < 80% of the main memory are
used are 0:57x, 0:72x, and 0:68x, respectively,
from the top to the bottom.

31



0

0.5

1

1.5

2

4000 8000 12000 16000

S
e
c
o
n
d
s

2 * (# of edges)

Open Ear Decomposition (m = (3/2)n)

MasPar
0.26+4.13*10^(-4)*log^3(X)

SPARC II
0.000093 X

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

4000 8000 12000 16000

S
e
c
o
n
d
s

2 * (# of edges)

Open Ear Decomposition (m = n^(3/2))

MasPar
0.27 + 0.00033 log^3(X)

SPARC II
0.000084 X

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

4000 8000 12000 16000

S
e
c
o
n
d
s

2 * (# of edges)

Open Ear Decomposition (m = (n^2)/4)

MasPar
0.44 + 0.00017 log^3(X)

SPARC II
0.000083 X

Figure 15: Relative performance of the sequen-
tial program on a SPARC II workstation and
the parallel program on the MasPar MP-1 for
�nding an open ear decomposition on a bicon-
nected graph without virtual processing.

0

20

40

60

80

100

120

140

160

0 10 20 30 40 50 60 70

s
e
c
o
n
d
s

n+m (in units of 10000)

Open Ear Decomposition (m = 3n/2))

MasPar MP-1 (16384 PE’s)
0.2+1.6X’+2*10^(-3)X’log^3 X’

SPARC 10/41

0

20

40

60

80

100

0 10 20 30 40 50 60

s
e
c
o
n
d
s

n+m (in units of 10000)

Open Ear Decomposition (m = n^(3/2))

MasPar MP-1 (16384 PE’s)
0.4+X’+10^(-3)X’log^3 X’

SPARC 10/41

0

20

40

60

80

100

0 10 20 30 40 50 60

s
e
c
o
n
d
s

n+m (in units of 10000)

Open Ear Decomposition (m = n^2/4)

MasPar MP-1 (16384 PE’s)
.5+X’+.1X’logX’+.0002X’log^3X’

SPARC 10/41

Figure 16: Relative performance of the sequen-
tial program on a SUN SPARC 10/41 worksta-
tion and the parallel program on the MasPar
MP-1 for �nding an open ear decomposition
with virtual processing. The least-squares-�t
curves for the performance data of the sequen-
tial program when < 80% of the main memory
are used are 0:57x, 0:72x, and 0:68x, respec-
tively, from the top to the bottom.

32



0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

4000 8000 12000 16000

S
e
c
o
n
d
s

2 * (# of edges)

Strong Orientation (m = (3/2)n)

MasPar
0.033+3.89*10^(-4)*log^3(X)

SPARC II
0.000025 X

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

4000 8000 12000 16000

S
e
c
o
n
d
s

2 * (# of edges)

Strong Orientation (m = n^(3/2))

MasPar
0.18 + 0.00015 log^3(X)

SPARC II
0.00028 + 0.000016 X

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

4000 8000 12000 16000

S
e
c
o
n
d
s

2 * (# of edges)

Strong Orientation (m = (n^2)/4)

MasPar
0.17 + 0.00016 log^3(X)

SPARC II
0.0005 + 0.000015 X 

Figure 17: Relative performance of the sequen-
tial program on a SPARC II workstation and
the parallel program on the MasPar MP-1 for
�nding a strong orientation on a two-edge con-
nected graph without virtual processing.

0

50

100

150

200

250

300

350

400

0 20 40 60 80 100 120 140

s
e
c
o
n
d
s

n+m (in units of 10000)

Strong Orientation (m = 3n/2))

MasPar MP-1 (16384 PE’s)
1.8+1.4X’+2*10^(-3)X’log^3 X’

SPARC 10/41

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100 120

s
e
c
o
n
d
s

n+m (in units of 10000)

Strong Orientation (m = n^(3/2))

MasPar MP-1 (16384 PE’s)
0.03+0.4X’+10^(-4)X’log^3 X’

SPARC 10/41

0

10

20

30

40

50

60

70

0 20 40 60 80 100 120

s
e
c
o
n
d
s

n+m (in units of 10000)

Strong Orientation (m = n^2/4)

MasPar MP-1 (16384 PE’s)
0.9+0.2X’+6*10^(-4)X’log^3 X’

SPARC 10/41

Figure 18: Relative performance of the sequen-
tial program on a SUN SPARC 10/41 worksta-
tion and the parallel program on the MasPar
MP-1 for �nding a strong orientation with vir-
tual processing. The least-squares-�t curves
for the performance data of the sequential pro-
gram when < 80% of the main memory are
used are 0:31x, 0:25x, and 0:22x, respectively,
from the top to the bottom.

33


