
Experimental Evaluation of QSM,
a Simple Shared-Memory Model�

Brian Grayson, Michael Dahlin, and Vijaya Ramachandran
University of Texas at Austin

bgrayson@ece.utexas.edu, dahlin@cs.utexas.edu, vlr@cs.utexas.edu
UTCS Technical Report TR98-21

November 22, 1998

Abstract

Parallel programming models should attempt to satisfy two conflicting goals. On one hand, they
should hide architectural details so that algorithm designers can write simple, portable programs. On
the other hand, models must expose architectural details so that designers can evaluate and optimize the
performance of their algorithms. Using both microbenchmarks and several representative algorithms,
we experimentally examine the trade-offs made by a simple shared-memory model, QSM, to address
this dilemma. The results indicate that analysis under the QSM model yields quite accurate results
for reasonable input sizes and that algorithms developed under QSM achieve performance close to that
obtainable through more complex models, such as BSP and LogP.

1 Introduction

A key goal of parallel language, compiler, and architecture designers is to support a programming model
in which programmers and algorithm designers write high level descriptions of their algorithms that are
then compiled into code optimized for different architectures. Designing a programming model to support
that goal is challenging. On one hand, if the model is too abstract, it may hide important aspects of par-
allel architectures and cause algorithm designers to make poor design decisions. On the other hand, if the
model is too detailed, it may complicate the programmer’s task, and it may drive the programmer to write
unportable code that optimizes performance on one architecture while making it hard for the compiler to
optimize performance on other architectures. One step in resolving this dilemma is to develop a contract
between programmers and compilers that specifies which architectural details should be explicitly handled
in the high-level, architecture-neutral specification of an algorithm and which should be handled by its low-
level architecture-specific implementation. This paper examines the trade-offs made by the Queuing Shared
Memory (QSM) model [11]. Earlier theoretical analyses have suggested that despite the model’s simplic-
ity, it provides a good basis for designing high-performance algorithms. This paper takes an experimental
approach to understanding under what conditions this model will yield good results.

�This work was supported in part by an NSF CISE grant (CDA-9624082) and grants from Intel, Novell, and Sun. Dahlin was
also supported by an NSF CAREER grant (9733842). Grayson was also supported in part by an NSF Graduate Fellowship.

1



The QSM model provides a simple shared memory abstraction that attempts to reveal the most important
aspects of parallel architectures to algorithm designers while hiding architectural details that have secondary
performance impact and that interfere with portability. QSM provides a shared memory abstraction to
simplify algorithm description and analysis, it models local memory and limited remote memory bandwidth
to encourage locality, and it uses a bulk synchronous style to give the compiler1 freedom to reorder, pipeline,
and group messages to hide latency and per-message overhead. On the one hand, the QSM can be considered
a more realistic version of the PRAM [9], since (1) it is shared-memory, (2) it models bandwidth limitations,
and (3) it supports bulk-synchrony, thus avoiding excessive synchronizations. On the other hand, the QSM
can be viewed as a simplification of more detailed distributed memory models such as BSP [21] and LogP
[7] since it does not deal with the details of data layout, and it has a smaller number of parameters than these
models. The theoretical results in [11] suggest that algorithms designed on the QSM should perform just as
well on the BSP (to within a small constant factor) provided the input size is sufficiently large.

In this paper we use both simulation and measurements of actual parallel hardware to examine how well
QSM tracks machine behavior in practice. In particular, we experimentally examine several ways in which
QSM simplifies actual architectures to see if these simplifications are as benign as theory suggests. We
examine QSM’s decision to omit latency (l) and overhead (o) parameters by examining the behavior of
several representative programs and find that, as predicted by theory,programs written in a bulk-synchronous
style are insensitive to network latency and overheadas long as input sizes are large enough to permit
sufficient pipelining and batching of messages. For the architectures and programs we examine, experiments
suggest that this condition is achieved for essentially any problem size worth parallelizing. Finally, by
examining microbenchmarks on an SMP (a Sun Enterprise 5000), a network of workstations (a cluster of
Sun Ultra-1 workstations), and an MPP (a Cray T3E), we evaluate QSM’s strategy of using randomization
to avoid memory bank conflicts. We find that compared to a perfect memory layout with no contention, the
random layout assumed by QSM does exhibit noticeable contention, but the contention appears tolerable
even for these memory-intensive workloads, and randomization avoids the worst-case contention behavior
when performance is much worse than the ideal layout.

The next section of this paper provides more details of the QSM model and discusses the contract it implies
between programmer and compiler. Section 3 examines the performance of several representative algo-
rithms running on a simulator that lets us vary network performance to determine the impact of omitting
network latency and overhead parameters from QSM. Section 4 uses a synthetic benchmark on several ac-
tual machines to quantify the impact of omitting memory bank contention from the model. Section 5 surveys
related work, and Section 6 summarizes our conclusions.

2 QSM Model

The Queuing Shared Memory (QSM) model [11] provides a simple shared memory abstraction that attempts
to reveal the most important aspects of parallel architectures to algorithm designers while hiding architec-
tural details that have secondary performance impact and that interfere with portability. A QSM consists of
a number of identical processors, each with its own private memory, that communicate by reading and writ-
ing shared memory. Processors execute a sequence of synchronized phases, each consisting of an arbitrary
interleaving of shared memory reads, shared memory writes, and local computation. QSM implements a

1In this paper, we use the termcompiler in a broad sense to refer to the entity that translates an architecture-neutral program
description into an optimized, architecture-specific implementation. This entity may be a human, library, or a program. In any case,
the goal of our model is to make this translation a simple, mechanical process.

2



Architectural/Algorithmic Parameter Implementation contract
Explicitly Modeled Factors

p (number of processors) QSM Parameter
g (gap) QSM Parameter

� (memory object contention) Algorithm designer should
mop (# of local operations) minimize max(mop; g �mrw; �)
mrw (# of remote operations)

Secondary Factors
l (latency),L (barrier time) Hide latency by pipelining

o (overhead of sending messages) Use bulk synchronous style
Minimize overhead
by batching messages

hr (memory bank contention) Minimize contention by
randomizing data layout

c (network congestion) Use bulk synchronous style
Limit contention by limiting
network send rate

Table 1: QSM partitions architectural and algorithmic considerations into two categories: those that should
be explicitly considered by the algorithm designer and those that should be handled by the low-level imple-
mentation.

bulk-synchronousprogramming abstraction in that (i) each processor can execute several instructions within
a phase but the values returned by shared-memory reads issued in a phase cannot be used in the same phase
and (ii) the same shared-memory location cannot be both read and written in the same phase. This bulk
synchronous model simplifies the analysis of algorithms as well as the translation of QSM descriptions into
efficient architecture-specific implementations.

Table 1 summarizes a set of parameters that may affect the performance of parallel programs and indicates
how a QSM programmer would account for those parameters. QSM essentially divides these parameters
into two groups. First, the QSM performance model explicitly accounts forp, g, �, mop, andmrw. These
parameters represent fundamental characteristics of an algorithm on nearly any parallel architecture —p,
the number of processors, represents the algorithm’s concurrency,mrw, the number of remote memory
accesses, represents its locality (or lack thereof), andmop, the number of local operations, represents its
local computation time. The parameter� represents the contention to any one remote memory object, which
is fundamental to an algorithm because such contention cannot be hidden by, for instance, clever layout
of data across banks. The key architectural parameter modeled by QSM is the gap,g, between the local
instruction rate and the remote communication rate. This parameter reflects the limited communication
bandwidth of most parallel architectures and thus encourages algorithms to exploit locality. If during a
phase, the maximum number of local operations performed by any processor ismop, the maximum number
of remote reads or remote writes by any processor ismrw, and the maximum number of readsor writes
to any remote memory location during a phase is�, QSM charges a time cost for that phase of max(mop,
g �mrw, �). A related model, the s-QSM (symmetric QSM) charges a time cost of max (mop, g �mrw, g ��).

QSM considers the second group of parameters in Table 1 —l, o, hr, andc — to be secondary factors
in algorithm design and contends that algorithm descriptions and analysis may generally be simplified by
ignoring these factors. In practice, parallel programs reduce the impact of these factors using standard

3



techniques: pipelining to hide latency, batching requests to reduce overhead, and randomization to avoid
bank conflicts. Rather than complicate high-level, architecture-independent algorithm descriptions with
these routine details, QSM assumes a contract in which the compiler is responsible for using such techniques
when appropriate. In particular:

� When designing a QSM algorithm, a designer may ignore network latency (l) because she may assume
that the low-level implementation will hide latency by pipelining requests. QSM’s bulk-synchronous
model facilitates this simplification by creating batches of requests that may be sent during a phase but
that will not be used until the next phase. The QSM model thus predicts thatl will not affect running
time as long as the problem is relatively large. For instance, this condition holds if(l=g) �� << W=p,
whereW is the amount of communication done by the algorithm,p is the number of processors in the
target machine, and� is the number of phases in the QSM algorithm [19]. It also holds true if a QSM
algorithm designed forp processors is mapped onto ap0 processor machine where(l=g) � p0 << p
[11]. In our experiments, we find that in practice data sets large enough to be worth parallelizing
easily meet these criteria for the algorithms and architectures we examine. Synchronization time,L,
also increases with increasing latency (under the LogP model [7], synchronization takesl=g log p

log l=g ), and
QSM expects synchronization time to become insignificant under similar conditions.

� When designing a QSM algorithm, a designer does not explicitly account foro, the overhead of
sending and receiving a message. Instead, the designer assumes that the compiler will take advantage
of bulk synchrony to batch requests and thereby minimize overhead. By includingg but noto in the
network performance model, QSM tells algorithm designers to focus on limiting the amount of data
sent by an algorithm, not on how many messages are used to send that data.

� When designing a QSM algorithm, a designer does not account for the contention of remote memory
accesses to banks (hr) except when there are many accesses to a specific remote object (�). Instead,
the designer assumes that the compiler will limit the performance impact of bank conflicts by random-
izing data layout, for example by hashing remote memory addresses in hardware or software [11].
Three aspects of this model should be noted. First, randomization will not reduce conflicts when the
conflicting accesses are to a single memory address, so QSM explicitly accounts for such hot-spot
object conflicts with its� parameter. Second, this aspect of the implementation contract should not
be construed as indicating that QSM does not account for careful memory layout that improves local-
ity; QSM’s g parameter encourages algorithms to move data to their local memories when possible.
Finally, the natural description of many algorithms provides a balanced or randomized data layout
without requiring randomization from the implementation layer; in such cases, as a performance opti-
mization the algorithm description should inform the compiler that it may safely omit randomization.

� When designing a QSM algorithm, a designer does not explicitly account forc, the network con-
gestion. Brewer and Kuszmal [4] found that network congestion could significantly limit the perfor-
mance of parallel machines. QSM expects compilers to address congestion in two ways, both based
on Brewer and Kuszmal’s techniques. First, the periodic synchronizations associated with a bulk-
synchronous programming style can reduce congestion. Second, QSM expects compilers to limit the
rate at which nodes send data so that they do not overrun receiving nodes and cause congestion in the
network.

4



2.1 Comparison with other parallel architecture models

It is worthwhile to compare the QSM model to other popular models for parallel algorithm design. The
traditional model is the PRAM [15] which is a synchronous shared-memory model with unit-time com-
munication to shared-memory; different variants of this model restrict memory accesses to beexclusiveor
unit-time concurrent. While the PRAM is a simple model that aids in exposing high-level parallelism in
algorithms, its cost measure has a significant mismatch to real machines in that it ignores issues of latency,
bandwidth limitation, and memory granularity in parallel machines. As in the QSM, the latency mismatch
can be addressed by pipelining if sufficient parallel slackness is present, but the synchronous nature of the
PRAM model typically results in a larger number of phases in a PRAM algorithm for a given problem than
in a QSM algorithm, and thus results in larger latency and synchronization costs than in the QSM. Also, the
PRAM has no parameter to model bandwidth limitation, and hence the model does not encourage locality of
reference. As in the QSM, the memory granularity issue can be addressed by hashing, provided theexclu-
sive(e.g., EREW) and not concurrent (e.g., CRCW) memory access rule is used, but the exclusive memory
access rule is more restrictive than the queuing memory access used in the QSM.

The BSP (Bulk Synchronous Parallel) [21] and the LogP [7] models each model a parallel machine as a
collection of processor-memory units with no global shared memory. The processors are interconnected by
a network whose performance is characterized by a gap parameterg and a latency parameterl (in LogP) or
synchronization parameterL (in BSP). The LogP model also models the per-message overheado for sending
and receiving messages, and it limits network congestion by requiring that no more thanl=g messages be
in transit to a given destination processor in any interval of lengthl. There have been several algorithms
designed and analyzed on the BSP and LogP models and their extensions (see,e.g., [1, 3, 10, 14, 16,
23]). These algorithms tend to have rather complicated performance analyses, because of the number of
parameters in the model as well as the need to keep track of the exact memory partition across the processors
at each step.

In contrast to the BSP and LogP models, the QSM has only two architectural parameters—p andg—and
it is a shared-memory model. This latter point is of importance since shared-memory has been a widely-
supported abstraction in parallel programming [17], and additionally, the architectures of many parallel
machines are either intrinsically shared-memory or support it using suitable hardware or software. Further,
as indicated earlier, the shared-memory of the QSM can be hashed onto the distributed memory, and this
strategy gives provably good performance on the BSP [11]. It is interesting to note that there are BSP
algorithms for irregular problems that achieve good performance by randomly distributing elements across
processors (see,e.g., [3] for the multi-search problem).

In some special cases the QSM abstraction may not reveal the full power of a specific parallel architecture.
In particular, algorithms that make use of fine-grained synchronization are not a good match with QSM’s
bulk synchronous programming style. Also, all QSM communication takes place through shared memory
and all synchronization occurs at the end of phases, which is a simpler but less powerful mechanism than
communication to activate computation on remote nodes (e.g., Active Messages [22]).

3 Impact of omitting l and o

The QSM model predicts that network latencyl and per-message overheado will not impact running time
for bulk synchronous programs assuming that (1) the compiler or run time system pipelines and batches

5



messages and (2) the problem is sufficiently large to provide enough parallelism for these techniques to be
effective. In this section, we test these hypotheses by running several representative parallel programs on a
detailed simulator that lets us vary network performance.

3.1 Methodology

3.1.1 Workloads

We evaluate the performance of QSM algorithms for three fundamental problems:prefix sums(a basic
primitive for most parallel algorithms, with an algorithm that displays parallelism with very little commu-
nication),sample sort(an important algorithm with some communication), andlist ranking (the canonical
problem for evaluating performance of parallel algorithms with large amount of irregular communication).
As suggested by the QSM model, we optimized these algorithms to minimize computation and commu-
nication time, while keeping the number of phases small [19]. Note that we focus on providing simple
algorithms that will be effective for practical problem and machine sizes, so our algorithms often place a
minimum size on the problem size per processor. The running times are presented for the s-QSM, which
assumes that the same gap parameter is encountered at processors and at memory.

This section summarizes the algorithms. More detailed descriptions of these algorithms can be found in the
appendix.

Prefix Sums.Thep-processor QSM prefix sums algorithm runs inO(gn=p) time with just one synchroniza-
tion whenp � p

n. Each node calculates the sum of its local elements, and broadcasts it to the remaining
processors. Each processor then computes the offset for its elements, and follows that up with a computa-
tion of the correct prefix sums for the positions corresponding to its local elements. If the input is initially
distributed evenly across the processors, the running time isO(np + gp).

Sample Sort.Thep-processor QSM sample sort algorithm is a simple one that runs in timeO(gp log n+ gn
p )

and5 phases with high probability (whp) whenp �
p
n= log n. The algorithm uses over-sampling: it picks

c log n random samples per processor for some constantc, sorts thecp logn samples and then picks a total
of p pivots by using every (c log n)th element in the sorted list of samples. Theith processor then sorts the
elements in theith ‘bucket.’

List Ranking. The list-ranking algorithm we implemented is a randomized one that, on ap-processor QSM,
runs in timeO(gn=p) time withO(log p) phaseswhp. This algorithm assigns each processor a random block
of n=p elements, and in each phase the algorithm assigns each element a random bit. During a phase each
processor eliminates those elements assigned to it whose random bit is 0 and whose successor’s random bit
is a 1. When the number of remaining elements is reduced toO(n=p) all of the elements are sent to processor
0, which then completes the forward computation using a sequential list-ranking algorithm in timeO(n=p).
A corresponding expansion phase then computes the list ranks of the eliminated elements within the same
time bounds.

For all experiments, we ran each experiment 10 times and report the average. The standard deviation is less
than 11% of the average for all of the sample sort runs, and less than 2% for all but the smallest problems
sizes for the parallel prefix and list rank runs.

6



Parameter Setting

Functional Units 4 int/4 FPU/2 load-store
Functional Unit Latency 1/1/1 cycle
Architectural Registers 32
Rename Registers unlimited
Instruction Issue Window 64
Max. Instructions Issued per Cycle4
L1 Cache Size 8KB 2-way
L1 Hit Time 1 cycle
L2 Cache Size 256KB 8-way
L2 Hit Time 3 cycles
L2 Miss Time 3 + 7 cycles
Branch Prediction Table 64K entries, 8-bit history
Subroutine Link Register Stack unlimited
Clock frequency 400 Mhz

Table 2: Architectural parameters for each node in multiprocessor.

3.1.2 Architecture

The Armadillo multiprocessor simulator [12] was used for the simulation of a distributed memory multipro-
cessor. The primary advantage of using a simulator is that it allows us to easily vary hardware parameters
such as network latency and overhead. The core of the simulator is the processor module, which models a
modern superscalar processor with dynamic branch prediction, rename registers, a large instruction window,
and out-of-order execution and retirement. For this set of experiments, the processor and memory configura-
tion parameters are set for an advanced processor in 1998, and are not modified further. Table 2 summarizes
these settings.

The simulator supports a message-passing multiprocessor model. The simulator does not include network
contention, but it does include a configurable network latency parameter. In addition, the overhead of
sending and receiving messages is included in the simulation, since the application must interact with the
network interface device’s buffers. Also, the simulator provides a hardware gap parameter to limit network
bandwidth and a per-message network controller overhead parameter.

We implemented our algorithms using a library that provides a shared memory interface in which access
to remote memory is accomplished with explicitget() andput() library calls. The library implements
these operations using a bulk-synchronous style in whichget() andput() calls merely enqueue requests
on the local node. Communication among nodes happens when the library’ssync() function is called.
During async() , the system first builds and distributes a communications plan that indicates how many
get s andput s will occur between each pair of nodes. Based on this plan, nodes exchange data in an order
designed to reduce contention and avoid deadlock. This library runs on top of Armadillo’s high-performance
message-passing library (libmvpplus ).

Our system allows us to set the network’s bandwidth, latency, and per-message overhead. Table 3 sum-
marizes the default settings for these hardware parameters as well as the observed performance when we
access the network hardware through our shared memory library software. Note that the bulk-synchronous
software interface does not allow us to measure the softwareo and l values directly. The hardware primi-
tives’ performance correspond to values that could be achieved on a network of workstations (NOW) using

7



Parameter Hardware Observed Performance
Setting (HW + SW)

Gapg (Bandwidth) 3 cycles/byte (133 MB/s) 35 cycles/byte (put), 287 cycles/byte (get)
Per-message Overheado 400 cycles (1�s) N/A
Latencyl 1600 cycles (4�s) N/A
Synchronization BarrierL N/A 25500 cycles (16-processors) (64�s)

Table 3: Raw hardware performance and measured network performance (including hardware and software)
for simulated system.

a high-performance communications interface such as Active Messages [22] and high-performance network
hardware such as Myrinet [18]. Note that the software overheads are significantly higher because our im-
plementation copies data through buffers and because significant numbers of bytes sent over the network
represent control information in addition to data payload. In Section 3.3 we will describe our experiments
that vary these hardware parameters to examine the algorithms’ sensitivity to them.

3.2 Results

Theory suggests that the bulk synchronous model will allow QSM analysis to safely ignore latency as long
as there is sufficient parallelism to hide it by pipelining requests. In particular, it suggests that latency will
be dominated by other factors when(l=g) � � << W=p whereW is the amount of communication,p is the
number of processors in the target machine, and� is the number of phases in the QSM algorithm. For our
default system,l is 1600,g is 3, andp is 16. For the algorithms we examine,� ranges from 1 for prefix
sum to 4 for sample sort to (4 + 16 logp) (which is about 68 for our default 16-node machine) for list
ranking, and for the algorithms we examineW is linear withn. Thus, we would expectl to be hidden and
QSM to predict performance for problem sizes wheren

p is larger than some constant times 37,000 for this
system. Assuming that the constant hidden by theO() notation is small, this analysis suggests thatl will not
significantly impact performance for problem sizes large enough to be worth parallelizing. Similarly, QSM
analysis does not account for per-message overhead because it assumes that overhead will be amortized by
batching requests.

Figures 1, 2, and 3 summarize the results of a set of experiments designed to test this hypothesis. In
each figure we show the measured results of running one of the algorithms and compare the measured
communication time to the communication time predicted by QSM and the more detailed BSP model. For
all of these experiments, we find that QSM predicts communication performance well whenn is reasonably
large.

We focus on predicting communication performance rather than total running time for two reasons. First,
all of the models abstract local computation in the same way, so comparisons of how the algorithms predict
local computation will not be interesting. Second, for all of the models calculating appropriate constants for
an algorithm on a particular architecture is nontrivial; imprecision at this step might overshadow the effects
we wish to examine.

Prefix. Figure 1 shows the predicted and actual performance of the parallel prefix algorithm. A QSM
analysis of the parallel prefix algorithm we implemented predicts that communication will take timeg(p�1).

8



0

0.5

1

1.5

2

2.5

3

3.5

0 50000 100000 150000 200000 250000 300000 350000 400000

m
ill

io
ns

 o
f c

yc
le

s

problem size

Total

Communication

BSP

QSM

(a) Total running time and communication time.

0

0.05

0.1

0.15

0.2

0 50000 100000 150000 200000 250000 300000 350000 400000

m
ill

io
ns

 o
f c

yc
le

s

problem size

Communication

BSP

QSM

(b) Communication time.

Figure 1: Measured and predicted performance for the prefix sums algorithm.

9



0

5

10

15

20

25

0 50000 100000 150000 200000

m
ill

io
ns

 o
f 

cy
cl

es

problem size

Sample Sort for 16 processors

Total running time

QSM WHP bound
Communication

BSP estimate
QSM estimate

QSM best-case

(a) Total running time and communication time.

0

1

2

3

4

5

6

0 50000 100000 150000 200000

m
ill

io
ns

 o
f 

cy
cl

es

problem size

Sample Sort for 16 processors

QSM WHP bound

Communication
BSP estimate

QSM estimate
QSM best-case

(b) Communication time.

Figure 2: Measured and predicted performance for the sample sort algorithm.

10



0

20

40

60

80

100

120

140

160

0 20000 40000 60000 80000 100000

m
ill

io
ns

 o
f 

cy
cl

es

problem size

List Rank for 16 processors

Total running time

QSM WHP bound

Communication
BSP estimate

QSM estimate
QSM best-case

(a) Total running time and communication time.

0

20

40

60

80

100

120

140

160

0 20000 40000 60000 80000 100000

m
ill

io
ns

 o
f 

cy
cl

es

problem size

List Rank for 16 processors

QSM WHP bound

Communication
BSP estimate

QSM estimate
QSM best-case

(b) Communication time.

Figure 3: Measured and predicted performance for the list ranking algorithm.

11



A BSP analysis includes the per-phase synchronization cost, thus adding a1 � L term to that prediction.

Parallel prefix is an example where QSM and BSP models lead to good algorithm design but where they
do not allow accurate prediction of communication time. Both the QSM and BSP analysis significantly
underestimate communication time because they assume a bulk-synchronous model where communication
overhead,o, is hidden by large messages; QSM’s estimate is significantly lower than BSP’s because it also
ignores latency. For this algorithm, messages are small and communication time is dominated by overhead
and latency, so these models do a poor job in predicting overall performance. In addition, the amount of
communication does not increase as problem size increases. Note that although the relative error is large
because communication time is tiny, the absolute error is still small, and the overall algorithm is still efficient
in practice.

Sample Sort. For the sample sort algorithm in Figure 2, a QSM analysis predicts that communication will
take time4(p�1)g logn+3(p�1)g+gBr+gB whp. The algorithm is randomized, and theB andr terms
represent how running time depends on the load balance achieved.B is the size of the largest bucket, and r
is a bound on the fraction of elements in any bucket that are outside the processor that will sort the bucket.
In the figure, we plot three cases. In the best caseB = n

p andr = p�1
p , and all nodes have equal amounts of

work to do. TheBest caseline shows this unreasonably optimistic case. By applying Chernoff bounds on
B andr, we derived bounds for the algorithm’s running time that hold for at least 90% of runs. The details
of this derivation can be found elsewhere [19]. TheWHP boundline shows this as an upper limit on typical
performance. Finally, we experimentally measured the actualB andr skews experienced in each experiment
and plot the resulting line asQSM estimate. This third line represents the type of performance estimate that
could be achieved under a QSM model if either (a) an algorithm were oblivious and deterministic and an
exact time bound were known or (b) a detailed analysis of probability distributions were available.

The BSP estimateline of the graph shows the results of a BSP analysis of the algorithm using the actual
skews determined experimentally. BSP analysis includes the per-phase synchronization cost, for an addi-
tional 5L term over the QSM analysis. The best-case and upper-bound load balance analysis for BSP is the
same as for QSM, and plots for these are omitted from the graph for clarity; they would be offset from the
QSM lines by the same5L term as theBSP estimateline.

For the case where load balance is known with precision, the simple QSM model successfully predicts
communication performance when problem sizes are relatively large. By ignoring the cost of per-message
overhead and network latency, QSM underestimates communication time by a constant amount. However,
as problem size grows, this error becomes less important and the predictions become more accurate. Accu-
racies within 10% of the communication time are achieved for all problem sizes larger than about 125,000
elements total (or about 8,000 elements per processor.) (Note that because computation time represents
a significant portion of running time, a 10% error predicting communication time translates into a much
smaller error in predicting total running time.) We believe that problems smaller than this limit are unlikely
to be worth parallelizing, so model inaccuracy for such problem sizes is not a large concern.

For the case where load balance is not known with precision, theBest-caseandWHP boundlines in the
graph bound predicted performance. Note that the slopes of the lines differ because a imbalance from the
B andr terms means that some processor could be doing more communication than the average processor.
The two lines bound actual performance over almost the entire range of problem sizes. Again, mismatches
happen when problem sizes are probably too small to be worth parallelizing. This analysis suggests that the
looseness of the bounds obtained using standard algorithm analysis and variations introduced by random-
ization may often be larger than the errors introduced by QSM’s simplified network model.

12



List Ranking. Figure 3 shows the predicted and actual performance of the list ranking algorithm. The
running time for the QSM list ranking algorithm is

�g(
c1
2

+
7c2
4

)
4 log pX

i=1

xi + 4�0gz

wherexi is the maximum number of elements at any processor in theith phase, withx1 = n
p , z is a bound

on the number of elements sent to processor0 for the sequential computation phase,c1 is a correction factor
to compute a bound on the maximum number of elements that flipped a one bit at any processor in theith
iteration,c2 is a correction factor to compute a bound on the maximum number of elements that eliminated
themselves at any processor in theith iteration,� is a bound on the fraction of elements that flipped a
bit whose successors/predecessors are not at the same processor, and�0 is a bound on the fraction of the
elements remaining after step 2 that are not in processorP0.

In the unrealizable ideal case, we assume the randomized steps cause no skew in the work on the different
processors. In that case,xi = n

p (
3
4
)i�1, z = n � (3

4
)4 log p, c1 = c2 = 1, and� = �0 = p�1

p . This is theBest
caseline in the graph. To obtain a bound on a running time that holds with probability at least 0.9, we used
Chernoff bounds to obtain bounds onxi, z, c1, andc2. As for our analysis of sample sort, these bounds are
likely to be quite conservative. The resulting bound on expected performance is theWHP boundline in the
figure. Finally, theQSM estimateline shows a calculation based on the actual problem-size compression
achieved in each phase, and theBSP estimateline also corresponds to the actual work at each processor.
BSP’s lines for the ideal case andwhp limit are not shown but would be offset from their QSM counterparts
by a similar amount.

As with the sample sort algorithm, as problem size increases, prediction accuracy improves, and the model
predicts performance well for problem sizes worth parallelizing. In particular, the BSP prediction is within
15% of the actual communication time as long asn � 40; 000 elements and the QSM prediction is within
15% of the actual communication time as long asn � 60; 000 elements. Again note that because commu-
nication time is only a portion of the total running time, errors predicting total running time will be even
smaller.

3.3 Sensitivity to architectural parameters

The QSM model predicts thatl ando are effectively hidden whenWp or n
p is large enough to allow sufficient

pipelining and batching of messages. We would therefore predict that systems with largerl, o, or p would
also require largern before QSM predictions are accurate. In fact, as the first paragraph of Section 3.2
suggests, we would predict a linear relationship betweenl, o, or p and the minimumn required for good
prediction. In Figure 4, we varyl, the hardware latency, over a range of values and compare the measured
performance against QSM’s predictions. Notice that QSM’s predictions do not account for latency and are
thus constant asl is varied.

As hypothesized, increasingl results in a linear increase in the problem sizen required for QSM to accu-
rately predict performance. Figure 5 shows this more clearly by plotting the points where theWHP bound
line crosses the measured performance lines in Figure 4. If our simulator could accommodate larger prob-
lem sizes, we would expect a similar linear relationship if we compared where predictions first come within
10% of measured performance for each value ofl. Figure 6 shows the results for another experiment where

13



0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 25000 50000 75000 100000

M
ill

io
ns

 o
f 

cy
cl

es

Problem size

QSM whp

BSP estimate

QSM estimate

l = 20000

l = 10000

l = 5000

l = 2500

l = 1600
QSM best case

Figure 4: Measured communication performance vs. QSM predictions as latency is varied for sample sort.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0 5000 10000 15000 20000

Estimated crossover point

Figure 5: Problem size needed for actual communication time to fall within the range between theWHP
boundand theBest-caselines as latencyl is varied for sample sort.

14



0

10000

20000

30000

40000

50000

60000

0 1000 2000 3000 4000 5000 6000 7000 8000

Pr
ob

le
m

 s
iz

e 
(n

)

Overhead (o) in cycles

Estimated crossover point

Figure 6: Problem size needed for actual communication time to fall within the range between theWHP
boundand theBest-caselines as per-message overheado is varied for sample sort.

we varied the machine’s overhead,o. Due to memory limitations of our simulation infrastructure, we were
not able to varyp over a wide enough range to examine this relationship forp.

These experiments suggest that QSM will predict communication performance of these algorithms for al-
most any reasonably sized problem. For example, in our default configuration QSM accurately predicts
communication time for the sample sort algorithm whenn � 125; 000. On our 16-processor simulated
machine, that corresponds to just8000 elements per processor, which we believe is a small problem size for
a modern machine with 64 MB or more of memory per processor.

The linear relationship betweenl, o, andp on the problem size needed for prediction accuracy suggests that
we may be able to extrapolate from these results to predict when QSM will accurately model communication
performance for other architectures. The predictions in Table 4 should be treated with caution since they
represent an extrapolation from one set of experiments to a wide range of architectures. However, both the
theoretical QSM model and our experimental results support this extrapolation. Even with these caveats,
the data in this table suggest that QSM will predict performance well for this algorithm for modest sized
problems.

4 Memory bank contention

QSM does not track how data are placed across global memory banks. QSM expects algorithms to maximize
locality by utilizing local memory and to minimize remote-memory bank contention by randomizing data
layout. This section examines how well that strategy will work in practice by examining the performance of
a microbenchmark that was designed to stress the memory system of several modern parallel architectures.

Each processor running the microbenchmark accesses global memory as quickly as it can in one of three
patterns. In the Random pattern, each access is to a random word in a random remote bank’s memory.

15



Architecture p l o g nmin

p

Default simulation parameters 16 1600 400 3 8000

Berkeley NOW [18] 32 830 481 4.3 (k * 4640)
300MHz Pentium-II TCP/IP, 100Mb Switched Ethernet(32) 75000 150000 24 (k * 325000)
CRAY T3E [2] (64) 126 (50) 1.6 (k * 1558)
Intel Paragon [8] (64) 325 90 0.35 (k * 15429)
Meico CS-2 [8] (32) 497 112 1.4 (k * 5325)

Table 4: The models examined in this paper predict that for problems larger thannmin, the QSM model
should accurately predict running time for the Sample Sort benchmark. Most of the values for hardware
parameters were taken from the articles specified above, after converting all parameters to be in units of
clock cycles; values in parenthesis were not available in those articles and represent estimated values. Our
estimates fornmin on the other architectures include the parameterk, which corresponds to differences in
software implementation of communications primitives across the architectures.

This pattern represents the access pattern that a QSM runtime system would achieve by randomizing data
layout. In the Conflict pattern, each access is to a random word in memory bank 0. It shows the case that
might happen if an algorithm has hot spots and the run time system does not act to eliminate them. In the
NoConflict pattern, each access by processori is to a random word in memory banki + 1 so that no two
processors are accessing the same bank. This pattern represents a best case for remote memory access that
might be achieved under a sophisticated algorithm developed under a more detailed model than QSM. In the
results below, we report the average access time for a word when the shared memory array is too large to be
cached in the machine’s hardware processor cache.

We examine the performance of the microbenchmark on four systems that span a range of memory archi-
tectures.

� SMP-NATIVE is an 8-processor, 8-memory-bank Sun UltraEnterprise server. Each processor runs
at 166 MHz, and each memory bank is 128 MB. The hardware distributes sequential 64-byte cache
blocks to sequential memory banks. The benchmark shares memory using the cache consistent shared
memory space provided by the hardware.

� SMP-BSPlib uses the same hardware, but the benchmark accesses shared memory using the shared
memory subset of BSPlib version 1.3 [6]. We compiled the library to provide its global memory ab-
straction using SYSV shared memory. We show performance for both the “level-2” highly optimized
library and the “level-1” less optimized version, and the microbenchmark uses the “high-performance”
variants of the shared memory access functions that do less buffering than the standard functions.

� NOW-BSPlib uses a cluster of sixteen 166 MHz UltraSPARCs connected by a 10 Mbit/s ethernet. The
benchmark uses the shared memory abstraction provided by the BSPlib runtime system, which uses
TCP for global communication in this system. We show performance using the “level-2” optimized
library and the “high-performance” shared memory access functions.

� Cray T3E uses 32 nodes of a 68 node Cray T3E. Processing elements are Digital Equipment Cor-
poration EV5 RISC microprocessors, and the interconnect is a high-performance 3-D torus memory
interconnect. We use theshmemshared memory library for data access to the shared array.

16



0

200

400

600

800

1000

0 1 2 3 4 5 6 7 8

R
ea

d 
T

im
e 

(n
s)

Active Processors

SMP -- Native Read

Conflict

Random

No Conflict

0

50000

100000

150000

200000

0 1 2 3 4 5 6 7 8

R
ea

d 
T

im
e 

(n
s)

Active Processors

SMP -- BSP High-Performance Put

No Conflict (optimization on)

Random (optimization on)

Conflict (optimization on)

No Conflict (optimization off)

Random (optimization off)

Conflict (optimization off)

0

50000

100000

150000

200000

250000

0 2 4 6 8 10 12 14 16

R
e

a
d

 T
im

e
 (

n
s)

Active Processors

NOW -- BSP High-Performance Put

No Conflict

Random

Conflicts

0

500

1000

1500

2000

2500

3000

3500

0 5 10 15 20 25 30

R
ea

d 
T

im
e 

(n
s)

Active Processors

Cray T3E

Conflict

Random
No Conflict

Figure 7: Remote memory access performance for the SMP, SMP-BSPlib, NOW-BSPlib, and Cray T3E
architectures.

17



Figure 7 shows the performance of the benchmark on these architectures. The results conform to the as-
sumptions of the QSM model. The careful memory layout of the NoConflict strategy performs modestly
better than the Random approach with speedups of 0% to 68%. But randomization avoids the worst-case
contention behavior seen in the Conflict cases when performance is generally a factor of two to four worse
than the ideal NoConflict layout. Note that this microbenchmark was designed to stress test the memory
systems’ behavior under overload; access patterns for real programs may be less concurrent than shown
here, and the performance differences among the patterns may be less pronounced than shown here.

5 Related work

Martin et. al [18] experimentally examined how the performance of parallel programs depended on the
LogP parameters. They found the strongest dependency on per-message bandwidth (o) but less sensitivity
to latency (l) and per-byte bandwidth (g). We found little sensitivity to per-message bandwidth for the
problems we study. We believe this is because we assume a bulk synchronous model and assume that
low-level compilers take care of details such as batching messages when possible.

Several studies have examined how different aspects of network performance affect program performance.
Cypher et. al [5] examined the performance of several message passing scientific codes. Holt et. al [13]
used simulation to examine the performance of the FLASH multiprocessor as its architectural parameters
were varied and found that performance was heavily dependent on message latency and overhead. The
Wisconsin Wind Tunnel was also built to examine the impact of different communication architectures on
system performance [20]. A major difference between these studies and ours is that the workloads examined
in these other studies do not generally follow a bulk-synchronous programming style. Although some of
these other studies conclude that overhead and latency are important factors for performance for programs
written under current programming models, our conclusions have a different focus: we conclude that it
would be feasible to adopt a programming model in whichl ando can be considered secondary factors.

6 Conclusions

A key goal of parallel language, compiler, and architecture designers is to support a programming model in
which programmers and algorithm designers write high level descriptions of their algorithms that are then
compiled into code optimized for different architectures. In this paper, we have experimentally evaluated
whether the assumptions made by QSM are compatible with that goal. The results indicate that analysis
under the QSM model yields quite accurate results for reasonable input sizes and that algorithms developed
under QSM achieve performance close to that obtainable through more complex models.

18



References

[1] A. Alexandrov, M. F. Ionescu, K. E. Schauser, and C. Sheiman. LogGP: Incorporating long mes-
sages into the LogP model — one step closer towards a realistic model for parallel computation. In
Proc. 7th ACM Symp. on Parallel Algorithms and Architectures, pages 95–105, July 1995.

[2] E. Anderson, J. Brooks, and S. Scott. Performance of the CRAY T3E multiprocessor. InProc.
Supercomputing 97, August 1997.

[3] A. Baumker and W. Dittrich. Fully dynamic search trees for an extension of the BSP model. In
Proc. 8th ACM Symp. on Parallel Algorithms and Architectures, pages 233–242, June 1996.

[4] E. Brewer and B. Kuszmaul. How to get good performance from the CM5 data network. InProc.
of the 1994 International Parallel Processing Symposium, April 1994.

[5] R. Cypher, A. Ho, S. Konstantinidou, and P. Messina. Architectural requirements of parallel sci-
entific applications with explicit communication. InProceedings of the 20th Annual International
Symposium on Computer Architecture, pages 2–13, May 1993.

[6] J. Hill, B. McColl, D. Stefanescu, M. Goudreau, K. Lang, S. Rao, T. Suel, T. Tsantilas, R. Bisseling.
BSPlib: The BSP programming library. http://www.bsp-worldwide.org/standard/standard.htm, May
1997.

[7] D. Culler, R. Karp, D. Patterson, A. Sahay, K.E. Schauser, E. Santos, R. Subramonian, and T. von
Eicken. LogP: Towards a realistic model of parallel computation. InProc. 4th ACM SIGPLAN
Symp. on Principles and Practices of Parallel Programming, pages 1–12, May 1993.

[8] D. Culler, L. Liu, R. Martin, and C. Yoshikawa. LogP performance assessment of fast network
interfaces. InIEEE Micro, 1996.

[9] S. Fortune and J. Wyllie. Parallelism in random access machines. InProc. 10th ACM Symp. on
Theory of Computing, pages 114-118, May 1978.

[10] A. V. Gerbessiotis and L. Valiant. Direct bulk-synchronous parallel algorithms.Journal of Parallel
and Distributed Computing, 22:251–267, 1994.

[11] P. B. Gibbons, Y. Matias, and V. Ramachandran. Can a shared-memory model serve as a bridging
model for parallel computation? InTheory of Computing SystemsSpecial Issue onSPAA ’97. To
appear.

[12] B. Grayson. Armadillo: A high-performance processor simulator. Master’s thesis, The University
of Texas at Austin, May 1996.

[13] C. Holt, M. Heinrich, J. Singh, E. Rothberg, and J. Hennessy. The effects of latency, occupancy,
and bandwidth in distributed shared memory multiprocessors. Technical Report CSL-TR-95-660,
Computer Systems Laboratory, Stanford University, January 1995.

[14] B. H. H. Juurlink and H. A. G. Wijshoff. The E-BSP Model: Incorporating general locality and
unbalanced communication into the BSP Model. InProc. Euro-Par’96, pages 339–347, August
1996.

19



[15] R. M. Karp and V. Ramachandran. Parallel algorithms for shared-memory machines. In J. van
Leeuwen, editor,Handbook of Theoretical Computer Science, Volume A, pages 869–941. Elsevier
Science Publishers B.V., Amsterdam, The Netherlands, 1990.

[16] R. Karp, A. Sahay, E. Santos, and K.E. Schauser, Optimal broadcast and summation in the LogP
model, InProc. 5th ACM Symp. on Parallel Algorithms and Architectures, 142–153, June-July
1993.

[17] K. Kennedy. A research agenda for high performance computing software. InDeveloping a Com-
puter Science Agenda for High-Performance Computing, pages 106–109. ACM Press, 1994.

[18] R. Martin, A. Vahdat, D. Culler and T. Anderson. Effects of communication latency, overhead, and
bandwidth in a cluster architecture. InProc. of the 24th Annual International Symp. on Computer
Architecture, pages 85–97, June 1997.

[19] V. Ramachandran, B. Grayson, and M. Dahlin. Emulation between QSM, BSP, and LogP: A frame-
work for general-purpose parallel algorithm design. University of Texas at Austin Technical Report
TR98-22, 1998. Summary to appear inProc. ACM-SIAM SODA, 1999.

[20] S. Reinhardt, J. Larus, and D. Wood. Tempest and Typhoon: User-level shared memory. InProc.
21st International Symposium on Computer Architecturepages 325–336, April 1994.

[21] L. G. Valiant. A bridging model for parallel computation.Communications of the ACM, 33(8):103–
111, 1990.

[22] T. von Eicken, D. Culler, S. Goldstein, and K. E. Schauser, Active Messages: A mechanism for
integrated communication and computation InProc. of the 19th International Symp. on Computer
Architecture, pages 256–266. May 1992.

[23] H. A. G. Wijshoff and B. H. H. Juurlink. A quantitative comparison of parallel computation models.
In Proc. 8th ACM Symp. on Parallel Algorithms and Architectures, pages 13–24, June 1996.

20



Appendix: Detailed algorithm descriptions

We describe the algorithms for prefix sums, sample sort and list ranking, as they were implemented on the
simulator. For all algorithms the input and output was distributed uniformly across theP processors.

parallelprefix (arrayA, sizen)

Step 1: Calculate local prefix sums.Each processor calculates a prefix sum on its
local portion of the array.

Step 2: Exchange sums between processors.Each processor broadcasts a copy of its last
sum to every other processor.

BARRIER SYNCHRONIZATION

Step 3: Final modification.Each processor adds up the sums from its preceding processors,
and adds this offset to each of its previously-calculated prefix sums.

samplesort(arrayS, sizen)

Major step 1: Pivot selection
Allocate and “register” temporary structures.
BARRIER SYNCHRONIZATION(to ensure the shared-memory “registrations” have completed)
Each processor selectsc logn of its elements randomly (with replacement),

and broadcasts its samples to all other processors.
BARRIER SYNCHRONIZATION

Each processor quicksorts allcP logn samples, and selects every
c lognth element as a pivot (for a total ofP � 1 pivots, orP “buckets”).

Major step 2: Redistribution
Assign each local element to one of of theP buckets, based on the chosen pivots.
For1 � i � P , every processor sends its count of elements for bucketi, along
with a pointer to the location of these elements, to processori

BARRIER SYNCHRONIZATION

Each processor now gets the other processors’ contributions to its bucket.
Each processor also participates in a parallel prefix of the total number of elements in each bucket.
BARRIER SYNCHRONIZATION

Major Step 3: Local Sort
for 1 � i � P in parallel

processori sorts the elements in theith bucket
Major Step 4: Redistribution

Each processor writes the sorted elements in its bucket into the appropriate locations
in arrayS.

BARRIER SYNCHRONIZATION

Un-register and deallocate temporary structures.

21



listrank (arrayS, arrayP , arrayR, sizen)

Arrays: successor arrayS; predecessor arrayP ; returned-ranks arrayR;
Local variables: indirection arrayI , flip arrayF , successor’s flip arraySF , removed element arrayRN , and temporary
new ranksNR.
Isize is the current number of elements, i.e.I [i] points to theith element in current linked list.

Initialization:
InitializeR to be all ones.
Initialize I [i] = i, to give a one-to-one correspondence,
Allocate and register temporary structures.
since no element has been removed yet.

Major step 1: Each processor repeatedly removes some elements from its list,
until the list size is fairly small as follows.

for c � logP iterations do
each active elementi generates a flip (random bit), and stores it inF [I [i]];
BARRIER SYNCHRONIZATION(to ensure shared-memory registrations have completed in

the first loop, and to ensure that the updates from the previous loop have completed)
if i is not the head element, andi has a successor, andF [I [i]] is 1

(i.e., i flipped a 1), then load its successor’s flip intoSF [I [i]].
BARRIER SYNCHRONIZATION

if F [I [i]] = 1 andSF [I [i]] = 0 (i flipped 1, andi’s successor’s flip was 0),
theni removes itself from the linked list by performing a doubly-linked list-remove
usingS andP . Geti’s predecessor’s rank.

if this is the last iteration of the loop, send our count of remaining elements to
node 0 (doing this step now saves a BARRIER SYNCHRONIZATION).

BARRIER SYNCHRONIZATION

for each elementi removed in the previous phase, look at the received rank of its
predecessor, and increment its predecessor’s rankR[i] by i’s current rank.
(Barrier synchronization is not needed, as this can be done in parallel with the
flip generation of the next iteration, or in parallel with the first phase of the step below.)

Major step 2: Processor 0 finishes the list reduction locally.
Perform a prefix-sum on the counts remaining at each processor.
BARRIER SYNCHRONIZATION

All processors send the data for their currently-active elements (the predecessor pointers,
the current ranks, and an appropriate indirection array) to processor 0.

BARRIER SYNCHRONIZATION

Processor 0 performs a local list-rank on the remaining active elements and puts the final
ranks for these remaining active elements in their designated locations.

BARRIER SYNCHRONIZATION

Major step 3:Perform Major step 1 in reverse, inserting elements back into the list
and patching things up.

22


