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ABSTRACT

We study the following problem: given a strongly connected digraph, find a mini-

mal strongly connected spanning subgraph of it. Our main result is a parallel algo-
rithm for this problem, which runs in polylog parallel time and 6¥) proces-

sors on a PRAM. Our algorithm is simple and the major tool it uses is computing a
minimum-weight branching with zero-one weights. We also present sequential
algorithms for the problem that run in tir@m + n Oog n).
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1. Introduction

The transitive compaction problem for strongly connected digraphs is: given a strongly con-
nected digrapl®, find a minimal strongly connected spanning subgraph of it, i.e., a strongly con-
nected spanning subgraph for which the removal of any arc destroys strong connectivity. We are
looking for a minimal subgraph because the problem of findingramumsubgraph with the
same transitive closure MéP-hard [GJ].

There is an obvious sequential algorithm for solving this problem: scan the arcs one by one;
at step test if thei-th arc can be removed without destroying strong connectivity. If s@vein
and update the digraph. This algorithm has compleX{iin + m)?), wheren is the number of
vertices of the input graph amd is the number of arcs. A simple modification is to initially
reduce the number of arcs to at moet-2 by taking the union of a forward and an inverse

branching (defined below). This reduces the running tin@(ind).

The problem studied here is reminiscent of the well-studied problem of finding a maximal
independent set of vertices in a graph, for which several parallel algorithms have appeared in the
literature ([KW],[Lu],[JABI],[GS]). Two common features are that there is a simple sequential
algorithm for it that seems hard to parallelize and that the related optimization problem (mini-
mum vs. minimal) ifNP-hard.

We can define the following independence relation on the arcs of a strongly connected
digraph,G: a set of arcs is independent if it can be removed without destroying strong connectiv-
ity of G. Using this definition, finding a transitive compactionGfs equivalent to removing a
maximal independent sets of arcs fr@n A property that sets our problem apart from the maxi-
mal independent set problem is that in our case independence of a set is not guaranteed when
every pair of elements in it is independent.

Our problem can be expressed as the determination of a maximal independent set in an
independence system as defined by Karp, Upfal and Wigderson ([KUW]). The problem com-
puted by a "rank oracle" in this caseNB-hard, but an "independence oracle" is easy to compute
in NC. Following the method described in [KUW] this automatically yieldaralomizedparal-
lel algorithm that uses a polynomial number of processors and runs i©¢iynelog® n) (for
some constart).

In this paper we present parallel and sequential algorithms for this problem. Our first paral-
lel algorithm runs in tim®©(log® n) and use©(n®) processors on a CREW PRAM. We then pre-
sent an improved implementation of one of the steps in the algorithm that leads to a parallel algo-
rithm that runs irO(log* n) time with the same processor bound. Both of these algorithms can be
speeded up by a lagfactor if we use a CRCW PRAM; we assume here the COMMON
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concurrent-write model in which all processors participating in a concurrent write must write the
same value [KR]. The processor boundagh®) represents the number of processors needed to
multiply two n by n matrices inO(log n) time on a CREW PRAM by the straightforward parallel
matrix multiplication algorithm. It is possible that the processor bound can be improved by using
sophisticated techniques for multiplyimgoy n matrices (see e.g., [CW]); we do not elaborate on
this.

The major tool that our algorithms use is computing a minimum-weight branching with
zero-one weights. Central to our algorithms is a proof that two suitable applications of this tool
are guaranteed to reduce by half the number of arcs still to be removed. We also present two
sequential algorithms for the problem, each of which runs in @fme+ n dogn). This is an
improvement over the straightforward algorithm mentioned above.

The transitive compaction problem is, in some sense, a dual of the minimum strong aug-
mentation problem - add a minimum set of arcs to a digraph to make it strongly connected. A lin-
ear time sequential algorithm was given for this problem by Eswaran and Tarjan ([ET]), and a
parallel algorithm running i®(log n) time with O(n®) processors on a CRCW PRAM was given
by Soroker ([So]).

Our problem extends naturally to general digraphs: given a digsafihd a minimal span-
ning subgraph of it whose transitive closure is the same as tlat Afsequential algorithm for
this problem in the case th@tis acyclic is given in [AGU] and can be parallelized in a straight-
forward manner. Combining it with our algorithms we obtain parallel algorithms (with the same
complexities as stated above) for the transitive compaction problem on general digraphs. We
point out that these parallel algorithms are good with respect to the state of the art, since the prob-
lem solved is at least as hard as testing reachability from one vertex to another in a digraph, and
the best NC algorithm currently known for this requires on the ordit(aj processors, where
M(n) is the number of processors needed to multiply tmy n Boolean matrices i®(log n)
time.

We note that the name "transitive reduction" was given to a problem similar to transitive
compaction by Aho, Garey and Ullman ([AGU]). Given a digr&hhey ask for a digraph with
a minimum number of arcs (not necessarily a subgra®@) afhose transitive closure is the same
as that ofG. WhenG is acyclic, the transitive compaction and transitive reductio® afe the

same.
Definitions

Let G be a strongly connected digraph. fArward (inversg branchingrooted atx is a

spanning tree o6 in which x has in-degree (out-degree) zero and all other vertices have in-
degree (out-degree) one. anchingis either a forward or an inverse branching. Throughout
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this paper the rook, will be some (arbitrarily) fixed vertex of the input digraph, and the set of all
branchings will be taken to be only those rootexd. at

An arc, e, is G —redundant(or simply redundantwhen the graph is clear) & —{¢€} is
strongly connected. Areis G — essential(or essential) if it is not redundant. LeH be a sub-

graph ofG. Letrg(H) denote the number @-redundant arcs ikl. WhenH =G we will use
the shorthand(G).

An H - philic ( H — phobic) branching inG is one that has the greatest (smallest) number

of arcs in common witid over all branchings (rooted &} in G.

Our model of parallel computation is the Parallel Random Access Machine (PRAM), which
consists of a collection of independent processing elements communicating through a shared
memory. For a swey onthe PRAM model and PRAM algorithms see [KR].

2. The Transitive Compaction Algorithm

Our basic algorithm is based solely on computing philic and phobic branchings. The fol-
lowing lemma explains how these branchings are computed:

Lemma 0: An H-philic (H-phobic) branching can be computed by a minimum-weight branching
computation with zero-one weights.

Proof: Assign weight O (1) to every arc kh and weight 1 (0) to all other arcg.

Such a minimum-weight branching can be computed in @gheg? n) usingO(n®) proces-
sors on a CRCW PRAM by Lovasz’'s method ([Lo]). On a CREW PRAM, this algorithm runs in
O(log® n) time.
Proposition 1: An arc of G is essential if and only if it is the unique arc crossing some directed

cut of G.

Proposition 2: The union of a forward branching and an inverse branchi@®isfa strongly con-
nected spanning subgraph@®f

Proposition 3: Let G' be a strongly connected spanning subgrapB.ofrhene is G'-redundant
only if it is G-redundant.

Lemma 1: Let F be a forward branching i@ and letl be anF-philic inverse branching ifs.
LetG' = F [] I. Then the arcs df - F are allG'-essential.
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Proof: Let el - F. AssumeG' —{e} contains some inverse branching, Thenl' has one
more arc in common witl than| does (since all branchings have the same number of arcs).
But this contradicts the fact thhis F-philic. ThusG' —{e} contains no inverse branching and is
therefore not strongly connectef.

A cut leavingSis the set of arcs extending frdato V(G) — Sin a digraphG, and its car-
dinality is denoted byg(S).

Theorem 1 (Edmonds’ Branching Theorem ([Ed])):
Let
k =min {og(S) | xOS, S#V(G) }.
ThenG containsk arc-disjoint forward branchings (rootedxat

Lemma 2: For every strongly connected digrafh, there exists a forward branchinfg, of G
such thatg(F) < 31 (G).

Proof: Let G' be obtained fron by duplicating all essential arcs. L8the a proper subset of
V(G) containingx. We claim thatdog (S) = 2. This is because the cut leavi8gnust contain at
least one duplicated essential ardbr at least two redundant arcs (by proposition 1). There-
fore, by theorem 1, there are two arc-disjoint forward branchin@ {each corresponding to a
branching inG), one of which must contain at most half of the (unduplicaiethdundant arcs.]]

Theorem 2: Let R be the set of redundant arcsGn Let F be anR-phobic forward branching
and letl be anF-philic inverse branching. L&' = F [ ] 1. Thenr(G') < %r(G).

Proof: First note that by proposition &' is strongly connected. By lemma 2 and proposition 3,
re(F)<rg(F) < 2r(G). Bylemma 1y(G') =rg(F). Therefore(G') < 1r(G). ]

It is an immediate consequence of theorem 2 that the folloW@algorithm gives a transitive
compaction ofs:

Repeat
(1) R < set of redundant arcs @
(2) F —~ R-phobic forward branching iG
(3) I « F-philic inverse branching i®
@G - FLI



until R=¢

(5) outputG (it is a transitive compaction of the input digraph)

By Theorem 2 the repeat loop ru@dog n) times, wheren is the number of vertices @. Steps

(2) and (3) are implemented with Lovasz’s minimum-weight branching algorithm (lemma 0).
The straightforward implementation of step (1) is to perform a strong connectivity test (transitive
closure) with each vertex of the graph deleted in turn, which requir®$(n) processors. In the

next section we shall show how to perform this step more efficiently.

3. Efficient Classification of Arcs

In this section we give parallel algorithms to classify the ar¢3 a$ essential or redundant
in poly-log time using onlyO(n®) processors. In section 3.1 we provide a simple polylog time
parallel algorithm usin@(n®) processors. In section 3.2 we provide a faster algorithm using tree
contraction [MR].

3.1. Finding Redundant Arcs Using Minimum Weight Branchings

Let E; ( E; ) be the set of essential arcs contained in all forward (inverse) branchings. It fol-
lows from proposition 2 that:

Proposition 4: An arc is essential if it is either B; or in E; (or both).

Lemma 3: Let H be a set of arcs containirigy and letF be anH-phobic forward branching in
G.Then |F N H)-E¢|< 3 |H - Eql.

Proof: Let G' be obtained fronG by duplicating all the arcs ik¢. As in lemma 2, there exist
two arc-disjoint forward branchings @&’ (corresponding to branchings @), one of which con-
tains at most half the arcs bf— E¢. []

ThereforeE¢ (and similarlyE;) can be computed by the following algorithm:

WH < G

repeat steps (2) and @y mCtimes
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(2) F <« H-phobic forward branching i®
BH-HNF
(4) outputH (this is the seEy)

This algorithm requires log applications of Lovasz’s minimum weight branching algo-
rithm, which runs irO(log? n) parallel time on a CRCW PRAM wit®(n®) processors. Thus we
can use this algorithm to find all redundant arc®flog® n) parallel time on a CRCW PRAM
with O(n®) processors. This in turn leads to a transitive compaction algorithm that runs in
O(log” n) parallel time on a CRCW PRAM witB(n®) processors.

3.2. Finding Redundant Arcs Using Tree Contraction

Letr be a fixed root of a directed gragh= (V, E). We call arc ¥, w) an out - bridge if
(v, w) is on every path from to w, and anin-bridge if (v, w) is on every path fronvtor. LetO
be the set of out-bridges &f, and| the set of in-bridges d&. Then the set of redundant arcs is
the setE — (1 [] O).

Let B be a forward branching rooted ratThen every out-bridge d& lies in B. We can

view B as a rooted directed tr&= (V, E',r). For a vertew in V —{r}, we denote byparent(v),
the parent ofv in B. A vertex v is active if there is a path front to v that avoids arc

(parent(v), v). Similarly, a non-tree aroa(, v) is activeif it lies on a path fronr to v that avoids

arc (parentv), v).
Lemma 4: Let B=(V,E',r) be a forward branching in a directed gra@h A tree arc
e = (parent(v), V) in B is an out-bridge o6 if and only ifv is not active.

Proof: If eis an out-bridge oG then every path from to v passes througl Thusv cannot be
active. Conversely, i€ is not an out-bridge, then there exists a path framv that avoidse and
hencev must be active.[]

We now give an algorithm to identify all active vertices, and hence all out-bridges, using
tree contractionMR]. An analogous computation on an inverse branching rootedyizes the
in-bridges, from which we can compute the redundant ar@s in

We shall use a variant of tree contraction proposed in [Ra] in which the basic operation is
shrink, which we now define. Aeaf chainin a rooted tred = (V, E,r) is a path <vq,---,v; >

such that eack;,i > 1 has exactly one incoming arc and one outgoing arc in has either no

incoming arc or more than one outgoing ard jrandy; is a leaf inT. We will call v, theroot,
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andyv, theleaf of the leaf chain. Note that every leaflins part of a leaf chain, possibly a degen-
erate one (if = 2).

The shrink operation applied to a rooted ffee (V, E, r) removes all vertices in each leaf
chain inT except the root of the leaf chain. It can be shown @{&ign) applications of the
shrink operation suffice to reduce amyode tree to a single node [Ra].

We now develop an algorith@hrink(P)for identifying out-bridges for the case when the
forward branching is a simple path. We shall then use this to find the out-bridges in leaf chains
while implementing the shrink operation in a tree contraction algorithm to find out-brid@es in
given an arbitrary forward branching.

The input to algorithm Shrink(P) is a directed gréph (V, E) consisting of a directed path
p=<1,2,--,t>, together with a collection aforward arcsof the form {, j),i < j, and a col-
lection ofback acs of the form {, j),i > j. The algorithm Shrink(P) will identify all active ver-
tices, thereby giving the out-bridges i Note thatP is allowed to have two arcs of the form
(i,i +1), one of which is a forward arc and the other liep.iflVe will need this when we apply
algorithm Shrink(P) to the general problem of finding out-bridges in a graph with an arbitrary for-
ward branching.

We now make a series of observations.
Observation 1:Every forward arc is active.

Let p(u) be the subgraph of G induced by verticethrought. For each vertex in p(u),
let v » u if uis reachable fronv in p(u). Let reachu) be the set of verticeg in p(u) with

vV - U

Observation 2: Reaclfu) is a single interval of the formu[u’]. Further a vertexvZzu is in

reach(u) if and only if there exists a sequence of back &cs (u;,Vv;),i =1,---,k such that
Vi = U, U 2V, andy; = vjq,i =1, k=1.

Lemma 5: A vertex u is active if and only if there is a forward ark, () with k <u and| in

reach(u).

Proof: Let u be an active vertex. Then there is a pgtfrom the root tou that avoids arc
(u—=1,u). This in turn implies thatj must contain a forward art = (k,I) with k <u, | =u and

with u reachable fronh using only arcs irp(u). Hence must be irreach(u).

Conversely suppose there is a forward are (k,1) with k <u andl in reach(u). Hence
there is a patly from | to u using only arcs irp(u). Then the path consisting of arcsfrirom the
root tok, followed by arcf and then the patf is a path from 1 ta that avoids arcu - 1,u).
Henceu must be an active vertex.[]
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Observations 1 and 2 and Lemma 5 together give us the following algorithm to find all out-
bridges when the forward branching is a simple path.

Shrink(P);

1. Findreachu) for each vertex as follows:
a) For each back akz= (i, j) find a back armexib) = (i'j") with j" in [],i] and maximum
i".Ifi" <ithen senexib) = ¢.
b) Form an auxiliary graph with a vertex for each backoaand an arc fronb to nexi(b), if
nexi(b) exists. This auxiliary graph is a forest of trees.

c) For each vertey, pick some back ars = (v, u) incident onu, and find the roob’ of the
tree it belongs to. Ldt' be the back arcx(y). Setreach(u) = [u, x].

If there is no back arc incident arsetreach(u) = [u, u].

2. For each vertey, find a forward ard = (k, 1) with | in reach(u) and with minimunk. If k <u
marku as active.

3. For each verteu that is not active, markp(u), u) as an out-bridge.

We now show how to implement each of the steps in the algorithm efficiently in parallel.
Step 3 can be implemented trivially in constant time wigirocessors. The following method
implements step 2 i@(logt) time with a number of processors linear in the siz@:dhitially
we determine, for each vertexthe forward arc\(, u) with minimumv (if such an arc exists). It
is straightforward to compute this @(logt) time with a linear number of processors. Then by a
doubling computation we compute, for each interualifr 2'], 1< j < fogtglsus<t-2J, the
forward arc ¢, X) with minimumv such that is in the interval §i, u + 2/]. This computation can
be done inO(logt) time with a linear number of processors on a CREW PRAM. Any interval
[i,jl,1<i<j<t can be written as the overlapping union of two of the previously computed
intervals, and hence each vertex can now find a forward arc as required in step 2 in constant time.

Step 1 can be implemented@flogt) time with a linear number of processors on a CREW
PRAM as follows. Step la can be performed in a manner analogous to step 2. Step 1b can be
implemented in constant time with a linear number of processors. Step 1c can be implemented by
pointer jumping inO(logt) time with a linear number of processors. Thus we have a parallel
algorithm for Shrink(P) that runs @(logt) time with a linear number of processors on a CREW
PRAM.

We now incorporate the Shrink algorithm in the following tree contraction algorithm that
finds the out-bridges in an arbitrary forward branching of a directed @aoted atr. The
algorithm constructs a sequence of pag,{[Tx), whereG, is a digraph and is a forward



-10 -

branching;G; is the input digraph and, is a forward branching d& rooted at a fixed vertax

Iteration k identifies the leaf chains dfy, determines the out-bridges &, within those leaf

chains, deletes all the vertices of the leaf chains except their roots, and then performs a transitive
closure computation and adds appropriate arcs to ensure that the out-brl@ggsaire precisely

the out-bridges of not yet identified.

Outbridges(G=(V,E,r),T);

Input: A directed graplG = (V, E) with a forward branchind rooted at; [V| = n.
Repeat
1. Find out-bridges in the leaf chains of T:

For each leaf chaihin T pardo

Lett be the root of andt’ the leaf ofl. LetL' be the subgraph @ induced by vertices in
l.

a) FormL from L' by introducing a forward ard,(y) for each non-tree arx(y) in G with
yinV(l) - {t}and x notinV(l).
b) Apply Shrink(L)to find the out-bridges ih and label these as out-bridge<of

2. Remove leaf chains from T:

a) Form the graph with vertex se¥ and arc set the arcs in all leaf chains and all non-tree
arcs ofG.

b) FormM, the adjacency matrix dfl, and form the transitive closutd” of M.

c) For each vertex, determine, usin@/l*, the set of vertices from whichis reachable in
H. For each such vertax, introduce an arox, V) in G.

d) For each vertekthat is the head of some leaf chain, delete all incoming non-tree arcs to
proper descendants tf Collapse all of these proper descendants tintDelete any self-
loops in this graph.

until T=¢

Generalizing our earlier notation for the case when the forward branching is a simple path,
we now letp(u) be the subgraph @ induced by those vertices that lie in the subtre€ afoted
atu. For each vertex in p(u), letv — uif uis reachable fronv in p(u). Letreachlu) be the set
of verticesv in p(u) with v - u.
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The following lemma is a straightforward generalization of Observation 2 and Lemma 5
(here a vertex is adescendandf a vertexu if u=v or if there is a directed path fromto v in
T; otherwisev is anon-descendardf u).

Lemma 6: A vertexu in G is active if and only if there is an arg, {/) with x a non-descendant
of u and withy in reachu).

Let G be a directed graph with a forward branchingpoted at, and letv be a vertex irG.
An active pathto v is a pathp from r to v consisting of an initial patip’ using tree arcs from
to a non-descendantof v followed by an intermediate path consisting of a single non-trea arc
from x to a descendarnyt of v followed by a final pattp” from y to v using only arcs connecting
descendants of.

Observation 3: Vertexv is active if and only if there is an active path/to

We now provesome lemmas that will allow us to establish the correctness of algorithm Out-
bridges. As before lgb; andT; be the graph and forward branching present at the start hthe
iteration of the repeat loop in the algorithm; he@geandT, are the input graph together with its
forward branching, an@, andT, are the current graph and forward branching at the start of the
kth iteration. Similarly letH; be the graptH of step 2a of algorithm Outbridges constructed in
theith iteration of the repeat loop.

We first note that Observation 2 remains valid in éaghvhenu is a vertex in a leaf chain
of T,. We state this in the following observation.

Observation 4:Let u be a vertex in a leaf chalnof forward branching’, where for convenience
we assume that the vertices in the leaf chain are numbered fros) Wwitb 1 the root of the leaf
chain ands the leaf of the leaf chain. Theaach(u) is a single interval of the formu[u']. Fur-

ther, a vertexv£u is in reach(u) if and only if there exists a sequence of back arcs
b, = (uj,v;),i =1,---,kin L (whereL is the subgraph of induced by vertices ih) such that

Vi = U, U 2V, andy; = Vvjq,i =1, k=1.

Lemma 7: For eachk = 1, algorithm Outbridges correctly finds the out-bridges in the leaf chains
of Gy.

Proof: By Observation 4, for a vertaxin a leaf chainl of T,, reach(u) in G is the same as
reach(u) in the subgraph o6, induced byl. Hence the reach value of each vertex in the leaf
chain is correctly computed in the Shrink computation of step 1b in algorithm Outbridges.

By Lemma 6, a verten in a leaf chain is active if and only if there is an arc(x, y) in Gy
with x a non-descendant afand withy in reach(u). Such an are is either a forward arc in the
leaf chain or is an arc witk not in the leaf chain angin the leaf chain. The former case is the
same as that used in the Shrink algorithm. In the latter casg,wWill cause any vertex in the
leaf chain withy in reach(u) to be active. Hence for the purpose of the Shrink algorithm this is
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equivalent to having an arc from the raptof the leaf chain tg. Thus the computation in steps
la and 1b of algorithm Outbridges correctly finds the outbridges in the leaf ch&pg]of

Lemma 8Let e = (u, v) be an out-bridge i, k > 1. Theneis an out-bridge i15y_;.

Proof: First note that ife is an out-bridge irGy, thene lies in T,. Hencee lies in T\, since
every tree arc iffy is present as a tree arclip.;.

Supposee is not an out-bridge iG-,. Hencev is an active vertex if5,_;. Let p be an
active path tov in Gy_4, and letp consist of an initial tree patp’ to a vertexx that is a non-
descendant of, followed by a non-tree am@ = (X, y), wherey is a descendant of followed by
a final pathp” from y to v using only arcs connecting vertices that are descendantsViéé now
establish that there must be an active path ito Gy, contradicting the assumption thats an
out-bridge ofG,, and thereby establishing the lemma.

If p contains no vertex iB-; — Gy then p is an active path te in G, as well. If p con-
tains some vertices iB,_; — G then consider the last vertexon p such thatz is in G,_; — Gy.

Case 1: 7s a non-descendant wf Thenz must bex and all vertices irp" lie in G. Lett be the
root of the leaf chain oB,_; to which z belongs. Then by step 2d of algorithm Outbridgeis,
collapsed intda and hence the path @&, consisting of the tree path tpfollowed by non-tree arc
(t,y), followed by pathp” is an active path tain Gy.

Case 2: 7s a descendant of Let b = (z, a) be the outgoing arc fromin p, and lett’ be the root
of the leaf chain iG,_; to which z belongs. Hence' is a descendant @ and z is a proper
descendant df. Let p'"' be the portion op” from a to v. The pathp™' is a path inG, as well.

Case 2aThe vertexz is reachable from some non-descendanof vin H,. Then an arcw, z) is
introduced in step 2c of the algorithm. vifis in Gy then the path from to w followed by arc
(w, a) followed by pathp'’ is an active path ta in Gy. If wis in G,_; — Gy then the analysis of
Case 1 gives an active pathwin G.

Case 2b:The vertexz is not reachable from any non-descendant of H,. Now considerp".
This is a path of the form & 4, - - S Upg, Vi Vel Uets sy Ue kg Ve 1o 75 Vel > where
theuy; ; are inGy_, — Gy and they; ; are inGy, and ify is in Gy the initial sequence afy ;'s is
empty. All of theu; ; andyv; ; are descendants @f Eachy; ; is reachable fronv;_;; _,i > 1in
Hy. Hence by step 2c of algorithm Outbridges, there is an arc ¥from , to v; 1,i > 1 in Gy.
The vertexvy ; has an incoming arc from in Gy. The remaining arcs ip"” remain inGy.
Hence there is a path frorto v in Gy that contains only vertices that are descendantsro6,.

Hencev is an active vertex ity.[]

Lemma 9: Let e = (u, V) be a tree arc iy, k > 1 that is not an out-bridge @. Thene is not
an out-bridge irG,_;.
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Proof: Sincee is not an out-bridge i there is an active patpto vin G;. Consider any arc

f =(x,y) in pthatis not present i6,_,. If f was introduced in step 2c of algorithm Outbridges
then there is a path fromto y in G,_; that avoids all tree arcs &, and hence are. If f was
introduced in step 2d then there is a path from a descendanbagfin G,_; that avoids all tree
arcs inGy. Hence there is a path fromto y in G,_; that avoids are. Hence fromp we can
obtain an active patp’ to vin Gy_;. Thuse is not an out-bridge i®,_1.[]

Lemma 10: Algorithm Outbridges correctly finds the out-bridge<of
Proof: We show that at the start of each iteration of the repeat loop,

1) The out-bridges identified so far are exactly the out-bridges in the portion of the inpuGgraph
that has been collapsed by the algorithm.

2) An arcein the current grapfs is an out-bridge in this graph if and only if it is an out-bridge in
the original input graph.
The proof is by induction ok, the number of iterations of the repeat loop.

Base: k=1. The claim is vacuously true since no out-bridges have been identified and the input
graph is the same as the current graph.

Induction stepAssume that the two claims are true until the start of iter&tiod and now con-
sider the start of iteratiok. Claim 1) follows by the induction hypothesis and Lemma 7. Claim
2) follows by the induction hypothesis and Lemmas 8 and 9.[]

Finally we note that algorithm Outbridges runsQfiog? n) with O(n®) processors on a
CRCW PRAM. To see the processor and time bounds let us analyze the time complexity of each
iteration of the repeat loop. By the previous analysis for the time complexity of algorithm Shrink,
step 1 runs i©(log n) time with O(n?) processors on a CREW PRAM. Steps 2a, 2c, and 2d run
in O(log n) time with O(n?) processors on a CREW PRAM. Step 2b run®ffog n) time with
O(n?) processors on a CRCW PRAM, and is the most expensive step in the repeat loop. Since the
repeat loop is executgd(log n) times we obtain the stated time and processor bounds for algo-
rithm Outbridges. On a CREW PRAM this algorithm run®ifog® n) time with M(n) proces-

Sors.

Whether we use a CREW model or a CRCW model the time and processor bounds for find-
ing a minimum weight branching using the algorithm in [Lo] dominate the time and processor
bounds of algorithm Outbridges. Hence we can find redundant arcs within the time and processor
bounds for minimum weight branchings, and thus the parallel transitive compaction algorithm
runs inO(log® n) parallel time withO(n®) processors on a CRCW PRAM anddflog* n) paral-
lel time with the same processor bound on a CREW PRAM.
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4. Sequential Algorithms for Transitive Compaction

As in section 3.2, let be a fixed root of a directed gragh= (V, E), where Y| =n and
|[E| = m. An algorithm for finding the in- and out-bridges is given in [Ta2]. This algorithm actu-
ally does more: It computes two forward branchifigsand T, having only the out-bridges in
common, and two inverse branchindsg,and T4, having only the in-bridges in common. This
algorithm can be implemented to run in linear time by using linear-time algorithms for computing
nearest common ancestors [HT] and maintaining disjoint sets [GT].

Let R be the set of redundant ardsthe set of in-bridges an@ the set of out-bridges.
HenceR = E - (1 [] O). The following algorithm finds a transitive compactiorGof

1. Pick a root vertex in G. Find a forward branchin® and an inverse branchirgj in G and
replaceG by B[] B'.
2. Repeat
a) Construct two forward branchingg and T, having only the out-bridges in common;
identify the set of out-bridges &s
b) Construct two inverse branchinggandT, having only the in-bridges in common; iden-
tify the set of in-bridges as
c) Form the set of redundant aResR=E - (O[] I).
d)Fori=1,2,3,4form§ =T; N R.
e) Choosel; andT; such that ki<2,3<j<4andS [] S; has minimum cardinality
amongS, [1S;, 5,135,554, S, L S
f) ReplaceG by T; [ T;.
until R= ¢.
The following claim establishes that the repeat loop is executeddiolg n) times.
Lemma 11:In step 2e of the algorithm the chosgrandS; satisfy 5 [] S| < (3/4)0R].
Proof: Fori =1, 2,3, 4, letr; be the set of those arcsThthat are not present in any ottigy,
and let Pi3=(SiNS)UF,  Poa= (SN SY)UF,P3=(SN S)UF;  and
P14=(S1 N Sy) L] F4. Note thatP; 3, P, 4, P2 3 and Py 4 are disjoint. Let one, sal; 3 be the
one of maximum cardinality. Then we must hawe, J+|P; 3|+ |P14 < (3/4)[JR|. But
S, 1 S40Py 4[] P31 P14 which implies §, ]S4/ <(3/4)R|. Since we also have
S S0Py 3 [ P1ald Pas S L S40P; 3 [ P14 [ Pysand S, [ S0P, 3 [ Py s [ Py,
we have $; [ S3| < (3/4)OR] if P, 4 is of maximum cardinalityS, [ S4| < (3/4)0R] if Py3is
of maximum cardinality ands} [ | S;| < (3/4)R] if P; 4 is of maximum cardinality. Hence the
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chosenS andS; in step 2e of the algorithm satisty [] Sj| < (3/4)0RL.[]

Step 1 of the algorithm take&3(n+ m) time and render§& sparse Q(n) arcs). As men-
tioned above, steps 2a and 2b can be implemented to @(n)ntime using the algorithm in
[Ta2], in conjunction with the algorithms in [HT] and [GT]. Each of steps 2c through f @(kgs
time. Hence each execution of the repeat loop takes linear time. Since by Lemma 11 the repeat
loop is execute®(log n) times, the entire transitive compaction algorithm run®(@m + nlog n)
time.

The algorithm of section 2 can also be implemented to r@(m+ nlogn) time. This is
because the minimum-weight branching algorithm of Edmonds [Ed2] can be implemented to run
in linear time for 0-1 edge weights by using the algorithm in [GGST], with the heaps replaced by
two buckets. As before, the redundant arcs can be found in linear time and hence each execution
of the repeat loop takes linear time, leading tdOg¢m + nlogn) time sequential algorithm for
transitive compaction.

We have obtained sequential and parallel algorithms with similar complexities for analo-
gous problems on undirected graphs, i.e., for finding a minimal bridge-connected spanning sub-
graph and a minimal biconnected spanning subgraph in an undirected graph, if such subgraphs
exist. These results will appear in a companion paper.

We conclude by noting that it is conceivable that one (or both) of our sequential algorithms
runs in linear time, since it is possible that the repeat loop needs to be executed only a constant
number of times. We leave this question for further investigation. For the same reason it is possi-
ble that our parallel algorithms run faster than the stated time bound<dgiogm) factor.
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