
In J. of Algorithms, vol. 12, 1991, pp. 110-125

TRANSITIVE COMPACTION IN PARALLEL VIA BRANCHINGS

Phillip Gibbons* Richard Karp*,†

Computer Science Division, University of California, Berkeley, CA

Vijaya Ramachandran*,‡

Coordinated Science Lab., University of Illinois, Urbana, IL

Danny Soroker*

IBM Almaden Research Center, San Jose, CA

Robert Tarjan§

Computer Science Dept., Princeton University, Princeton, NJ

and AT&T Bell Labs., Murray Hill, NJ

July 15, 1988

ABSTRACT

We study the following problem: given a strongly connected digraph, find a mini-
mal strongly connected spanning subgraph of it. Our main result is a parallel algo-

rithm for this problem, which runs in polylog parallel time and usesO(n3) proces-
sors on a PRAM. Our algorithm is simple and the major tool it uses is computing a
minimum-weight branching with zero-one weights. We also present sequential
algorithms for the problem that run in timeO(m + n ⋅ log n).

* Supported in part by the International Computer Science Institute, Berkeley, California.
† Also supported by NSF grant CCR-8411954.
‡ Also supported by Joint Services Electronics Program under N00014-84-C-0149.
§ Supported in part by NSF grant DCR-8605962 and ONR contract N00014-87-K-0467.

- 2 -

1. Introduction

The transitive compaction problem for strongly connected digraphs is: given a strongly con-

nected digraphG, find a minimal strongly connected spanning subgraph of it, i.e., a strongly con-

nected spanning subgraph for which the removal of any arc destroys strong connectivity. We are

looking for a minimal subgraph because the problem of finding aminimumsubgraph with the

same transitive closure isNP-hard [GJ].

There is an obvious sequential algorithm for solving this problem: scan the arcs one by one;

at stepi test if thei-th arc can be removed without destroying strong connectivity. If so, remove it

and update the digraph. This algorithm has complexityO((n + m)2), wheren is the number of

vertices of the input graph andm is the number of arcs. A simple modification is to initially

reduce the number of arcs to at most 2n − 2 by taking the union of a forward and an inverse

branching (defined below). This reduces the running time toO(n2).

The problem studied here is reminiscent of the well-studied problem of finding a maximal

independent set of vertices in a graph, for which several parallel algorithms have appeared in the

literature ([KW],[Lu],[ABI],[GS]). Tw o common features are that there is a simple sequential

algorithm for it that seems hard to parallelize and that the related optimization problem (mini-

mum vs. minimal) isNP-hard.

We can define the following independence relation on the arcs of a strongly connected

digraph,G: a set of arcs is independent if it can be removed without destroying strong connectiv-

ity of G. Using this definition, finding a transitive compaction ofG is equivalent to removing a

maximal independent sets of arcs fromG. A property that sets our problem apart from the maxi-

mal independent set problem is that in our case independence of a set is not guaranteed when

ev ery pair of elements in it is independent.

Our problem can be expressed as the determination of a maximal independent set in an

independence system as defined by Karp, Upfal and Wigderson ([KUW]). The problem com-

puted by a "rank oracle" in this case isNP-hard, but an "independence oracle" is easy to compute

in NC. Following the method described in [KUW] this automatically yields arandomizedparal-

lel algorithm that uses a polynomial number of processors and runs in timeO(√ n ⋅ logc n) (for

some constantc).

In this paper we present parallel and sequential algorithms for this problem. Our first paral-

lel algorithm runs in timeO(log5 n) and usesO(n3) processors on a CREW PRAM. We then pre-

sent an improved implementation of one of the steps in the algorithm that leads to a parallel algo-

rithm that runs inO(log4 n) time with the same processor bound. Both of these algorithms can be

speeded up by a logn factor if we use a CRCW PRAM; we assume here the COMMON

- 3 -

concurrent-write model in which all processors participating in a concurrent write must write the

same value [KR]. The processor bound ofO(n3) represents the number of processors needed to

multiply two n by n matrices inO(log n) time on a CREW PRAM by the straightforward parallel

matrix multiplication algorithm. It is possible that the processor bound can be improved by using

sophisticated techniques for multiplyingn by n matrices (see e.g., [CW]); we do not elaborate on

this.

The major tool that our algorithms use is computing a minimum-weight branching with

zero-one weights. Central to our algorithms is a proof that two suitable applications of this tool

are guaranteed to reduce by half the number of arcs still to be removed. We also present two

sequential algorithms for the problem, each of which runs in timeO(m + n ⋅ log n). This is an

improvement over the straightforward algorithm mentioned above.

The transitive compaction problem is, in some sense, a dual of the minimum strong aug-

mentation problem - add a minimum set of arcs to a digraph to make it strongly connected. A lin-

ear time sequential algorithm was given for this problem by Eswaran and Tarjan ([ET]), and a

parallel algorithm running inO(log n) time withO(n3) processors on a CRCW PRAM was given

by Soroker ([So]).

Our problem extends naturally to general digraphs: given a digraphG, find a minimal span-

ning subgraph of it whose transitive closure is the same as that ofG. A sequential algorithm for

this problem in the case thatG is acyclic is given in [AGU] and can be parallelized in a straight-

forward manner. Combining it with our algorithms we obtain parallel algorithms (with the same

complexities as stated above) for the transitive compaction problem on general digraphs. We

point out that these parallel algorithms are good with respect to the state of the art, since the prob-

lem solved is at least as hard as testing reachability from one vertex to another in a digraph, and

the best NC algorithm currently known for this requires on the order ofM(n) processors, where

M(n) is the number of processors needed to multiply twon by n Boolean matrices inO(log n)

time.

We note that the name "transitive reduction" was given to a problem similar to transitive

compaction by Aho, Garey and Ullman ([AGU]). Given a digraphG, they ask for a digraph with

a minimum number of arcs (not necessarily a subgraph ofG) whose transitive closure is the same

as that ofG. WhenG is acyclic, the transitive compaction and transitive reduction ofG are the

same.

Definitions

Let G be a strongly connected digraph. Aforward (inverse) branching rooted atx is a

spanning tree ofG in which x has in-degree (out-degree) zero and all other vertices have in-

degree (out-degree) one. Abranching is either a forward or an inverse branching. Throughout

- 4 -

this paper the root,x, will be some (arbitrarily) fixed vertex of the input digraph, and the set of all

branchings will be taken to be only those rooted atx.

An arc, e, is G − redundant(or simply redundantwhen the graph is clear) ifG −{ e} is

strongly connected. Arce is G − essential(or essential) if it is not redundant. LetH be a sub-

graph ofG. Let rG(H) denote the number ofG-redundant arcs inH . WhenH = G we will use

the shorthandr (G).

An H − philic (H − phobic) branching inG is one that has the greatest (smallest) number

of arcs in common withH over all branchings (rooted atx) in G.

Our model of parallel computation is the Parallel Random Access Machine (PRAM), which

consists of a collection of independent processing elements communicating through a shared

memory. For a survey onthe PRAM model and PRAM algorithms see [KR].

2. The Transitive Compaction Algorithm

Our basic algorithm is based solely on computing philic and phobic branchings. The fol-

lowing lemma explains how these branchings are computed:

Lemma 0: An H-philic (H-phobic) branching can be computed by a minimum-weight branching

computation with zero-one weights.

Proof: Assign weight 0 (1) to every arc inH and weight 1 (0) to all other arcs.[]

Such a minimum-weight branching can be computed in timeO(log2 n) usingO(n3) proces-

sors on a CRCW PRAM by Lovasz’s method ([Lo]). On a CREW PRAM, this algorithm runs in

O(log3 n) time.

Proposition 1: An arc ofG is essential if and only if it is the unique arc crossing some directed

cut ofG.

Proposition 2: The union of a forward branching and an inverse branching ofG is a strongly con-

nected spanning subgraph ofG.

Proposition 3: Let G′ be a strongly connected spanning subgraph ofG. Thene is G′-redundant

only if it is G-redundant.

Lemma 1: Let F be a forward branching inG and letI be anF-philic inverse branching inG.

Let G′ = F ∪ I . Then the arcs ofI − F are allG′-essential.

- 5 -

Proof: Let e∈∈I − F . AssumeG′ −{ e} contains some inverse branching,I ′. Then I ′ has one

more arc in common withF than I does (since all branchings have the same number of arcs).

But this contradicts the fact thatI is F-philic. ThusG′ −{ e} contains no inverse branching and is

therefore not strongly connected.[]

A cut leavingS is the set of arcs extending fromS to V(G) − S in a digraph,G, and its car-

dinality is denoted byδG(S).

Theorem 1 (Edmonds’ Branching Theorem ([Ed])):

Let

k = min {δG(S) | x∈∈S , S ≠ V(G) }.

ThenG containsk arc-disjoint forward branchings (rooted atx).

Lemma 2: For every strongly connected digraph,G, there exists a forward branching,F , of G

such thatrG(F) ≤ 1
2 r (G).

Proof: Let G′ be obtained fromG by duplicating all essential arcs. LetS be a proper subset of

V(G) containingx. We claim thatδG′(S) ≥ 2. This is because the cut leavingS must contain at

least one duplicated essential arc ofG or at least two redundant arcs (by proposition 1). There-

fore, by theorem 1, there are two arc-disjoint forward branchings inG′ (each corresponding to a

branching inG), one of which must contain at most half of the (unduplicated)G-redundant arcs.[]

Theorem 2: Let R be the set of redundant arcs inG. Let F be anR-phobic forward branching

and letI be anF-philic inverse branching. LetG′ = F ∪ I . Thenr (G′) ≤ 1
2 r (G).

Proof: First note that by proposition 2,G′ is strongly connected. By lemma 2 and proposition 3,

rG′(F) ≤ rG(F) ≤ 1
2 r (G). By lemma 1,r (G′) = rG′(F). Thereforer (G′) ≤ 1

2 r (G). []

It is an immediate consequence of theorem 2 that the followingNC algorithm gives a transitive

compaction ofG:

Repeat

(1) R ← set of redundant arcs inG

(2) F ← R-phobic forward branching inG

(3) I ← F-philic inverse branching inG

(4) G ← F ∪ I

- 6 -

until R = φ

(5) outputG (it is a transitive compaction of the input digraph)

By Theorem 2 the repeat loop runsO(log n) times, wheren is the number of vertices inG. Steps

(2) and (3) are implemented with Lovasz’s minimum-weight branching algorithm (lemma 0).

The straightforward implementation of step (1) is to perform a strong connectivity test (transitive

closure) with each vertex of the graph deleted in turn, which requiresn ⋅ M(n) processors. In the

next section we shall show how to perform this step more efficiently.

3. Efficient Classification of Arcs

In this section we give parallel algorithms to classify the arcs ofG as essential or redundant

in poly-log time using onlyO(n3) processors. In section 3.1 we provide a simple polylog time

parallel algorithm usingO(n3) processors. In section 3.2 we provide a faster algorithm using tree

contraction [MR].

3.1. Finding Redundant Arcs Using Minimum Weight Branchings

Let E f (Ei) be the set of essential arcs contained in all forward (inverse) branchings. It fol-

lows from proposition 2 that:

Proposition 4: An arc is essential if it is either inE f or in Ei (or both).

Lemma 3: Let H be a set of arcs containingE f and letF be anH-phobic forward branching in

G. Then |(F ∩ H) − E f | ≤ 1
2 |H − E f |.

Proof: Let G′ be obtained fromG by duplicating all the arcs inE f . As in lemma 2, there exist

two arc-disjoint forward branchings inG′ (corresponding to branchings inG), one of which con-

tains at most half the arcs ofH − E f . []

ThereforeE f (and similarlyEi) can be computed by the following algorithm:

(1) H ← G

repeat steps (2) and (3)lg m times

- 7 -

(2) F ← H-phobic forward branching inG

(3) H ← H ∩ F

(4) outputH (this is the setE f)

This algorithm requires logn applications of Lovasz’s minimum weight branching algo-

rithm, which runs inO(log2 n) parallel time on a CRCW PRAM withO(n3) processors. Thus we

can use this algorithm to find all redundant arcs inO(log3 n) parallel time on a CRCW PRAM

with O(n3) processors. This in turn leads to a transitive compaction algorithm that runs in

O(log4 n) parallel time on a CRCW PRAM withO(n3) processors.

3.2. Finding Redundant Arcs Using Tree Contraction

Let r be a fixed root of a directed graphG = (V, E). We call arc (v, w) an out − bridge if

(v, w) is on every path fromr to w, and anin-bridge if (v, w) is on every path fromv to r . Let O

be the set of out-bridges ofG, and I the set of in-bridges ofG. Then the set of redundant arcs is

the setE − (I ∪O).

Let B be a forward branching rooted atr . Then every out-bridge ofG lies in B. We can

view B as a rooted directed treeB = (V, E′, r). For a vertexv in V − { r }, we denote byparent(v),

the parent ofv in B. A vertex v is active if there is a path fromr to v that avoids arc

(parent(v), v). Similarly, a non-tree arc (w, v) is active if it lies on a path fromr to v that avoids

arc (parent(v), v).

Lemma 4: Let B = (V, E′, r) be a forward branching in a directed graphG. A tree arc

e = (parent(v), v) in B is an out-bridge ofG if and only ifv is not active.

Proof: If e is an out-bridge ofG then every path fromr to v passes throughe. Thusv cannot be

active. Conversely, ife is not an out-bridge, then there exists a path fromr to v that avoidse and

hencev must be active.[]

We now giv e an algorithm to identify all active vertices, and hence all out-bridges, using

tree contraction[MR]. An analogous computation on an inverse branching rooted atr gives the

in-bridges, from which we can compute the redundant arcs inG.

We shall use a variant of tree contraction proposed in [Ra] in which the basic operation is

shrink,which we now define. Aleaf chainin a rooted treeT = (V, E, r) is a path <v1, . . . , vl >

such that eachvi , i > 1 has exactly one incoming arc and one outgoing arc inT, v1 has either no

incoming arc or more than one outgoing arc inT, andvl is a leaf inT. We will call v1 the root,

- 8 -

andvl the leaf of the leaf chain. Note that every leaf inT is part of a leaf chain, possibly a degen-

erate one (ifl = 2).

The shrink operation applied to a rooted treeT = (V, E, r) removes all vertices in each leaf

chain inT except the root of the leaf chain. It can be shown thatO(log n) applications of the

shrink operation suffice to reduce anyn-node tree to a single node [Ra].

We now dev elop an algorithmShrink(P)for identifying out-bridges for the case when the

forward branching is a simple path. We shall then use this to find the out-bridges in leaf chains

while implementing the shrink operation in a tree contraction algorithm to find out-bridges inG

given an arbitrary forward branching.

The input to algorithm Shrink(P) is a directed graphP = (V, E) consisting of a directed path

p =< 1, 2,. . . , t >, together with a collection offorward arcsof the form (i , j), i < j , and a col-

lection ofback arcs of the form (i , j), i > j . The algorithm Shrink(P) will identify all active ver-

tices, thereby giving the out-bridges inp. Note thatP is allowed to have two arcs of the form

(i , i + 1), one of which is a forward arc and the other lies inp. We will need this when we apply

algorithm Shrink(P) to the general problem of finding out-bridges in a graph with an arbitrary for-

ward branching.

We now make a series of observations.

Observation 1:Every forward arc is active.

Let p(u) be the subgraph of G induced by verticesu throught. For each vertexv in p(u),

let v → u if u is reachable fromv in p(u). Let reach(u) be the set of verticesv in p(u) with

v → u.

Observation 2: Reach(u) is a single interval of the form [u, u′]. Further a vertexv≠u is in

reach(u) if and only if there exists a sequence of back arcsbi = (ui , vi), i = 1,. . . , k such that

v1 = u, uk ≥ v, andui ≥ vi+1, i = 1,. . . , k − 1.

Lemma 5: A vertex u is active if and only if there is a forward arc (k, l) with k < u and l in

reach(u).

Proof: Let u be an active vertex. Then there is a pathq from the root tou that avoids arc

(u − 1,u). This in turn implies thatq must contain a forward arcf = (k, l) with k < u, l ≥ u and

with u reachable froml using only arcs inp(u). Hencel must be inreach(u).

Conversely suppose there is a forward arcf = (k, l) with k < u and l in reach(u). Hence

there is a pathq from l to u using only arcs inp(u). Then the path consisting of arcs inp from the

root to k, followed by arc f and then the pathq is a path from 1 tou that avoids arc (u − 1,u).

Henceu must be an active vertex.[]

- 9 -

Observations 1 and 2 and Lemma 5 together give us the following algorithm to find all out-

bridges when the forward branching is a simple path.

Shrink(P);

1. Findreach(u) for each vertexu as follows:

a) For each back arcb = (i , j) find a back arcnext(b) = (i ′ j ′) with j ′ in [j , i] and maximum

i ′. If i ′ ≤ i then setnext(b) = φ .

b) Form an auxiliary graph with a vertex for each back arcb and an arc fromb to next(b), if

next(b) exists. This auxiliary graph is a forest of trees.

c) For each vertexu, pick some back arcb = (v, u) incident onu, and find the rootb′ of the

tree it belongs to. Letb′ be the back arc (x, y). Setreach(u) = [u, x].

If there is no back arc incident onu setreach(u) = [u, u].

2. For each vertexu, find a forward arcf = (k, l) with l in reach(u) and with minimumk. If k < u

marku as active.

3. For each vertexu that is not active, mark (p(u), u) as an out-bridge.

We now show how to implement each of the steps in the algorithm efficiently in parallel.

Step 3 can be implemented trivially in constant time witht processors. The following method

implements step 2 inO(log t) time with a number of processors linear in the size ofP: Initially

we determine, for each vertexu, the forward arc (v, u) with minimumv (if such an arc exists). It

is straightforward to compute this inO(log t) time with a linear number of processors. Then by a

doubling computation we compute, for each interval [u, u + 2 j], 1 ≤ j ≤ log t, 1 ≤ u ≤ t − 2 j , the

forward arc (v, x) with minimumv such thatx is in the interval [u, u + 2 j]. This computation can

be done inO(log t) time with a linear number of processors on a CREW PRAM. Any interval

[i , j], 1 ≤ i < j ≤ t can be written as the overlapping union of two of the previously computed

intervals, and hence each vertex can now find a forward arc as required in step 2 in constant time.

Step 1 can be implemented inO(log t) time with a linear number of processors on a CREW

PRAM as follows. Step 1a can be performed in a manner analogous to step 2. Step 1b can be

implemented in constant time with a linear number of processors. Step 1c can be implemented by

pointer jumping inO(log t) time with a linear number of processors. Thus we have a parallel

algorithm for Shrink(P) that runs inO(log t) time with a linear number of processors on a CREW

PRAM.

We now incorporate the Shrink algorithm in the following tree contraction algorithm that

finds the out-bridges in an arbitrary forward branching of a directed graphG rooted atr . The

algorithm constructs a sequence of pairs (Gk,Tk), whereGk is a digraph andTk is a forward

- 10 -

branching;G1 is the input digraph andT1 is a forward branching ofG rooted at a fixed vertexr .

Iteration k identifies the leaf chains ofTk, determines the out-bridges ofGk within those leaf

chains, deletes all the vertices of the leaf chains except their roots, and then performs a transitive

closure computation and adds appropriate arcs to ensure that the out-bridges inGk+1 are precisely

the out-bridges ofG not yet identified.

Outbridges(G=(V,E,r),T);

Input: A directed graphG = (V, E) with a forward branchingT rooted atr ; |V| = n.

Repeat

1. Find out-bridges in the leaf chains of T :

For each leaf chainl in T pardo

Let t be the root ofl andt′ the leaf ofl . Let L′ be the subgraph ofG induced by vertices in

l .

a) FormL from L′ by introducing a forward arc (t, y) for each non-tree arc (x, y) in G with

y in V(l) − { t} and x not inV(l).

b) Apply Shrink(L)to find the out-bridges inL and label these as out-bridges ofG.

2. Remove leaf chains from T :

a) Form the graphH with vertex setV and arc set the arcs in all leaf chains and all non-tree

arcs ofG.

b) FormM , the adjacency matrix ofH , and form the transitive closureM * of M .

c) For each vertexv, determine, usingM * , the set of vertices from whichv is reachable in

H . For each such vertexw, introduce an arc (w, v) in G.

d) For each vertext that is the head of some leaf chain, delete all incoming non-tree arcs to

proper descendants oft. Collapse all of these proper descendants intot. Delete any self-

loops in this graph.

until T = φ

Generalizing our earlier notation for the case when the forward branching is a simple path,

we now letp(u) be the subgraph ofG induced by those vertices that lie in the subtree ofT rooted

at u. For each vertexv in p(u), let v → u if u is reachable fromv in p(u). Let reach(u) be the set

of verticesv in p(u) with v → u.

- 11 -

The following lemma is a straightforward generalization of Observation 2 and Lemma 5

(here a vertexv is adescendantof a vertexu if u = v or if there is a directed path fromu to v in

T; otherwisev is anon-descendantof u).

Lemma 6: A vertex u in G is active if and only if there is an arc (x, y) with x a non-descendant

of u and withy in reach(u).

Let G be a directed graph with a forward branchingT rooted atr , and letv be a vertex inG.

An active pathto v is a pathp from r to v consisting of an initial pathp′ using tree arcs fromr

to a non-descendantx of v followed by an intermediate path consisting of a single non-tree arca

from x to a descendanty of v followed by a final pathp′′ from y to v using only arcs connecting

descendants ofv.

Observation 3:Vertexv is active if and only if there is an active path tov.

We now prove some lemmas that will allow us to establish the correctness of algorithm Out-

bridges. As before letGi andTi be the graph and forward branching present at the start of thei th

iteration of the repeat loop in the algorithm; henceG1 andT1 are the input graph together with its

forward branching, andGk andTk are the current graph and forward branching at the start of the

kth iteration. Similarly letHi be the graphH of step 2a of algorithm Outbridges constructed in

the i th iteration of the repeat loop.

We first note that Observation 2 remains valid in eachGk whenu is a vertex in a leaf chain

of Tk. We state this in the following observation.

Observation 4:Let u be a vertex in a leaf chainl of forward branchingT, where for convenience

we assume that the vertices in the leaf chain are numbered from 1 tos, with 1 the root of the leaf

chain ands the leaf of the leaf chain. Thenreach(u) is a single interval of the form [u, u′]. Fur-

ther, a vertexv≠u is in reach(u) if and only if there exists a sequence of back arcs

bi = (ui , vi), i = 1,. . . , k in L (whereL is the subgraph ofG induced by vertices inl) such that

v1 = u, uk ≥ v, andui ≥ vi+1, i = 1,. . . , k − 1.

Lemma 7: For eachk ≥ 1, algorithm Outbridges correctly finds the out-bridges in the leaf chains

of Gk.

Proof: By Observation 4, for a vertexu in a leaf chainl of Tk, reach(u) in Gk is the same as

reach(u) in the subgraph ofGk induced byl . Hence the reach value of each vertex in the leaf

chain is correctly computed in the Shrink computation of step 1b in algorithm Outbridges.

By Lemma 6, a vertexu in a leaf chain is active if and only if there is an arce = (x, y) in Gk

with x a non-descendant ofu and withy in reach(u). Such an arce is either a forward arc in the

leaf chain or is an arc withx not in the leaf chain andy in the leaf chain. The former case is the

same as that used in the Shrink algorithm. In the latter case, (x, y) will cause any vertexu in the

leaf chain withy in reach(u) to be active. Hence for the purpose of the Shrink algorithm this is

- 12 -

equivalent to having an arc from the root,t, of the leaf chain toy. Thus the computation in steps

1a and 1b of algorithm Outbridges correctly finds the outbridges in the leaf chains ofGk.[]

Lemma 8Let e = (u, v) be an out-bridge inGk, k > 1. Thene is an out-bridge inGk−1.

Proof: First note that ife is an out-bridge inGk, thene lies in Tk. Hencee lies in Tk−1, since

ev ery tree arc inTk is present as a tree arc inTk−1.

Supposee is not an out-bridge inGk−1. Hencev is an active vertex inGk−1. Let p be an

active path tov in Gk−1, and let p consist of an initial tree pathp′ to a vertexx that is a non-

descendant ofv, followed by a non-tree arca = (x, y), wherey is a descendant ofv, followed by

a final pathp′′ from y to v using only arcs connecting vertices that are descendants ofv. We now

establish that there must be an active path tov in Gk, contradicting the assumption thate is an

out-bridge ofGk, and thereby establishing the lemma.

If p contains no vertex inGk−1 − Gk then p is an active path tov in Gk as well. If p con-

tains some vertices inGk−1 − Gk then consider the last vertexz on p such thatz is in Gk−1 − Gk.

Case 1: zis a non-descendant ofv. Thenz must bex and all vertices inp′′ lie in Gk. Let t be the

root of the leaf chain ofGk−1 to which z belongs. Then by step 2d of algorithm Outbridges,z is

collapsed intot and hence the path inGk consisting of the tree path tot, followed by non-tree arc

(t, y), followed by pathp′′ is an active path tov in Gk.

Case 2: zis a descendant ofv. Let b = (z, a) be the outgoing arc fromz in p, and lett′ be the root

of the leaf chain inGk−1 to which z belongs. Hencet′ is a descendant ofa and z is a proper

descendant oft′. Let p′′′ be the portion ofp′′ from a to v. The pathp′′′ is a path inGk as well.

Case 2a:The vertexz is reachable from some non-descendantw of v in Hk. Then an arc (w, z) is

introduced in step 2c of the algorithm. Ifw is in Gk then the path fromr to w followed by arc

(w, a) followed by pathp′′′ is an active path tov in Gk. If w is in Gk−1 − Gk then the analysis of

Case 1 gives an active path tov in Gk.

Case 2b:The vertexz is not reachable from any non-descendant ofv in Hk. Now considerp′′.

This is a path of the form <u1,1, . . . , u1,k1
, v1,1, . . . , v1,l1,

. . . , uc,1, . . . , uc,kc
, vc,1, . . . , vc,l c

>, where

the ui , j are inGk−1 − Gk and thevi , j are inGk, and if y is in Gk the initial sequence ofu1, j ’s is

empty. All of theui , j andvi , j are descendants ofv. Eachvi ,1 is reachable fromvi−1,l i−1
, i > 1 in

Hk. Hence by step 2c of algorithm Outbridges, there is an arc fromvi−1,l i−1
to vi ,1, i > 1 in Gk.

The vertexv1,1 has an incoming arc fromx in Gk. The remaining arcs inp′′ remain inGk.

Hence there is a path fromx to v in Gk that contains only vertices that are descendants ofv in Gk.

Hencev is an active vertex inGk.[]

Lemma 9: Let e = (u, v) be a tree arc inGk, k > 1 that is not an out-bridge inGk. Thene is not

an out-bridge inGk−1.

- 13 -

Proof: Sincee is not an out-bridge inGk there is an active pathp to v in Gk. Consider any arc

f = (x, y) in p that is not present inGk−1. If f was introduced in step 2c of algorithm Outbridges

then there is a path fromx to y in Gk−1 that avoids all tree arcs inGk and hence arce. If f was

introduced in step 2d then there is a path from a descendant ofx to y in Gk−1 that avoids all tree

arcs inGk. Hence there is a path fromx to y in Gk−1 that avoids arce. Hence fromp we can

obtain an active pathp′ to v in Gk−1. Thuse is not an out-bridge inGk−1.[]

Lemma 10:Algorithm Outbridges correctly finds the out-bridges ofG.

Proof: We show that at the start of each iteration of the repeat loop,

1) The out-bridges identified so far are exactly the out-bridges in the portion of the input graphG

that has been collapsed by the algorithm.

2) An arce in the current graphG is an out-bridge in this graph if and only if it is an out-bridge in

the original input graph.

The proof is by induction onk, the number of iterations of the repeat loop.

Base: k= 1. The claim is vacuously true since no out-bridges have been identified and the input

graph is the same as the current graph.

Induction step:Assume that the two claims are true until the start of iterationk − 1 and now con-

sider the start of iterationk. Claim 1) follows by the induction hypothesis and Lemma 7. Claim

2) follows by the induction hypothesis and Lemmas 8 and 9.[]

Finally we note that algorithm Outbridges runs inO(log2 n) with O(n3) processors on a

CRCW PRAM. To see the processor and time bounds let us analyze the time complexity of each

iteration of the repeat loop. By the previous analysis for the time complexity of algorithm Shrink,

step 1 runs inO(log n) time withO(n2) processors on a CREW PRAM. Steps 2a, 2c, and 2d run

in O(log n) time with O(n2) processors on a CREW PRAM. Step 2b runs inO(log n) time with

O(n3) processors on a CRCW PRAM, and is the most expensive step in the repeat loop. Since the

repeat loop is executedO(log n) times we obtain the stated time and processor bounds for algo-

rithm Outbridges. On a CREW PRAM this algorithm runs inO(log3 n) time with M(n) proces-

sors.

Whether we use a CREW model or a CRCW model the time and processor bounds for find-

ing a minimum weight branching using the algorithm in [Lo] dominate the time and processor

bounds of algorithm Outbridges. Hence we can find redundant arcs within the time and processor

bounds for minimum weight branchings, and thus the parallel transitive compaction algorithm

runs inO(log3 n) parallel time withO(n3) processors on a CRCW PRAM and inO(log4 n) paral-

lel time with the same processor bound on a CREW PRAM.

- 14 -

4. Sequential Algorithms for Transitive Compaction

As in section 3.2, letr be a fixed root of a directed graphG = (V, E), where |V| = n and

|E| = m. An algorithm for finding the in- and out-bridges is given in [Ta2]. This algorithm actu-

ally does more: It computes two forward branchingsT1 and T2 having only the out-bridges in

common, and two inv erse branchings,T3 andT4, having only the in-bridges in common. This

algorithm can be implemented to run in linear time by using linear-time algorithms for computing

nearest common ancestors [HT] and maintaining disjoint sets [GT].

Let R be the set of redundant arcs,I the set of in-bridges andO the set of out-bridges.

HenceR = E − (I ∪O). The following algorithm finds a transitive compaction ofG.

1. Pick a root vertexr in G. Find a forward branchingB and an inverse branchingB′ in G and

replaceG by B∪ B′.

2. Repeat

a) Construct two forward branchingsT1 and T2 having only the out-bridges in common;

identify the set of out-bridges asO.

b) Construct two inv erse branchingsT3 andT4 having only the in-bridges in common; iden-

tify the set of in-bridges asI .

c) Form the set of redundant arcsR asR = E − (O∪ I).

d) Fori = 1, 2, 3, 4 formSi = Ti ∩ R.

e) ChooseTi and Tj such that 1≤ i ≤ 2, 3≤ j ≤ 4 andSi ∪ Sj has minimum cardinality

amongS1 ∪ S3, S2 ∪ S3, S1 ∪ S4, S2 ∪ S4.

f) ReplaceG by Ti ∪ Tj .

until R = φ .

The following claim establishes that the repeat loop is executed onlyO(log n) times.

Lemma 11: In step 2e of the algorithm the chosenSi andSj satisfy |Si ∪ Sj | ≤ (3/4) ⋅ |R|.

Proof: For i = 1, 2, 3, 4, letFi be the set of those arcs inTi that are not present in any otherTj ,

and let P1,3 = (S1 ∩ S3) ∪ F1, P2,4 = (S2 ∩ S4) ∪ F2, P2,3 = (S2 ∩ S3) ∪ F3 and

P1,4 = (S1 ∩ S4) ∪ F4. Note thatP1,3, P2,4, P2,3 and P1,4 are disjoint. Let one, sayP1,3 be the

one of maximum cardinality. Then we must have |P2,4| + |P2,3| + |P1,4| ≤ (3/4) ⋅ |R|. But

S2 ∪ S4⊆P2,4∪ P2,3∪ P1,4, which implies |S2 ∪ S4| ≤ (3/4) ⋅ |R|. Since we also have

S1 ∪ S3⊆P1,3∪ P1,4∪ P2,3, S1 ∪ S4⊆P1,3∪ P1,4∪ P2,4 and S2 ∪ S3⊆P2,3∪ P2,4∪ P1,3,

we have |S1 ∪ S3| ≤ (3/4) ⋅ |R| if P2,4 is of maximum cardinality, |S1 ∪ S4| ≤ (3/4) ⋅ |R| if P2,3 is

of maximum cardinality and |S2 ∪ S3| ≤ (3/4) ⋅ |R| if P1,4 is of maximum cardinality. Hence the

- 15 -

chosenSi andSj in step 2e of the algorithm satisfy |Si ∪ Sj | ≤ (3/4) ⋅ |R|.[]

Step 1 of the algorithm takesO(n + m) time and rendersG sparse (O(n) arcs). As men-

tioned above, steps 2a and 2b can be implemented to run inO(n) time using the algorithm in

[Ta2], in conjunction with the algorithms in [HT] and [GT]. Each of steps 2c through f takesO(n)

time. Hence each execution of the repeat loop takes linear time. Since by Lemma 11 the repeat

loop is executedO(log n) times, the entire transitive compaction algorithm runs inO(m + n log n)

time.

The algorithm of section 2 can also be implemented to run inO(m + n log n) time. This is

because the minimum-weight branching algorithm of Edmonds [Ed2] can be implemented to run

in linear time for 0-1 edge weights by using the algorithm in [GGST], with the heaps replaced by

two buckets. As before, the redundant arcs can be found in linear time and hence each execution

of the repeat loop takes linear time, leading to anO(m + n log n) time sequential algorithm for

transitive compaction.

We hav e obtained sequential and parallel algorithms with similar complexities for analo-

gous problems on undirected graphs, i.e., for finding a minimal bridge-connected spanning sub-

graph and a minimal biconnected spanning subgraph in an undirected graph, if such subgraphs

exist. These results will appear in a companion paper.

We conclude by noting that it is conceivable that one (or both) of our sequential algorithms

runs in linear time, since it is possible that the repeat loop needs to be executed only a constant

number of times. We leave this question for further investigation. For the same reason it is possi-

ble that our parallel algorithms run faster than the stated time bounds by anO(log n) factor.

References

[ABI] Alon, N., Babai, L. and Itai, A. , "A Fast and Simple Randomized Parallel Algorithm for

the Maximal Independent Set Problem",J. of Algorithms,7, pp. 567-583, 1986.

[AGU] Aho, A.V., Garey, M.R. and Ullman, J.D. , "The Transitive Reduction of a Directed

Graph",SIAM J. Comput.,1, pp. 131-137, 1972.

[CW] Coppersmith, D. and Winograd, S., "Matrix multiplication via arithmetic progressions,"

Proc. 19th Ann. ACM Symp. on Theory of Computing,pp. 1-6, 1987.

[Ed] Edmonds, J. , "Edge-Disjoint Branchings", inCombinatorial Algorithms,Algorithmic

Press, pp. 91-96, 1973.

[Ed2] Edmonds, J., "Optimum branchings,"J. of Res. of the Nat. Bureau of Standards,71B, 1967,

pp. 233-240.

- 16 -

[ET] Eswaran, K.P. and Tarjan, R.E. , "Augmentation Problems",SIAM J. Comput.,5, pp.

653-665, 1976.

[GGST] Gabow, H.N., Galil, Z., Spencer T. and Tarjan, R.E., "Efficient algorithms for finding

minimum spanning trees in undirected and directed graphs,"Combinatorica, 6, pp.

106-122, 1986.

[GJ] Garey, M.R. and Johnson, D.S.,Computers and Intractability: A Guide to the Theory of NP-

Completeness,Freeman, San Fransisco, CA, 1979.

[GT] Gabow, H.N. and Tarjan, R.E., "A linear-time algorithm for a special case of disjoint set

union,"Journal of Comput. Sys. Sci.,30, pp. 209-221, 1985.

[GS] Goldberg, M. and Spencer, T., "A New Parallel Algorithm for the Maximal Independent Set

Problem",Proc. 28th IEEE Symp. on Foundations of Computer Science,pp. 161-165, 1987.

[HT] Harel, D. and Tarjan, R.E., "Fast algorithms for finding nearest common ancestors,"SIAM J.

Comput.,13, pp. 338-355, 1984.

[KR] Karp, R.M. and Ramachandran, V. "Parallel algorithms for shared memory machines,"

Handbook of Theoretical Computer Science,J. van Leeuwen, ed., North Holland, to appear;

also Report No. UCB/CSD 88/408, Computer Science Div., Univ. of California, Berkeley,

CA, 1988.

[KUW] Karp, R.M. , Upfal, E. and Wigderson, A. , "Are Search and Decision Problems Compu-

tationally Equivalent?",Proc. 17th ACM Symp. on Theory of Computing,pp. 464-475, 1985.

[KW] Karp, R.M. and Wigderson, A. , "A Fast Parallel Algorithm for the Maximal Independent

Set Problem",JA CM,pp. 762-773, 1985.

[Lo] Lovasz, L. "Computing Ears and Branchings in Parallel",Proc. 26th IEEE Symp. on Foun-

dations of Computer Science,pp. 464-467, 1985.

[Lu] Luby, M. "A Simple Parallel Algorithm for the Maximal Independent Set Problem",Proc.

17th ACM Symp. on Theory of Computing,pp. 1-10, 1985.

[MR] Miller, G.L. and Reif, J.H., "Parallel tree contraction and its applications,"Proc. 26th Ann.

Symp. on Foundations of Comp. Sci.,pp. 478-489, 1985.

[Ra] Ramachandran, V. "Fast parallel algorithms for reducible flow graphs,"Concurrent Compu-

tations: Algorithms, Architecture and Technology,S.K.Tewksbury, B.W.Dickinson and

S.C.Schwartz, ed., Plenum Press, New York, NY, 1988, in press.

[So] Soroker, D. , "Fast Parallel Strong Orientation of Mixed Graphs and Related Augmentation

Problems",J. of Algorithms,9, pp. 205-223, 1988.

[Ta] Tarjan, R.E. , "Finding Optimum Branchings",Networks,7, pp. 25-35, 1977.

- 17 -

[Ta2] Tarjan, R.E., "Edge-disjoint spanning trees and depth-first search,"Acta Informatica,7, pp.

171-185, 1976.

