
Chapter in SYNTHESIS OF PARALLEL ALGORITHMS, Morgan-Kaufmann, 1993. (Figures not yet included in this file.)

Parallel Open Ear Decomposition

with Applications to Graph Biconnectivity and

Triconnectivity �

Vijaya Ramachandran

Department of Computer Sciences

University of Texas

Austin, TX 78712

January 20, 1992

Abstract

This report deals with a parallel algorithmic technique that has proved to

be very useful in the design of e�cient parallel algorithms for several prob-

lems on undirected graphs. We describe this method for searching undirected

graphs, called \open ear decomposition", and we relate this decomposition to

graph biconnectivity. We present an e�cient parallel algorithm for �nding this

decomposition and we relate it to a sequential algorithm based on depth-�rst

search. We then apply open ear decomposition to obtain an e�cient parallel

algorithm for testing graph triconnectivity and for �nding the triconnnected

components of a graph.

This material will appear as a chapter in the book, Synthesis of Parallel Al-

gorithms, edited by John Reif, which is to be published by Morgan-Kaufmann.

1 Introduction

In this report we introduce open ear decomposition, which is a method for searching
an undirected graph. We present an algorithm that either �nds an open ear decom-
position in an undirected graph or reports that no open ear decomposition exists.
This algorithm runs in logarithmic time with a linear number of processors. A graph
has an open ear decomposition if and only if it is biconnected. Hence this algorithm
allows us to determine graph biconnectivity e�ciently in logarithmic parallel time.

�This work was supported in part by NSF Grant CCR-8910707

1



We use open ear decomposition to obtain a logarithmic time parallel algorithm
using a linear number of processors to �nd the triconnected components of a graph.
This algorithm is fairly complex and we present it in a top-down manner by �rst
giving the high-level ideas leading to the algorithm and then giving e�cient imple-
mentations of the various steps. In the last section we give some pointers towards
obtaining optimal logarithmic time parallel algorithms for graph biconnectivity and
triconnectivity.

Open ear decomposition has been used to obtain e�cient parallel algorithms for
several other important graph problems such as graph four-connectivity [KR91], st-
numbering [MSV86] and graph planarity [RR89].
Algorithmic Notation

The algorithmic notation in this report is from Tarjan [Ta83]. We enclose com-
ments between a pair of curly brackets with asterisks (`f�' and `�g'). We incorporate
parallelism by use of the following statement that augments the for statement.

pfor iterator ! statement list rofp

The e�ect of this statement is to perform the pfor loop in parallel for each value of
the iterator.

2 Ear Decomposition and Two-Connectivity

In this section we de�ne ear decomposition and open ear decomposition and relate
these to graph two-edge-connectivity and two-vertex-connectivity (i.e., biconnectiv-
ity). We then describe e�cient parallel algorithms to �nd these decompositions. We
also relate these parallel algorithms to the classical sequential algorithm for testing
graph biconnectivity, which is based on depth-�rst search.

2.1 Basic De�nitions

An undirected graph G is a pair (V; E) where V is the set of vertices of G and E is
the set of edges of G; an edge is an unordered pair of distinct vertices. We denote the
undirected graph by G = (V;E) and we sometimes refer to it as G. An edge (u; v) is
incident on vertices u and v. Vertices u and v are adjacent in G if G contains edge
(u; v). The degree of a vertex is the number of edges incident on the vertex. We will
sometimes refer to an undirected graph as simply a graph.

A directed graph G = (V;E) consists of a vertex set V and an edge set E containing
ordered pairs of elements from V . An edge (u; v) in a directed graph is directed from
u to v and is outgoing from u and incoming to v.

A multigraph G is a pair (V;E) where V is the set of vertices of G and E is the
multiset of edges of G; an edge of a multigraph is an unordered pair of vertices. We
allow edges of the form (v; v); v 2 V and we call such edges self-loops. An edge e in
a multigraph may be denoted by (a; b; i) to distinguish it from other edges between a

2



and b; in such cases the third entry in the triplet may be omitted for one of the edges
between a and b.

A path P in G is a sequence of vertices hv0; :::; vki such that (vi�1; vi) 2 E; i =
1; :::; k; P is directed or undirected depending on whether G is directed or undirected.
The path P contains the vertices v0; :::; vk and the edges (v0; v1); :::; (vk�1; vk) and has
endpoints v0, vk, and internal vertices v1; :::; vk�1. The path P is a simple path if
v0; :::; vk�1 are distinct and v1; :::; vk are distinct, and all edges on P are distinct. A
simple path P = hv0; :::; vki is a simple cycle if v0 = vk; otherwise P is noncyclic. The
path hvi is a trivial path with no edges.

A graph G0 = (V 0; E 0) is a subgraph of a graph G = (V;E) if V 0 � V and
E 0 � E. The subgraph of G induced by V 0 is the graph H = (V 0; F ) where F =
f(u; v) 2 E j u; v 2 V 0g.

An undirected graph G = (V;E) is connected if there exists a path between every
pair of vertices in V . A connected component of a graph G is a maximal induced
subgraph of G which is connected.

Let G = (V;E) and H = (W;F ) be a pair of graphs. The graph G[H is the graph
G0 = (V [W;E[F ). If W � V then the graph G � H is the graph H 0 = (V;E�F ).

A tree is a connected graph containing no cycle. A leaf in a tree is a vertex of
degree 1. Let T = (V;E) be a tree and let r 2 V . The out-tree T = (V;E; r) rooted at
r (or simply the tree T rooted at r) is the directed graph obtained from T by directing
each edge such that every path from r to any other vertex is directed away from r.
The in-tree rooted at r is the directed graph obtained from T by directing each edge
such that the path from every vertex to r is directed towards r.

Let (x; y) be a directed edge in a rooted tree T . Then, x is the parent of y and
y is a child of x in T . Vertex v is a descendant of vertex u (and equivalently, u is
an ancestor of v) if there is a directed path from u to v in T . Vertex v is a proper
descendant of u (and u a proper ancestor of v) if v is a descendant of u and u 6= v.
Given a pair of vertices u; v 2 V , the least common ancestor of u and v, denoted by
lca(u; v) is the vertex w 2 V that is an ancestor of both u and v with no child of w
being an ancestor of both u and v. For an edge e = (u; v) the least common ancestor
of e, denoted by lca(e), is the vertex lca(u; v).

A preorder labeling of the vertices of a rooted tree T labels the root of T and then
the vertices in the subtree rooted at each child of the root in turn.

Let G = (V;E) be a connected graph. A spanning tree T of G is a subgraph of
G with vertex set V such that T is a tree. An edge in G � T is a nontree edge with
respect to T .

Let T be a spanning tree of G. Any nontree edge e of G creates a cycle in the
graph T[feg, called the fundamental cycle of e with respect to T . Let r 2 V , and let
T be rooted at r.

Let e = (u; v) be a nontree edge in T = (V;E; r) and let lca(e) = l. The funda-
mental cycle of e with respect to T consists of the path from l to u, followed by edge
e, followed by the path from v to l. Let (l; a) be the �rst edge on the path from l to u

3



and (l; b) be the �rst edge on the path from l to v (it is possible for one of these edges
to be missing). Then edges (l; a) and (l; b) are the base edge(s) of the fundamental
cycle of e (when they exist) and the vertices a and b are the base vertice(s) of the
fundamental cycle of e (when they exist).

An edge e 2 E in a connected graph G = (V;E) is a cutedge if e does not lie
on a cycle in G. A connected undirected graph G = (V;E) is 2-edge connected if
it contains no cutedge. A 2-edge connected component of G is a maximal induced
subgraph of G which is 2-edge connected.

A vertex v 2 V is a cutpoint of a connected undirected graph G = (V;E) if the
subgraph induced by V�fvg is not connected. A connected graph G is biconnected
(or two-vertex connected) if it contains at least 3 vertices and has no cutpoint. A
biconnected component (or block) of G is a maximal induced subgraph of G which is
biconnected.

By Menger's theorem a graph is 2-edge connected if and only if there are at
least two edge-disjoint paths between every pair of distinct vertices, and a graph is
biconnected if and only if the graph is connected and has no more than two vertices
or there are at least two vertex-disjoint paths between every pair of distinct vertices.

The two-connectivity problem is the problem of determining 2-edge connectivity
and biconnectivity in a connected graph.

2.2 Ear Decomposition

An ear decomposition D = [P0; P1; :::; Pr�1] of an undirected graph G = (V;E) is
a partition of E into an ordered collection of edge-disjoint simple paths P0; :::; Pr�1

such that P0 is an edge, P0 [ P1 is a simple cycle, and each endpoint of Pi, for i > 1,
is contained in some Pj; j < i, and none of the internal vertices of Pi are contained
in any Pj; j < i. The paths in D are called ears. An ear is open if it is noncyclic and
is closed otherwise. A trivial ear is an ear containing a single edge. D is an open ear
decomposition if all of its ears are open.

Let D = [P0; :::; Pr�1] be an ear decomposition for a graph G = (V;E). For
a vertex v in V , we denote by ear(v), the index of the lowest-numbered ear that
contains v; for an edge e = (x; y) in E, we denote by ear(e) (or ear(x; y)), the index
of the unique ear that contains e. A vertex v belongs to Pear(v).

Lemma 2.1 [Wh32] An undirected graph G = (V;E) has an ear decomposition if
and only if G is 2-edge connected.
Proof We �rst prove the if part of the lemma. Assume G is 2-edge connected. We
construct an ear decomposition for G as follows. To construct P0 and P1, we pick
any edge e = (u; v) in G. Since e is not a cutedge, there is a simple path between u
and v in G that avoids e. Let P be such a path. We construct P0 as hei and P1 as
P . Then P0 is an edge and P0 [ P1 is a simple cycle as required.

Assume inductively that we have constructed Hi�1 = [i�1
j=0Pj; i > 1. To construct

Pi, we pick an edge (x; y) that is not contained in Hi�1 but with vertex x in Hi�1.

4



We then �nd a simple path Q from y to x in G that avoids edge (x; y). Let z be the
�rst vertex on path Q that is contained in Hi�1. We construct Pi as the edge (x; y)
followed by the path Q from y to z. This path has each of its endpoints on some
Pj; j < i, and none of its internal vertices on any Pj; j < i. Hence it is an ear.

We now prove the only if part. Let D = [P0; :::; Pr�1] be an ear decomposition for
G. We will prove by induction on i for i > 0 that the graph Hi = [i

j=0Pj is 2-edge
connected. For the base case, P0 [ P1 is a simple cycle, and therefore H1 is 2-edge
connected.

Assume inductively that Hi�1 is 2-edge connected and consider Hi. To show that
Hi is 2-edge connected it su�ces to show that every edge on Pi lies on a cycle. Let
the endpoints of Pi be x and y and let Q be a path from x to y in Hi�1. The path Q
exists since Hi�1 is connected. Every edge on Pi lies on the cycle Pi [ Q in Hi and
hence Hi is 2-edge connected.[]

Lemma 2.2 [Wh32] A graph has an open ear decomposition if and only if it is
biconnected.
Proof Exercise 1.[]

2.3 An E�cient Parallel Algorithm for Ear Decomposition

In this section we present an e�cient parallel algorithm for �nding an ear decomposi-
tion for a 2-edge connected graph. This algorithm is from [MR86] and [MSV86], and
is an e�cient parallel implementation of an algorithm in [Lo85].

Algorithm 2.1: Ear Decomposition Algorithm

Input: A 2-edge connected graph G = (V;E), with jV j = n and jEj = m.
Output A numbering on the edges in E, specifying their ear number.

vertex v; r; edge e;

1. f� Preprocess. �g �nd a spanning tree T for G, pick a root vertex r and number
the vertices of T in preorder from 0 to n� 1 with respect to root r;

2. f� Assign ear numbers to nontree edges in T . �g

2a. label each nontree edge e in G by its least common ancestor lca(e) in T ;

2b. sort the labels of nontree edges in nondecreasing order and relabel them
in order as 1, 2, :::;

3. f� Extend the numbering assigned in step 2 to the tree edges by numbering
each tree edge t by the label of the nontree edge with smallest label whose
fundamental cycle contains t. �g

5



3a. label each vertex with the label of the nontree edge incident on it with the
minimum label;

3b. assign to each tree edge (parent(v); v) in T , the label of the minimum
label of any descendent of v (including v);

4. relabel the nontree edge labeled 1 by the label 0

end.

We now prove the correctness of Algorithm 2.1 and then provide implementation
details.
Lemma 2.3 Algorithm 2.1 obtains an ear decomposition of a 2-edge connected graph.
Proof We �rst observe that the label given to tree edge t = (parent(v); v) in step 3b
is the label of the nontree edge with smallest label whose fundamental cycle contains
t. This is because any such nontree edge e must be incident on a descendant of v,
and any nontree edge n incident on a descendant of v with lca(n) � v must include
edge t in its fundamental cycle.

We now prove by induction on i that the edges with label i form a simple path
that satis�es the de�nition of ear Pi.
BASE: P0 and P1. Let e be the nontree edge given label 1 in step 2b. Then by step 3
every tree edge in the fundamental cycle of e will be assigned label 1. Further any tree
edge not on the fundamental cycle of e will be assigned a label greater than 1. Hence
the edges labeled 1 at the end of step 3 are exactly the edges in the fundamental cycle
of e and these form a simple cycle as required for P0 [ P1. By step 4 the label of e
is set to be 0. Hence P0 = feg and P1 becomes a simple noncyclic path with its two
endpoints on e.
INDUCTION STEP: Assume the result is true for up to Pi�1, i > 1, and consider
the nontree edge f = (u; v) with label i. Let lca(f) = l. Hence the tree edges in the
fundamental cycle of f are the edges on the tree path P from l to u and on the tree
path Q from l to v.

Consider the tree path P . Assume that P contains at least one edge with label
j 6= i and let (x; y) be the �rst edge on R = P[ffg that has label i. We claim that
every edge on R from x to v has label i and every edge in P from l to x has label less
than i. To see the �rst part of the claim we note that by step 3 f is the nontree edge
with smallest label whose fundamental cycle contains tree edge (x; y). Every edge on
P from y to u lies on the fundamental cycle of f , so if any edge on this path does not
have label i then it must have a label j < i. But then the nontree edge g with label
j has lca(g) � l by the labeling in step 2b. But then, edge (x; y) would be in the
fundamental cycle of g and would be labeled j rather than i, which is a contradiction.
Hence every edge on P from x to u is labeled i. Finally, edge (u; v) is labeled i by
assumption. Hence all edges on R from x to v have label i.

To see the second part of the claim, consider tree edge s = (x; parent(x)). Since
by assumption the edge s has a label j that is di�erent from i, we know that tree

6



edge s lies on the fundamental cycle of a nontree edge h with label j and that j < i.
Further since j < i we must have lca(h) � l and hence every edge on the path P from
l to x lies on the fundamental cycle of h. Hence the label of every edge on P from l
to x is at most j and hence is less than i.

A similar argument holds for the path Q for the case when Q contains at least one
edge with label j 6= i. Hence the edges with label i form a simple path that consists
of a portion of tree path P starting at some vertex x and extending up to u, followed
by edge (u; v) followed by a portion of the tree path Q from v to some vertex z > l;
further the two endpoints of this path are contained in ears numbered lower than i.

Finally, if P or Q contains no edge with label j 6= i then we note that the label
of tree edge (parent(l); l) is less than i since any nontree edge g whose fundamental
cycle contains this tree edge has lca(g) < l. Further, such a nontree edge g must exist
since the graph is 2-edge connected. Hence vertex l is contained in an ear Pk with
k < i and hence the endpoints of ear Pi are contained on an ear with label smaller
than i.[]

Let us analyze the complexity of Algorithm 2.1.
Step 1 requires the computation of a spanning tree T and its preorder numbering
with respect to the root r [CV86].
Step 2a requires the computation of least common ancestors in T [SV88].
Step 2b requires sorting of integers in the range [0::n� 1] [C88].
Step 3a requires the computation of the minimum value in each adjacency list [KR90].
Step 3b can be performed e�ciently in parallel by the following simple method using
the Euler tour technique on trees [TV84]. Note that the vertices that are the descen-
dants of a vertex v in the tree T lie between the �rst and last occurrences of v in
the Euler tour of T . In step 3b we need to compute the minimum value in each such
interval. For this we �rst build a table of such minimum values for all intervals of
length 2i; 0 � i � logn. This table can be constructed in O(logn) time using n pro-
cessors. Once we have this table, the minimum value for any other interval I can be
computed from the precomputed minimum values of two overlapping intervals whose
union gives I. This part of the computation can be performed in constant time using
one processor for each interval.
Step 4 is trivial to implement.

As seen above all of the steps in Algorithm 2.1 can be performed in logarithmic
time with a linear number of processors using well-known e�cient parallel algorithms.
We also leave it as an exercise for the reader to verify that Algorithm 2.1 runs in linear
sequential time.

2.4 Ear Decomposition and Depth-First Search

Algorithm 2.1 of the previous section computes an ear decomposition of a graph in
linear sequential time. The computation in Algorithm 2.1 can be simpli�ed consid-
erably in the sequential algorithm if the spanning tree T is a depth-�rst search tree

7



rooted at r. In that case, the lca computation in step 2a is immediate, since every
nontree edge in the depth-�rst search tree goes from a vertex to its ancestor, and
this ancestor will be the lca. We defer step 2b to the end of the algorithm and to
compute step 3, we de�ne the following two functions on vertices. (We assume that
the vertices are numbered in preorder, starting with 0, and that the input graph has
n nodes.)

low(v) = min(fwjw lies on the fundamental cycle of a nontree edge incident on
a descendant of vg [ fng)

ear(v) = lexmin(f(w; x)j(w; x) is a nontree edge with x a descendant of vg [
f(n; n)g)

The values low(v) and ear(v) can be computed incrementally during the depth-
�rst search of G that generates T . This is given in Algorithm 2.2 below. Note that
Algorithm 2.2 is essentially the well-known linear time sequential algorithm for graph
biconnectivity [Ta72].

Algorithm 2.2: Sequential Ear Decomposition Algorithm

Input: A connected graph G = (V;E) with a root r 2 V , and with jV j = n.
Output: A depth-�rst search tree of G, together with a label on each edge in E,
indicating its ear number.

set T of edges ; integer count;

Procedure dfs( vertex v);

f� This is a recursive procedure. The call dfs (v) of the main program constructs
a depth-�rst search tree T of G rooted at r; the recursive call dfs(w) constructs
the subtree of T rooted at w. The depth-�rst search tree is constructed by
placing the tree edges in the set T and labeling the vertices in the subtree
rooted at vertex v in preorder numbering, starting with count. The procedure
assigns ear labels to the edges ofG while constructing the depth-�rst search tree.
An edge that does not belong to any ear is given the label (1;1). Initially, all
vertices are unmarked. �g

vertex w;

`mark' v;

preorder(v) := count; count := count + 1; low(v) := n; ear(v) :=
(n; n);

for each vertex w adjacent to v !

f� This for loop performs a depth-�rst search of each child of v in turn
and assigns ear labels to the tree and nontree edges incident on vertices in
the subtrees rooted at the children of v. �g

8



if w is not marked !

add (v; w) to T ; parent(w) := v; dfs(w);

if low(w) � preorder(w) ! ear(parent(w); w) := (1;1)

0. j low(w) < preorder(w) ! ear(parent(w); w) := ear(w)

�;

1. low(v) := min(low(v); low(w));

2. ear(v) := lexmin(ear(v); ear(w))

j w is marked !

if w 6= parent(v) !

3. low(v) := min(low(v); preorder(w));

4. ear(w; v) := (preorder(w); preorder(v))

5. ear(v) := lexmin(ear(v); ear(w; v));

�

�

rof

end dfs;

f� Main program. �g

T := �; count := 0; dfs(r);

sort the ear labels of the edges in lexicographically nondecreasing order and
relabel distinct labels (except label (1;1)) in order as 1, 2, :::;

relabel the nontree edge with label 1 as 0

end.

In the following we assume, for convenience, that the vertices are labeled by their
preorder number.
Lemma 2.4 Tree edge (parent(v); v) is a cutedge if and only if low(v) � v. If
low(v) < v for all v 6= r then Algorithm 2.2 constructs an ear decomposition with
each tree edge (parent(v); v) contained in ear Pear(v).
Proof By the computation in steps 1 and 3 in Algorithm 2.2, low(v) is the lowest
numbered vertex w such that (x; w) is a nontree edge with x a descendant of v. Since
nontree edges in a depth-�rst search tree go from a vertex to its ancestor, low(v) is
also the lowest numbered vertex in a fundamental cycle of a nontree edge incident on a
descendant of v. If low(v) � v then every nontree edge (y; z) incident on a descendant
y of v has z � v. Hence tree edge (parent(v); v) does not belong to any fundamental
cycle and is a cutedge. Conversely, if low(v) < v then there exists a nontree edge

9



f = (x; low(v)) with x a descendant of v. Hence tree edge (parent(v); v) lies on the
fundamental cycle of f and is not a cutedge.

Each nontree edge (w; v); w < v, is labeled (w; v) in step 4. We have lca(w; v) = w
since nontree edges in a depth �rst search go from a vertex v to an ancestor w < v.
Hence the labels for the nontree edges are distinct and in nondecreasing order of their
lca as required in step 2 of Algorithm 2.1.

By the computation in steps 2 and 5 in Algorithm 2.2, ear(v) is set to be the
lexicographic minimum among all nontree edges (u; w), with u < w such that w is
a descendant of v. In step 0 this label is assigned to tree edge (parent(v); v). This
is exactly the computation of step 3 of Algorithm 2.1 for assigning ear labels to tree
edges. Hence by Lemma 2.3, Algorithm 2.2 constructs an ear decomposition for the
input graph when it is 2-edge connected.[]

While Algorithm 2.2 is an ear decomposition algorithm, it also gives an open ear
decomposition in case G is biconnected. We establish this in the next lemma.

Lemma 2.5 Algorithm 2.2 constructs an open ear decomposition if all of the following
three conditions hold:

a) The root r has exactly one child c;

b) low(c) = r;

c) For all vertices v other than r and c, low(v) < parent(v).

Further, G is biconnected if and only if a), b) and c) hold.
ProofWe �rst prove that conditions a) through c) imply that Algorithm 2.2 constructs
an open ear decomposition. We prove this by establishing that the ear containing
each tree edge is open. This su�ces to establish this part of the lemma since any
ear that contains no tree edge consists of a single nontree edge, and such an ear is
guaranteed to be open.

Consider tree edge t = (parent(i); i). Let low(i) = w and ear(i) = q.
Case 1: q = 1. Then t is contained in ear P1 which is an open ear.
Case 2: q > 1. The ear containing edge t consists of the nontree edge with label q,
call it (w; v), followed by part of the tree path from v to w (this was shown in the
proof of Lemma 2.3). Let the part of the tree path from v to w that is contained in
ear Pq extend from v to u, where u is a descendant of w and a proper ancestor of i
(see �gure 2.1). In order to show that ear Pq is open, it su�ces to show that u 6= w.

Let (w; x) be the �rst tree edge on the path from w to i (�gure 2.1). If w is not
the root, then low(x) < w (by condition c) and hence ear(x) < q. Thus edge (x; w)
is not contained in ear Pq. Hence u � x, and since x > w, we are done. If w is the
root then since q > 1, edge (w; x), which is equal to edge (0; 1), has label 1, which is
less than q. Hence u � x, and since x > w, we have u > w.

Hence the ear containing edge (i; parent(i)) is open. This concludes the proof of
the statement that each tree edge is contained in an open ear. To complete the proof

10



Figure 2.1: Illustrating case 2 in the proof of Lemma 2.5

of the lemma we show that, if any one of conditions a) through c) is not satis�ed,
then G is not biconnected.

If condition a) is not satis�ed, let c and d be two children of r with c < d. Then
every path between c and d passes through r and hence r is a cutpoint and G is not
biconnected.

If condition b) is not satis�ed, then edge (r; c) is a cutedge and c is a cutpoint of
G.

If condition c) does not hold, let v be a vertex for which it does not hold. The
vertex v is neither the root nor the child of the root. If low(v) > parent(v) then edge
(parent(v); v) is a cutedge (by proof of Lemma 2.4) and hence G is not biconnected. If
low(v) = parent(v) = w then any path between v and parent(w) must pass through
w. Hence w is a cutpoint of G.[]
Corollary to Lemma 2.5 Algorithm 2.2 constructs an open ear decomposition for
a biconnected graph.

Lemma 2.5 does not hold if we use Algorithm 2.1 in place of Algorithm 2.2. Figure
2.2 gives two di�erent ear decompositions that are obtained using Algorithm 2.1 on a
given input graph with the same spanning tree but with two di�erent edge orderings.
Of these, one is an open ear decomposition while the other is not.

11



Figure 2.2: Examples of ear decompositions constructed by Algorithm 2.1

2.5 An E�cient Parallel Algorithm for Open Ear Decom-

position

In the last section we noticed that Algorithm 2.1, when implemented using a depth-
�rst search tree as the spanning tree for the input graph, serves as an algorithm to
�nd an open ear decomposition of a biconnected graph; but if an arbitrary spanning
tree is used, Algorithm 2.1 may no longer construct an open ear decomposition of a
biconnected graph. Since no e�cient parallel algorithm is known for �nding a depth-
�rst search tree in an undirected graph, we need to use a general spanning tree in an
e�cient parallel implementation of Algorithm 2.1.

Intuitively, the reason why a depth-�rst search tree is e�ective in �nding an open
ear decomposition is that all nontree edges go from a descendant to an ancestor. As
a result the fundamental cycle of any nontree edge e contains only one base vertex
v. Note that lca(e) = parent(v). If the graph is biconnected, then there must be a
path between v and some proper ancestor w (if it exists) of lca(e) that avoids lca(e).
But this requires that edge (parent(v); v) be contained in an ear that is incident on
a proper ancestor of lca(e).

When an arbitrary spanning tree is used in place of a depth-�rst search tree, the
above property no longer need hold, and it is this that prevents Algorithm 2.1 from
constructing a open ear decomposition for a biconnected graph. In order to address
this, we will modify step 2 of Algorithm 2.1 to introduce some ordering among nontree
edges with the same lca. The modi�ed version of step 2 is given below.

Step 20.

f� Assign ear numbers for an open ear decomposition to nontree edges in T . �g

pfor each vertex v 2 V�frg ! compute low(v) and `mark' v if low(v) <

12



parent(v) rofp;

a. construct an auxiliary multigraph H = (V 0; E 0) with V 0 = V�frg and for
each nontree edge e in G place an edge in E 0 between the base vertices of its
fundamental cycle;

f� In case e has only one base vertex u we place a self-loop at u. �g

pfor each connected component C of H !

b. let a be any vertex in C and let b be the parent of a in T ; label(C) :=
preorder number of b in T ;

c. �nd a spanning tree S for C, root it at a `marked' vertex if one exists, and
number the vertices of S in preorder as 0; :::; k;

d. label each tree edge (parent(y); y) in S by the ordered pair (label(C); y);

e. label the nontree edges in S (including multiple copies and self-loops) as
(label(C); k + 1);

rofp;

pfor each nontree edge n in G ! label(n) := label of the edge in H that was
placed in H by n rofp;

sort the labels of the nontree edges inG in lexicographically nondecreasing order
and relabel them in order as 1; 2; :::

end 20;
Lemma 2.6 Algorithm 2.1 with step 2 replaced by step 20 constructs an ear decom-
position if G is two-edge connected.
Proof Let C be any connected component in H. The value of label(C) computed in
step b is the lca of the fundamental cycle of every nontree edge that places an edge
in C in step a. Hence the labels assigned to nontree edges of G by step 20 continue to
be nondecreasing in the lca of their fundamental cycle and hence by Lemma 2.3 the
modi�ed algorithm constructs an ear decomposition for G.[]
Lemma 2.7 Let C be a connected component in H.

a) If label(C) 6= 0 and C contains no marked vertex then G is not biconnected;

b) If label(C) = 0 and there is another connected component C 0 with label(C 0) = 0
then G is not biconnected.

Proof The proof is similar to the proof of the converse of Lemma 2.5 and is left as an
exercise.[]
Theorem 2.1 Algorithm 2.1 with step 2 replaced by step 20 constructs an open ear
decomposition of G if G is biconnected.

13



Proof By Lemma 2.6, P1 is an open ear.
Let n be the nontree edge of T with label i; i > 1. Then by Lemma 2.3 we know

that the edges in G with label i form a simple path p that is part of the fundamental
cycle c of n. We will show that p 6= c thereby establishing that Pi is an open ear.

Let lca(n) = l and let a and b be the base vertices of the fundamental cycle of
n. (Let b = a if there is only one base vertex.) Then a and b belong to the same
connected component C in H. Let a � b in the numbering of step c. We will show
that edge (l; a) must belong to an ear numbered lower than i.

Consider ear(l; a). If a is a `marked' vertex then edge (l; a) belongs to the funda-
mental cycle of a nontree edge whose lca is less than l and hence ear(l; a) < i. If a
is not `marked' then if a has a parent p in S, the spanning tree of C, then consider
the nontree edge n0 in G that introduced edge (a; p) in C. By the labeling scheme
in steps d and e we have label(n0) < label(n). Further the fundamental cycle of n0

contains the edge (a; l). Hence ear(a; l) � label(n0) < i.
Finally if a is neither `marked' nor has a parent in S (i.e., a is the root of S) then

C = 0 by Lemma 2.7 and hence ear(a; l) = 1 < i.[]
Step 20 requires the computation the low value for the vertices, the computation

of connected components, spanning trees, preorder numbering, and sorting. All of
these computations can be performed in logarithmic time using a linear number of
processors using well-known algorithms. Hence the over-all open ear decomposition
algorithm (i.e., Algorithm 2.1 with step 2 replaced by step 20) has the same processor-
time bounds.

3 Graph Triconnectivity

In this section we describe an algorithm for testing three-vertex connectivity (or tri-
connectivity) of a biconnected graph using an open ear decomposition of the graph.
We then extend this algorithm to one that decomposes the biconnected graph into
certain pieces called triconnected components. This material is from Miller & Ra-
machandran [MR87].

We start by presenting several de�nitions in Section 3.1. Since our algorithm is
fairly complex, we give a high-level description of the approach in Section 3.2. In Sec-
tion 3.3 we give the details of the triconnectivity algorithm and prove its correctness.
In Section 3.4 we extend this algorithm to �nding triconnected components.

In this section we only establish the correctness of the algorithm to test triconnec-
tivity and �nd triconnected components using open ear decomposition. In Section 4
we describe implementations of the various steps in the algorithm that run in loga-
rithmic time with a linear number of processors. At the end of the report we provide
some pointers towards achieving optimal performance of the algorithm in logarithmic
parallel time.

14



3.1 Further Graph-theoretic De�nitions

We �rst need to add to the graph-theoretic de�nitions given in Section 2.2.
Let G be a biconnected graph with an open ear decomposition D = [P0; :::; Pr�1].

Two ears are parallel to each other if they have the same endpoints; an ear Pi is a
parallel ear if there exists another ear Pj such that Pi and Pj are parallel to each
other.

An st-numbering of a graph G is a numbering of the n vertices of G from s = 1 to
t = n, such that every vertex v (other than s and t) has adjacent vertices u; w with
u < v < w. An st-graph is a directed acyclic graph G = (V;E) with (s; t) 2 E such
that every vertex in V lies on a path from s to t.

Let P = hv0; :::; vk�1i be a simple path. The path P (vi; vj); 0 � i; j � k� 1 is the
simple path connecting vi and vj in P , i.e., the path hvi; vi+1; :::; vji, if i � j or the
path hvj; vj+1; :::; vii, if j < i. Analogously, P [vi; vj] consists of the path (segments)
obtained when the edges and internal vertices of P (vi; vj) are deleted from P .

Given a noncyclic path P = hv0; :::; vki, the innard of P is the path hv1; :::; vk�1i,
i.e., the path obtained from P by deleting the �rst and last vertices.

Let G = (V;E) be a biconnected graph, and let Q be a subgraph of G. We de�ne
the bridges of Q in G as follows: Let V 0 be the vertices in G�Q, and consider the
partition of V 0 into classes such that two vertices are in the same class if and only
if there is a path connecting them which does not use any vertex of Q. Each such
class K de�nes a nontrivial bridge B = (VB; EB) of Q, where B is the subgraph of
G with VB = K[ fvertices of Q that are connected by an edge to a vertex in Kg,
and EB containing the edges of G incident on a vertex in K. The vertices of Q which
are connected by an edge to a vertex in K are called the attachments of B on Q; the
connecting edges are called the attachment edges. An edge (u; v) in G � Q, with
both u and v in Q, is a trivial bridge of Q, with attachments u and v and attachment
edge (u; v). The nontrivial and trivial bridges of Q together form the bridges of Q.
The operation of removing a bridge B of Q from G is the removal from G of all edges
and all nonattachment vertices of B.

Let G = (V;E) be a graph and let V 0 � V with the subgraph of G induced on V 0

being connected. The operation of collapsing the vertices in V 0 consists of replacing
all vertices in V 0 by a single new vertex v, deleting all edges in G whose two endpoints
are in V 0 and replacing each edge (x; y) with x in V 0 and y in V � V 0 by an edge
(v; y). In general this results in a multigraph even though G is not a multigraph.

Let G = (V;E) be a biconnected graph, and let Q be a subgraph of G. The bridge
graph of Q, S = (VS; ES) is obtained from G by collapsing the nonattachment vertices
in each nontrivial bridge of Q and by replacing each trivial bridge b = (u; v) of Q by
the two edges (xb; u) and (xb; v) where xb is a new vertex introduced to represent the
trivial bridge b. Note that in general the bridge graph is a multigraph.

Let G = (V;E) be a biconnected graph with an open ear decomposition D =
[P0; :::; Pr�1]. We will denote the bridge graph of ear Pi by Ci. The anchor bridges of
Pi are the bridges of Pi in G that contain nonattachment vertices belonging to ears

15



numbered lower than i. For any two vertices x; y on Pi, we denote by Vi(x; y), the
internal vertices of Pi(x; y), i.e., the vertices in Pi(x; y)�fx; yg; we denote by Vi[x; y],
the vertices in Pi[x; y]�fx; yg together with the nonattachment vertices in the anchor
bridges of Pi. Figure 3.1 illustrates some of our de�nitions relating to bridges.

A star is a connected graph in which exactly one vertex has degree greater than
1. The unique vertex of a star that has degree greater than 1 is called its center.

Let P be a simple noncyclic path in a graph G. If each bridge of P in G contains
exactly one vertex not on P , then we call G the star graph G(P ). Each bridge of
G(P ) is a star and is called a star of G(P ). Note that, in a connected graph G, the
bridge graph X of any simple noncyclic path in G is a star graph X(P ). For example,
in �gure 1, the bridge graph X of P2 is a star graph X(P2). We will sometimes refer
to a star graph G(P ) by G if the path P is clear from the context.

Let G(P ) be a star graph and let P = h0; 1; :::; ki. Given a star S of G(P ) with
attachments v0 < v1 < ::: < vr on P , we will call v0 and vr the end attachments of
S and the remaining attachments the internal attachments of S; the vertex v0 is the
leftmost attachment of S, and the vertex vr is its rightmost attachment; attachments
vi and vi+1 are consecutive, for i = 0; : : : ; r � 1.

Two stars in a star graph G(P ) interlace if one of following two hold:

1) There exist four distinct vertices a; b; c; d in increasing order on P such that a and
c are attachments of one of the stars and b and d are attachments of the other
star; or

2) There are three distinct vertices on P that belong to both stars.

The operation of coalescing two stars Sj and Sk is the process of forming a single
new star Sl from Sj and Sk by combining the centers of Sj and Sk, and deleting Sj
and Sk. Given a star graph G(P ), a coalesced graph Gc of G is the graph obtained
from G by repeatedly coalescing a pair of interlacing stars in the current star graph
until no pair of stars interlace; a partially coalesced graph of G is any graph obtained
from G by performing this repeated coalescing at least once.

A planar embedding of a graph G is a mapping of each vertex of G to a distinct
point on the plane and each edge of G to a curve connecting its endpoints such that
no two edges intersect. A face of a planar embedding is a maximal region of the
plane that is bounded by edges of the planar embedding. The outer face of a planar
embedding is the face with unbounded area. An inner face of a planar embedding is
a face with �nite area.

Let G(P ) be a star graph in which no pair of stars interlace. If G(P ) contains no
star that has attachments to the endpoints x and y of P , then add a virtual star X to
G(P ) with attachments to x and y. The star embedding G�(P ) of G(P ) is the planar
embedding of (the possibly augmented) G(P ) with P on the outer face. From some
well-known results in planarity, it can be established that a star graph G(P ) has a
planar embedding with P on the outer face if and only if no pair of stars interlace. We
give some further de�nitions on planar combinatorial embeddings in Section 4.2.3.

16



G with open ear decomposition D = [P0; P1; P2, P3, P4; P5]; P0 = ha; bi,
P1 = hb; c; d; e; ai, P2 = hc; g; f; ei, P3 = hd; fi, P4 = hg; h; fi, P5 = hc; i; ei.

Bridges of P2.

Bridge graph X of P2. Anchor bridges are B1 and B3

Figure 3.1: Illustrating the de�nitions

17



Let G(P ) be a star graph with a star embedding G�(P ). Let B and B0 be two
stars in G(P ). Then B is the parent-star of B0 and B0 is a child-star of B if there is
a face in the star embedding G�(P ) that contains the end attachment edges of B0 as
well as an attachment edge of B on either side of the end attachments of B0.

Let G be a biconnected graph with an open ear decomposition D = [P0; :::; Pr�1].
Let B1; :::; Bl be the anchor bridges of ear Pi. The ear graph of Pi, denoted by Gi(Pi),
is the graph obtained from the bridge graph of Pi by

a) Coalescing all stars corresponding to anchor bridges;

b) Removing any multiple two-attachment bridges with the endpoints of the ear as
attachments; and

c) Replacing all multiple edges by a single copy.

We will call the star obtained by coalescing all anchor bridges, the anchoring star of
Gi(Pi).

We conclude our list of de�nitions by de�ning the triconnected components of a
biconnected multigraph (see, e.g., [Tu66, HT72]).

A pair of vertices a; b in a multigraph G = (V;E) is a separating pair if and only if
there are two nontrivial bridges, or at least three bridges, one of which is nontrivial,
of fa; bg in G. A biconnected graph with at least four vertices is triconnected if it
has no separating pair. The pair a; b is a nontrivial separating pair if there are two
nontrivial bridges of a; b in G. These de�nitions apply to a (simple) graph as well;
in this case, all separating pairs are nontrivial. By Menger's theorem, a graph is
triconnected if and only if it is biconnected and has at most 3 vertices or there are 3
vertex-disjoint paths between every pair of distinct vertices.

Let fa; bg be a separating pair for a biconnected multigraph G = (V;E). For
any bridge X of fa; bg, let �X be the induced subgraph of G on (V � V (X))[ fa; bg.
Let B be a bridge of fa; bg such that jE(B)j � 2; jE( �B)j � 2 and either B or �B is
biconnected. We can apply a Tutte split s(a; b; i) to G by forming G1 and G2 from G,
where G1 is B[f(a; b; i)g and G2 is �B[f(a; b; i)g. Note that we consider G1 and G2 to
be two separate graphs. Thus it should cause no confusion that there are two edges
labeled (a; b; i) since one of these edges is in G1 and the other is in G2. The graphs G1

and G2 are called split graphs of G with respect to a; b. The Tutte components of G
are obtained by successively applying a Tutte split to split graphs until no Tutte split
is possible. Every Tutte component is one of three types: i) a triconnected simple
graph; ii) a simple cycle (a polygon or iii) a pair of vertices with at least three edges
between them (a bond the Tutte components of a biconnected multigraph G are the
unique triconnected components of G.

3.2 Brief Overview of Results

In this section we give a high-level description of the results leading to our triconnec-
tivity algorithm. Given a biconnected graph, our algorithm �nds all separating pairs

18



in the graph. The input graph is triconnected if and only if the algorithm �nds no
separating pair in the graph.

In Section 3.3 we show that if x; y is a separating pair in a biconnected graph G
with an open ear decompositionD, then there exists an ear Pi inD that contains x and
y as nonadjacent vertices, and further, every bridge of Pi has an empty intersection
with either Vi(x; y) or Vi[x; y]. This is the basic property that we use in our algorithm.

We further show that the above property is not altered by the operation of coa-
lescing interlacing stars in the bridge graph Ci(Pi) and thus applies to the ear graph
of Pi as well as its coalesced graph. Finally we show that separating pairs satisfying
the basic property with respect to Pi are simply those pairs of nonadjacent vertices
on Pi that lie on a common face in the star embedding of this coalesced graph.

The above results lead to the following high-level algorithm for �nding separating
pairs in a biconnected graph G: Find an open ear decomposition D for G and for
each nontrivial ear Pi in D, form the coalesced graph of its ear graph and extract
separating pairs from its star embedding.

In Section 3.4 we build on the above results to give an e�cient parallel algorithm
to �nd the triconnected components of a graph. This algorithm �nds the triconnected
components using Tutte splits in contrast to the earlier algorithm based on depth �rst
search [HT72], which used certain other types of splits that required a clean-up phase
at the end of the algorithm.

The de�nition of triconnected components given in Section 3.1 may appear con-
trived at �rst, but in reality it decomposes a biconnected graph into substructures
that preserve the triconnected structure of G. In particular, questions relating to
graph planarity and isomorphism between a pair of graphs can be mapped onto re-
lated questions regarding the triconnected components. Thus the problem of �nding
the triconnected components of a graph is an important one.

3.3 The Triconnectivity Algorithm

Lemma 3.1 Let D = [P0; :::; Pr�1] be an open ear decomposition of a biconnected
graph G and let x and y be the endpoints of ear Pi. Then every anchor bridge of Pi

has attachments on x and y.
Proof Let B be an anchor bridge of Pi and let H = [i�1

j=0Pj. By de�nition, the
nonattachment vertices in B are the vertices in a connected component C of G�fPig
that contains a vertex in H�fx; yg.

The graph (H�fx; yg) \ Pi is empty since none of the internal vertices of Pi are
contained in ears numbered lower than i. Hence C must contain all vertices in one or
more connected component(s) of H�fx; yg. Let D be one such connected component
contained in C. Since H has an open ear decomposition, it is biconnected by Lemma
2.2. Hence D contains vertices adjacent to x and y in H, since otherwise x or y would
be a cutpoint of H. But this implies that C contains vertices adjacent to x and y in
G�fPig, i.e., bridge B of Pi has attachments on x and y.[]

19



Figure 3.2: Case 1 in the proof of Lemma 3.2

Lemma 3.2 Let G = (V;E) be a biconnected undirected graph for which vertices
x and y form a separating pair. Let D = [P0; :::; Pr�1] be an open ear decomposition
for G. Then there exists a nontrivial ear Pi in D that contains x and y as nonadjacent
vertices, such that every path from a vertex in Vi(x; y) to a vertex in Vi[x; y] in G
passes through either x or y.
Proof Since x and y form a separating pair, the subgraph of G induced by V�fx; yg
contains at least two connected components. Let X1 and X2 be two such connected
components.
Case 1: The ear P1 contains no vertex in X2 (see �gure 3.2):

Consider the lowest-numbered ear, Pi, that contains a vertex v in X2. Since the
endpoints of Pi are distinct and must be contained in ears numbered lower than i,
Pi must contain x and y. Further, all vertices in Vi(x; y) lie in X2, and none of the
vertices in Vi[x; y] lie in X2. Hence every path from a vertex in Vi(x; y) to a vertex
in Vi[x; y] in G passes through either x or y. Further, x and y are not adjacent on Pi

since v lies between x and y.
Case 2: P1 contains a vertex in X2:
If P1 contains no vertex in X1, then case 1 applies to X1. Otherwise P1 contains at

least one vertex from X1, and one vertex from X2. But then, since P0[P1 is a simple
cycle, and P1 contains both vertices in P0, we have the result that P1 must contain x
and y. Hence, by the argument of Case 1, every path from a vertex in V1(x; y) to a
vertex in V1[x; y] must contain either x or y, and x and y are not adjacent on P1.[]

We will say that a separating pair x; y separates ear Pi if x and y are nonadjacent
vertices on Pi, and the vertices in Vi(x; y) are disconnected from the vertices in Vi[x; y]
in the subgraph of G induced by V� fx; yg. By Lemma 3.2, every separating pair
in G separates some nontrivial ear. (Note that a separating pair may separate more
than one nontrivial ear; for instance, in the graph G in �gure 3.1, the pair c; e is a
pair separating ears P1 and P5,|note that c; e does not separate P2.)

20



Lemma 3.3 Let G = (V;E) be a biconnected graph with an open ear decomposition
D = [P0; :::; Pr�1]. Let ear Pi contain x and y as nonadjacent vertices. Then x; y
separates Pi if and only if every bridge of Pi has an empty intersection with either
Vi(x; y) or Vi[x; y].
Proof Let every bridge of Pi have an empty intersection with either Vi(x; y) or
Vi[x; y] and suppose x; y does not separate ear Pi. Hence, there exists a path P =
ha; w1; :::; wl; bi in G, with a in Vi(x; y) and b in Vi[x; y], that avoids both x and y.
This implies that there is a subpath P 0 of P with P 0 = hwr; :::; wsi such that wr is in
Vi(x; y), ws is in Vi[x; y], and none of the intermediate wk lie on Pi. Hence there is a
bridge B of Pi containing wr and ws, i.e., B has a nonempty intersection with both
Vi(x; y) and Vi[x; y], which is not possible by assumption. Hence x; y must separate
ear Pi.

Conversely suppose B is a bridge of Pi containing a vertex a in Vi(x; y) and a
vertex b in Vi[x; y]. Then we have a path from a vertex in Vi(x; y) to a vertex in
Vi[x; y] that avoids both x and y. Hence x; y does not separate Pi.[]

Corollary to Lemma 3.3 Let x and y be the endpoints of a nontrivial ear Pi in
an open ear decomposition D of a graph G. Then x; y separates Pi if and only if no
anchor bridge of Pi has an attachment in Vi(x; y).
Proof Let x; y separate Pi. By Lemma 3.3, every bridge of Pi has an empty intersec-
tion with either Vi(x; y) or Vi[x; y]. Since any anchor bridge of Pi has a nonempty
intersection with Vi[x; y], every anchor bridge must have an empty intersection with
Vi(x; y). Hence no anchor bridge can have an attachment in Vi(x; y).

Conversely, suppose no anchor bridge of Pi has an attachment in Vi(x; y). Then
every anchor bridge has an empty intersection with Vi(x; y). Since x and y are end-
points of Pi, every nonanchor bridge has an empty intersection with Vi[x; y]. Hence
by Lemma 3.3, x; y separates Pi.[]

We will call a pair of vertices x; y on an ear Pi a candidate pair for Pi if x; y is a
pair separating Pi or (x; y) is an edge in Pi or x and y are endpoints of Pi. Clearly,
if we can determine the set of candidate pairs for Pi, we can extract from it the pairs
separating Pi by deleting pairs that are endpoints of an edge in Pi, and checking if the
endpoints of Pi form a pair separating Pi using the criterion in the above Corollary.

More generally, let G(P ) be a star graph. A pair of nonadjacent vertices x; y on P
will be called a pair separating P if the vertices in P (x; y)�fx; yg are separated from
the vertices in P [x; y]�fx; yg when x and y are deleted from G. A pair of vertices
x; y on P will be called a candidate pair for P in G if x; y is a pair separating P , or
x and y are endpoints of P , or (x; y) is an edge in P .

The proof of the following claim is similar to the proof of Lemma 3.3 and is
omitted.
Claim 3.1 Let G(P ) be a star graph. A pair x; y separates P in G(P ) if and only
if every bridge of P in G(P ) has an empty intersection with either P (x; y)�fx; yg or
P [x; y]�fx; yg.

21



We now relate candidate pairs for Pi in G with candidate pairs for Pi in its bridge
graph Ci(Pi).
Observation 3.1 Let G = (V;E) be a biconnected graph with an open ear decom-
position D = [P0; :::; Pr�1]. Then x; y is a candidate pair for Pi in G if and only if it
is a candidate pair for Pi in the bridge graph Ci(Pi).
Proof If (x; y) is an edge in Pi or if x and y are endpoints of Pi, then x; y is a candidate
pair for Pi in both G and Ci(Pi). So in the following we assume that x; y separates
Pi and x and y are not both endpoints of Pi.

Let x; y separate Pi in G. By Lemma 3.3 every bridge of Pi in G has an empty
intersection either with Vi(x; y) { and hence with Pi(x; y)�fx; yg { or with Vi[x; y] {
and hence with Pi[x; y]�fx; yg. By construction this implies that every bridge of Pi in
Ci(Pi) has an empty intersection either with Pi(x; y)�fx; yg or with Pi[x; y]�fx; yg.
Hence by Claim 3.1, x; y separates Pi in Ci(Pi).

Conversely, let x; y separate Pi in Ci(Pi). By Claim 3.1, every bridge of Pi in
Ci(Pi) has an empty intersection either with Pi(x; y)�fx; yg or with Pi[x; y]�fx; yg.
Let B1; :::; Bk be the bridges of Pi in Ci(Pi) corresponding to the anchor bridges of
Pi in G. By Lemma 3.1, each Bj has attachments to the two endpoints e and f
of Pi and by assumption either e or f is distinct from x and y. Assume without
loss of generality that e is di�erent from x and y. The vertex e is in Pi[x; y]�fx; yg
and each Bj; j = 1; :::; k has an attachment on e. Hence each Bj has a nonempty
intersection with Pi[x; y]�fx; yg and therefore must have an empty intersection with
Pi(x; y)�fx; yg.

The above implies that every anchor bridge of Pi in G has an empty intersection
with Vi(x; y) and every nonanchor bridge has an empty intersection either with Vi(x; y)
or with Vi[x; y]. Hence, by Lemma 3.3, x; y separates Pi in G.[]

By the above Observation we can work with the bridge graph of each ear in order
to �nd the candidate pairs for that ear in G. We now develop results that will lead
to an e�cient algorithm to �nd candidate pairs in a star graph.
Lemma 3.4 Let G(P ) be a star graph with stars S1; :::; Sk. For j = 1; :::; k let Hj

be the subgraph of G consisting of P [ Sj and let Hj
� be the star embedding of Hj.

Then a pair of vertices x; y on P is a candidate pair for P if and only if either x and y
are the endpoints of P or x and y lie on a common inner face in each Hj

�; j = 1; :::; k.
Proof Let x; y be a candidate pair for P . If x and y are endpoints of P then the result
follows immediately. If (x; y) is an edge on P then x and y must lie on a common
inner face in each Hj

�. Otherwise, by Claim 3.1, each Sj has an empty intersection
with either P (x; y)�fx; yg or P [x; y]�fx; yg.

If Sj has an empty intersection with P [x; y]�fx; yg then x and y belong to the
unique inner face of H�

j that contains the endpoints of P . If Sj has an empty inter-
section with P (x; y)�fx; yg, let ha1; :::; ali be the attachments of Sj on P in the order
that they are encountered on P from one endpoint of P to the other. The vertices x
and y must lie between ap and ap+1, for some 1 � p < k. Then x and y lie on the
unique inner face of Hj

� containing ap and ap+1.

22



If x; y is not a candidate pair for P , then by Claim 3.1 there exists a star Sj with
consecutive attachments a; b, with a in P [x; y]�fx; yg and b in P (x; y)�fx; yg. Then,
one of x and y, say x, lies in P (a; b)�fa; bg and the other, y, lies in P [a; b]�fa; bg.
Then x lies on the unique inner face containing a and b in H�

j and y does not lies on
this face.[]

Corollary to Lemma 3.4 If G� is the star embedding ofG(P ), then a pair of vertices
x; y on P is a candidate pair for P if and only if either x and y are the endpoints of
P or x and y lie on a common inner face in G�.

In general, this corollary may not apply, because G(P ) need not be planar. We
now introduce the star coalescing property: namely, we establish that if we enforce
the planarity required in the corollary by forming a coalesced graph Gc of G(P ) then
the corollary applies to Gc.

The coalesced graph Gc(P ) of a star graph G(P ) is unique (exercise 3). Hence in
the following we refer to Gc as `the' coalesced graph of G (rather than `any' coalesced
graph of G).

Theorem 3.1 Let G(P ) be a star graph and let G1(P ) be obtained from G(P ) by
coalescing a pair of interlacing stars S and T . Then a pair x; y on P is a candidate
pair for G(P ) if and only if it is a candidate pair for G1(P ).
Proof Let R be the star in G1(P ) formed by coalescing S and T .

If (x; y) is an edge on P or if x and y are endpoints of P then x; y is a candidate
pair for both G(P ) and G1(P ).

Let x; y separate P inG(P ). Hence S and T have an empty intersection with either
P (x; y)�fx; yg or P [x; y]�fx; yg. Since S and T interlace, either both have empty
intersection with P (x; y)�fx; yg or both have empty intersection with P [x; y]�fx; yg.
Hence R, which contains the union of the attachments of S and T , must have an empty
intersection with either P (x; y)�fx; yg or with P [x; y]�fx; yg. Hence by Claim 3.1,
x; y separates P in G1(P ).

Conversely suppose x; y separates P inG1(P ) and letR have an empty intersection
with P (x; y)�fx; yg (P [x; y]�fx; yg). Then both S and T have an empty intersection
with P (x; y)�fx; yg (P [x; y]�fx; yg) and hence x; y separates P in G(P ) by Claim
3.1.[]
Corollary to Theorem 3.1 Let G(P ) be a star graph.

a) Let G0(P ) be any partially coalesced graph of G(P ). Then x; y is a candidate
pair for G(P ) if and only if it is a candidate pair for G0(P ).

b) A pair x; y is a candidate pair for G(P ) if and only if it is a candidate pair for
the coalesced graph Gc(P ).

Let G(P ) be a star graph and let Gc(P ) be its coalesced graph. Since no pair of
bridges of P interlace in Gc(P ), Lemma 3.4 and its Corollary apply to this graph. Let
us refer to the set of vertices on P that lie on a common inner face in Gc

� listed in the

23



order they appear on P as a candidate list for P . A pair of vertices is a candidate
pair for P if and only if it lies in a candidate list for P . A candidate list S for ear P
is a nontrivial candidate list if it contains a pair separating P .

Let G be a biconnected graph with an open ear decomposition D = [P0; :::; Pr�1].
Since every separating pair forG is a candidate pair for some nontrivial ear Pi (Lemma
3.2), any algorithm that determines the candidate lists for all nontrivial ears is an
algorithm that �nds all separating pairs for a graph. By the results we have proved
above, we can �nd all candidate lists in G by forming the bridge graph for each
nontrivial ear, and then extracting the nontrivial candidate lists from the coalesced
graph of the bridge graph.

In order to obtain an e�cient implementation of this algorithm, we will not use the
bridge graph of each ear, but instead the closely related ear graph which we de�ned
in Section 3.1.
Lemma 3.5 A pair of vertices x; y separates ear Pi in G if and only if it separates Pi

in the ear graph Gi(Pi).
Proof By Claim 3.1, x; y separates ear Pi in G if and only if it separates Pi in the
bridge graph Ci(Pi).

Now consider the ear graph Gi(Pi). The ear graph Gi(Pi) is obtained from the
bridge graph Ci(Pi) by coalescing all anchor bridges, deleting multiple two-attachment
bridges with the endpoints of the ear as attachments, and deleting all multiple edges
by a single copy.

Deleting a star with attachments only to the endpoints of an ear can neither
create nor destroy candidate pairs. Let C 0

i(Pi) = Ci(Pi)�f2-attachment bridges with
endpoints of Pi as attachmentsg.

By Lemma 3.1, every anchor bridge of Pi has the two endpoints of Pi as attach-
ments, and hence every pair of anchor bridges with an internal attachment on Pi

must interlace. Hence Gi(Pi) is the graph derived from C 0

i(Pi) by coalescing some
interlacing stars. The lemma now follows from the Corollary to Theorem 3.1.[]
Lemma 3.6 Let G = (V;E) be a biconnected graph with an open ear decomposition
D = [P0; :::; Pr�1], and let jV j = n and jEj = m. Then the total size of the ear graphs
of all nontrivial ears in D is O(m).
Proof Each ear graph consists of a nontrivial ear Pi together with a collection of stars
on Pi. The size of all of the Pi is O(m). So we only need to bound the size of all of
the stars in all of the ear graphs.

Consider an edge (u; v) in G. This edge appears as an internal attachment edge
in at most two ear graphs: once for the ear Pear(u) and once for ear Pear(v). Thus the
number of internal attachment edges in all of the stars is no more than 2m.

We now bound the number of attachment edges to endpoints of ears. Since we
delete all stars with only the endpoints of an ear as attachments, every star in an ear
graph Gi(Pi) with an attachment to an endpoint of Pi also has an internal attachment
in Pi. A star can contain at most two attachments to endpoints of an ear. Hence for
each star that contains attachments to endpoints of its ear, we charge these attach-

24



ments to an internal attachment. Since the number of internal attachment edges is
no more than 2m, the number of attachment edges to endpoints of ears is no more
than 4m. Hence the total size of all of the ear graphs is O(m).[]

The above results establish the validity of the following algorithm to �nd the
nontrivial candidate lists in a biconnected graph.

Algorithm 3.1: Finding the Nontrivial Candidate Lists

Input: A biconnected graph G = (V;E).
Output: The candidate lists for G.

integer j; vertex u; v;

1. �nd an open ear decomposition D = [P0; :::; Pr�1] for G;

pfor each nontrivial ear Pj !

2. construct the ear graph Gj(Pj);

3. coalesce all interlacing stars on Gj(Pj) to form the coalesced graph Gjc;

4. construct the star embedding of G�

jc
of Gjc, and identify each list of vertices

on Pj on a common inner face in this embedding as a candidate list;

let u and v be the endpoints of Pj;

if [u; v] is a candidate list for Pj and the anchoring star of Pj has an internal
attachment on Pj ! delete candidate list [u; v] �;

delete any candidate list for Pj that contains only the two endpoints of an
edge in Pj

rofp

end.

In Section 2.5 we described a logarithmic time parallel algorithm with a linear
number of processors on a CRCW PRAM for step 1 of Algorithm 3.1. In Section 4,
we give algorithms with similar processor-time bounds to perform steps 2, 3 and 4
in parallel for all nontrivial ears. Clearly the remaining steps in the pfor loop are
trivial to implement. Hence Algorithm 3.1 can be made to run in logarithmic time
with a linear number of processors. However, before proceeding to an e�cient imple-
mentation of Algorithm 3.1, we show in Section 3.4, how to obtain the triconnected
components of a biconnected graph, given the nontrivial candidate lists.

3.4 Finding Triconnected Components

In this section we de�ne a special type of split, called the ear split in a biconnected
graph with an open ear decomposition. This split has the desirable property that
the original open ear decomposition decomposes in a natural way into two open ear
decompositions, one for each split graph. This also leads to a natural algorithm

25



for �nding triconnected components based on applying certain types of ear splits
successively.

We also consider some issues that arise in a parallel implementation of the above
algorithm. The obvious approach would be to perform all of the ear splits in parallel.
However, this leads to complications when a vertex is shared by several Tutte pairs.
We analyze some of the properties of ear splits in this section and we present a
method for performing all of the relevant ear splits on a single ear. This method runs
in logarithmic time with a number of processors linear in the size of the bridge graph
of the ear. In Section 4.3 we apply this method to the `local replacement graph' which
is de�ned in Section 4.1 to obtain a logarithmic time algorithm using a linear number
of processors to �nd the triconnected components of the input graph.

We start by de�ning a special type of split, called an ear split, on a biconnected
graph G with an open ear decomposition D = [P0; :::; Pr�1]. Let a; b be a pair sepa-
rating ear Pi. Let B0; :::; Bk be the bridges of Pi with an attachment in Vi(a; b), and
let Ti(a; b) = ([k

j=0Bj) [ Pi(a; b). It is easy to see that Ti(a; b) is a bridge of a; b.
Then the ear split e(a; b; i) consists of forming the upper split graph G1 = Ti(a; b)[
f(a; b; i)g and the lower split graph G2 = �Ti(a; b)[f(a; b; i)g. Note that the ear split
e(a; b; i) is a Tutte split if one of G1�f(a; b; i)g or G2� f(a; b; i)g is biconnected.

Let S be a nontrivial candidate list for ear Pi. A pair u; v in S is an adjacent
separating pair for Pi if S contains no vertex in Vi(u; v). The pair u; v is a nonvacuous
adjacent separating pair for Pi if u; v is an adjacent separating pair and there is a
bridge of Pi with an attachment on Vi(u; v). A pair a; b in S is an extremal separating
pair for Pi if jSj � 3 and S contains no vertex in Vi[a; b]. We will refer to a nonvacuous
adjacent or extremal separating pair as a Tutte pair.

We now prove the following theorem.
Theorem 3.2 LetG = (V;E) be a biconnected graph with an open ear decomposition
D = [P0; :::; Pr�1]. Let a; b be an adjacent (extremal) separating pair for Pi in G, and
let G1 and G2 be, respectively, the upper and lower split graphs obtained by the ear
split e(a; b; i). Then,

a) G1�f(a; b; i)g (G2�f(a; b; i)g) is biconnected.

b) The ear decomposition D1 induced by D on G1 by replacing Pi by the simple
cycle formed by Pi(a; b) followed by the newly added edge (b; a; i) is a valid open
ear decomposition for G1; likewise, the ear decomposition D2 induced by D on
G2 by replacing Pi(a; b) by the newly added edge (a; b; i) is a valid open ear
decomposition for G2.

c) Let c; d be a pair separating some Pj; 0 � j � r� 1 in G. If fc; dg6=fa; bg or i 6= j
then c and d lie in one of G1 or G2, and c; d is a separating pair for Pj in the
split graph in which Pj; c, and d lie.

d) Every separating pair in G1 or in G2 is a separating pair in G.

26



Proof
a) Let a; b be an adjacent separating pair for Pi. If G1� f(a; b; i)g is not biconnected
then let c be a cutpoint in the graph. The vertex c cannot lie on Pi(a; b) since this
would imply that it is part of the candidate list for which a; b is an adjacent separating
pair. But c cannot lie on a bridge of Pi(a; b) since then c would be a cutpoint of G
and this would imply that G is not biconnected.

Similarly G2� f(a; b; i)g is biconnected if a; b is an extremal separating pair.
b) We establish by induction on ear number j, for j � i, that the graph P0;j = [j

k=0Pk

satis�es the property in part b) of the Theorem. The details are straightforward and
are omitted.
c and d) If i 6= j let Pj lie in Gk (where k =1 or 2). We note that the ear graph of
Pj in Gk is the same as the ear graph of Pj in G. Hence c; d is a pair separating Pj

in G if and only if it is a pair separating Pj in Gk.
If i = j we note that in G1 the bridges of Pi are precisely those bridges of Pi in G

that have attachments on an internal vertex of Pi(a; b). Hence if c and d lie on Pi(a; b)
then c; d separates Pi in G if and only if it separates Pi(a; b) in G1. An analogous
argument holds for G2 in the case when c and d lie on Pi[a; b].[]

We now present the algorithm for �nding triconnected components.

Algorithm 3.2: Finding Triconnected Components

Input: A biconnected graph G = (V;E) with an open ear decomposition D =
[P0; :::; Pr�1], and the nontrivial candidate lists for each ear.
Output: The triconnected components of G.

vertex u; v; integer i;

pfor each nontrivial candidate list S in each nontrivial ear Pi !

pfor each nonvacuous adjacent separating pair u; v in S !

form the upper split graph G1 for the ear split e(u; v; i) and replace G
by the lower split graph G2 for the ear split e(u; v; i);

replace D by the open ear decomposition D2 for the lower split graph
G2 and form the open ear decomposition D1 for the upper split graph
G1 as in part b) of Theorem 3.2

rofp;

if jSj > 2 !

form the upper split graph G1 and replace G by the lower split graph
G2 for the extremal separating pair u; v in S;

form the open ear decompositions D1 and D2 as in Theorem 3.2 and
replace D by D2. (if i = 1 and u and v are endpoints of ear P1 then
perform this ear split only if there are at least two edges between u
and v)

27



�

rofp;

split o� multiple edges in the remaining split graphs to form the bonds

end.

Lemma 3.7 Algorithm 3.2 generates the Tutte components of G.
Proof By Theorem 3.2, each split performed in Algorithm 3.2 is a Tutte split, and at
termination there is no separating pair in any of the generated graphs.[]

For an e�cient parallel implementation of Algorithm 3.2 we need a good method
to perform all of the Tutte splits in the algorithm in parallel. This is quite simple
if all of the Tutte pairs are disjoint. However, for the general case when the Tutte
pairs are not necessarily disjoint, we need to specify a method to process the splits in
parallel without causing conicts between di�erent splits that share a vertex in their
Tutte pairs. In the rest of this section we develop a method to perform in parallel all
of the splits on Tutte pairs in a single ear. This method is not necessarily e�cient.
However, it will be used in a general algorithm described in Section 4.3 that performs
the splits corresponding to Tutte pairs in all ears in logarithmic time with a linear
number of processors.

We start by associating a triconnected component with each ear split correspond-
ing to a Tutte pair. Let e(a; b; i) be such a split. Then by de�nition Ti(a; b)[ f(a; b; i)g
is the upper split graph associated with the ear split e(a; b; i). The triconnected com-
ponent of the ear split e(a; b; i), denoted by TC(a; b; i), is Ti(a; b)[f(a; b; i)g with the
following modi�cations: Call a pair c; d separating an ear Pj in Ti(a; b) a maximal
pair for Ti(a; b) if there is no e; f in Ti(a; b) such that e; f separates some ear Pk

in Ti(a; b) and c; d is in Tk(e; f). In Ti(a; b)[f(a; b; i)g replace Tj(c; d) together with
all two-attachment bridges with attachments at c and d, for each maximal pair c; d
of Ti(a; b), by the edge (c; d; j) to obtain TC(a; b; i). We denote by TC(0; 0; 0), the
unique triconnected component that contains P0.
Lemma 3.8 TC(a; b; i) is a triconnected component of G.
Proof Each split of Ti(a; b) in the above de�nition is a valid Tutte split, and the �nal
resulting graph contains no unprocessed separating pair. Hence TC(a; b; i) is a valid
triconnected component of G.[]
Lemma 3.9 Every triconnected component of G is TC(a; b; i) for some unique triplet
(a; b; i).
Proof Straightforward.[]

We note that if a; b is an extremal pair separating Pi then TC(a; b; i) is a polygon
and if a; b is a nonvacuous adjacent pair separating Pi then TC(a; b; i) is a simple
triconnected graph.

Let G = (V;E) be a biconnected graph with an open ear decomposition D =
[P0; P1; :::; Pr�1]. Let Ci(Pi) be the bridge graph of Pi and let Di(Pi) be the coalesced
graph of Ci. Note that Di is closely related to Gic(Pi), the coalesced graph of the ear

28



graph of Pi in G, but is not exactly the same since Di retains multiple attachment
edges as well as multiple two-attachment bridges. (Note also that the sum of the sizes
of the Di over all nontrivial ears could be superlinear in the size of G.)

The proofs of the following two lemmas are left as exercises.
Lemma 3.10 Algorithm 3.1 with Gic replaced by Di will output the nontrivial can-
didate lists of G.
Lemma 3.11 Let a; b be a nonvacuous adjacent separating pair for Pi in G and let
(x; y) be an edge, not in Pi, which is incident on a vertex y on Pi. Then

a) The edge (x; y) is in Ti(a; b) if and only if it is in a star of Di with an attachment
on an internal vertex in Pi(a; b);

b) Di contains at most one star B with attachments on a, b, and an internal vertex
in Pi(a; b) , and if edge (x; y) is in TC(a; b; i) then it lies in B.

We now give a lemma about two-attachment bridges.
Lemma 3.12 Let B be a two-attachment bridge of Pi in Di with attachments a and
b. Then

a) If the span [a; b] is degenerate (i.e., (a; b) is an edge in Pi) or if there is a bridge B
0

of Pi with attachments on a and b and at least one other vertex, then the graph
Di � B de�nes the same set of polygons and simple triconnected components
TC(x; y; i), for i �xed, as Di(Pi).

b) If part a) does not hold then fa; bg is an extremal pair separating Pi as well as
an adjacent pair separating Pi.

Proof Let Pj be the lowest-numbered ear in B. Then j > i and a and b are endpoints
of Pj. Hence the ear split e(a; b; j) separates B from Pi, and thus B is not part of
TC(x; y; i) for any pair fx; yg separating Pi. So a two-attachment bridge of Pi in
Di is never part of a triconnected component associated with a pair separating Pi,
though it may de�ne some adjacent and extremal separating pairs as in case b) of
the lemma.

We now prove parts a) and b) of the lemma.
Part a): Suppose span [a; b] is degenerate. Then the triconnected component asso-
ciated with split e(a; b; i) is the single edge (a; b), which is a bond. Otherwise, if
there is a bridge B0 with attachments on a, b and at least one other vertex v, then
the triconnected component associated with split e(a; b; i) contains a portion of Pi

between a and b, together with B0 if v is in the interval (a; b) and is a polygon if v
is not in [a; b]. Both of these situations can be inferred without the presence of B.
Note that it is not possible for B0 to have an attachment v in the interval (a; b) and
another attachment w that is not in [a; b], since the bridge B would interlace with B0

in such a case.
Part b): Let the span [a; b] be non-degenerate and let the portion of Pi between a
and b be ha = a1; : : : ; an = bi. Since there is no k-attachment bridge, k > 2, with

29



span [a; b], there must exist an ai; 1 < i < k such that a; ai; and b are in the same
candidate list C, and no vertex outside [a; b] is in C. Hence fa; bg is an extremal
separating pair. Also, since there is no bridge with attachments on a; b and some
other vertex c outside [a; b], there must be some vertex c on Pi such that either
c < a < b or a < b < c, and a; b; and c are in the same candidate list C 0. Further, no
vertex in the interval (a; b) can belong to C 0. Hence fa; bg is an adjacent pair in the
candidate list C 0.[]

Let us consider the case of a graph in which any pair of ear splits e(a; b; i); e(c; d; j)
with i 6= j are disjoint. In this case we can perform the ear splits in Algorithm 3.2
corresponding to di�erent ears in parallel. To process separating pairs on a single ear
Pi we run the following algorithm.
Algorithm 3.3: Performing Ear Splits on a Single Ear

Input A biconnected graph G together with Di(Pi), the coalesced graph of the bridge
graph of a nontrivial ear Pi in an open ear decomposition of G, with Pi = h0; 1; :::; ki.
Output: The split graphs of G after all Tutte splits on Pi have been performed.

vertex j; u; v; w; x; y; f� These vertices may be subscripted. �g

delete redundant two-attachment bridges;

pfor each attachment vertex v of each star B in Di ! make a copy vB of v
rofp;

pfor each internal vertex v on Pi !

if there is no star with an internal attachment on v ! make an additional
copy vP of v to represent the lower split graph formed when all adjacent
separating pairs containing v have been processed �;

rofp;

pfor j = 0 to k � 1 !

if there is no bridge with its leftmost attachment on j ! replace edge
(j; j+1) on Pi by an edge incident on jC , where C is B if there is a bridge
B with an internal attachment on j and is P otherwise �

rofp;

pfor j = 1 to k !

if there is no bridge with its rightmost attachment on j ! replace edge
(j�1; j) on Pi by an edge incident on jD, where D is B0 if there is a bridge
B0 with an internal attachment on j and is P otherwise �

30



rofp;

f� Process nonvacuous adjacent separating pairs. �g

pfor each star B in Di !

let the end attachments of B on Pi be v and w, v < w;

replace all edges in B incident on v by edges incident on vB;

replace all edges in B incident on w by edges incident on wB;

if B has no child-star B0 with an attachment at v ! replace edge (v; v+1)
on P by an edge incident on vB �;

if B has no child star B0 with an attachment at w ! replace edge (w�1; w)
by an edge incident on wB �;

place a virtual edge (vB; wB; i), and another virtual edge (vC ; wD; i), where
C (resp. D) is the parent-star of B if the parent star of B has an attach-
ment at v (resp. w) and is P otherwise;

replace each internal attachment edge of B on a vertex u in Pi by an edge
incident on uB

rofp;

f� Process extremal pairs. �g

pfor each star B in Di !

let the attachments of B on Pi be v0 < v1 < ::: < vl;

pfor each j in f0; :::; l � 1g for which (vjB ; vj+1B) is not an edge in the
current component containing B !

for convenience of notation let x denote vj and let y denote vj+1;

make a copy xBr
of x and a copy yBl

of y;

replace the edge on Pi connecting xB to the next larger vertex in the
current graph by an edge incident on xBr

;

replace the edge on Pi connecting yB to the next smaller vertex in the
current graph by an edge incident on yBl

;

place a virtual edge (xB; yB; i) and another virtual edge (xBr
; yBl

; i)

rofp

rofp

31



end.
Algorithm 3.3 is an implementation of Algorithm 3.2 on ear Pi using the results

of Lemmas 3.10, 3.11 and 3.12. We leave the proof of correctness of the algorithm
to the reader. We also leave it to the reader to verify that all steps in the algorithm
can be performed in logarithmic time with a linear number of processors in the size
of Di.

There are two problems with using this approach in an e�cient logarithmic time
algorithm for forming the triconnected components of a graph. One is that we are
working with the Di and the total size of these graphs need not be linear in the size
of G. The second is that this approach will not work if a vertex a appears in an
ear split for two di�erent ears. For instance, two-attachment bridges corresponding
to nonvacuous adjacent separating pairs will be separated on two di�erent ears and
this would cause processor conicts. In Section 4.3 we show how to overcome these
two problems to obtain logarithmic time parallel algorithm using a linear number of
processors for �nding the triconnected components of a general biconnected graph.

4 E�cient Implementation of Triconnectivity Al-

gorithm

This section deals with a logarithmic time, linear processor implementation of Algo-
rithms 3.1 and 3.2.

Section 4.1 gives such an algorithm for constructing the ear graphs of the nontrivial
ears in an open ear decomposition (step 2 of Algorithm 3.1). Section 4.2 gives an
algorithm with these bounds for constructing the coalesced graph of a star graph, and
for extracting the candidate lists from its star embedding (steps 3 and 4 of Algorithm
3.1). In Section 4.3 we show that the results in sections 4.1 and 4.2 lead to a simple
implementation of Algorithm 3.2 that runs in logarithmic time with a linear number
of processors.

The algorithm in Section 4.1 for constructing the ear graphs is fairly intricate. A
considerably simpler algorithm for this problem is given in Miller & Ramachandran
[MR87] (exercise 4). However, although the algorithm in [MR87] is e�cient, it needs
log2 n parallel time.

4.1 Forming the Ear Graphs

In this section we develop a parallel algorithm to �nd the ear graph of each nontrivial
ear. This algorithm is based on material from Fussell, Ramachandran & Thurimella
[FRT89], though the development here is somewhat di�erent.

We begin by describing in Section 4.1.1 a simple linear processor, logarithmic
time algorithm to �nd the bridge graph of each path in a collection of vertex-disjoint
paths in a given graph. The set of nontrivial ears does not form a collection of

32



vertex-disjoint paths since the endpoints of an ear are contained in other ears. Hence
we cannot apply the algorithm in Section 4.1.1 to obtain the bridge graphs or ear
graphs of nontrivial ears. However, in Sections 4.1.2 and 4.1.3 we present a collection
of results that allow us to transform the input graph G, together with an open ear
decomposition D = [P0; :::; Pr�1], into a modi�ed graph Gl, together with a collection
of edge-disjoint paths [P 0

0; :::; P
0

r�1] with the useful property that the innard of each P
0

i

is Pi and the ear graph of each nontrivial ear Pi in D can be derived from the bridge
graph of Pi in Gl. This property allows us to use the simple technique of section 4.1.1
on the innards of the P 0

i , since these paths are vertex-disjoint.
The technique presented in section 4.1.3 is called the `local replacement technique'.

4.1.1 Bridges of Disjoint Collection of Paths

In this section we present an algorithm for constructing the bridge graph of each path
in a collection of vertex-disjoint paths in a graph.

Algorithm 4.1: Forming the Bridge Graph of Each Path in a Collection of

Vertex-Disjoint Paths

Input: GraphG = (V;E), together with a collection of vertex-disjoint paths fQ0; :::; Qk�1g.
Output: The bridge graph of each Qi; i = 0; :::; k � 1.

integer i; vertex a; b; v; f� v will be subscripted by an integer. �g

pfor each i ! collapse the vertices in Qi into a vertex vi rofp;

let the resulting graph be G�;

pfor each i !

pfor each block � of G� with cutpoint vi ! form a nontrivial bridge B of
Qi with the edges of G� in � that are incident on vi as attachment edges
rofp;

pfor each edge (a; b) in G� fQig with a and b in Qi ! form a bridge of
Qi with attachments a and b rofp

rofp

end.
It is straightforward to see that this algorithm correctly constructs the bridge

graph of each of the Qi, and that it runs in logarithmic time with a linear number of
processors.

In the following sections we will use Algorithm 4.1 to �nd the ear graphs of the
nontrivial ears in an open ear decomposition of a biconnected graph. We start by
relating open ear decomposition to an st-graph in the next section.

33



4.1.2 The st-graph

Let G = (V;E) be a biconnected graph with an open ear decomposition D =
[P0; :::; Pr�1] with P0 = (s; t). Since G is biconnected, it has an st numbering (exercise
2).
Lemma 4.1 Let G be a biconnected graph with an open ear decomposition D =
[P0; :::; Pr�1], where P0 = (s; t). Then it is possible to direct each ear in D from one
endpoint to the other such that the resulting directed graph Gd is an st graph.
Proof We prove the lemma by establishing, by induction on i, that the graph P0;i =
[i
j=0Pj satis�es the statement of the lemma.

BASE: i = 0. Direct (s; t) from s to t.
INDUCTION STEP: Assume that the result is true until i� 1 and consider i.

Let Di�1 be the directed graph obtained from P0;i�1 by directing its ears according
to the statement of the lemma. Assume that the vertices in P0;i�1 are numbered
according to an st numbering consistent with Di�1.

Let u and v be the endpoints of ear Pi and assume without loss of generality that
u is numbered lower than v in the st numbering for P0;i�1. Direct Pi from u to v.

We claim thatDi�1[fPi directed from u to vg satis�es the statement of the lemma.
This follows from the following construction. Number the internal vertices of Pi in
order from u as v; v+1; :::; v+ k� 1, where k is the number of internal vertices of Pi.
Replace the number of each vertex w in P0;i�1 with w � v by w + k. The resulting
numbering is a valid st numbering for P0;i and Di�1[fPi directed from u to vg is its
st graph.[]

Given an open ear decomposition D = [P0; :::; Pr�1], Maon, Schieber & Vishkin
[MSV86] give a parallel algorithm to direct each ear in D as in Lemma 4.1 such that
the resulting directed graph is an st graph. Let Gst be this graph, which we will call
the st-graph of D. The graph Tst, the st-tree of D, is the directed spanning tree
obtained from Gst by deleting the last edge in each ear except P0. We can similarly
construct Gts and its directed spanning tree Tts by considering P0 to be directed from
t to s. We will refer to Gts as the reverse directed graph of Gst and vice versa.

We now state two simple but useful properties of open ear decomposition and the
trees Tst and Tts.
Property 4.1 Let Pi and Pj be two ears in an open ear decomposition D of graph
G with i < j. Then, all vertices and edges of Pj belong to a single bridge of Pi in G.
Property 4.2 Let p = hu0; :::; uii be a directed path in Tst or Tts. Then the ear
numbers of the vertices in p are nondecreasing when going from u0 to ui.

4.1.3 The Local Replacement Graph

In this section we describe a transformation of a biconnected graph G with an open
ear decomposition D = [P0; :::; Pr�1] into a new graph Gl, called the local replacement
graph of (G;D). In the graph Gl, each ear Pi in G is converted into a path P 0

i with

34



the innard of P 0

i being Pi and with the bridge graph of Pi in Gl corresponding to the
ear graph of Pi in G.

Consider any vertex v in G. Let the degree of v be d (d � 2). Of the d edges
incident on v, two belong to Pear(v). Each of the remaining d � 2 edges incident on
v is an end edge of some ear Pj, with j > ear(v). In the local replacement graph Gl

we will replace v by a rooted tree with d � 1 vertices, with one vertex for each ear
containing v. The root of this tree will be the copy of v for the ear containing v. The
actual form of the tree is computed from Tst and Tts as in the algorithm below. The
tree representing vertex v will be called the local tree of v and will be denoted by Tv.

Algorithm 4.2: Constructing the Local Replacement Graph

Input:

A biconnected graph G = (V;E);
an open ear decomposition D = [P0; :::; Pr�1] for G, with P0 = (s; t);
the st-graph Gst with its spanning tree Tst and the ts-graph Gts with its spanning
tree Tts.
Output: The local replacement graph Gl of (G;D).

integer i; j; f� These integers range in value from 0 to r � 1. �g

vertex a; q; u; v; w; f� q; u; v and w may be subscripted by an integer. �g

edge a; e; f; n; f� e and f will be subscripted by an integer. �g

rename each vertex v in G by vj, where ear(v) = j;

f� We will refer to the vertex vear(v) interchangeably as either v or vear(v). �g

1. pfor each outgoing ear Pi at each vertex v in Gst !

let the edge in Pi incident on v be ei and let the nontree edge in Pi be fi;

detach edge ei from v and label the detached endpoint as vi;

let a be a base edge of the fundamental cycle created by fi in Tst with
ear(a) 6= i;

if ear(a) � ear(v) ! vear(v) := parent(vi)

j ear(a) > ear(v) ! vear(a) := parent(vi) � ;

direct this edge from parent(vi) to vi

rofp;

let the undirected version of the graph obtained in step 1 be G1, the directed
version be G1

st and its associated spanning tree be T 1
st and the reverse directed

graph be G1
ts and its associated spanning tree be T 1

ts;

35



2. repeat step 1 using G1
ts and T 1

ts and let the resulting undirected graph be G2,
the resulting directed graph be G2

ts and its associated spanning tree be T 2
ts, and

the reverse directed graph be G2
st and its associated spanning tree be T 2

st;

f� In the following we process parallel ears by constructing a new graph H. �g

pfor each parallel ear Pi ! create a vertex qi rofp ;

pfor each nontree edge n in T 2
st !

if the base edges of the fundamental cycle of n belong to ears Pi and Pj,
where Pi and Pj are parallel to each other ! create an edge between qi
and qj �

rofp;

call the resulting graph H;

�nd a spanning tree in each connected component of H and root it at the vertex
corresponding to the minimum numbered ear in the connected component;

3. pfor each vertex qi in H that is not a root of a spanning tree !

let Pi be directed from endpoint u to endpoint w in Gst; let qj be the
parent of qi in the spanning tree in H;

replace the parent of ui in T
2
st by uj and the parent of wi in T 2

ts by wj

rofp;

denote the undirected version of the graph formed in step 3 by Gl, the directed
graph from s to t by G0

st and its associated spanning tree by T 0

st and the reverse
directed graph by G0

ts and its associated spanning tree by T 0

ts; call Gl the local
replacement graph of G;

call the underlying undirected tree constructed in steps 1, 2 and 3 from each
vertex v in G the local tree Tv; call vear(v) the root of Tv, and consider Tv to
be an out-tree rooted at vear(v). Call the part of Tv constructed by assigning
parents in T 2

st the o-tree OTv of Tv and the part of Tv constructed by assigning
parents in T 2

ts the i-tree ITv of Tv;

f� In G2
st, OTv is an out-tree rooted at vear(v) and ITv is an in-tree rooted at

vear(v) and vice-versa in G2
ts. �g

denote by P 0

i the ear Pi, together with the edge connecting each endpoint of Pi

to its parent in its local tree in Gl;

f� Note that the innard of P 0

i (i.e., the path P 0

i excluding its two end edges) is
Pi. �g

denote the �rst vertex on P 0

i when directed as in G0

st by L(P
0

i ), the left endpoint
of P 0

i , and the last vertex on P 0

i when directed as in G0

st by R(P 0

i ), the right
endpoint of P 0

i .

36



Figure 4.1: Constructing Gl from G

end.
An example of the construction in Algorithm 4.2 is shown in �gure 4.1.

We will prove the following:

1. All ears with endpoints as descendant of vi in Tv must belong to the same bridge
of Pi in G.

2. An ear Pj with vj not a descendant of vi in Tv must be part of an anchor bridge
of Pi or of a bridge of Pi with attachments to only the endpoints of Pi in G.

We start with the following preliminary lemmas.
Lemma 4.1 Let vi be a proper ancestor of vj in Tv, the local replacement tree of
vertex v. Then either Pi and Pj are parallel to each other or i < j.
Proof Without loss of generality we assume that vi and vj belong to OTv.

By the construction in Algorithm 4.2, either vi is a proper ancestor of vj in T
1
st or

vi and vj are unrelated in T 1
st and vi becomes a proper ancestor of vj in step 3. In

the latter case, vi and vj are parallel to each other and we are done. So for the rest
of the proof we assume that vi is a proper ancestor of vj in T 1

st.

37



Let T 1
v be the out-tree for vertex v at the end of step 1 of Algorithm 4.2. The

vertex set of T 1
v is fvi j vertex v is contained in Pi in Gg. We claim that the subscripts

of the vertices are strictly increasing in any directed path in T 1
v . To see this, let vk

be the parent of vj in T 1
v . If k = ear(v) then k < j since one endpoint of Pj in G

is v. If k 6= ear(v) let w be the other endpoint of Pj. By the construction in step
1 of Algorithm 4.2, w is a proper descendant of v in Tst. Hence by Property 4.2,
k � ear(w) and since ear(w) < j we have k < j.

Hence if vi is a proper ancestor of vj in T 1
st then i < j.[]

De�nition Let (v; w) be the �rst edge on Pi in Gst. Then Tst(i) is the subtree of Tst
rooted at w. Similarly if (x; y) is the �rst edge on Pi in Gts then Tts(i) is the subtree
of Tts rooted at y.
Lemma 4.2 Let vi and vj be vertices in Tv such that neither is a descendant of the
other. Then in G, the following two properties hold.

a) Either Pi and Pj are ears parallel to each other, or Pi \ Pj = fvg;

b) If vi 2 OTv then Pj \ Tst(i) =fvg and if vi 2 ITv then Pj \ Tts(i) =fvg.

Proof Exercise.[]
Lemma 4.3 Let vi be a vertex in Tv and let
Si = fears Pj in G j Pj contains v and vj is not a proper descendant of vi in Tvg.
Let vk be a child of vi in Tv and let Tk be the subtree of Tv rooted at vk.
Then, all of the ears Pl in G such that vl is in Tk belong to a single bridge of Si in G.
Proof By induction on the height of Tk. We assume, without loss of generality that
vi 2 OTv.
BASE: Height of Tk = 0. Then Tk contains only one vertex and the claim is vacuously
true since the corresponding ear Pk must belong to some single bridge of Si (by
Property 4.1 and Lemma 4.1 for those ears Pj in Sk with vj an ancestor of vi, and by
Lemma 4.2, part a) for those Pj in Sk with vj unrelated to vi in Tv).
INDUCTION STEP: Assume that the lemma is true for height of Tk up to h� 1 and
let height of Tk be h. Let vl be any child of vk. Then Tl has height at most h � 1
and hence by the induction hypothesis, all of the ears whose corresponding vertices
lie in Tl belong to a single bridge of Si[ fPkg in G. Hence all of these ears belong to
a single bridge B of Si in G.

We now claim that bridge B contains ear Pk as well. The proof is a case analysis
depending on whether vk was made the parent of vl in Tv in step 1 or in step 3 of
Algorithm 4.2.
Case 1: vk was made parent of vl in step 1. Then Pk and Pl are not parallel to each
other. Let (x; y) be the nontree edge (with respect to Tst) in ear Pl (�gure 4.2a).
Then by construction, y is a descendant of w, where (v; w) is the �rst edge on Pk in
G (since vk 6= vear(v)). But by Property 4.1, Lemma 4.1 and Lemma 4.2, none of the
vertices on the tree path from w to y can be contained in an ear in Si. Hence all
vertices and edges in ear Pk belong to bridge B of Si in G.

38



Figure 4.2: Illustrating the proof of Lemma 4.2

Case 2: vk was made parent of vl in step 3. Then Pk and Pl are parallel to each other.
Further since vk was made parent of vl in step 3, there is a nontree edge n (with
respect to T 2

st) whose fundamental cycle C contains both vk and vl (�gure 4.2b). But
none of the vertices in C other than the lca can belong to an ear in Si by Lemma 4.2,
part b, since all of these vertices are in either Tst(k) or Tst(l). Hence Pk is contained
in bridge B of Si in G.

This concludes the proof of the induction step and the lemma is proved.[]
Corollary to Lemma 4.3 Let vi be a vertex in Tv and let vj be a child of vi in Tv.
Then all ears Pk in G with vk in Tj belong to a single bridge of Pi in G.
Proof This follows immediately from Lemma 4.3 by observing that Pi is contained in
Si.[]
Lemma 4.4 Let vi be a vertex in Tv and let vj be another vertex in Tv which is not a
descendant of vi. Then in G, Pj either belongs to the anchoring star of Pi or belongs
to a bridge of Pi that has attachments only to the endpoints of Pi.
Proof Without loss of generality we assume that vi 2 OTv. If vj 2 ITv then the
outgoing edge e of Pj in Gst cannot be a descendant of v (since in that case Gst would
contain a cycle). Further Pi \ Pj = fvg by Lemma 4.2. But then, there is a path
from s to Pj in G that avoids ear Pi and hence Pj belongs to the anchoring star of
Pi (since ear(s) = 0.)

For the rest of the proof we assume that vj 2 OTv. Let lca(vi; vj) = vk.
Case 1: vj = vk. If vj is not parallel to vi, then i < j by Lemma 4.1, and hence Pj

belongs to the anchoring star of Pi.
If Pj is parallel to Pi, let vl be the root of the spanning tree of its connected

39



component in H formed in step 2 of Algorithm 4.2. By construction, vl must be an
ancestor of vj.
Case 1.1: If vl = vj then j < i (since the spanning tree is rooted at the vertex with
minimum index) and hence Pj is part of the anchoring star of Pi.
Case 1.2: If vl is a proper ancestor of vj then consider a sequence of nontree edges
that caused the edges on the path from vj to vl in Tv to be placed in H. None of the
vertices in the fundamental cycle of any of these nontree edges in G lie on Pi. Hence
in G, these nontree edges, together with appropriate tree edges, induce a path from
a vertex in Pj to a vertex in Pl that avoids all vertices in Pi. Hence Pj is in the same
bridge of Pi as Pl and hence belongs to the anchoring star of Pi (since l must be less
than i).
Case 2: vj 6= vk.

In this case vk is a proper ancestor of vj. Let vm be the child of vk that is an
ancestor of vj. Then all ears with corresponding vertices in Tm lie on a single bridge
of Pi (by Corollary to Lemma 4.3).

Let vl be the nearest ancestor of vi such that Pl is not parallel to Pi.
Case 2.1: vl is a proper descendant of vk.

In this case, Pm is not parallel to Pi, since otherwise, by step 3 of Algorithm
4.2, vm would be a descendant of vl. Also, by Lemma 4.2, Pm \ Pi = fvg. Finally,
the nontree edge in Pm completes a fundamental cycle in G, one of whose base edges
belongs to some Pq; q � k. None of the vertices other than v in this fundamental cycle
belongs to Pi, since by step 1 of Algorithm 4.2, the two base edges in the fundamental
cycle of which Pi is part, belong to Pi and Pl. Hence, Pm (and thus Pj) belongs to
the same bridge of Pi as Pq and is thus part of the anchoring star of Pi.
Case 2.2: vl = vk (the nontrivial case).

Let y be the last vertex on Pi and let z be the child of vk in T
2
st that is an ancestor

of y. By construction (step 1 of Algorithm 4.2), either vk = vear(v) or z lies in Tst(k).
Case 2.2.1: If vm is not parallel to vi then let (w; x) be the last edge in Pm in G. The
vertex x is contained in Pq, for some q � k and x is not contained in Pi (by Lemma
4.2, part a). If x lies on the path from v to y then Pm (and hence Pj) is part of the
same bridge of Pi as Pk and hence is part of the anchoring star of Pi. Otherwise, x
is not an ancestor of y and by the st-numbering property, there is a path from x to
t (and hence to s) in G that avoids all vertices in Pi. Hence again we have the case
that Pj is part of the anchoring star of Pi.

Now consider the case when Pm is parallel to Pi and assume that Pm (and hence
Pj) is part of a bridge B of Pi with an internal attachment on Pi. We will show that
B must be an anchor bridge of Pi.

Since B has an internal attachment on Pi, there is a path p in Gl from vm to some
vertex u that is internal to Pi that avoids all other vertices in Pi. The path p must
contain at least one nontree edge whose lca is � vk. Let n be the �rst such nontree
edge encountered when traversing p from vm to u.
Case 2.2.2: lca(n) < vk in T 0

st. Then there is a path in G from a vertex in Pm to

40



lca(n) that avoids Pi and since k < i, lca(n) belongs to an ear numbered less than i
(by Property 4.1). Hence B is an anchor bridge of Pi.
Case 2.2.3: lca(n) = vk in T

0

st. Let e = (vk; vm) and f = (vk; vn) be the base edges of
the fundamental cycle of n in T 2

st. Then Pn cannot be parallel to Pm, since otherwise
vm and vn would be in the same connected component of H and hence would be in
a single subtree rooted at a child of vk. But if Pn is not parallel to Pm, it is also not
parallel to Pi, and we can use the analysis used with Pm in case 2.2.1 to deduce that
Pn is part of an anchor bridge of Pi. Hence B is an anchor bridge of Pi.
Case 2.3: vl is a proper ancestor of vk.

The analysis of this case is similar to case 1.2 and we can deduce that Pj is part
of the anchoring star of Pi.

This concludes the case analysis and the lemma is proved.[]
Theorem 4.1 Let G be a biconnected graph with an open ear decomposition D =
[P0; :::; Pr�1] and let Pi be a nontrivial ear in D. Let B be a bridge of Pi in Gl and
let a and b be any two edges of G that are in B. Then,

a) If B contains the endpoints of P 0

i in Gl then a and b belong to the anchoring star
of Pi in G.

b) If B does not contain the endpoints of P 0

i in Gl then a and b are both part of a
single nonanchor bridge of Pi in G.

Also, if c and d are two edges of G that do not belong to a single bridge of Pi in Gl

then c and d belong to di�erent bridges of Pi in G.
Proof The theorem follows from observing that any additional connectivity induced
in Gl - fPig that is not present in G� fPig must occur at Tv, for some vertices v 2 Pi,
and by applying the Corollary to Lemma 4.3 and Lemma 4.4.[]
Corollary to Theorem 4.1 Let G0

i be the bridge graph of Pi in Gl. Let Gi be
obtained from G0

i by replacing all multiple edges in G0

i by a single copy. Then Gi is
the ear graph of Pi.

By the above results, the following algorithm constructs the ear graph of each
nontrivial ear in an open ear decomposition D = [P0; :::; Pr�1] of a biconnected graph
G.

Algorithm 4.3: Constructing the Ear Graphs

Input: A biconnected graph G = (V;E) together with an open ear decomposition
D = [P0; P1; :::; Pr�1].
Output: The ear graph of each nontrivial ear in D.

form the local replacement graph Gl of G, together with the associated paths
P 0

0; :::; P
0

r�1 using Algorithm 4.2;

apply Algorithm 4.1 to Gl with the nontrivial ears in D as the vertex-disjoint
paths to obtain the bridge graph of each nontrivial Pi in Gl;

41



pfor each nontrivial ear Pi ! obtain the ear graph Gi of Pi in G from the
bridge graph of Pi in Gl by replacing all multiple edges by a single copy rofp

end.
We leave it as an exercise to verify that all steps in Algorithm 4.3 can be performed

in logarithmic time with a linear number of processors.

4.2 Finding the Candidate Lists

In this section we describe an e�cient algorithm to implement steps 3 and 4 in
Algorithm 3.1. Given a star graph G(P ), steps 3 and 4 require us to �nd its coalesced
graph Gc(P ) and extract the candidate lists from its star embedding.

We present the algorithm for forming the coalesced graph, which is based on
material in Ramachandran & Vishkin [RV88], in two parts. In Section 4.2.1 we
present an algorithm to �nd the coalesced graph when every star in G(P ) has exactly
two attachments. Then in Section 4.2.2 we give an e�cient reduction from a general
star graph to this special case. The reduction presented here is somewhat di�erent
from the one in [RV88].

Our algorithm solves a more general problem than that of �nding the coalesced
graph of a star graph G(P ): It also provides an `interlacing parity' (which is de�ned
in Section 4.2.1) for every pair of stars on P . This property is useful in determining
planarity of G(P ) for the case when every star has to be embedded completely on
one side of P . While this is not needed for the triconnectivity algorithm, it is an
important step in the parallel algorithm for graph planarity given in Ramachandran
& Reif [RR89].

In Section 4.2.3 we describe a simple e�cient algorithm to form the star embedding
of Gc(P ) and to extract from it the candidate lists of G(P ).

4.2.1 Determining Interlacings of Chords on a Path

Let G(P ) be a star graph in which each star has exactly two attachments on P . For
simplicity we assume P = h0; :::; ni. Then G can be viewed as the simple path P
together with a collection of chords (i; j) on P . We shall refer to such a graph as a
chord graph.

Let a = (u; v) and b = (w; x) be two chords on P , where u < v and w < x.
If a and b interlace, then they cannot be placed on the same side of P in a planar
embedding. If a and b do not interlace, then they can be placed in a planar embedding
on the same (opposite) side of C if and only if there exists no sequence of chords ha =
a0; a1; :::; ar = bi, with r odd (even) such that ai interlaces with ai+1, 0 � i � r � 1.
If there is such a sequence with r even then a and b have even interlacing parity and
if there is such a sequence with r odd, then a and b have odd interlacing parity. If
no such sequence exists for r either odd or even, then a and b have null interlacing
parity: in this case a and b can be placed either in the same side or in opposite sides

42



of P in a planar embedding. It is possible for a and b to have both odd and even
parity { in this case, no planar embedding of G is possible if every chord is to be
placed completely on one side of P .

We now present an e�cient parallel algorithm for preprocessing the graph G so
that an interlacing parity for any pair of chords can be determined in constant time.
If a pair of chords a and b have both even and odd interlacing parities, then we will
�nd only one of these parities. A high level description of the algorithm is as follows:
We construct an auxiliary graph GI called the interlacing parity graph of G with a
vertex for each chord on P . We then place some edges in GI . Each such edge connects
a pair of vertices whose corresponding chords interlace. We do not put in an edge for
every pair of interlacing chords, but only a subset of them, so that the size of GI is
linear in the size of G. In particular, if r is the number of chords on P then GI will
have at most 2r edges. Further, if a and b are two chords for which there exists some
interlacing sequence then a and b will lie in the same connected component of GI .
Since each edge in GI represents an actual interlacing, we can obtain an interlacing
parity for each pair of chords with an interlacing sequence by �nding a spanning tree
in each connected component of GI and two coloring the vertices of the spanning
tree: Now, two chords, whose vertices are in the same connected component in GI ,
have odd interlacing parity if they have di�erent colors and even parity if they have
the same color. Note that to form the coalesced graph of G(P ), we only need to �nd
the connected components of GI, and coalesce all chords that correspond to vertices
in each connected component.

The algorithm is presented below. Since vertices in GI correspond to chords on
P , we will sometimes refer to a vertex in GI as a chord; by this we mean the chord
in G that this vertex represents.

Algorithm 4.4: Interlacing Parity for a Chord Graph

Input:Undirected graph G consisting of a simple path P = h0; :::; ni, together with
a collection of chords on P .
Output: A label on each chord which allows an interlacing parity of any pair of
chords to be determined in constant time by one processor.

vertex u; v; edge c; l; r; f� u; v; l; r may be subscripted. �g

1. pfor each chord c = (u; v), u < v, that interlaces with some other chord !

f� Left rule. �g

let ul be the minimum numbered vertex on P such that c interlaces with
a chord incident on ul;

if ul < u ! �nd the chord lc = (ul; vl) with maximum vl that interlaces
with c and place an edge (the left edge) in GI between vertices c and lc �;

f� Right rule. �g

43



let vr be the maximum numbered vertex on P such that c interlaces with
a chord incident on vr;

if vr > v ! �nd the chord rc = (ur; vr) with minimum ur that interlaces
with c and place an edge (the right edge) in GI between c and rc �

rofp;

�nd a spanning tree in each connected component of the interlacing parity graph
GI and two-color the spanning trees;

assign a label hcomponent number, colori to each vertex;

pfor each chord in G(P ) ! assign the label of the vertex in GI corresponding
to it rofp

end.

With this preprocessing we can determine an interlacing parity for any pair of
chords c; d on P as follows: If component number of c is not equal to component
number of d then c and d have null interlacing parity, otherwise they have even
interlacing parity if they have the same color, and odd interlacing parity if they have
di�erent colors.
Lemma 4.5 . If a pair of chords �; � have an interlacing parity that is not null, then
� and � appear in the same connected component of GI.
Proof. By induction on the number of chords r on P .
BASE: r = 2. This is immediate.
INDUCTION STEP: Assume that the claim is true for all simple paths with up to
r � 1 chords, and let G be a graph consisting of a simple path P , together with r
chords. Let v be the lowest numbered vertex on P that has a chord incident on it,
and let a = (v; w) be the chord incident on v with maximum w. Delete a from G to
form G0. By the induction hypothesis, every pair of chords that have an interlacing
parity that is not null in G0 appear in the same connected component in G0

I .
We will show two things:

A. Any pair of chords �; � that lie in the same connected component in G0

I continue
to lie in the same connected component in GI .
B. Any chord having an interlacing parity with a will be in the connected component
of a in GI.

Lemma 4.5 follows. To see this consider any pair of chords �; �, where � 6=
a and � 6= a. Assume � and � have an interlacing parity in G and consider an
interlacing sequence. If the interlacing sequence does not include a apply claim A.
If the interlacing includes a, then we may assume that a appears only once. Apply
claim B to show that a is in the same connected component as its predecessor and
successor in the sequence. Finally, apply claim A.

44



We show A. For this, observe that the only edges in G0

I that are not present in GI

are the edges introduced by the left rule for chords that interlace with a: each such
edge is replaced by an edge connecting the chord to vertex a. Let b be such a chord
interlacing with a, let its left edge in G0

I be (b; c). Its left edge in GI is (b; a). We
claim that a; b and c lie in the same connected component in GI .
Case 1: Chord c interlaces with chord a. Then edges (a; c) and (a; b) are present in
G1 and hence a; b and c belong to the same connected component in G1.
Case 2: Chord c does not interlace with a. Consider the right edge (c; d) of c. Then
chord d has its right endpoint at least as large as the right endpoint of b, and hence d
interlaces with a. Hence edges (a; d); (c; d) and (b; a) are present in GI , i.e., a; b and
c lie in the same connected component in GI .

We show claim B. For each chord b having an interlacing parity with a, consider
an interlacing sequence a0 = a; a1; :::; ak = b. Chords a1 and b are in the same
connected component of GI by claim A. It su�ces to show that chords a and a1,
which actually interlace, are in the same connected component. But, there must be
an edge connecting them in GI by the left rule for a1. Claim B and Lemma 4.5 follow.
[]
Lemma 4.6 Algorithm 4.4 correctly �nds an interlacing parity for each pair of chords
on P .
Proof Since an edge (a; b) is placed inGI only if chords a and b interlace, it follows that
the algorithm �nds a correct interlacing parity for every pair of chords that belong
to the same connected component. By Lemma 4.5, vertices that belong to di�erent
connected components correspond to chords that have null interlacing parity. This
establishes the correctness of the algorithm.[]

To implement step 1 we determine at each vertex v, the chord with smallest
attachment sv and the chord with largest attachment lv incident on v, and we store
at v the ordered pairs (sv;�v) and (lv; v). With this preprocessing it is a simple
exercise to verify that all steps of Algorithm 4.4 can be performed in logarithmic time
with a linear number of processors on a CRCW PRAM.

4.2.2 Determining Interlacings of Stars in a Star Graph

In this section we consider a general star graph G(P ). We replace each star in G(P )
with a collection of chords and construct the interlacing parity graph for this new
graph as in the previous section. We then add in some additional vertices and edges
to this graph and we establish that the resulting graph can be used to obtain the
interlacing parity of each pair of stars in G(P ) e�ciently.

We now describe our construction. Let P = h0; 1; :::; ni. We replace each star
S on G(P ) by a collection of chords as follows: Let the attachments of S on P be
a0; a1; :::; ak with a0 < a1 < ::: < ak. We replace S by the chords (a0; ai); i = 1; :::; k
and the chords (ai; ak); i = 1; :::; k � 1. We will refer to these chords as the chords of
S.

45



Let H(P ) be the graph obtained from G(P ) by replacing each star in G(P ) by
a collection of chords as described above. Let HI = (V;E) be the interlacing parity
graph of H(P ). We construct GI = (V 0; E 0), the interlacing parity graph of G(P ) as
follows:
V 0 = V [fvS j S is a star in G(P )g;
E 0 = E1[f(vS; u) j S is a star in G(P ) and u 2 V represents a chord of Sg [F ,
where E1 and F is de�ned as follows:
E1 = E � f(u; v) 2 E j u and v are chords of the same star S in G(P )g;
For each vertex i on P let
Fi = f(vS; vT ) j S is a star in G(P ) with an internal attachment on i and T ranges
over all other stars in G(P ) with an internal attachment on ig
Then F = [n�1

i=1 Fi.
Lemma 4.7 Let S and T be two stars that interlace in G(P ). Then either S and T
share an internal attachment on G(P ) or there exist a chord of S and a chord of T
that interlace on P .
Proof Let S and T interlace on P . If they interlace by virtue of three common
attachments then consider the middle attachment of these three. This attachment
must be an internal attachment of both S and T .

If S and T interlace because there exist four vertices a < b < c < d on P such that
a and c are attachments of S and b and d are attachments of T , then the four vertices
a0 < b < c < d0, where a0 is the �rst attachment of S and d0 is the last attachment of
T , also represent the interlacement of S and T . But (a0; c) is a chord of S and (b; d0)
is a chord of T and (a0; c) and (b; d0) interlace.

A similar argument applies to the case when a and c are attachments of T and b
and d are attachments of S.[]
Lemma 4.8 Let S and T be two stars that do not interlace on G(P ). Then S and
T share no internal attachment on P , and for any pair of chords c and d, with c a
chord of S and d a chord of T , c and d do not interlace on P .
Proof Exercise 8.[]
Lemma 4.9 Let GI be the interlacing parity graph of a star graph G(P ). The
following properties hold:

a. All vertices representing chords of a single star in G(P ) belong to a single con-
nected component in G(P ).

b. Two stars S and T in G(P ) have null interlacing parity if and only if the vertices
corresponding to their chords lie in di�erent connected components in GI .

Proof Exercise 8.[]
Lemma 4.10 Let G(P ) be a star graph and let S and T be two stars on G(P ). Let
c be a chord of S and d a chord of T and let their corresponding vertices lie in a
single connected component C of GI. Let X be a two-coloring of a spanning tree of
C. Then if the vertices corresponding to c and d have the same color in X then stars

46



S and T have even parity in G(P ) and if they have di�erent colors then S and T have
odd parity in G(P ).
Proof Exercise 8.[]

We now present the algorithm to determine interlacing parity for a general star
graph.

Algorithm 4.5: Interlacing Parity for a Star Graph

Input: A star graph G(P ).
Output: A label on each star which allows an interlacing parity of any pair of stars
to be determined in constant time by one processor.

construct the interlacing parity graph GI of G as described above;

�nd a spanning tree in each connected component of GI and two-color the
spanning trees;

assign a label hcomponent number, colori to each vertex in GI ;

pfor each star S in G(P ) ! assign the label of a vertex in GI corresponding
one of its chords rofp

end.
To determine an interlacing parity for any pair of stars S; T in G(P ) we proceed as

in the previous section: If component number of S is not equal to component number
of T then S and T have null interlacing parity, otherwise they have even interlacing
parity if they have the same color, and odd interlacing parity if they have di�erent
colors.
Theorem 4.2 Algorithm 4.5 correctly determines the interlacing parity of any pair
of stars in G(P ).
Proof The proof is a straightforward consequence of Lemmas 4.9 and 4.10.[]

Finally, to form the coalesced graph Gc(P ) of G(P ), we replace all stars in each
connected component of GI by a new star whose attachments are the union of the
attachments of these stars.

4.2.3 The Star Embedding and the Candidate Lists

In this section we give a method to �nd the candidate lists in a star graph G(P ),
given its coalesced graph Gc(P ). The algorithm forms the star embedding of Gc(P )
and extracts the candidate lists as those sets of vertices on P that lie on a single face
in the star embedding of Gc(P ).

We �rst give a combinatorial characterization of a graph embedding that was
introduced by Edmonds [Ed60]. Let G = (V;E) be the graph to be embedded, and
letDG be the directed graph obtained fromG by replacing each undirected edge (u; v)
in E by two directed edges (u; v) and (v; u). A combinatorial embedding, I(G), of the
graph G is an assignment of a cyclic ordering to the set of outgoing edges from each

47



vertex in the graph DG. For each edge (u; v) in DG let next(u; v) be the edge (v; w)
that follows edge (v; u) in the cyclic ordering of edges outgoing from vertex v. Then
the graph de�ned by the next pointers is a collection of edge-disjoint cycles in DG

whose union is the edge set of DG. Each cycle de�ned by the next pointers represents
a face of I(G). Let n = jV j; m = jEj, let c be the number of connected components
in G and let f be the number of faces in I(G). If Euler's formula n�m+ f = 1 + c
is satis�ed, then the combinatorial embedding I(G) de�nes a planar embedding of G
with the edges incident on each vertex embedded according to the cyclic ordering,
and with each face in I(G) representing a face in the planar embedding of G.

Our algorithm will �nd such a combinatorial embedding for Gc(P ) with the ad-
ditional property that all stars in Gc(P ) lie on the same side of Gc(P ). This will give
us a star embedding of Gc(P ). From this star embedding we can obtain the faces of
G�

c(P ) by following the next pointers as in the above de�nition, and we can obtain
the candidate lists as those sequences of vertices of P that lie on a single face in the
star embedding. The algorithm is given below.

Algorithm 4.6: Finding Candidate Lists

Input: The coalesced graph Gc(P ) of a star graph G(P ), with P = h0; 1; :::; ni.
Output: The candidate lists of G(P ).

vertex c; u; v; f� c will be subscripted. �g

edge e;

interpret each edge (u; v) in Gc(P ) as a pair of directed edges (u; v) and (v; u);

1. pfor each vertex i on P !

sort the attachment edges on vertex i that represent the last attachment
edge of their star in nonincreasing order of the �rst attachment of the
star containing the edge; break ties by placing an attachment edge of a
two-attachment star after an attachment of a star with three or more at-
tachments;

let the resulting array be Ai;

Bi := �;

if there is a star with an internal attachment edge e on i ! Bi := e �;

sort the attachment edges on i that represent the �rst attachment of their
star in nonincreasing order of the last attachment edge of the star containing
the edge; break ties by placing an attachment on i of a two-attachment star
before an attachment of a star with three or more attachments;

let the resulting array be Ci;

rearrange the adjacency list for i by concatenating edge (i; i�1) (if it exists),
arrays Ai; Bi; Ci and edge (i; i+ 1) (if it exists) in this order;

48



make this list cyclical by causing the �rst edge on the list to follow the last
edge

rofp;

2. pfor each star S !

rearrange the adjacency list for its center cS in nondecreasing order of the
attachment vertices;

make this list cyclical by causing the �rst edge on the list to follow the last
edge

rofp ;

form the star embedding of Gc(P ) by embedding P and by embedding the edges
incident on vertex i; i = 0; :::; n and on the center of each star in G(P ) cyclically
according to their order in the rearranged adjacency lists obtained in steps 1
and 2;

3. pfor each edge (u; v) in Gc(P ) ! next(u; v) := the edge following (v; u) in
the adjacency list of v rofp;

4. use pointer jumping on the next pointers to partition the directed edges into
cycles;

pfor each cycle formed in step 1 ! �nd the list of vertices on P that are
contained in the cycle and output this sequence as a candidate list rofp

end.
Theorem 4.3 Algorithm 4.6 correctly �nds the candidate lists of G(P ).
Proof We leave it as an exercise to verify that the combinatorial embedding in step 3
represents the star embedding of Gc(P ). The proof of correctness then follows from
the properties of a combinatorial embeddings, together with the results in Section
3.3.[]

4.3 Finding Triconnected Components E�ciently

In this section we give an e�cient parallel algorithm to �nd the triconnected com-
ponents of a biconnected graph using Algorithm 3.3. Algorithm 3.3, when used in
parallel on all nontrivial ears, �nds the triconnected components of a biconnected
graph G with an open ear decomposition D when no vertex is part of pairs separat-
ing two di�erent ears. This property need not hold for a general biconnected graph
G but if we use Gl, the local replacement graph of (G;D), all separating pairs in Gl

corresponding to separating pairs of G are internal to their corresponding paths P 0

i

and hence this property holds. Further, the size of all of the bridge graphs of the
nontrivial paths Pi in Gl is linear in the size of G since these paths are vertex-disjoint
in Gl. Hence we can �nd the triconnected components of G using the following simple
algorithm:

49



Algorithm 4.7: E�cient Triconnected Components Algorithm

Input: Biconnected graph G = (V;E) together with an open ear decomposition
D = [P0; :::; Pr�1] for G.
Output: The triconnected components of G.

form Gl from G using Algorithm 4.2;

form the bridge graph D0

i(Pi) in Gl of each nontrivial path Pi in D using Algo-
rithm 4.1;

pfor each nontrivial ear Pi ! apply Algorithm 3.3 to D0

i to perform all of the
ear splits on Pi rofp;

pfor each connected component in the resulting graph ! collapse all vertices
in each local tree to get back a triconnected component of G rofp

end.

5 Towards Optimality

Although we have stated the parallel bound for the various steps in our algorithms
as O(logn) parallel time with a linear number of processors, most of the steps can,
in fact, be performed optimally in O(logn) time. Only the need to �nd connected
components in a graph and to perform bucket sort prevents us from obtaining true
optimality. In this context we note the following.

1) Finding connected components: We need to �nd connected components at sev-
eral places in our algorithms. At present there is no optimalO(logn) time paral-
lel algorithm known for graph connectivity although the algorithm in [CV86] is
`almost optimal'. However, this algorithm assumes that the graph is represented
by its adjacency lists. Even if we assume that the input graph is represented by
its adjacency lists, we still need to ensure that the adjacency lists for the vari-
ous derived graphs used in the algorithms can be obtained optimally. For the
open ear decomposition algorithm, the details of this construction are worked
out in [Sc87]. The adjacency lists for some of the derived graphs used in the
triconnectivity algorithm can also be obtained optimally. In the absence of an
optimal algorithm for �nding the adjacency list for a derived graph, we can use
bucket sort in the range [1::n], where n is the number of vertices in the graph, to
rearrange an unordered edge list into adjacency lists for the individual vertices.
This can be done in O(logn) time using O((n+m) � log logn= logn) processors
using the algorithm of Hagerup [Ha], where m is the number of edges in the
graph. This is also the best bound known for testing graph connectivity if the
input graph is speci�ed as a list of edges that are not organized as adjacency
lists for vertices.

50



The connected components of a graph can be obtained optimally in logarithmic
time on a CRCW PRAM using the randomized algorithm of Gazit [Ga86]. The
required adjacency lists can also be obtained optimally in logarithmic time using
a randomized algorithm for bucket sort in the range [1::n] given in [RR89b].

2) Sorting Our algorithms use sorting in several places. All of the sorting that is
needed can be performed using an algorithm for bucket sort in the range [1::n2]
and this can be done using the algorithm of [Ha] with the performance bound
stated in 1). Further, in some cases the sorting step can be replaced by a more
sophisticated algorithm that runs optimally (see, e.g., [FRT89]).

In the ear decomposition and open ear decomposition algorithms, sorting is
needed only if we require consecutive ear numbers. In most applications (includ-
ing triconnectivity, four-connectivity and planarity), any sequence of increasing
labels from a totally ordered set su�ces for the ear labels, and in such cases,
no sorting is needed in either of these algorithms.

6 Conclusion

In this report we have presented e�cient parallel algorithms for testing graph bi-
connectivity and triconnectivity and for �nding the triconnected components of a
biconnected graph. All of these algorithms run in linear sequential time and thus
represent new linear time sequential algorithms for these problems.

The algorithms given here di�er signi�cantly in structure from the earlier linear
time algorithms for these problems which were based on depth-�rst search. For in-
stance, our algorithms are very modular. Thus an implementer can choose a trade-o�
between e�ciency of implementation and ease of programming in deciding which of
several methods to use to implement each step in the various algorithms. This is in
contrast to the earlier algorithms in which most of the steps were tied to a depth-�rst
search of the input graph.

The algorithms given here are somewhat more complex than the earlier sequential
algorithms. Parallel algorithm design is a challenging task, and in asking for an
e�cient parallel logarithmic time algorithm whose sequential implementation runs in
linear time, we are requiring much more of the algorithm designer than we do of a
designer of linear sequential algorithms. Hence it is not surprising that the parallel
algorithms given here are rather complex.

Much of the additional complexity in the parallel algorithms of this report rela-
tive to the sequential ones is due to the fact that the parallel algorithms is unable
to generate a depth-�rst search tree e�ciently. We demonstrated this in the case of
�nding an open ear decomposition. However, due to the di�erence in the techniques
used in the design of sequential and parallel algorithms, we sometimes obtain a sim-
pli�ed sequential algorithm from a parallel algorithm for a problem. For instance, in
the case of �nding triconnected components, the algorithm in this report is actually

51



simpler than the earlier linear time sequential algorithm in that it directly performs
Tutte splits and hence does not need to perform any recombinations.
Acknowledgement I would like to thank the Austin Tuesday Afternoon Club for
several comments on an earlier version of Section 2. I am especially grateful to
Edsger W. Dijkstra and Jay Misra for their comments on algorithmic notation and
speci�cation of algorithms.

Exercises

1. Prove that a graph has an open ear decomposition if and only if it is biconnected.

2. Prove that a graph is biconnected if and only if it has an st-numbering.

3. Prove that the coalesced graph of a star graph is unique.

4. Let G be a biconnected graph with an open ear decomposition D and let G have
n vertices and m edges. Use a divide and conquer approach to �nd the ear
graph of each nontrivial ear in D in O(log2 n) time with O(n+m) processors.

5. Adapt the theorems and results in Section 3.3 to the problem of determining
three-edge connectivity in an undirected graph. Simplify the results wherever
possible.

6. Complete the proofs of lemmas in Section 4.1 by considering the case when
vertices are in their corresponding in-trees.

7. Explain why it su�ces to consider only Tst in step 3 of Algorithm 4.2.

8. Prove the correctness of Algorithm 4.5 by supplying the proofs of Lemmas 4.8,
4.9 and 4.10.

9. The tree of triconnected components of a biconnected graph G is a tree T = (V;E)
whose vertex set is the set of triconnected components of G, and which contains
an edge (x; y) 2 E whenever the triconnected components x and y have the same
copy of an edge introduced during a Tutte split.

Give a parallel algorithm that runs in logarithmic time with a linear number of
processors to �nd the tree of triconnected components of a biconnected graph.

52



REFERENCES

[Co88] R. Cole, \Parallel merge sort," SIAM J. Comput., vol. 17, 1988, pp. 770-785.

[CV86] R. Cole, U. Vishkin, \Approximate and exact parallel techniques with ap-
plications to list, tree and graph problems," Proc. 27th Ann. IEEE Symp. on
Foundations of Comp. Sci., 1986, pp. 478-491.

[Ed60] J. Edmonds, \A combinatorial representation for polyhedral surfaces," Not.
Am. Math. Soc., vol. 7, 1960, p. 646.

[Ev79] S. Even, Graph Algorithms, Computer Science Press, Rockville, MD, 1979.

[FRT89] D. Fussell, V. Ramachandran, R. Thurimella, \Finding triconnected com-
ponents by local replacements," Proc. ICALP 89, Springer Verlag LNCS 372,
1989, pp. 379-393; SIAM J. Comput, to appear.

[Ga86] H. Gazit, \An optimal randomized parallel algorithm for �nding connected
components in a graph," Proc. 27th Ann. IEEE Symp. on Foundations of
Comp. Sci., 1986, pp. 492-501.

[Ha87] T. Hagerup, \Towards optimal parallel bucket sorting," Inform. and Com-
put., vol. 75, 1987, pp. 39-51.

[HT72] J. E. Hopcroft, R. E. Tarjan, \Finding the triconnected components of a
graph," TR 72-140, Computer Science Department, Cornell University, Ithaca,
NY, 1972.

[HT73] J. E. Hopcroft, R. E. Tarjan, \Dividing a graph into triconnected compo-
nents," SIAM J. Comput., 1973, pp. 135-158.

[KR91] A. Kanevsky, V. Ramachandran, \Improved algorithms for graph four-
connectivity," Jour. Comput. Syst. Sci., vol. 42, 1991, pp. 288-306.

[KR90] R. M . Karp, V. Ramachandran, \Parallel algorithms for shared memory
machines," Handbook of Theoretical Computer Science, J. Van Leeuwen, ed.,
North Holland, 1990, pp. 869-941.

[KD88] S. R. Kosaraju, A. L. Delcher, \Optimal parallel evaluation of tree-structured
computations by raking," Proc. 3rd Aegean Workshop on Computing, Springer-
Verlag LNCS 319, 1988, pp. 101-110.

[Lo85] L. L�ovasz,\Computing ears and branchings in parallel," Proc. 26th IEEE
Ann. Symp. on Foundations of Comp. Sci., 1985, pp. 464-467.

53



[MSV86] Y. Maon, B. Schieber, U. Vishkin, \Parallel ear decomposition search
(EDS) and st-numbering in graphs," Theoretical Comput. Sci., vol. 47, 1986,
pp. 277-298.

[MR86] G. L. Miller, V. Ramachandran, \E�cient parallel ear decomposition with
applications," manuscript, MSRI, Berkeley, CA, January 1986.

[MR87] G. L. Miller, V. Ramachandran, \A new graph triconnectivity algorithm and
its parallelization," Proc. 19th Annual ACM Symp. on Theory of Computing,
1987, pp. 254-263, Combinatorica, to appear.

[RR89] V. Ramachandran, J. H. Reif, \Planarity testing in parallel," TR-90-15,
Dept. of Computer Sciences, The University of Texas, Austin, TX, 1990; pre-
liminary version appears as \An optimal parallel algorithm for graph planarity,"
Proc. 30th Ann. IEEE Symp. on Foundations of Comp. Sci., 1989, pp. 282-
287.

[RR89b] S. Rajasekharan, J. H. Reif, \Optimal and sublogarithmic time randomized
parallel sorting algorithms," SIAM J. Comput., vol. 18, 1989, pp. 594-607.

[RV88] V. Ramachandran, U. Vishkin, \E�cient parallel triconnectivity in logarith-
mic time," VLSI Algorithms and Architectures, Springer Verlag LNCS 319,
1988, pp. 33-42.

[Sc87] B. Schieber, Design and Analysis of Some Parallel Algorithms, Ph. D. thesis,
Tel Aviv University, Tel Aviv, Israel, 1987.

[SV88] B. Schieber, U. Vishkin, \On �nding lowest common ancestors: simpli�ca-
tion and parallelization," Proc. 3rd Aegean Workshop on Computing, Springer-
Verlag LNCS 319, 1988, pp. 111-123.

[Ta72] R. E. Tarjan, \Depth �rst search and linear graph algorithms," SIAM J.
Computing, vol. 1, 1972, pp. 146-160.

[Ta83] R. E. Tarjan, Data Structures and Network Algorithms, SIAM Press, Philadel-
phia, PA, 1983.

[TV84] R. E. Tarjan, U. Vishkin, \An e�cient parallel biconnectivity algorithm,"
SIAM J. Computing, vol. 14, 1984, pp. 862-874.

[Tu66] W. T. Tutte, Connectivity in Graphs, University of Toronto Press, 1966.

[Wh32] H. Whitney, \Non-separable and planar graphs," Trans. Amer. Math. Soc.
34, 1932, pp. 339-362.

54


