
DIMACS Series in Discrete Mathematics
and Theoretical Computer Science
Volume 00, 0000

Parallel Implementation of Algorithms for
Finding Connected Components in Graphs

(Preprint)y

TSAN-SHENG HSU, VIJAYA RAMACHANDRAN,

AND NATHANIEL DEAN

June 10, 1996

Abstract. In this paper, we describe our implementation of several paral-
lel graph algorithms for �nding connected components. Our implementa-
tion, with virtual processing, is on a 16,384-processor MasPar MP-1 using
the language MPL. We present extensive test data on our code.

In our previous projects [21, 22, 23], we reported the implementation
of an extensible parallel graph algorithms library. We developed general
implementation and �ne-tuning techniques without expending too much
e�ort on optimizing each individual routine. We also handled the issue of
implementing virtual processing.

In this paper, we describe several algorithms and �ne-tuning techniques
that we developed for the problem of �nding connected components in
parallel; many of the �ne-tuning techniques are of general interest, and
should be applicable to code for other problems. We present data on the
execution time and memory usage of our various implementations.

1991 Mathematics Subject Classi�cation. Primary 68-04; Secondary 05-04, 05C85, 68Q22.
Key words and phrases. parallel algorithms, graph algorithms, connected components, im-

plementation, MasPar.
The �rst author was supported in part by NSC of Taiwan, ROC, Grants 84-2213-E-001-005

and 85-2213-E-001-003. The second authorwas supported in part by NSF GrantCCR-90-23059
and Texas Advanced Research Projects Grant 003658386.

This paper is in �nal form and no version of it will be submitted for publication elsewhere.
yThis paper will appear in DIMACS Series in Discrete Mathematics and Theoretical Com-

puter Science, volume on the 3rd DIMACS Challenge, American Mathematical Societ.

c
0000 American Mathematical Society
0000-0000/00 $1.00 + $.25 per page

1

2 HSU, RAMACHANDRAN, AND DEAN

1. Introduction

Over the past decade there has been a large amount of work in the theory

of e�cient, highly parallel graph algorithm design [25, 27, 31, 46]. Parallel

algorithms that run in polylog time with linear or sub-linear number of pro-

cessors have been developed for several fundamental problems on undirected

graphs including connected components and spanning forestx [2, 5, 7, 13, 16,

17, 24, 26, 42], minimum spanning forest (MSF) [2, 5, 6], ear decomposition

and 2-edge connectivity [32, 37, 43], open ear decomposition and biconnectiv-

ity [32, 37, 43, 52], triconnectivity [12, 36] and planarity [44]. All of these

algorithms (with the exception of some algorithms for MSF) have the additional

feature that they serialize into linear-time sequential algorithms. However, these

algorithms are quite di�erent from earlier linear time algorithms based on depth-

�rst search [51] in that they are very modular in structure. For instance, the

algorithm for ear decomposition calls subroutines for several basic problems such

as connected components, spanning forest, the Euler tour technique on trees [52],

least common ancestors in trees [47, 52] and range minima [47, 52]. More com-

plex algorithms, such as those for triconnectivity and planarity call subroutines

for open ear decomposition, in addition to subroutines for more basic problems.

Thus an implementation of parallel algorithms for undirected graphs would have

to proceed in a bottom-up fashion, starting with an implementation of basic

primitives, and successively building up to more complex algorithms. Using this

strategy, we have implemented e�cient parallel algorithms for several combina-

torial and graph problems [21, 22, 23].

Our implementations have been on the MasPar MP-1 in the parallel language

MPL [34, 35], which is an extension of the C language [28]. In our previous

papers [21, 22, 23], we reported on the implementation of an extensible parallel

graph algorithms library using the approach outlined in the previous paragraph:

We �rst built a kernel of basic parallel primitives and then implemented par-

allel graph algorithms in order of increasing complexity. In [22] we described

general implementation and �ne-tuning techniques used in the implementation

of our parallel graph algorithms library; in this implementation we did not ex-

pend too much e�ort on optimizing each individual routine. Since the MasPar

MP-1 does not support virtual processing in MPL, in [23] we handled the is-

sue of implementing virtual processing. We then went into the basic routines

we implemented in the kernel, and performed extensive �ne-tuning; this is re-

ported in [21]. In this paper, we present our work on �ne-tuning the �rst parallel

graph algorithm we implemented, that for �nding connected components in an

undirected graph. All of the non-trivial parallel graph algorithms that we have

implemented, except the one for �nding minimum spanning tree, call the routine

for �nding connected components before performing any further computation.

xIn this paper, a spanning forest of a graph G is a maximal subgraph of G (w.r.t. the edges
in G) that is a forest.

PARALLEL ALGORITHMS FOR CONNECTED COMPONENTS 3

In this project we implemented several di�erent parallel algorithms for the con-

nected components problem, including one randomized algorithm, and tested

our code with respect to various �ne-tuning techniques.

Related work on implementing combinatorial algorithms on massively parallel

machines can be found in [1, 3, 4, 8, 9, 10, 11, 15, 16, 18, 19, 30, 38,

39, 41, 48]. Also there has been work reported on implementing combinatorial

algorithms on a vector super computer [16, 45, 49] and on a distributed memory

machine [29].

The rest of the paper is organized as follows. Section 2 describes the algo-

rithms implemented which includes an algorithm that we devised for this project.

Section 3 gives general �ne-tuning techniques for our code. Section 4 describes

the testing scheme. Section 5 gives performance data. Finally Section 6 gives

concluding remarks.

2. Algorithms

Given a list of vertices and edges in a graph, an algorithm for �nding connected

components assigns a unique component number c(u) to each vertex u. Two

vertices u and v are in the same component if and only if c(u) = c(v). In

addition to computing c(u) for each vertex u, our implementation for �nding

connected components also returns the total number of connected components

in the input graph. In this section, we describe four parallel algorithms that we

have implemented.

All of the parallel algorithms we implemented use the well-known `hooking-

and-pointer-jumping' technique for �nding connected components. Since our

code takes care of isolated vertices at the start of the computation, we will assume

here for convenience that there is no isolated vertex in the input graph. The

execution of this type of computation proceeds in iterations. In each iteration,

the following hooking and pointer jumping operations are performed. Initially,

each vertex is assigned to a di�erent set by itself. During execution, if two sets

of vertices are found to belong to the same connected component, then these

two sets are merged. We repeat the merging process until all vertices in each

connected component are in the same set. The data structure for a set of vertices

during the execution is a tree loop, where each vertex in the set has an outgoing

pointer that points to another vertex in the set with the constraint that exactly

one vertex has a pointer that points to itself. (Note that this is sometimes called

a `zero-tree-loop' in the literature [20].) Let the height of a tree loop T be the

number of vertices in a longest simple directed path in T . A tree loop whose

height is 2 is a rooted star. The vertex with self loop in a tree loop is the root.

Two tree loops are merged by changing the pointer of the root of a tree loop to

a vertex in the other tree loop. During the execution, it is desirable to reduce

the height of a tree loop by performing a pointer jumping on vertices in the tree

loop. When the algorithm terminates, all tree loops become rooted stars. The

4 HSU, RAMACHANDRAN, AND DEAN

each vertex is in a tree loop by itself;

assign a unique number �(u) to each vertex u;

let p(u) be the current pointer of the vertex u;
repeat

1. =� Conditional star hooking. �=
for all edges (u; v) execute in parallel

if u is in a rooted star and �(p(u)) > �(p(v)) then

1.1 p(p(u)) p(v);
2. =� Unconditional star hooking. �=

for all edges (u; v) execute in parallel

if u is in a rooted star and p(u) 6= p(v) then

2.1 p(p(u)) p(v);
3. =� Pointer jumping. �=

perform a pointer jumping operation on all vertices

until there is no change in the current set of tree loops;

Algorithm 1. An algorithm for �nding connected components

by Awerbuch and Shiloach [2].

component number can thus be assigned on the roots and the component number

of each vertex is the component number of its root. The number of connected

component is equal to the number of tree loops.

Based on the method used to determine the set of tree loops to be merged,

we can have many di�erent algorithms. We implemented the following four

algorithms, all of which run in O(logn) time (with high probability for the ran-

domized algorithm) using a linear number of processors on a CRCW PRAM.

Although techniques are known to reduce to the number of processors used in

the algorithms [7], we chose not to implement them because the associated algo-

rithms are quite complicated and the overhead is likely to be too large. The use

of CRCW PRAM algorithms involved dealing with concurrent memory accesses;

we discuss our implementation of concurrent memory accesses in Sections 3.4

and 3.7.

2.1. Awerbuch and Shiloach. The algorithm by Awerbuch and Shiloach

[2] is shown in Algorithm 1. In each hooking-and-pointer-jumping iteration

of this algorithm, two hooks are performed. The �rst hook, which is called

conditional star hooking, makes the root of a rooted star point to a tree loop.

In order to prevent two rooted stars from hooking to each other, the algorithm

requires the root of the hooking star to have a smaller vertex number than the

vertex number of the vertex to which it points. The second hook, which is called

unconditional star hooking, makes the root of a rooted star point to a tree loop

that is not itself.

Note that steps 1.1 and 2.1 are concurrent write operations. Note also that

this algorithm needs to check which vertices are in rooted stars. This can be

implemented using 2 concurrent read operations and one current write operation

as follows. Using one concurrent read, each vertex �nds its grandparent (i.e., the

PARALLEL ALGORITHMS FOR CONNECTED COMPONENTS 5

each vertex is in a tree loop by itself;

assign a unique number �(u) to each vertex u;

let p(u) be the current pointer of the vertex u;
repeat

1. =� Conditional hooking. �=
for all edges (u; v) execute in parallel

if (u is the root or a child of a root) and �(p(u))> �(p(v)) then

1.1 p(p(u)) p(v);
2. =� Unconditional star hooking. �=

for all edges (u; v) execute in parallel

if u is in a rooted star and p(u) 6= p(v) then

2.1 p(p(u)) p(v);
3. =� Pointer jumping. �=

perform a pointer jumping operation on all vertices

until there is no change in the current set of tree loops;

Algorithm 2. An algorithm for �nding connected components

by Shiloach and Vishkin [50] as described in Chapter 5.1.3 of

J�aJ�a [25].

parent of its parent). For each vertex whose grandparent is di�erent from its

parent, we mark (concurrent write) a
ag f for its grandparent. Any vertex that

is marked is not in a rooted star. Every unmarked vertex reads the
ag f from

its grandparent. Unmarked vertices whose grandparents are marked are also not

in rooted stars.

2.2. Shiloach and Vishkin. The next algorithm we implemented (Algo-

rithm 2) is by Shiloach and Vishkin [50] and also appears in Chapter 5.1.3 of

J�aJ�a [25]. In each of the hooking-and-pointer-jumping iteration of this algo-

rithm, two hooks are performed as in Algorithm 1. The �rst hook, which is

called conditional hooking, is similar to conditional star hooking as described

in Algorithm 1, except that the root of a tree loop (rather than a rooted star)

is made to point to another tree loop. The second hook is the same with the

unconditional star hooking as described in Algorithm 1. This algorithm needs to

check which vertices are in rooted stars only once during each iteration, instead

of twice as in Algorithm 1.

2.3. A Revised Deterministic Algorithm. Algorithm 3 is a revised de-

terministic algorithm that we developed for this implementation project. In each

hooking-and-pointer-jumping iteration of this algorithm, only one hook is per-

formed. This is a conditional star hooking similar to the one in Algorithm 1

except that the tie-breaking rule when two rooted stars try to hook to each

other alternates between the following two rules: In even-numbered iterations,

the algorithm favors the rooted star with a larger vertex number while in odd-

numbered iterations, the algorithm favors the rooted star with a smaller vertex

number. This guarantees termination in a logarithmic number of iterations.

Note that this algorithm tries to balance the amount of work performed and

6 HSU, RAMACHANDRAN, AND DEAN

each vertex is in a tree loop by itself;

assign a unique number �(u) to each vertex u;

let p(u) be the current pointer of the vertex u;
repeat

1. =� Conditional star hooking. �=
for all edges (u; v) execute in parallel

if the number of iterations executed so far is even then

if u is in a rooted star and �(p(u)) > �(p(v)) then

1.1 p(p(u)) p(v);
else

if u is in a rooted star and �(p(u)) < �(p(v)) then

1.2 p(p(u)) p(v);
2. =� Pointer jumping. �=

perform a pointer jumping operation on all vertices

until there is no change in the current set of tree loops;

Algorithm 3. A revised deterministic algorithm for �nding

connected components.

the number of tree loops reduced in each iteration. There is only one hook per

iteration.

2.4. A Simple Randomized Algorithm. Algorithm 4 is a simple random-

ized algorithm (see, e.g., Chapter 4.3 in [46]) that avoids the checking of rooted

stars by making sure that each tree loop is a rooted star at the beginning of each

hooking-and-pointer-jumping iteration. In each iteration, two hooks between

rooted stars are performed. By using a random bit in each vertex, the root of a

rooted star with the random bit 1 is made to point to the root of a rooted star

with the random bit 0. By enforcing the tie-braking rule using random bits, the

height of each resulting tree loop is less than four. After a pointer jumping, all

height-three tree loops become rooted stars. This simple randomized algorithm

di�ers from the previous three algorithms by saving the e�orts of checking for

rooted stars in each iteration. Note that in this algorithm, the height of each

tree loop is at most 2 after step 2. Thus all vertices are in rooted stars (or iso-

lated vertices) after step 3. By using random bits to break ties in hooking, this

algorithm avoids the construction of a tree loop with height larger than 2. Thus

it is possible that it would take a larger number of iterations for the algorithm

to terminate.

During the implementation of this algorithm, we found that when the num-

ber of vertices is small relative to the number of physical processors, the system

pseudo random bits that we generated do not have good random behavior. Thus

it usually took a very large number of iterations and a very long time for the al-

gorithm to terminate. (The same problem is also reported in our implementation

of a randomized list ranking algorithm [21].)

To avoid the above problem, we revised our algorithm as follows. We execute

our randomized algorithm until the number of live edges left is less than half

of the number of physical processors. Then we switch to the deterministic code

PARALLEL ALGORITHMS FOR CONNECTED COMPONENTS 7

each vertex is in a tree loop by itself;

initially all edges are live;

let p(u) be the current pointer of the vertex u;
while there is a live edge do

1. =� Coin tossing on vertices. �=
assign a random bit �(u) to each vertex u;

2. =� Hooking �=
for all live edges (u; v) execute in parallel

if p(u) = p(v) then (u; v) is dead;

else if �(p(u)) = 1 and �(p(v)) = 0 then

2.1 p(p(u)) p(v);
else if �(p(u)) = 0 and �(p(v)) = 1 then

2.2 p(p(v)) p(u);
3. =� Pointer jumping. �=

perform a pointer jumping operation on all vertices

end ;

Algorithm 4. A simple randomized algorithm for �nding con-

nected components (see, e.g., Chapter 4.3 in [46]).

(without virtual processing) as described in [22]. Since it is possible for a very

dense graph to have a small number of vertices, but a very large number of

edges, the problem with the system pseudo random bits remained for dense

graphs even after this modi�cation. To handle this problem, we also revised

the way our randomized algorithm picks (pseudo) random bits. Let n be the

number of vertices. The randomized algorithm �rst picks a random bit for each

vertex. Then we count the number of random bits that are 1. If the number of

1 bits is less than n
8 or is greater than 7n

8 , then we use the following algorithm

to re-pick pseudo random bits. We generate a positive 32-bit pseudo random

number for each physical processor that contains some vertices. We assign the

number 0 to each physical processor that does not contain vertices. Then we

compute the ranks of the random numbers generated. Let bi be the parity of the

rank associated with the ith physical processor. We assign the bit (bi+j) mod 2

to the jth vertex in the ith physical processor. Since we need to compute ranks,

the second method takes more time than the �rst method. Thus we use the �rst

method to generate pseudo random bits and switch to the second method only

if the �rst method fails.

We found that when the number of vertices is more than a quarter of the

number of physical processors, we never use the second method in our testing.

When the second method is used, the number of vertices in each physical pro-

cessor is at most 1. As a result, the number of 1 bits and the number of 0 bits

di�er by at most 1.

3. General Fine-Tuning Techniques

In this section, we describe several �ne-tuning techniques.

8 HSU, RAMACHANDRAN, AND DEAN

3.1. Compressed Data Structure for Edges. Three of our algorithms

(Algorithms 1{3) require that two copies of an undirected edge to be stored for

processing. To save memory usage, we store only one copy. Whenever we need

to perform operations based on the set of edges, our code performs the same

operations twice, assuming that we have two copies of the same edge available.

As indicated in [23], the amount of extra computation time used is negligible.

By doing this, we are able to handle input sizes up to twice as large as we could

without the compressed data structure.

3.2. Special Routine for the First Iteration of Hooking. During the

�rst iteration of the �rst three algorithms, isolated vertices instead of the roots

of rooted stars hook into other tree loops. Checking for isolated vertices re-

quires only one concurrent write operation and is much faster than checking for

rooted stars. Thus we can use special routines to compute the �rst iteration of

Algorithms 1{3.

3.3. Check for Live Edges. Algorithm 4 introduces a techniques to get

rid of edges connecting two vertices that are inside the same tree loop (i.e., that

are already known to be in the same connected component). The check works

as follows: An edge (u; v) is known to be in the same connected component if

u and v have the same parent pointer. Let edge (u; v) be dead if the current

parent pointers of u and v are the same. An edge is live if it is not dead. At

the start of the each iteration, the algorithm checks the parent pointers for the

endpoints of edges that are currently live. Dead edges do not participate in

further computation.

Algorithm 4 uses this check of live edges not only to remove dead edges, but

also to detect the termination of computation. In addition, by getting rid of

dead edges, the total number of operations performed during each iteration is

reduced. This technique can be applied to the other three algorithms as well.

3.4. Implementation of Concurrent Write Operations. In our algo-

rithms, we need to implement arbitrary concurrent write operations. The system-

provided routine rsend in MPL language can be used to directly implement ar-

bitrary write operations. The execution time of an arbitrary concurrent write

operation increases when the maximumnumber of concurrent write requests per

physical processor increases. This is the `Queue-Write' model that is addressed

in [14].

Another way of implementing concurrent write in MPL is to use the routine

sendwith. This routine executes the standard simulation of a concurrent write

step on an exclusive write PRAM [27], and requires the use of sorting and

additional working memory space. The execution time of a concurrent write

operation when sendwith is used depends only on the total number of write

requests, and not on the maximum number of concurrent write requests per

physical processor. Further, with this routine, one can implement priority write

PARALLEL ALGORITHMS FOR CONNECTED COMPONENTS 9

with the same delay as an arbitrary write. This delay is considerably less than

the delay caused by the routine rsend when the maximum concurrency at a

memory location is large, but the reverse is true when the concurrency at every

memory location is small.

Our experimental data indicates that if we modify our connected components

algorithms and use priority write operations in places where arbitrary concurrent

write operations are needed, we tend to have fewer number of iterations. For

example, if there are several candidates which the root r of a tree loop can hook

to, using an arbitrary write operation causes r to hook to an arbitrary tree loop.

Instead, if we use a priority write operation and cause r to hook to a vertex

with the largest vertex number, the maximum height of the resulting tree loops

tends to be smaller than the maximum height of the tree loops formed using

an arbitrary write operation. In our implementation we used both arbitrary

concurrent writes using the rsend routine and priority concurrent writes using

the sendwith routine and compared the performance of the resulting codes. (The

performance data will be shown and discussed in Section 5.1.)

In addition to using just rsend or just sendwith to implement concurrent

write operations, we can also use the following hybrid implementation. We note

that our algorithms usually have a large number of hooks (and thus a high

probability of having large number of concurrent write requests per physical

processor) during the �rst iteration. The number of hooks performed tends to

be smaller after the �rst iteration. Thus we can use priority concurrent write

(with the sendwith routine) in the �rst iteration and arbitrary concurrent write

(with the rsend routine) (i.e., queue-write [14]) in the remaining iterations. We

will show in Section 5 that this hybrid implementation improves the performance

of some of our algorithms.

3.5. Edge Condensation. During the execution of the algorithm, vertices

in a tree loop can be viewed as a super vertex and can be collapsed. When col-

lapsing vertices, multiple edges can be removed using sorting. We implement the

collapsing of vertices by the following method. During each iteration, whenever

we need to retrieve the pointer of an end point of an edge, we replace the end

point with its pointer. We refer to this operation as edge condensation. If a tree

loop is a rooted star, and an edge incident on it is examined, then all of the

vertices in the tree loop are collapsed into a super vertex. After each iteration,

we sort (lexicographically) the set of edges and remove multiple copies of the

same edge.

3.6. Deferred Pointer Jumping. Given a tree loop, the depth of a vertex

u is the number of vertices on the path from u to the root of its tree loop.

The pointer of a vertex with depth less than or equal to 2 does not change

when pointer jumping is performed. To reduce the number of pointer chasing

operations performed during pointer jumping, we can use the following deferred

pointer jumping scheme.

10 HSU, RAMACHANDRAN, AND DEAN

Note that it takes one concurrent write operation to check whether a non-root

vertex is a leaf in a tree loop by marking a
ag for the parent of each vertex. After

the marking, i.e., concurrent write, the vertices remain unmarked are leaves.

Initially, all vertices are active. During the beginning of each iteration, we mark

the leaves in tree loops as `inactive.' Inactive vertices keep their pointers, but

do not participate further computation, and edge condensation is performed on

edges incident on them to move these edges further up the tree loop. Given

a set of tree loops, let the set of active tree loops be the induced subgraph on

active vertices. Note that a rooted star that marks its leaves inactive becomes

an isolated vertex. Thus in our new scheme, we hook active tree loops that

are isolated vertices instead of rooted stars. We �nd the set of isolated vertices

using one concurrent write operation as follows. We mark a
ag for the parent of

each vertex using concurrent write. After the marking, the vertices that remain

unmarked and whose parent pointers are null or point to themselves are isolated

vertices. Finally, after the original algorithm terminates, we mark all vertices

active and perform pointer jumping until all tree loops are rooted stars.

Recall that the original star-checking algorithm as described in Section 2.1

uses two concurrent read operations and one concurrent write operation. Under

the new scheme, it takes 1 concurrent write to �nd inactive vertices. After

marking inactive vertices, rooted stars becomes isolated vertices. It takes only

one concurrent write to �nd isolated vertices. Our experimental data indicates

that this new method runs faster.

Note also that after removing inactive vertices, the height of each tree loop

decreases (unless all tree loops are isolated vertices). Without using the new

scheme, all depth-1 vertices (i.e., children of the root) in a tree loop perform

a pointer jump operation even though their pointers do not change after the

jump. This is a waste of communication bandwidth. Using our new scheme,

leaves that are originally depth-1 do not participate in pointer jumping. Thus

our new scheme not only reduces the time needed to check which tree loop to

hook to, but also reduces the heights of the tree loops we work with, and the

number of pointer chasing operations we perform during each iteration.

3.7. Implementationof ConcurrentRead. In implementing pointer jump-

ing, we need to use concurrent read operations. The MPL language provides

system routine rfetch to directly implement it. The execution time of an con-

current read operation increases when the maximumnumber of concurrent read

requests per physical processor increases [21, 40]. This is the `Queue-Read'

model that is addressed in [14]. As indicated in the experiments performed

in [21], an exclusive read implementation of concurrent read operations using

sorting outperforms the rfetch concurrent read implementation when the max-

imum number of concurrent read requests on one processor is larger than 256.

We found that when performing pointer jumping on dense graphs with less ver-

tices than the number of physical processors in the system, the maximumnumber

PARALLEL ALGORITHMS FOR CONNECTED COMPONENTS 11

of concurrent read requests on one physical processor becomes quite large at the

very last few iterations. Thus it is desirable to switch to an exclusive read im-

plementation during this stage. Hence in our implementations we use rfetch

for deferred pointer jumping in the initial iterations, but when the number of

vertices becomes less than or equal to the number of physical processors we use

an exclusive read implementation to perform deferred pointer jumping opera-

tions. We will show in Section 5 this hybrid implementation of concurrent read

operations improves the performance of some of our algorithms.

4. Testing Scheme

4.1. Computing Platform. All of our parallel implementations are on a

MasPar MP-1 with 16,384 processors. The MasPar computer [33] is a �ne-

grained massively parallel single-instruction-multiple-data (SIMD) computer. All

of its parallel processors synchronously execute the same instruction at the same

time. A description of the hardware architecture and the software environment

of MasPar MP-1 can be found in [22].

We used 4 kilo-bytes of memory per physical processor to test our various

implementations for connected components. We show the performance of our

code running on the largest data that we could �t into the system.

4.2. Test Inputs. In our code, an undirected graph is represented by a list

of edges in it. We tested our programs using random graphs of three di�erent

edge densities?:

� dense graphs where m = n2

4 ;

� intermediate-density graphs where m = n1:5;

� sparse graphs where m = 3n
2 .

To generate a random graph with n vertices and m edges, we �rst generated an

empty graph with n vertices. Then we added one edge at a time with each edge

being chosen with uniform probability until exactly m edges were generated.

For each size and sparsity, we generated four di�erent test graphs. We ran each

program on each test graph for 10 iterations and recorded the average of the 40

trials.

We also used the following special classes of graphs that are reported in the

experiments conducted in [16].

� Two-dimensional wrap-around grids that are squares with 30% and 60%

of their edges (chosen randomly). Thus given a graph in this class,

m = 0:6 �n when the edge density is 30% and m = 1:2 �n when the edge

density is 60%.

� Three-dimensional wrap-around grids that have the same size in each

dimension with 20% and 40% of their edges (chosen randomly). Thus

?In this paper, n and m always represent the number of vertices and edges in the input
graph, respectively.

12 HSU, RAMACHANDRAN, AND DEAN

given a graph in this class, m = 0:6 �n when the edge density is 30% and

m = 1:2 � n when the edge density is 60%.

� Tertiary graphs in which each vertex randomly selects three neighbors.

Note that tertiary graphs are multi-graphs and m = 3 � n.

� Random graphs with m = 0:02 �
n�(n�1)

2 .

5. Performance Data

We implemented the Algorithms 1 through 4 described in Section 2. All of

our code used the compressed data structure that represents each undirected

edge only once, a special routine for the �rst iteration, and performed the check

for live edges. We also did not use deferred pointer jumping in Algorithms 1

and 2, since we found that there is no performance improvement by adding this

feature.

5.1. Deterministic Algorithms. We �rst tested the following 5 di�erent

deterministic code using 16,384 PE's with 4 kilo-bytes of memory per PE.

� Code A: Algorithm 2.

� Code B: Code A with edge condensation, but does not remove duplicated

edges.

� Code C: Algorithm 1.

� Code D: Code C with edge condensation, but does not remove duplicated

edges.

� Code E: Algorithm 3 with edge condensation and deferred pointer jump-

ing, but does not remove duplicated edges.

For each code, we tested two di�erent methods to implement concurrent write.

In the �rst version, we used arbitrary concurrent write operations (using the

rsend routine), and in the second version we used priority concurrent write

operations (using the sendwith routine). The performance data is shown in

Table 1. We observe that for dense graphs, most of the runs terminate in a few

iterations, and Algorithm 2 (i.e., Code A and Code B) outperforms the rest.

Algorithm 1 (i.e., Code C) outperforms others on priority write implementation.

Algorithm3 (i.e., Code E) performs better when the graph is very sparse. We also

observe that the priority write version decreases the number of iterations needed

for code to terminate. However, the total execution time does not necessary

decrease because of the overhead involved in implementing priority concurrent

write operations using the sendwith routine.

Removing Duplicated Edges and Implementing Hybrid Concurrent

Read/Write. We re-ran the above code with the modi�cation of removing

duplicated edges in each iteration. We found that the performance for Code A

through D does not improve. We also used hybrid concurrent read and write

in our code. We found that the performance of Code A through D did not

improve too much. However, the performance of Code E greatly improves and

PARALLEL ALGORITHMS FOR CONNECTED COMPONENTS 13

m = n2=4 m = n3=2 m = 3n=2
seconds iterations seconds iterations seconds iterations

Code A Arbitrary CW 3.6 5.0 2.9 6.0 50.3 8.5
Priority CW 5.2 3.5 4.2 4.2 52.8 7.0

Code B Arbitrary CW 3.6 5.0 2.9 6.0 46.1 7.2
Priority CW 5.2 3.5 4.2 4.2 47.3 6.2

Code C Arbitrary CW 5.0 6.0 6.7 8.0 103.3 11.5
Priority CW 2.2 3.0 4.0 5.0 72.5 7.0

Code D Arbitrary CW 13.7 6.0 21.5 7.8 105.3 10.8
Priority CW 12.0 3.0 17.8 5.0 84.0 7.0

Code E Arbitrary CW 33.4 14.5 33.7 17.0 17.4 19.5
Priority CW 8.9 5.0 18.8 9.0 22.0 19.5

Table 1. Performance for 5 di�erent deterministic code when

m = 262; 142. We show both the execution time (in seconds)

and the number of iterations the algorithm needs to terminate.

outperforms all other code in all classes of graphs. The performance data is

shown in Table 2.

5.2. Randomized Algorithm. We incorporated the features of removing

duplicated edges and deferred pointer jumping in our randomized algorithm. The

performance of our code is shown in Table 3. We observe that the performance

of our randomized code is slower than our best deterministic version on the set

of graphs that we have tested.

5.3. Further Testing. We tested our code on several other classes of graphs

which are shown in Section 4.2. The performance data for Code E with the fea-

tures of removing duplicated edges and using hybrid concurrent write operations

is shown in Table 4. The performance data for our randomized code is shown

in Tables 5 and 6. We note that our randomized code outperforms our best

deterministic code on grids. However, our deterministic code still outperforms

our randomized code on random graphs and tertiary graphs.

5.4. Memory Usage. Using 16,384 physical processors and 4 kilo-bytes of

memory per physical processor (which is 1
16 of the total available memory), we

were able to run our randomized algorithm for any graph with upto 0.52 million

vertices and 0.52 million edges. That is, we are able to store 32 vertices and 32

edges in a physical processor. Our deterministic algorithm runs faster, though it

requires more memory. We show the performance of our deterministic code for

graphs with upto 0.26 million vertices and 0.26 million edges. For graph of this

size, we store 16 vertices and 16 edges in a physical processor.

We observe that we do not occupy all 4 kilo-bytes of space by storing 16

vertices and 16 edges in a physical processor, and we should have enough space

to pack 24 vertices and 24 edges. However, the sorting program that we used [41]

requires that the number of data allocated in each physical processor to be power

of 2. We use sorting to implement priority concurrent write operations (using

the sendwith routine) and to remove duplicated edges. Thus we are unable

to run our algorithms on larger graphs even though we have space left. For

14 HSU, RAMACHANDRAN, AND DEAN

m = 32; 766 m = 65; 534 m = 131; 070 m = 262; 142

secs itrs secs itrs secs itrs secs itrs

code from [23] 0.6 NA 1.6 NA 2.4 NA 5.3 NA
Code C orig. 0.3 3.0 0.7 3.0 1.1 3.0 2.2 3.0

m = n2=4 Pri. write rev. 0.4 3.0 0.8 3.0 1.3 3.0 2.6 3.0
Code E, Pri. write orig. 1.1 5.0 2.0 5.0 4.3 5.0 8.9 5.0
Code E rev. 0.2 3.5 0.5 4.0 0.8 4.0 1.6 4.0

code from [23] 0.9 NA 1.9 NA 3.4 NA 7.2 NA
Code A orig. 0.6 6.0 0.9 5.8 1.7 6.0 2.9 6.0

m = n3=2 Arb. write rev. 0.8 5.8 1.2 5.5 2.5 6.0 4.5 6.0
Code E, Pri. write orig. 2.3 9.0 4.6 9.0 9.1 9.0 18.8 9.0
Code E rev. 0.3 6.0 0.6 7.0 1.1 7.0 2.2 7.0

code from [23] 7.4 NA 15.6 NA 33.4 NA 49.1 NA
Code B orig. 5.7 6.0 11.2 6.0 21.7 6.0 47.3 6.2

m = 3n=2 Pri. write rev. 5.0 6.0 11.7 6.5 25.2 6.8 54.6 7.0
Code E, Arb. write orig. 1.4 15.5 3.4 18.0 8.2 20.0 17.4 19.5
Code E rev. 0.8 14.0 1.5 14.5 3.2 16.0 6.3 15.0

Table 2. The performance of our deterministic code after

adding the feature of removing duplicated edges and also the

features of hybrid concurrent read and write. For each class

of graphs, we show the performance of the program which has

the best performance among Code A through D and the fastest

version of Code E. We apply the feature of removing duplicated

edges in all of our tested code and apply the feature of hybrid

concurrent write on Code E only. For comparison, we also list

the performance of the code in [23] (based on Algorithm 1)

which is not �ne-tuned.

m = 32;766 m = 65;534 m = 131;070 m = 262;142 m = 524;286
secs itrs secs itrs secs itrs secs itrs secs itrs

m = n2=4 1.2 3.0 2.0 3.1 3.5 4.1 6.6 4.0 13.4 4.5

m = n3=2 1.2 3.3 1.9 4.0 3.7 4.9 6.4 4.7 13.0 5.2
m = 3n=2 1.9 6.0 3.2 7.6 5.6 7.7 11.6 8.5 25.4 9.8

Table 3. The performance of our randomized algorithm (with

removing duplicated edges) is shown. We show both the total

execution time (in seconds) and the number of iterations needed

for the algorithm to reduce its number of edge to 8,192, in which

case we switch to a deterministic algorithm.

2-D grids 3-D grids Tertiary Random
30% 60% 20% 40% graphs graphs

n 261,121 218,089 250,047 216,000 87,380 5,119
m 157,285 262,142 157,285 262,142 262,140 262,142
seconds 4.5 6.7 5.5 5.9 5.8 2.3
iterations 12.5 20.0 16.5 17.0 11.5 7.0

Table 4. The performance of our best deterministic code on

several special classes of graphs.

PARALLEL ALGORITHMS FOR CONNECTED COMPONENTS 15

2-D grids 3-D grids
30% 60% 20% 40%

n 261,121 524,176 218,089 435,600 250,047 512,000 216,000 421,875
m 157,285 314,571 262,142 524,286 157,285 314,571 262,142 524,286
secs 4.0 8.8 5.7 12.6 4.1 9.3 7.6 16.4
itrs 7.0 8.0 9.0 11.0 7.1 8.1 9.6 11.0

Table 5. The performance of our randomized code on grid graphs.

Tertiary graphs Random graphs
n 87,380 174,762 5,119 7,240
m 262,140 524,286 262,142 524,286
secs 9.6 21.3 7.0 15.2
itrs 6.7 7.9 4.8 5.5

Table 6. The performance of our randomized code on two spe-

cial classes of graphs.

comparison, the code that we had for our previous implementation [23] (which

is not �ne-tuned) used 16 kilo-bytes of space to process upto 64 vertices and 64

edges per physical processor. Our randomized code used only half of the amount

of memory because of the simplicity of the underlying algorithm. As a result of

our �ne-tuning, our current deterministic code uses 25% less memory than our

earlier version in [23].

5.5. Comparison to Related Work. In [16], Greiner reported the imple-

mentation of several parallel algorithms for �nding connected components on a

massively parallel computer CM-2 using a quarter of the processors (8,192 pro-

cessors) and all 32 kilo-bytes of memory in each processor. He also reported

an implementation on a vector super computer Cray C-90 using one processor.

Greiner implemented the algorithms of Shiloach and Vishkin [50] and Awerbuch

and Shiloach [2], and the simple randomized algorithm that we implemented.

Greiner did not use the system pseudo number generator for generating random

bits in his randomized code. Instead, the ith \random" bit for a vertex is the

(i mod log2 n)th bit of the vertex number. He implemented �ne-tuning tech-

niques which include routines similar to our �rst iteration of hooking, check of

live edges, and edge condensation. He also implemented hybrid algorithms that

combine features in the above three algorithms and an algorithm in Hirchberg,

Chandra, and Sarwate [20]. His hybrid algorithm has the best performance for

the classes of graphs tested. Greiner did not implement the compressed data

structure for edges, various implementation of concurrent write operations, or

deferred pointer jumping, all of which have been implemented in our work. Our

revised deterministic algorithm is also di�erent from any of the algorithms that

he used.

Our code on the MasPar MP-1 is about half as fast as Greiner's code on the

CM-2 for random graphs and tertiary graphs. On grids, his code is more than

twice as fast. We observe that for grid graphs, his randomized code, though not

the fastest overall, has about the same performance as his best code. His code

16 HSU, RAMACHANDRAN, AND DEAN

on the Cray C-90 is about 15 times faster than his code on the CM-2. It should

be noted that the CM-2 is a more expensive machine than the MasPar MP-1,

and the Cray C-90 is a much more expensive machine than the MP-1.

The issue of memory usage is not addressed in [16]. Using four times the

amount of total memory that we used, Greiner shows CM-2 performance data

on random graphs with about 0.52 millions edges. He shows CM-2 performance

data on grids and tertiary graphs with twice as many edges. As indicated in Sec-

tion 5.4, our randomized code can run graphs with 0.52 millions edges. We also

show performance data for our deterministic code on graphs with 0.26 millions

edges. Since we use only quarter the amount of memory as Greiner's implemen-

tation on the CM-2, it appears that our code uses less space than his.

In [29], a distributed memory implementation of the algorithm by Shiloach

and Vishkin [50] is reported. After �ne-tuning, they obtain a speedup of 20 using

a 32 processor CM-5 on grid graphs and obtain virtually no speedup on sparse

random graphs. The performance of our massively parallel implementation seems

to be more adaptable to di�erent classes of graphs.

In [30], a mesh implementation of hooking-and-pointer-jumping type algo-

rithms is reported on a MasPar MP-1 using 8,192 processors. By using the

underlying mesh architecture and the fact that the mesh communication is more

than 100 times faster than the global router communication, their implemen-

tation is generally faster than ours on dense graphs. Our implementation runs

in about the same speed than theirs on very sparse graphs. In [30], the input

graph is represented by an adjacency linked list on sparse graphs and is repre-

sented by an adjacency matrix on dense graphs while we use an arbitrary edge

list to represent any input graph. It appears that our input data format is more

exible. Note that it takes non-trivial time to prepare an adjacency linked list

or an adjacency matrix data structure for a graph. Because of the di�erent data

structures used for the input graph, our implementation also has a more e�cient

usage of the memory if the di�erence between the minimum vertex degree and

the maximum vertex degree is large. We also have a more balanced usage of

memory in each processor if the graph is very dense.

6. Concluding Remarks

In this paper, we have described our project on the implementation and �ne-

tuning of parallel code for the important problem of �nding connected compo-

nents in an undirected graph. Our �ne-tuned code is more than 7 times faster

than our original code on very sparse graph and also uses less memory. A ran-

domized version of our code requires less memory, although it runs slower. This

version can be used when memory is at a premium. We also note that our Code

E with various revisions outperforms all other programs on all classes of graphs

except grids. On grids, our randomized code has the best performance.

PARALLEL ALGORITHMS FOR CONNECTED COMPONENTS 17

References

1. R. Anderson and J. Setubal,On the parallel implementation of Goldberg's maximum
ow
algorithm, Proc. 4th ACM Symp. on Parallel Algorithms and Architectures, 1992, pp. 168{
177.

2. B. Awerbuch and Y. Shiloach, New connectivity and MSF algorithms for shu�e-exchange
network and PRAM, IEEE Tran. on Computers (1987), 1258{1263.

3. G. E. Blelloch, Scan primitives and parallel vector models, Ph.D. thesis, M.I.T., October
1989.

4. G. E. Blelloch, C. E. Leiserson, B. M. Maggs, C. G. Plaxton, S. J. Smith, and M. Zagha,
A comparison of sorting algorithms for the Connection Machine CM-2, Proc. 3th ACM
Symp. on Parallel Algorithms and Architectures, 1991, pp. 3{16.

5. K. W. Chong and T. W. Lam, Finding connected components in O(logn log logn) time on
the EREW PRAM, Proc. 4th Annual ACM-SIAM Symp. on Discrete Algorithms, 1993,
pp. 11{20.

6. R. Cole, P. N. Klein, and R. E. Tarjan, A linear-work parallel algorithm for �nding min-
imum spanning trees, Proc. 6th ACM Symp. on Parallel Algorithms and Architectures,
1994, pp. 11{15.

7. R. Cole and U. Vishkin, Approximate parallel scheduling. Part II: Applications to
logarithmic-time optimal graph algorithms, Information and Computation 92 (1991), 1{47.

8. E. Dekel, D. Nassimi, and S. Sahni, Parallel matrix and graph algorithms, SIAM J. Com-
put. 10 (1981), 657{675.

9. B. Dixon and A. K. Lenstra, Factoring integers using SIMD sieves, Manuscript, 1992.
10. , Massively parallel elliptic curve factoring, Manuscript, 1992.
11. T. Feder, A. G. Greenberg,V. Ramachandran,M. Rauch, and L.-C. Wang, Circuit switched

link simulation: Algorithms, complexity and implementation, Draft manuscript, 1992.
12. D. Fussel, V. Ramachandran, and R. Thurimella, Finding triconnected components by local

replacements, SIAM J. Comput. 22 (1993), no. 3, 587{616.
13. H. Gazit, An optimal randomized parallel algorithm for �nding connected components in

a graph, SIAM J. Comput. 20 (1991), no. 6, 1046{1067.
14. P. B. Gibbons, Y. Matias, and V. Ramachandran, The QRQW PRAM: Accounting for

contention in parallel algorithms, Proc. 5th ACM-SIAM Symp. on Discrete Algorithms,
1994, pp. 638{648, SIAM J. Comput., to appear.

15. A. G. Greenberg, B. D. Lubachevsky, and L.-C. Wang, Experience in massively parallel
discrete event simulation, Proc. 5th ACM Symp. on Parallel Algorithms and Architectures,
1993, pp. 193{202.

16. J. Greiner, A comparison of data-parallel algorithms for connected components, Proc. 6th
ACM Symp. on Parallel Algorithms and Architectures, 1994, pp. 16{25.

17. S. Halperin and U. Zwick, An optimal randomized logarithmic time connectivity algorithm
for the EREW PRAM, Proc. 6th ACM Symp. on Parallel Algorithms and Architectures,
1994, pp. 1{10.

18. W. Hightower, J. Prins, and J. Reif, Implementations of randomized sorting on large
parallel machines, Proc. 4th ACM Symp. on Parallel Algorithms and Architectures, 1992,
pp. 158{167.

19. W. D. Hillis and G. L. Steele Jr., Data parallel algorithms, Communications of the ACM
29 (1986), 1170{1183.

20. D. S. Hirschberg, A. K. Chandra, and D. V. Sarwate, Computing connected components
on parallel computers, Communications of the ACM 22 (1979), no. 8, 461{464.

21. T.-s. Hsu and V. Ramachandran, E�cient massively parallel implementation of some
combinatorial algorithms, Theoretical Computer Science (1996, to appear).

22. T.-s. Hsu, V. Ramachandran, and N. Dean, Implementation of parallel graph algorithms on
the MasPar, DIMACS Series in Discrete Mathematics and Theoretical Computer Science,
vol. 15, American Mathematical Society, 1994, pp. 165{198.

23. , Implementation of parallel graph algorithms on a massively parallel SIMD com-
puter with virtual processing, Proc. 9th International Parallel Processing Symp., 1995,
pp. 106{112.

18 HSU, RAMACHANDRAN, AND DEAN

24. K. Iwama and Y. Kambayashi,A simpler parallel algorithm for graph connectivity, Journal
of Algorithms 16 (1994), 190{217.

25. J. J�aJ�a, An introduction to parallel algorithms, Addison-Wesley, 1992.
26. D. R. Karger, N. Nisan, and M. Parnas, Fast connected components algorithms for the

EREW PRAM, Proc. 4th ACM Symp. on Parallel Algorithms and Architectures, 1992,
pp. 373{381.

27. R. M. Karp and V. Ramachandran, Parallel algorithms for shared-memory machines,
Handbook of Theoretical Computer Science (J. van Leeuwen, ed.), North Holland, 1990,
pp. 869{941.

28. B. W. Kernighan and D. M. Ritchie, The C programming language, Prentice Hall, Engle-
wood Cli�s, NJ, 1988, Second Edition.

29. A. Krishnamurthy, S. Lumetta, D. E. Culler, and K. Yelick, Connected components on
distributed memory machines, Presented at the 3rd DIMACS Implementation Challenge
Workshop, October, 1994.

30. S. Kumar, S. M. Goddard, and J. F. Prins, Connected-components algorithms for mesh-
connected parallel computers, Presented at the 3rd DIMACS Implementation Challenge
Workshop, October, 1994.

31. F. T. Leighton, Introduction to parallel algorithms and architectures: Arrays, trees, hy-
percubes, Morgan Kaufmann, 1992.

32. Y. Maon, B. Schieber, and U. Vishkin, Parallel ear decomposition search (EDS) and st-
numbering in graphs, Theoret. Comput. Sci. (1986), 277{298.

33. MasPar Computer Co., MasPar system overview, version 2.0 ed., March 1991.
34. MasPar Computer Co., MasPar parallel application language (MPL) reference manual,

version 3.0, rev. a3 ed., July 1992.
35. MasPar Computer Co., MasPar parallel application language (MPL) user guide, version

3.1, rev. a3 ed., November 1992.
36. G. L. Miller and V. Ramachandran, A new triconnectivity algorithm and its applications,

Combinatorica 12 (1992), 53{76.
37. , E�cient parallel ear decomposition with applications, Manuscript, MSRI, Berke-

ley, CA, January 1986.
38. B. Narendran and P. Tiwari, Polynomial root-�nding: Analysis and computational in-

vestigation of a parallel algorithm, Proc. 4th ACM Symp. on Parallel Algorithms and
Architectures, 1992, pp. 178{187.

39. P. M. Pardalos, M. G.C. Resende, and K.G. Ramakrishnan (eds.), Parallel processing of
discrete optimization problems, DIMACS series in discrete mathematics and theoretical
computer science, vol. 22, American Mathematical Society, 1995.

40. L. Prechelt,Measurements of MasPar MP-1216A communication operations, Tech. Report
01/93, Institute f�ur Programmstrukturen und Datenorganisation, Fakult�at f�ur Informatik,
Universit�at Karlsruhe, Germany, January 1993.

41. J. F. Prins and J. A. Smith, Parallel sorting of large arrays on the MasPar MP-1, Proc.
3rd Symp. on the Frontiers of Massively Parallel Computation, 1990, pp. 59{64.

42. T. Radzik, Computing connected components on EREW PRAM, Tech. report, King's
College, London, 1994, Tech. Rep. 94/02.

43. V. Ramachandran, Parallel open ear decomposition with applications to graph biconnec-
tivity and triconnectivity, Synthesis of Parallel Algorithms (J. H. Reif, ed.), Morgan-
Kaufmann, 1993, pp. 275{340.

44. V. Ramachandran and J. Reif, Planarity testing in parallel, Jour. Comput. and Sys. Sci.
49 (1994), no. 3, 517{561, Special Issue for FOCS '89.

45. M. Reid-Miller, List ranking and list scan on the CRAY C-90, Proc. 6th ACM Symp. on
Parallel Algorithms and Architectures, 1994, pp. 104{113.

46. J. H. Reif (ed.), Synthesis of parallel algorithms, Morgan-Kaufmann, 1993.
47. B. Schieber and U. Vishkin, On �nding lowest common ancestors: Simpli�cation and

parallelization, SIAM J. Comput. 17 (1988), no. 6, 1253{1262.
48. J. T. Schwartz, Ultracomputers, ACM Trans. on Programming Languages and Systems 2

(1980), 484{521.

PARALLEL ALGORITHMS FOR CONNECTED COMPONENTS 19

49. T. J. She�er, Implementing the multipre�x operation on parallel and vector computers,
Proc. 5th ACM Symp. on Parallel Algorithms and Architectures, 1993, pp. 377{386.

50. Y. Shiloach and U. Vishkin, An o(logn) parallel connectivity algorithm, Journal of Algo-
rithms (1982), 57{67.

51. R. E. Tarjan, Depth-�rst search and linear graph algorithms, SIAM J. Comput. 1 (1972),
146{160.

52. R. E. Tarjan and U. Vishkin, An e�cient parallel biconnectivity algorithm, SIAM J. Com-
put. 14 (1985), 862{874.

Inst. of Information Science, Academia Sinica, Nankang 115, Taipei, Taiwan, ROC
E-mail address: tshsu@iis.sinica.edu.tw

Dept. of Computer Sciences, Univ. of Texas at Austin, Austin, TX 78712, USA
E-mail address: vlr@cs.utexas.edu

S/W Production Research, AT&T Bell Labs., Murray Hill, NJ 07960, USA

E-mail address: nate@research.att.com

