CS 345

Parsing,
Lexical Analysis,
and Tools

William Cook

Parsing techniques

¢ Top-Down
e Begin with start symbol, derive parse tree
e Match derived non-terminals with sentence
e Use input to select from multiple options

4 Bottom Up
e Examine sentence, applying reductions that match
e Keep reducing until start symbol is derived

e Collects a set of tokens before deciding which
production to use

Top-Down Parsing

& Recursive Descent

e Interpret productions as functions, nonterminals as
calls

e Must predict which production will match
— looks ahead at a few tokens to make choice

e Handles EBNF naturally

e Has trouble with left-recursive, ambiguous grammars
— left recursion is production of form E ::= E ...

¢ Also called LL(k)
e scan input Left to right
e use Left edge to select productions
e use k symbols of look-ahead for prediction

Recursive Descent LL(1) Example

¢ Example
E::=E+E | E-E | T note: left recursion
T:=N | (E)
N:={0]|1]|..]9} {..} means repeated
¢ Problems:

e Can't tell at beginning whethertouse E + Eor E - E
— would require arbitrary look-ahead
— But it doesn’t matter because they both begin with T

e |Left recursion in E will never terminate...

Recursive Descent LL(1) Example

¢ Example
E::=T[+E | —E] [...] means optional
T:=N | (E)
N::={0|1]..]9}

¢ Solution

e Combine equivalent forms in original production:
E::=E+E | E-E | T

e There are algorithms for reorganizing grammars

— cf. Greibach normal form (out of scope of this course)

LL Parsing Example

Ee23+7 Ex:=T[+E | —-E]
Te23+7 Ta=N1(E)
23°+7 e = Current location
23+<7 Preduction

23+E*7/ indent = function call
23+Te7/

23+Ne7/

23+7¢

Intuition: Growing the parse tree
from root down towards terminals.

Recursive Descent LL(1) Psuedocode

procedure E() //[E::=T [+E | —E]
a = T();
if next token is "+” then b = E(); return add(a, b)
If next token is *-" then b = E(); return subtract(a, b)
else return a

procedure T() // T:=N | (E)

if next token is (" then
a = E(); check next token is ™)”; return a;
else return N();

procedure N) //N:={0|1]..]|9}
while next token is digit do...

Bottom-Up Parsing

& Shift-Reduce

e Examine sentence, applying reductions that match
e Keep reducing until start symbol is derived

¢ Technique

e Analyze grammar for all possible reductions
e Create a large parsing table (never done by hand)

¢ Also called LR(k)
e scan input Left to right
e use Right edge to select productions
e usually only k=1 symbols of look-ahead needed

LR Parsing Example

.23+7 E''=FE+E | E-E | T
2¢3+7 E+e7 L :-:-Z I|\\|| [l) |(|§)
De347/ E+7e D = O|1]..1]19

Ne3+7/ E+De

N3e+7 E+Ne » = Current location

NDe+7/ E4+Te Shift step

Ne+7 E4FEe Reduce step

Te+7/ E

Ee+/ Intuition: Growing the parse tree

from terminals up towards root.

Conficts

& Problem

e Sometimes multiple actions apply
— Shift another token / Reduce by rule R
— Reduce by rule A / Reduce by rule B

e Flagged as a conflict when parsing table is built

® Resolving conflicts
e Rewrite the grammar

e Use a default strategy

— Shift-reduce: Prefer shifting

— Reduce-reduce: Use first rule in written grammar
e Use a token-dependent strategy

— There's a nice way to do this

10

Confict Example

N - E*E+e (shift)
E*Ee+ - Ee*+ (reduce)

- - E+E4e (shift)
E+Ee+ - Ee*+4+ (reduce)

What does each resolution direction do?
Where have we seen this problem before?

11

Directives

& Precedence

e Establish a token order: * binds tighter than +
— Doesn't need to be given for all tokens
— If unordered tokens conflict, use default strategy

@ Associativity
e [eft-associative: favor reduce
e Right-associative: favor shift

e Non-associative: raise error
— Flags “inherently confusing” expressions
— Consider:a—b —c

12

Parser Generators

& Parser Generators

e Inputis a form of BNF grammar
— Include “actions” to be performed as rules are recognized

e Output is a parser

4 Examples
e ANTLR, JavaCC

— generate recursive descent parsers

e Yacc (many versions: CUP for Java)
— generates bottom-up (shift-reduce) parsers

13

14

ANTLR Example

grammar Exp;

add returns [double value]

ml=prim {$value = $mi.value;}
('+' m2=prim {$value += $m2.value;}
| =" m2=prim {$value -= $m2.value;}

)*;

prim returns [double value]
n=Number {$value = Double.parseDouble($n.text);}
| '("e=add ") {$value = $e.value;}
Number : ('0.."9")+ (".' ('0'.."9")+)? ;
WS (NN |\ \n") {$channel=HIDDEN;} ;

15

ANTLR Example creating AST

grammar Exp;

add returns [Exp value]
m1l=prim {$value = $ml.value;}
('+' m2=prim)* {$value = new Add($value, $m2.value);}
prim returns [Exp value]
n=Number {double x = Double.parseDouble($n.text);
$value = new Num(x);}
| '("e=add’) {$value = $e.value;}
Number : ('0.."9)+ (".' ('0..'9")+)? ;
WS (NN |\ \n") {$channel=HIDDEN;} ;

Simplified AST without closures

interface Exp { int interp(); }
class Num implements Exp {
int n;
public Num(int n) { this.n = n; }
public int interp() { return n; }
)
class Add implements Exp {
Exp |, r;
public Add (Exp |, r) { this.| = |; this.r=r; }
public int interp() { return l.interp() + r.interp(); }
)

16

