
1

Parsing,
Lexical Analysis,

and Tools

William Cook

CS 345

2
Parsing techniques

 Top-Down
•  Begin with start symbol, derive parse tree
•  Match derived non-terminals with sentence
•  Use input to select from multiple options

 Bottom Up
•  Examine sentence, applying reductions that match
•  Keep reducing until start symbol is derived
•  Collects a set of tokens before deciding which

production to use

3
Top-Down Parsing

 Recursive Descent
•  Interpret productions as functions, nonterminals as

calls
•  Must predict which production will match

–  looks ahead at a few tokens to make choice

•  Handles EBNF naturally
•  Has trouble with left-recursive, ambiguous grammars

–  left recursion is production of form E ::= E …

 Also called LL(k)
•  scan input Left to right

•  use Left edge to select productions

•  use k symbols of look-ahead for prediction

4
Recursive Descent LL(1) Example

 Example
E ::= E + E | E – E | T note: left recursion

T ::= N | (E)
N ::= { 0 | 1 | … | 9 } { … } means repeated

 Problems:
•  Can’t tell at beginning whether to use E + E or E - E

– would require arbitrary look-ahead
–  But it doesn’t matter because they both begin with T

•  Left recursion in E will never terminate…

5
Recursive Descent LL(1) Example
 Example

E ::= T [+ E | – E] […] means optional

T ::= N | (E)
N ::= { 0 | 1 | … | 9 }

 Solution
•  Combine equivalent forms in original production:
 E ::= E + E | E – E | T
•  There are algorithms for reorganizing grammars

–  cf. Greibach normal form (out of scope of this course)

6
LL Parsing Example

E•23+7
T•23+7
N•23+7
23•+7
23+•7
23+E•7
23+T•7
23+N•7
23+7•	

E ::= T [+ E | – E]
T ::= N | (E)
N ::= { 0 | 1 | … | 9 }

• = Current location
Preduction
indent = function call

Intuition: Growing the parse tree
from root down towards terminals.

7
Recursive Descent LL(1) Psuedocode

procedure E() // E ::= T [+ E | – E]
 a = T();
 if next token is “+” then b = E(); return add(a, b)
 if next token is “-” then b = E(); return subtract(a, b)
 else return a

procedure T() // T ::= N | (E)
 if next token is “(“ then
 a = E(); check next token is “)”; return a;
 else return N();

procedure N() // N ::= { 0 | 1 | … | 9 }
while next token is digit do…

8
Bottom-Up Parsing
 Shift-Reduce

•  Examine sentence, applying reductions that match
•  Keep reducing until start symbol is derived

 Technique
•  Analyze grammar for all possible reductions
•  Create a large parsing table (never done by hand)

 Also called LR(k)
•  scan input Left to right

•  use Right edge to select productions
•  usually only k=1 symbols of look-ahead needed

9
LR Parsing Example

•23+7
2•3+7
D•3+7
N•3+7
N3•+7
ND•+7
N•+7
T•+7
E•+7

…
E+•7
E+7•	

E+D•	

E+N•	

E+T•	

E+E•	

E

E ::= E + E | E – E | T
T ::= N | (E)
N ::= N D | D
D ::= 0 | 1 | … | 9

• = Current location
Shift step
Reduce step

Intuition: Growing the parse tree
from terminals up towards root.

10
Conficts
 Problem

•  Sometimes multiple actions apply
–  Shift another token / Reduce by rule R
–  Reduce by rule A / Reduce by rule B

•  Flagged as a conflict when parsing table is built

 Resolving conflicts
•  Rewrite the grammar
•  Use a default strategy

–  Shift-reduce: Prefer shifting
–  Reduce-reduce: Use first rule in written grammar

•  Use a token-dependent strategy
–  There's a nice way to do this

11
Confict Example

What does each resolution direction do?
Where have we seen this problem before?

E*E•+
 E*E+• (shift)

 E•+ (reduce)

E+E•+
 E+E+• (shift)

 E•+ (reduce)

12
Directives
 Precedence

•  Establish a token order: * binds tighter than +
–  Doesn't need to be given for all tokens
–  If unordered tokens conflict, use default strategy

 Associativity
•  Left-associative: favor reduce
•  Right-associative: favor shift
•  Non-associative: raise error

–  Flags “inherently confusing” expressions
–  Consider: a – b – c

13
Parser Generators

 Parser Generators
•  Input is a form of BNF grammar

–  Include “actions” to be performed as rules are recognized

•  Output is a parser

 Examples
•  ANTLR, JavaCC

–  generate recursive descent parsers

•  Yacc (many versions: CUP for Java)
–  generates bottom-up (shift-reduce) parsers

14
ANTLR Example

grammar Exp;

add returns [double value]
 : m1=prim {$value = $m1.value;}
 ('+' m2=prim {$value += $m2.value;}
 | '-' m2=prim {$value -= $m2.value;}

)*;
prim returns [double value]
 : n=Number {$value = Double.parseDouble($n.text);}
 | '(' e=add ')' {$value = $e.value;}

 ;
Number : ('0'..'9')+ ('.' ('0'..'9')+)? ;
WS : (' ' | '\t' | '\r'| '\n') {$channel=HIDDEN;} ;

15
ANTLR Example creating AST

grammar Exp;

add returns [Exp value]
 : m1=prim {$value = $m1.value;}
 ('+' m2=prim)* {$value = new Add($value, $m2.value);}
 ;
prim returns [Exp value]
 : n=Number {double x = Double.parseDouble($n.text);
 $value = new Num(x);}
 | '(' e=add ')' {$value = $e.value;}

 ;
Number : ('0'..'9')+ ('.' ('0'..'9')+)? ;
WS : (' ' | '\t' | '\r'| '\n') {$channel=HIDDEN;} ;

16
Simplified AST without closures

interface Exp { int interp(); }
class Num implements Exp {
 int n;
 public Num(int n) { this.n = n; }
 public int interp() { return n; }
}
class Add implements Exp {
 Exp l, r;
 public Add (Exp l, r) { this.l = l; this.r = r; }
 public int interp() { return l.interp() + r.interp(); }
}

