
CS 395T (Fall 2003)
Integrating

Programming Languages
& Databases

William Cook
UT Austin CS

2

About Me

• PhD Computer Science, 1989
– Brown University w/Peter Wegner
– “A Denotational Semantics of Inheritance”

• HPLabs researcher
– Type theory for OOPL

• Apple Computer
– Designed and implemented AppleScript

• Startups
– BAM! Software: Multimedia publishing engine
– Net-It Software: Intranet/Java
– Allegis: Enterprise software

· Partner Relationship Management (PRM)

3

Past Research
1. Denotational Semantics of Inheritance

Foundation for most formal study of inheritance
2. Mixin-Based Programming

Applied to modules, C++ templates, product lines, etc.
3. ADTs versus OOP

Objects are not abstract data types
4. A proposal for making Eiffel type-safe

Canonical example of importance of theory
5. F-Bounded Polymorphism

Fundamental to theory of typed object systems
6. Inheritance is not Subtyping

Separation of extends and implements in Java
7. Interfaces/specifications for collection classes

Galois lattices for fine-grained interfaces in class
libraries

4

Impact

• Showed Eiffel type system to be
unsound

• Influenced separation of interfaces
and classes in Java

• Developed theory of mixins
• Created F-Bounded polymorphism,

which is being used in generics for
Java

5

GRM
S

Inheritance [1]

A

A

Component

R=Y(GR)

GR
Self-

reference
R

S=Y(MοGR)

GRM

Inheritance

S

Anything
recursive:
Class
Function
Module
Library
Package
Makefile
Grammar
Logic
etc.Mixin [2]

B=M(A)

AM

Modification

B

6

ADT versus OOP [3]

Abstract Data Type
Operations on opaque type

Object-Oriented Programming
Procedural data values

n = first(m) and
equal(r, rest(m)) empty?(m)equal(l,m)

rerrorrest(l)
nerrorfirst(l)

falsetrueempty?(l)
Cons(n, r)Empty

Constructor of l

O
bs

er
va

tio
ns

a = first(m) and
equal(rest(l), rest(m))

Interval(a+1, b)
a

a < b
Interval(a, b)

Classes are
procedures that
construct objects
Cons: Int×IList→IList

7

Typing Object Interfaces

• Objects may have recursive interface types
·IList = { empty?: Bool,

first: Int,
· rest: IList,

equal: IList→Bool }

• Consider adding an operation
·IListEx = { empty?: Bool,

first: Int,
· rest: IListEx,

equal: IListEx→Bool,
size: Int }

• Now IListEx is not a subtype of IList!
– This is because of contravariance in the equal method
– Normal bounded quantification ∀ t ≤ IList … does not

work

8

F-Bounded Polymorphism

• Define generator of recursive type
·GIList[t] = { empty?: Bool,

first: Int,
· rest: t,

equal: t→Bool }

• IListEx inherits (at the type level) from IList
·GIListEx[t] = GIList[t] + { size: Int }

• Use F(unction)-Bounded Polymorphism
– ∀ t ≤ GIList[t]
– This allows IListEx because IListEx ≤ GIList[IListEx]

• Conclusions
– Subtype polymorphism cannot define functions over

families of types with similar pattern of recursion
– Inheritance does not always define subtypes [6]

9

Smalltalk Collections [7]

Inheritance
·Implementatio
n sharing

Subtype
·(inferred)
·Interface
·inclusion

10

Authorization Policy

• Domain-specific language for
expressing authorization policies

• Integrated with database interface in
SQL

Integrating
Programming Languages

& Databases

Course Introduction

12

Introduction

• System = Computation + Persistence
• Computation

– Many paradigms, we will focus on
· Object-oriented, some functional

• Persistence
– Many paradigms, we will focus on

· Databases (relational, OO, etc.)

• Focus on the interface between the two

13

Introduction

• System =
Programming Language + Database

Programming
Languages Databases

Cross-disciplinary research
Applications are point of integration

Applications

14

Examples

– Mail server
– News server
– Ecommerce application
– Spreadsheet
– Multi-user games
– Web applications
– Business (ERP, CRM, PRM, HRM, SCM)
– Source code control
– Bibliography DB
– File server
– Just about any system you can thing of…

15

Approaches

• Lots of solutions
– Embedded SQL
– Persistent programming language (PPL)
– Database programming languages (DBPL)
– Object-oriented database (OODB)
– Transaction middleware (EJB, COM+)
– Object-relational mapping (O/R)

• Lots of partial success
– Some might say “failure”

• What is the problem?

16

“Impedance Mismatch”

• Connecting PL and DB is hard because
– Models don’t match

· Flat tables versus Complex objects
· Declarative queries versus Procedural programs
· Transactions versus Semaphores

– Cultural mismatch
· DP people don’t understand PL research

– “everything is a database”
· PL people don’t understand DB research

– “lambda calculus is computationally complete”

– And anyway, it’s not our problem…
· Industry will figure it out

17

What Are Databases For?

• Search algorithm compiler
– Queries specify what to find, not how
– Optimizations

· Content heuristics
· Physical characteristics (e.g. page size)
· Indexes, Etc…

– Runtime compiler

• Concurrency control
– Manage concurrent read/write
– Transactions
– ACID: Atomic, Consistent, Isolated, Durable

18

Course Rules

• Listen
• Make mistakes
• Speak clearly
• Show respect
• Think deeply
• Be creative
• Have fun

