
Integrating
Programming Languages

& Databases

Introduction (continued)
& Background material

2

“Impedance Mismatch”

• Connecting PL and DB is hard because
– Models don’t match

· Flat tables versus Complex objects
· Declarative queries versus Procedural programs
· Transactions versus Semaphores

– Cultural mismatch
· DP people don’t understand PL research

– “everything is a database”
· PL people don’t understand DB research

– “lambda calculus is computationally complete”

– And anyway, it’s not our problem…
· Industry will figure it out

3

A Definition of the Problem

• Approach to building persistent
systems that satisfies:
– High performance, scalable, reliable
– Logical, clean model
– Support for multiple, concurrent

· Users (concurrency)
· Machines (clustering, redundancy)
· Developers (modularity)

– Effective maintenance, evolution

4

Factors for Evaluating Solutions
• Technical (hard) metrics

– Performance
– Reliability
– Scalability
– Consistency
– Correctness

• Human (soft) metrics
– Modularity
– Encapsulation
– Development effort
– Maintenance costs
– Scalability of group
– Clarity
– Beauty

• Most solutions only address some of these
factors

5

Many Dimensions of Scalability

• Amount of data
– More than fits in memory

• Number of users
– Hundreds, millions

• Complexity of problem
– Not of solution

• Rate of change
– Change in requirement
– Ebay updates software weekly

• Number of developers
– Software engineering issues

6

What Are Databases For?

• Search algorithm compiler
– Queries specify what to find, not how
– Optimizations

· Content heuristics
· Physical characteristics (e.g. page size)
· Indexes, Etc…

– Runtime compiler

• Concurrency control
– Manage concurrent read/write
– Transactions
– ACID: Atomic, Consistent, Isolated, Durable

7

Approaches to PL/DB Integration

• Add DB features to PL
– Persistent programming languages (PPL)

· Focus on persistent state
– Database programming languages (DBPL)

· Focus on queries

• Add PL features to DB
– Active databases (no papers at this point)
– Object-Oriented Databases (OODB)
– Object-relational database (ORDB)

• Put something between the two
– Object-relational mapping (O/R mapping)
– Maybe XML will help?

· A common ground between the two?

8

History (reconstructed)
PL RDB

OO

ORDB
O/R map

ODMG

JDO

PPL

XML MTS

TM

OODB

XML+DB

HTML

XML+PL

'85-'95

'95-present

9

Roadmap to Reading

• Persistent Programming Languages
– Make objects persistent
– Trouble validating claim to be “better

programming model” & deep logical questions

• Object-Oriented Databases
– Originally: Make objects persistent in DB
– Later: Standard OO Query/Data languages
– Now: standard migrated to “JDO”

· Confusion about what it is, standard not adopted

• Object-Relational Databases
– Slight update to dominant relational standard
– Incumbents fight back

10

Roadmap to Reading II

• Database Programming Languages
– Integrated models of queries
– What about transactions?

• Type Systems
– For DBPL and OODB standard
– Necessary, but not there yet

• Object-Relational Mapping
– Fairly clean semantics, poor performance
– Five new proposals a year for 10 years

• Middleware
– A high-level model for client transactions

• XML
– Trees are back in fashion; semi-structured data
– Something both DB and PL people consider important

11

Research Topics

• What kind of research can we do?
– Well-defined metrics

· Performance, dataset size
– Proofs

· Semantics, type theory, correctness

• Result
– Clear path to publication

• Comments
– Not all important questions are easily

expressed in this form
– Not all proofs/metrics are important

Data/Query Models

Review

13

Data/Query Models

• Relational Model
– Data model: Tables

· Viewed as physical data model
– Query model: Relational Algebra/Calculus

· SQL is dominant form

• Entity-Relationship (ER) Model
– A logical data model (see web), no explicit query model
– With mapping to relational model

• Object-Oriented Modeling
– Unified Modeling Language (UML)
– Nearly identical to ER Modeling
– OQL is closest thing to query model

• Other variations
– Semantic data model, etc
– Useful variations on ER/OO model

Call Level Interfaces

Background

15

Call Level Interface

• Set of APIs to run SQL commands
– These are the workhorse of database

interfaces technologies

• Basic operations
– Connect to database
– Execute SQL commands (with parameters)
– Iterate over result set (if there is one)

• Variations
– Access meta-data, convert data,

• Note
– An interface to the database engine, not to

a particular logical database
16

History of DB Interface APIs

Java version of ODBC1996JDBC

Required preprocessor???Embedded
SQL

All languages, uses~2001ADO.NET
VB and web scripting~1996ADO
high-performance, C level~1996OLE DB
VB and any DB~1996RDO

VB and Jet DB engine~1992DAO

For “C”. Basis of
“SQL/CLI New Binding
Style” in 1995

1992ODBC

17

ADO Example

Dim db as new ADODB.Connection
Call db.Open("ODBC;DSN=" & DatabaseName

& ";UID=" & UserName & ";PWD=" & UserPassword)

Dim rs as new ADODB.recordset

Call rs.Open(“SELECT Name, Phone FROM Employee”)
Write “<Table>”
Do while not rs.EOF

Write “<TR><TD>” & rs.Field(“Name”).value & “</TD>”
Write “<TD>” & rs.Field(“Phone”).value & “</TD></TR>”
rs.MoveNext

Loop
Write “</Table>”

18

Calling Stored ProceduresSet objCon = New ADODB.Connection
Set objCom = New ADODB.Command

'Creating the DB connection string
'Please change the below connection string as per your
server and database being used.
objCon.ConnectionString =
"PROVIDER=SQLOLEDB.1;PASSWORD=;PERSIST
SECURITY INFO=TRUE;USER ID=sa;INITIAL
CATALOG=TestSQL;DATA SOURCE=Rockets"

'Opening the connection
objCon.Open objCon.ConnectionString

'assigning the command object parameters
With objCom
.CommandText = "GetRecords“

'Name of the stored procedure
.CommandType = adCmdStoredProc

'Type : stored procedure
.ActiveConnection = objCon.ConnectionString

End With

'Create 2 output parameters
Set objPara = objCom.CreateParameter("rows", adInteger,
adParamOutput)
Set objpara2 = objCom.CreateParameter("Status",
adVarChar, adParamIn, 50)

objpara2.Value = InputStatus

'Append the output parameters to command object
objCom.Parameters.Append objPara
objCom.Parameters.Append objpara2

'Store the result in a recordset
Set objRS = objCom.Execute

'Open the recordset
Do While Not objRS.EOF
For k = 0 To objRS.Fields.Count - 1
write objRS(k).Name & ": " & objRS(k).Value
Next
objRS.MoveNext

Loop

'retrieve the output parameters values
MsgBox "Total records returned: " & objPara.Value
MsgBox

'close connection
objRS.Close
objCon.Close

(List, NumRows) = GetRecords(Status)

19

CLI Issues

• Program text in strings
– Call rs.Open(“SELECT Name, Phone FROM

Employee”)

• Access to bindings via strings
– rs.Field(“Phone”).value

• No semantics connection

Program

Compiler

Database

DBMS

20

Summary

• Everyone knows it is terrible
• Lots of effort to do better
• Yet it is still ubiquitous

Transactions

Review of basic concepts

22

Transactions

• Transaction is a unit of work
– Begin Transaction

· Do work…
– Commit or Abort

• Key issues
– Concurrency

· Multiple transactions running together
– Failure

· Handling catastrophic system failures

23

ACID Transaction Principles

• Properties that must be preserved by
DBMS

Once a transaction completes, its
affect is permanent even in the event
of complete system failure

DurableD

There is no interference between
concurrent transactions

IsolatedI

The database must be in a consistent
state at the start and end of every
transaction

ConsistentC

Either all the operations in a
transaction are performed or none are

AtomicA

24

Analysis of Concurrent Transactions

• Analyze schedule of operations
– Operations (R, W) specify

· Transaction they are part of
· Data object that they affect

• Define equivalence on schedules
– Contain same operations and conflicting

operations are in same order
– W conflicts with any other operation

• Serial schedule
– Performs transactions in some linear order

• Schedule is serializable
– if it is equivalent to a serial schedule

25

Ensuring Serializability

• Pessimistic Locking
– Two-phase locking

· Lock all data that is read or updated
· Hold locks until end of transaction
· Block other transactions that need locks
· Abort if deadlock detected

• Optimistic Locking
– Timestamp all udpates
– Abort if accessing invalid data

• Combination of above
– For example

· Optimistic locking for web pages
· Pessimistic locking when processing submit

26

Issues with Consistency

• Consistency can be defined locally
– Local

· Salary of manager > Salary of employees
· Nobody can check out more than 10 books

– Nonlocal
· VLSI layout must represent a planar graph

• Reality
– Very few consistency constraints are

actually expressed in most databases
– It is up to the application program to ensure

consistency

27

Issues with Atomicity

• Transactions are assumed short
– A lot of work on long transactions
– Typical database systems limit transactions

to 30 seconds
· What happens if you have an atomic operation

that takes longer than this?
– Better start thinking hard!

28

Issues with Durability

• Durable
– Store everything immediately

• Atomic & Isolated
– Don’t store right away, to prevent

interference with other queries

• Database systems deal with this
problem pretty well
– Strictness: only read or overwrite

committed data
– Prefix-reducability

From Dave Eckhardt, CMU

29

Issues with Isolation

• Phantoms
– 1. Find all employees with salary > 50000
– 2. Computer average
– 3. Update all employees with salary > 50000
– No conflict if another transaction adds an

employee between #1 and #3
– Locking a predicate

• Support for different levels of
isolation

30

Transactions from Client Viewpoint

• Client code must indicate transaction
boundaries
– BeginTransaction

· Do work…
– EndTransaction

• This is a problem for modularity
– How do we assemble a composite transaction

from multiple parts, if each is
beginning/ending its own transaction

• Review solutions in Middleware area

