
September 4

2

Paper Presentations

• Assume everyone has read the papers
• Don’t just present the content

– especially not section-by-section

• Provide
– analysis
– commentary
– criticism
– suggestions

• Connect the ideas together
• Suggest projects

Orthogonal Persistent Object Systems
Atkinson & Morrison

Concurrency – the Fly in the Ointment?
Blackburn & Zigman

William Cook
September 4, 2003

4

Tennent’s Principles

template <typenameT> void foo(T x)…
foo<int>(3)

typedef T int;

SQL is lacking in abstraction constructs (e.g parameter passing)

SQL: Should a table be allowed as a value in a table?
Any type can be member of a struct, union.
Data Type Completeness

??? (C++ stack-based objects help)exception

Correspondence

functionstatement
Abstraction

void foo(int x) {…}
foo(3)

int x = 3;

5

Persistence Design Rules

• Parsimony
– match the application domain
– absence of extra features ensures simplicity

• Orthogonality
– composed of atoms
– combined to form appropriate abstractions

• Computationally complete
– no need for anything else
– prevents disharmony

• Put them together…
– “combination of principles yields integrated 

persistent systems”
6

Contrast With

• Compression
– Meaning depends upon context… gives richer 

meanings (e.g. poetry)

• Expressiveness
– Almost all languages are computational 

complete in theory (including C++ templates)
– No good measure of language expressiveness
– What is difference?

· Computation: availability of effects
· Expressiveness: availability of notation

7

Principles

• Orthogonal Persistence
– Persistence Independence

· Programs look the same whether they manipulate 
short-term or long-term data

– Data Type Orthogonality
· All data objects are allowed full range of 

persistence. No special cases for lifetime
– Persistence Identification

· The mechanism for identifying persistent objects 
is not related to the type system

8

Persistence Independence

• Definition
– Programs look the same whether they 

manipulate short-term or long-term data

• Example
– Must work the same when person, company 

are persistent or not

– for person in company.employees()
print person.name

– function Certify(x : Company)
· x.certified = true
· x.date = today()



9

Persistence Independence

• Definition
– Programs look the same whether they 

manipulate short-term or long-term data

• Performance
– “sorting an array of objects”
– Algorithm cannot know about paging, etc
– To succeed, a languages must have a simple 

performance model 
[Worse is Better, R. Gabriel]

– Note: sorting is a primitive in SQL!

10

Persistence Independence

• Definition
– Programs look the same whether they 

manipulate short-term or long-term data

• Concurrency & Transactions
– Program must indicate transaction 

boundaries when dealing with persistent 
data

– If data can be concurrently accessed, 
programmer must deal with transaction 
abort

– More later

11

Data Type Orthogonality

• Definition
– All data objects are allowed full range of 

persistence

• Question
– This is true in most systems

· anything can be written out
– This is important when persistence is 

automatic
– Extreme view would require persistence for

· Processes, threads, TCP connections
· Transactions, Iterators, Windows

12

Persistence Identification

• Definition
– The mechanism for identifying persistent 

objects is not related to the type system

• Key question:
– How are persistent objects identified?

· In this case, by reachability, garbage collection

• On the other hand:
– How do you identify what not to persist
– Accumulation of garbage…

13

Garbage Retention

• Non-persistent parts of persistent 
objects
– Caches
– Bookkeeping for specific algorithms
– Callbacks

• These are all memory leaks
• Use weak pointers?

– Requires programmer to identify boundaries 
of persistence

• How is it done in databases?
– Explicit delete; cascading delete
– Consistency rules (foreign key constraints)

14

Contents

• Principles
• Integration Concepts

– Type Systems
– Binding
– Concurrency

• Technology to support Persistence
– Reachability
– Linguistic Reflection

• Extensions

15

Data Models & Types

16

Interesting Points

• Store contains behavior and state
– Advocates putting code (methods) into the 

database along with everything else

• Heavy focus on type systems
– Polymorphism, but also “Any” type
– Compare to SQL

· Very basic user-visible types
· Complexity of typing join operator is invisible

• Hyper-code
– Similar to

· Intentional Software – C. Simonyi
· Syntax-directed editing

– Are there any benefits?



17

“Extensions”

• Conceptual Modeling
• Bulk Types, Queries, Optimization
• Transactions and Concurrency
• Scalable Systems
• Evolution
• Integration with other domains

– If these are the extensions, what do we get 
in the base?

18

Conceptual Modeling

• Data Modeling
– Type systems versus Entity-Relational Model

• Need for “mappings”
– Is persistent system not computationally 

complete (or representationally complete)

• Raises question:
– …benefits to be gained by generated code 

from many high-level notations into a 
common orthogonally persistent system

19

Bulk Types, Queries, Optimization

• Good citations
– We will be reading some of the papers they 

mention in a few days

• Import this work directly
– Will there be any unforeseen interactions?
– As far as I know, this is still untested.

20

Transactions and Concurrency

• Concurrency – the fly in the ointment
– has very good discussion of issues

21

B
ac

k 
en

d

Transactions and Concurrency

• Where do transactions come from?
– If everything is inside a transaction, who 

can create a transaction?
· Need something external that makes requests 

which are processed transactionally.
– What are natural transaction boundaries?

· In web applications?
· In GUI applications?
· In a file server?

App
Requests

Each request starts
a new transaction

Fr
on

t e
nd

22

Transactions and Concurrency

• A proposal
– Chain-and-spawn method:

· Transaction ends and another one starts
· AAAAA,BBBBBB,CCCCCC,DDDDDD

– Imposes structure on implementation
· So perhaps not really orthogonal

– Not clear how this works in multi-threaded 
application

23

Transactions and Concurrency

• Two transactions accessing same object
– How do you know what operation they will 

perform?
– Both read, or will either of them write?

• Approaches to Isolation:
– 1) Copying

· Each transaction have a copy, in case one writes
· What if both update their copy of the object?
· How will the resulting changed be merged?

– 2) Locking
· Only one transaction at a time can access the object

– 3) Distinguishing reads/write methods
· Difficult to do for general OOP

24

Evolution

• Mentioned several times
– Doesn’t really present a convincing 

explanation of how maintenance works
– Reflection is only a small part of solution
– Suggestion of need for “change absorbers” 

is interesting

– “If you get a bunch of programmers 
together, they will usually start talking 
about source control”



25

Evolution

• Software release process
– R1: Release 1.0
– R1x: Customized version
– S: Configured running system based on R1x
– R2: New Release 2.0
– Problem: Merge R2 into S
– Test result in staging environment
– Deploy to production
– (repeat as quickly as possible!)

• Closer to reality…

26

Evolution

• Deployment to Production
– Developer does not have copy of real system
– New behavior must be staged

· tried out with copy of live data…
· but configured so to not affect environment!

– Updates must be applied to running system?

• Merge affects:
– behavior, data, configuration, structure
– each part has a different master/owner
– ensure that changes are only made to 

master of each definition, then propagate 
change consistently everywhere

27

My Questions

• Scalability via Distribution
• Performance of Incremental Loading
• Multiple Programs

28

Scalability via Distribution

• Load-balancing Multiple machines
– Load is distributed across machines

· Scalability
· Availability

– Use of shared resources must be controlled

• Problems
– Cache coherency

· ensuring that changes on multiple machines are 
consistent

– Locking
· Distributed transactions

29

Performance Issues

• Incremental Loading: High latency
– Objects are loaded on demand

· p = root.FindPerson(“william”)
· d = p.getDepartment()
· m = d.getManager()
· for p in m.getProjects()

– write p.getName()

– Each object is loaded individually
– Each project is loaded individually as well!

30

Performance Issues II

• Made worse if
– machines are load-balanced
– data set size > cache size
– transactions require copies

• Can you optimize if you know total set 
of objects to be loaded?

31

Multiple Programs

• How do you write multiple programs 
that work on same data?
– Information is used in different ways

· Object model may be different
– Create multiple views of data

· For analysis
· For updates
· For derivation/transformation

– I must be missing something, but I just 
don’t get it

32

Vision

• Integrating different languages & 
subsystems makes programming harder
– Eliminate disparate sub-systems
– Programs, Operating Systems, Database, 

User Interface Management System
• Define single unifying model

– Persistent Object Systems
– “One coherent design” or “Closed world”

• Is specialization always bad?
– What about “best of breed”
– Specialized solutions for different program 

aspects may be better than generic model



33

Claimed Benefits

– Improving programming productivity from 
simpler semantics

– Avoiding ad hoc arrangements for data 
translation and long-term data storage

– Providing protection mechanisms over the whole 
environment

– Supporting incremental evolution
– Automatically preserving referential integrity 

over the entire computational environment for 
the whole life-time of a PAS

34

Other Claims

– Constructing Persistent systems is made 
considerable easier when the whole 
computational environment is persistent.

– Statically check program have better 
documentation properties and better cost 
properties throughout the life cycle of 
programs.

– Many claims in paper are not supported

35

Project ideas

• Use Landin’s language principles to 
design an incremental improvement to 
SQL

• Conduct and experiment using PJama
to evaluate evolution, performance…

Discussion




