
Persistent and Java – A Balancing Act
Atkinson

Representing Database Programs as Objects
Maier

William Cook
September 9, 2003

2

Topics

• Review of persistence mechanisms
• Analysis of PJama
• Large-scale experimental CS research

3

Persistence Mechanisms

• Persistence
– Data lasts longer programs that use it

• Mechanisms (for Java)
– Files
– Serialization
– JDBC

4

Serialization

• Store out a graph of objects
– Used for remote procedure calls
– Does not preserve identity
– Doesn’t scale well

b

y

a

x z

y

a

x

b

y z

y

a

x

b

y z

Serialize Un-Serialize

5

Other Approaches

• Links to Relational DBs (JDBC)
• Object-Relational Mapping
• Object Database Mapping

– ODMG and Gemstone/J

• Java Data Objects (JDO)
• Enterprise Java Beans (EJB)

• We will review most of these…

6

Orthogonal Persistence Hypothesis

• If
applications developers are provided with

a well-implemented and well-supported
orthogonally persistent programming
platform

• then
a significant increase in developer productivity

will ensue
and
operational performance will be satisfactory

7

PJama Project

• Designed to test OPH (Orthogonal
Persistence Hypothesis)
– Orthogonality
– Persistence Independence
– Durability
– Scalability
– Schema Evolution
– Platform Migration
– Endurance
– Openness
– Transactional
– Performance

Missing:
Distribution

8

import java.io.*;
import org.opj.*;
public class Main {

static { OPRuntime.roots.add(Main.class);}
private static float exchangeRate;

public static void main(String args[]) {
while(true) {

int cmd = in.read(); String arg = in.readLine();
switch (cmd) {

case ‘c’: { float amt = Float.parseFloat(arg);
System.out.println(amt +“converts to” + amt *

self.exhangeRate); }
case ‘x’:self.exchangeRate = Float.parseFloat(arg);
case ‘q’: System.exit(0); default: System.exit(0);

}
OPRuntime.checkpoint();
} // while

}// main
} from Sun via Dr Patrick Marais

9

Achievements – Complete

• Persistence Independence
– Any object linked from root is persistent
– Just like in normal garbage collection

• Schema Evolution
– Apply transformations to objects
– (offline transformation prevents endurance)

• Durability
– Recovery (ARIES Algorithm)
– (offline backup prevents endurance)

10

Achievements – Conditional

• Endurance
– 100% uptime hard to achieve

· Durability: Complete backup
· Schema Evolution: Offline transformation

– Quality
· bugs prevent multi-threaded applications from

running for more than a few minutes

• Transactions
– simple mode: long transactions
– all threads consistent before checkpoint

• Performance
– 15% slowdown ignoring disk
– No distribution (multiple servers)

11

Achievements – Conditional

• Orthogonality
– Saving window state (AWT and Swing)
– Saving JDBC and CORBA connections
– Thread caused problems
– Also: lots of C/C++ code makes this hard

• Platform Migration
– Moving from Java 1.1 to Java 1.2
– Conflict with storing code in the database?

• Scalability
– Only considered data set size

• Openness
– Only considered restoring external connections

12

Stabilization and Threads

• Stabilization in multi-threaded programs can
be problematic, if the threads are not
cooperating.
– During a stabilization all user threads are stopped,

therefore a stabilization is atomic, isolated and
durable. However, since a stabilization is global, in
that it applies to all persistent roots, there is no
guarantee of semantic consistency for threads other
than the one invoking the stabilization.

• This situation will be corrected in a future
release by the provision of persistent
threads which will allow a thread to resume
and eventually reach a consistent state.

13

Transient annotation

• "Variables may be marked transient to
indicate that they are not part of the
persistent state of an object.”
– class Point {

int x, y;
transient float rho, theta;

}

• If an instance of the class Point were saved
to storage by a system service, then only
the fields x and y would be saved.
– This specification does not yet specify details of

such services; we intend to provide them in a future
version of this specification

– (also conflicts with new Java transient keyword)

14

Code in the Database

• Considered critical for completeness
– What code is stored?

· Just “user code” or base libraries too?
· Probably all java byte-codes

– Problem with updating platform
· how do you tell which code in database to replace?

15

Orthogonal Persistence Hypothesis

• Need real users
– typical development teams building and

evolving applications
– users imposing typical workloads

• Observe
– team’s problems, successes, and productivity
– typical workload

• It’s not happening
– platform quality has not been achieved
– engineers are right to avoid untested platform

16

Reaching critical mass

• Scale of experiment
– Large initial development
– Support for five years
– Leverage multiple projects together…
– Need $25M to test hypothesis

• Problem with hypothesis
– X improves productivity of application

developers under realistic conditions…

17

Industry Adoption

• Existing practices
• Displaced problems

– Platform builders don’t understand application
developers’ problems

• Distribution drives applications
• Lack of credibility
• Alternatives look better
• Language lock-in
• Dominance of glue-ware

– Applications are not just written on Java

18

Comparison with Relational DBs

• RDBMS
– provided simple solution to real problems

· independent from disk formats, concurrency, etc
– Adopted despite serious technical issues

• Java was probably the same story
• Orthogonal Persistence

– No simple message
– “Indexing is not a built-in feature”

· this requires more work
– At this point it is still an act of faith

19

Large-Scale Experimentation

• Is there a case to answer?
– Experiment must have definite outcome
– Use theory as a guide

• Design a family of experiments
– “Several teams attempting tasks from a chosen set,

with different technologies”

• Conducting experiments
– Need to pay the subjects

• Interpretation
– use case in extrapolating…

• Resources, Teams, Communities
– long-term goals, like astronomy, biology, etc…

20

Comment

– “inhibited by negative attitudes toward
those who try to measure properties that
are not easily quantified”

– Will the cost be too great?

21

Some Thoughts

• If you are going to be radical
– Pick one problem and solve it well

• Define a hypothesis that can be tested
– Measuring improved productivity is very hard

• Find ways to evaluate
– Simulate real load
– Simulate development process

• Identify a critical problem
– Do some work to validate it

22

Evaluating Languages

• A suite of standard problems
– Solutions in different languages
– Change the problems occasionally

· to simulate maintenance
– Must be sufficiently large to be real

· but not too large to require massive investment
· must include appropriate data sets

• Uses
– Evaluating new tools & approaches
– Examples for students
– Best solutions from the field, not just

individual

23

Representing Programs as Objects

• What makes a DB computational
environment powerful?
– Encapsulation of iteration
– Picking operations out of programs

• Persistent Programming Languages
– Why they don’t solve it all

24

Encapsulation of Iteration

• Characteristics
– Small number of iteration constructs
– Expressed at high level => different

orderings of operations are allowed
· A key characteristic of functional programming

• Optimization
– Iteration constructs examined in detail
– Optimized based on underlying algebra
– Use knowledge of physical layout and

required access patterns

25

Picking operations out of programs

• Characteristic
– Complex data-intensive operations picked

out of programs for execution in the storage
manager

– The idea here is that the “query” parts of a
unified program can be lifted out and moved
to the database engine for execution

· What kind of a unified programming/query
language would support this?

• Proposal
– Complex operations stored in database

26

Persistent Programming Languages

• Why they don’t solve it all
– Does not encapsulate iteration
– Instead, uses traditional “for loop”s
– “The storage manager ends up with an

object-at-a-time interface”

• Alternatives
– “Logic or functional languages gives a better

start”
– Generally inadequate for expressing update

and IO

27

Encapsulation / Associative Access

• Encapsulation
– Model behavior and structure (objects)
– Aids code reuse and modification

• However…
– Query processing depends on knowledge of

structure, rather than just [interface]

28

Embedded DML

• DML = Data Manipulation Language
– Refers to use of SQL operators, SELECT,

UPDATE, DELETE, from within standard
programming languages (PL)

• Coined phrase “Impedance Mismatch”
– interface between PL and DML
– No type system spanning PL and DML
– (No mention of objects)
– Generating application from data model

ensures types are the same initially
· but does not handle evolution

29

“Abstract Objects”

• Idea not fully developed
• Avoiding syntax is not significant
• Structures look like XML…

