
1

Why OO approach for DB?

• Complex Data Handling
1) Design software such as CAD, CASE,

production planning
2) Binary files such as image, audio,
video

2

Why OO approach for DB? (Cont.)

• Consistent Data Model
Relational: Information regarding

entity can be spread across several tables.
OO approach: 1-to-1 relationship

between real-life entities and database
objects representing them.

3

Lack of Specification

Caveat: The paper was written long time
ago

• No single specification, everybody had
their own spec. and implementation.

• Ill-planned system could emerge and
become de-facto standard

4

The Novel Idea: A Common Spec

Mandatory Optional Open/Debatable

OODBS Features

• OODBS’s should have a common set of
characteristics

5

Mandatory Features

Mandatory OO Features
+

DB Features
=

Mandatory OODBS Features

6

Mandatory OO Features

1. Complex Objects
Complex Objects can be built from
simpler objects using object constructor.

Example: HTML Code

7

Mandatory OO Features (Cont.)
2. Object Identity (OID)

Each Object has a unique identity
Class Person { string name; int age};
Person assistant, manager;

Memory Loc.
assistant = (“John”, 24) 000111
maneger = (“John”, 24) 000222
Two objects are equal but not identical.
Identity maintained by system, not user. 8

Mandatory OO Features (Cont.)

3. Encapsulation

• Knowledge about only specification is
sufficient for application developer.

• Implementation change doesn’t affect the
applications

• Only visible part is interface and
allowable functions are only those
defined in interface

9

Mandatory OO Features (Cont.)
• Classes Vs. Types

1) Type-checking(static vs. dynamic)
2) new

Class
3) extent (optional)

10

Mandatory OO Features (Cont.)
4. Classes Vs. Types (Cont.)

Run-time Vs. Compile-time
SmallTalk C++
Dynamic type-checking Static type-checking
Class Person {int x;

foo();}
Person john;
john.bar(); //run-time john.bar(); // compile-time

// error // error

11

5. Inheritance
Class Inherit. Vs. Type Inherit.
SmallTalk C++
Purpose: Purpose:

Code-reuse Interface Compliance
Code reuse

Mandatory OO Features (Cont.)

12

Mandatory OO Features (Cont.)
6. Overloading, Late-binding

• Less work at application programmer level
• DBS:

ostream display(obj Person);
ostream display(obj Image);
ostream display(obj Matrix);

• Application Programmer:
main () { new person; person.sex=‘M’; display(person);

new matrix; matrix.size = 4; display(matrix); }

13

Mandatory OO Features (Cont.)

7. Computational Completeness

• DBS should be able to execute any
computable expression fed by Data
Manipulation Language

• SQL is computationally incomplete (e.g.,
doesn’t support recursion)

14

Mandatory OO Features (Cont.)

8. Extensibility

• Predefined types that would come with a
DBS should be extensible

15

Mandatory OO Features (Cont.)

9. Query Facility

• Application programmers or users
should be able to query on data

• Methods: Query language, GUI etc
• 1) High Level, 2) Fast, 3) One type works

for all applications

16

DB Features

• 1) Persistence
-- Data survive the execution time of

program creating or manipulating it.
• 2) Storage Management

-- index mgt., query optimization etc.
-- required for managing large DB

• 3) Concurrency
• 4) Recovery

17

Optional Features
• 1) Multiple Inheritance

-- conflict resolution
• 2) Type Checking and Inferencing

-- the more the compile-type checking
the better

• 3) Distributed
-- distributed among many computers, need

distributed data management

18

Open Features

Open because: OO-ness is debatable, no general
consensus

• 1) Programming Paradigm
-- Functional/logical/imperative etc.

• 2) Type Formation
-- Type formers can be added

• 3) Uniformity
-- Type < - > Object < - > Method

19

Afterthoughts

• Most DB Developers are new to OODB
Concepts, Relational-to-OO conversion
cost, departure from set theory
-- Can’t we extend RDB’s to provide the

facilities of OODB’s?

20

ODMG-93

• Standard
-- Portability Vs. Interoperability

21

• Portability
-- Current OODMS (e.g., O2, Poet etc.)

Finance Pro Finance Pro

DBS X DBS Y

ODMG Standard (Cont.)

22

ODB Schema

• Relational Schema
-- Tables/Data structures, Data Types

• ODB Schema
-- Data structures, Data/Object types,

methods(**).
** Programming Lang. needed to write

methods

23

Components of ODMG Model

1) Data Model
2) Language Bindings
3) Query Language

24

Data Model

• ODB Schema
-- Three choices: ODL, OMG IDL, OO

Language

25

Data Model(Cont.)

• ODMG(Object Database Mgt. Group)
model is an extension of OMG (Object
Mgt. Group.

• OMG group deals with object modeling
in general, not particular to DB Systems.

26

Data Model(Cont.)

• OMG General Object Model
-- Class
-- Instances
-- Methods
-- Inheritance
-- Encapsulation
-- Classic Types (e.g., date, time)

27

Data Model(Cont.)

• DB extension to OMG model
ODMG model

1) Relationship
2) Collection

28

Data Model(Cont.)

• Collections
-- Container for holding instances of a

class. Example: Set< Ref<Person> >
where Person is a class

-- Collection types are template.
Example: Set<T>, where T can be any

type

29

Data Model(Cont.)

• Relationship (1-to-1)
Class Apartment;
Class Person { String name; Int SSN;

Ref<Apartment> lives_in inverse is_used_by };
Class Apartment

{Ref<Person> is_used_by inverse lives_in };

30

Data Model(Cont.)

• Relationships (1-to-many, many-to-
many)

Class Person {
Set < Ref<Person> > parents inverse children;
List < Ref<Person> > children inverse parents; }

31

Object Query Language (OQL)

• Prologue:
-- C++ by itself is not enough because

Even for a short query, one needs
to write, compile, link a C++ file
Too much and tedious code

32

Object Query Language (cont.)

• OQL can help
-- Alleviates problems on previous slide
-- Extension to host language (e.g., C++).

Objects can be manipulated by both.

33

Object Query Language (cont.)

• OQL Query Example:

-- Select m.year
From Movies m
Where m.title = “Godfather”

• OQL expression results can be assigned directly to host
language variables C++ variable

Class Movie { …}; Set<Movie> oldmovies;
oldmovies = SELECT DISTINCT m

From Movies m
WHERE m.year>1990

34

Object Query Language (cont.)

• Compare the ease of data transfer in OQL with
the difficulty in SQL (impedance mismatch)

void getStudio()
{

EXEC SQL BEGIN DECLARE SECTION;
char studioName[50], stuidoAddr[100];

EXEC SQL END DECLARE SECTION;
printf(“Enter studio name”); studioName = getline();
printf(“Enter studio addr”); studioAddr = getline();
EXEC SQL INSERT INTO Studio(name, address)

VALUES(:studioName, :studioAddr);
}

35

Object Query Language (cont.)
• OQL’s output type can be complex

SELECT DISTINCT struct(star1: s1, star2: s2)
FROM Stars s1, Stars s2
WHERE s1.address = s2.address AND

s1.name<s2.name
• Recursive OQL Query

Set < Ref<Person> > Person::ancestors()
{
Set < Ref<Person> > result;
oql(result, "flatten(select distinct a->ancestors from $1c as a) \

union $1c", parents);
return result;
}

36

Afterthoughts

• Schema changes in OODB result in a
system-wide recompilation.

How to solve the problem ?
• Is OQL really impedance mismatch free?

Syntax, binding stage, programming
style are still different.

