Of Objects and Databases: A Decade of Turmoil

Carey & DeWitt

Vinay Sampath Kumar 9/16/2003

Of Objects and Databases

- Overview of how the field of databases and objects developed from 1986 to 1996
- What ideas and projects fell out of favor
- Authors vision about the future
- Current (1996) research challenges

State of research in databases and objects (1986)

- · Managing traditional business data
 - · Considered a solved problem
- Commercial relational databases were maturing
- the "object" buzzword
- "it was the era of objects and databases"

Impact of object oriented technology on databases

Work grouped into:

- Extended relational database systems
- Persistent programming languages
- Object-oriented database systems
- Database system toolkits

Persistent Programming

Extended Relational DB systems

- Idea: Extend the database data model.
 - incorporate complex data.
- ADT user defined basic types
 - Written in languages like 'C'.
 - Registered with the database system.
 - Used in Queries.
- Eg: ADT-Ingres, Postgres at UC Berkeley
- · Success!

Languages

- Different approach
 - Add DB features to an OO programming language
- Main features
 - · Make data persistent
 - · Check-pointing during program execution
- Motivation: The removal of "impedence mismatch"
- Failure!

Object Oriented DB – Early

Days

- Idea combine modern OO language into a database
- · Motivation -
 - Handle non-traditional database applications
 - Reduce / eliminate the "impedence mismatch"
- · Combine the best of the two worlds objects and databases

Object Oriented DB Systems

- Supported
 - · queries
 - indexing
 - version management
- Eg: Gemstone, Vbase, Orion
- Limited success

- · No agreement on
 - · the data model
 - · the query language
 - the version management feature
- opened up new research from an OO perspective
 - · data models

7

- · query optimization
- system architectures

Database System Toolkits

- Idea: Building domain-specific DBMS
 - · Geographical information systems
- **Motivation:** No single type of DBMS can cater to
 - · functional and
 - · performance requirements
- Features
 - · different query language
 - · different storage organization
 - · different transaction mechanisms
- Failure!

9

Database System Toolkits - Examples

• Eg: Exodus, Genesis

Exodus

- Storage manager for objects
- Persistent programming language.
- Rule based query language specification
- Query optimizer generator for domain specific languages.

10

State of Affair in 1996

- Approaches which have died from a commercial/practical aspect
 - · Database system toolkits
 - · Persistent programming languages
- · Approaches which have not lived up to the hype (wounded)
 - · Object oriented database systems
- · New approaches
 - · language specific object wrappers for relational databases
 - object relational database systems (extended relational database systems renamed!)
 - · most successful of the four approaches

11

Reason for Casualties

- · Database toolkits
 - · not user friendly
 - needed lot of expertise to use the system
 - · freedom provided -too low-level.
 - Substitute in object oriented and object relational database systems.
- Persistence programming language
 - No commercial implementation
- By products persistence models, pointer swizzling, garbage collection schemes

12

Object Oriented DB Systems

- · Partial success!
- No agreement on
 - · Programming interface
 - · Query support
 - · Implementation twist
- ODMG standard supported in bits and pieces.
- · Behind relational database systems in
 - · Robustness
 - Scalability
 - Fault-tolerance
- Dominance of applications using ODBC
- Emergence of thin client- fat server paradigm

Object Relational DB Systems

- Idea: Build OO support on top of the relational model
- Manifesto:
 - Support richer object structure
 - · Subsume the relational model
 - Be open to other tools

14

Object Relational DB

- Supports
 - ADT
 - User defined base types
 - Row types
 - · Rows in tables enjoy object-like properties
 - Methods
 - Contain references
 - Multi-valued attributes
 - Inheritance
- · Extensions to the SQL to incorporate the changes
- No agreement on many features supported by ORDBS.
 - · SQL3 standards working towards incorporating the new features

SQL-1999 Standard

- 6 years of work!!!
- "Object Oriented SQL"
- Foundation for object relational DB.
- New Features
 - Row type
 - Array collection type
 - · Recursive queries
 - Structured user types

SQL-1999 Standard

- CREATE TYPE STUDENT UNDER PERSON AS (Id Integer Status CHAR(2))
- METHOD award_degree() RETURNS BOOLEAN
- CREATE TABLE TRANSCRIPT (Student STUDENT, Grade CHAR(1))
- SELECT S.Student.Name FROM STU S WHERE S.Student.Address.Street = "Red River"

17

Object Oriented Client wrappers

- New approach
 - · Popular in the commercial world
- Idea: Use of object wrappers
- **Motivation:** Interaction with the data more natural
- Generates proxies for the underlying data
- Tools aid in
 - · constructing proxy objects
 - key to Object ID mapping

8

Object Client Wrappers

· Advantages:

 Cleaner interface to build business objects using OO techniques.

Disadvantages:

 Query processing still based on the underlying relational schema

19

Developments in the Objects world

CORBA

- Solve problems in developing large, distributed, object oriented applications
- · Interoperable object RPC mechanism
- · Standards for registering and locating named resources
- · Persistence service, Transaction service
 - · Bound to fail!

· OLE, COM and DCOM

· Microsoft Standards

Java

· Write ADT's that can be executed on both clients and servers

20

Object and Databases - Vision 2006

· Fully integrated solution

- · Object relational database systems fulfill the promises of OODB
- · Full OO support for ADT's, row types
- · Integration of important features of SQL with the extended features.

• OODB will be a niche solution

- Engineering design, telecommunications
- · Object oriented client wrappers
 - · Less mapping
- Should ORDB be the winner?

Research Challenges

- Server functionality and performance
- Client integration
- Parallelism
- Standards

22

Server Functionality and performance

- · Improve object query processing
- "objectifying" SQL
 - Views
 - Triggers
 - · Constraints
 - Path expressions
- ADT support for extensible access methods

Client Integration

Client Integration

- Programming interface to serve ORDB objects to OO programs
- Tightly knit solution
 - Querying over cache and the database in an intelligent way
 - · Consistency problem during updates
- Most Important –my opinion

23

Parallelism and Standards

25

- Parallelize
 - Query execution
 - Operations on ADT's
- Standards
 - Specification of ADT's
 - Client-server interfaces
 - New query language standard.

Conclusion

- Big picture of where it was and where it is heading
- Sets a Database centric research agenda
- Declares ORDBS as the "winner"!
- Objects and databases great future