
Implementing Orthogonally
Persistent Java

Marquez, Blackburn, Mercer, Zigman

William Cook
September 18, 2003

2

Persistence for Java

• Persistence Identification
• Concurrency Control
• Portability

3

Persistence Identification

• Persistence by reachability
• Class variables are implicit roots

– Truly transparent
– No modification required for persistence

· (assuming that class variables are used in a way 
that makes sense with persistence)

public class Simple {
static int count = 0;
public static void main(String argv[]) {

System.out.print(count + " ");
count++;

}
}

4

Concurrency Control

• Combining
– Persistence Independence

· Programs look the same whether they manipulate 
short-term or long-term data 
(no transactions mentioned in program)

– Strict ACID Transactions
· Atomicity and Isolation

• Implies: Transaction = Process
– Reduced scope for concurrency

• Only way out
– Relax Persistence Independence
– ACID is too important to give up

5

Relax Persistence Independence

• Let programs express transactions
• “Chain and Spawn”

– Allow Commit/Begin checkpoints in program
– One active transaction per process
– Doesn’t seem to support threads

• Multiple transactions in a process?
– How are they isolated?
– How are operations associated with transactions?
– What about “leakage” 

· use of persistent object after transaction commit
– How are the specified by programmer?

6

Portability

• Persistence operations
– faulting: storage -> memory
– updating: modified memory -> storage
– tracking: which objects have been modified?
– transformation: storage / memory format

• Note
– Locking, durability done by underlying store

• Uniformly applied to all objects
– Persistence is an aspect

• Novel solution:
– Semantic extension

7

Semantic Extension

• Technique
– Modify class at load time

· Alter method definitions & byte-codes
– Dynamic code generation & modification

· Reflection

• Benefits
– No change to VM
– Used with any VM
– No compiler modification
– Works with any compiled class

8

Semantic Extension

• Invocation
– java Class [args]
– java PersistentClassLoader [pargs] Class [args]

• PersistentClassLoader
– A wrapper that then loads specified class
– Persistence store arguments (pargs)

· specify store location



9

Semantic Extension III

• What if existing program uses…
• Reflection

– Modifications to classes may be visible
– Must transform the reflection interfaces

· simulate the inverse transformation

• Class Loaders
– When is persistence transform applied?
– Extend base ClassLoader to apply transform

10

Implementation

• Read barriers
– Ensure object is in memory on demand

• Write barriers
– Ensure updated objects are written out

• Transformation
– Initializing generic Java objects on load

• Note
– Persistent store operations

· First read -> read lock
· First write -> write lock (can deadlock)

11

Swizzling

• Swizzling
– Replacement of a ID by an object

• Strategies
– Eager swizzling

· object load à create all related objects
– Lazy swizzling

· object load à just hold the IDs of members 
· replace ID with reference on first use

– No swizzling
· lookup object every time member is used

– Eager swizzling to handles
· object load à create stub objects w/IDs

A
re these really
im

possible?

12

Unfaulted Objects

• Unfaulted Objects
– Objects that have been mentioned but not used
– Mentioned = referenced by a loaded object
– Used = method on object called

Page

Title

Item

A
rray Item

method
call D

C
B
A

Object
Table

SubItem

E

13

Shell

• Unfaulted object = empty object
• Semantic extensions

– Add ID field
– Add an updated field
– Read barrier before all “getfield” bytecodes

• Problems
– Consume as much memory as real object
– Read barriers stay in the code

14

Façade

• Unfaulted object = stub (façade)
• Semantic extensions

– For every loaded class C, create:
– interface to class CI
– virtualized form of class CV implements CI
– Façade version of class CF implements CI

· Stores list of references
· Fake methods

– load real object
– update references

• Benefits
– Less storage, read barriers removed

15

Packing and Unpacking

• Implemented in C
– Slow!
– C code had to call back to Java

· JNI is slow
· Note: fixing this was a key goal of .NET

• Better:
– At load time generate custom Java code
– Limit reflection on class structure

16

Isolation

• Fine-grained locking on objects
– Very complex to implement

• Instead, simply run isolated
– Use ClassLoader to isolate transactions
– Prevents objects from “leaking” out of 

transactional context



17

Isolation

• Could also be used within application?
void runTransactions()
{

runTransaction("TransactionClass1");
runTransaction("TransactionClass2");

}

void runTransaction(string mainClass)
{

ClassLoader l = new PersistentClassLoader();
Object t = l.LoadClass(mainClass).newInstance();
// initialize the transaction here
new Thread((Runnable) t).start();

}

18

Isolation

• Issues
– Each transaction must load all objects
– Updates can only be made to loaded objects

· No way to update an object without loading it
– Composition of transactions

· Define function that calls both, and load that 
with PersistentClassLoader

• Large read-only data sets
– Read-only objects are loaded into each 

transaction
– E.g. the product catalog in online ordering

19

007 Performance

Cold Many

Hot Many

20

Summary

• Orthogonal Persistence Works
– ACID transactions

· complete isolation of “programs”
· Where program is either

– process
– subcomputation within a VM
– can even use threads within a transaction

· Composition of transactions
– Persistence by reachability

· can use static variables as roots

• Problems
– optimization very hard

· match performance of relational model?


