
1

Polymorphism and Type Inference in
Database Programming

A paper by Peter Buneman and
Atsushi Ohori

Presented by Mark Grechanik

2

A Problem

n Checking the type correctness of SQL
queries is straightforward
n SELECT Name FROM Employee WHERE Salary > 100,000

n What about function definitions?
n Function Wealthy(S)= SELECT Name FROM S WHERE

Salary > 100,000

n A problem is …

polymorphic

How to type check
database-dependent

programs?

3

The Main Goal

n Develop a polymorphic type system that
represents various database structures

n Propose an extension to ML
n Express polymorphic nature of data types

and operations
n Create an appropriate basis for a general-

purpose database programming languages

n Formalize proposed type system

4

Why ML?
n Standard ML is a safe, modular, strict,

functional, polymorphic programming
language with
n compile-time type checking and type inference
n garbage collection
n exception handling
n immutable data types and updatable references
n abstract data types, and parametric modules
n It has efficient implementations and a formal

definition with a proof of soundness.
n http://www.smlnj.org/sml.html

5

Basic ML Concepts

n Expressions
n > 1 + 2 * 3
n > val it = 7 : int

n Functions
n fn: <domain type> → <range type>
n > fun square(x : real) = x*x
n > val square = fn : int → int

value
Previous

expression

Value of
expression

type

6

Basic ML Concepts

n Expressions
n > 1 + 2 * 3
n > val it = 7 : int

n Functions
n fn: <domain type> → <range type>
n > fun square(x : real) = x*x
n > val square = fn : int → int

keyword identifier

parameter

expression

7

Basic Structures

nValues and functions
n Labeled records and variants
n Sets
nCyclic structures
nReferences

8

Values and Functions
n Borrowed from ML
n Use val to bind names to values

n val seven = 5 + 2

n Functions
n fun f(n) = if eq(n, 1) then 1 else n*f(n-1)
n (fn x => x*x)(10)

n Let x = e1 in e2
n evaluates e2 in the environment in which x is

bound to e1

n let x = 4+5 in x+x*x

http://www.smlnj.org/sml.html

9

Labeled Records

[l1 = v1, l2 = v2, …, ln = vn]

labels fields

10

Labeled Records
n Field selection

n r.l, where r is a record, l is a label
n Field modification

n modify(r, l, e)
n create a new record identical to r
n l field has value e
n modify([Name=“Mark”, Age=6], Age, 10)
n [Name=“Mark”, Age=10]

n Pairs: for construction of n-tuples
n (e1, e2) means [first=e1, second=e2]

11

Variants

n Variants tag values in order to treat
them uniformly

n Syntax
n <l = v>
n <Real = 9.0>
n <Int = 3>

n Powerful use with case expressions

12

Variants

case <Person= [Name=“Mark”,
CreditCard=“1056354813238137”,
Phone=“256-3765”]>

of

<Person = x> => x.Phone,

<Animal = y> => y.Kind

endcase

“256-3765”

13

Sets
n Description terms
n Four operations

n {} : empty set
n {x} : singleton set construct
n Union(s1, s2) : set union
n Homomorphic extensions

n hom(f, op, z, s)
n hom(f, op, z, {}) ≡ z
n hom(f, op, z, {s}) ≡ f(s)
n hom(f, op, z, union(s1, s2) ≡ op(hom(f, op, z, s1),

hom(f, op, z, s2))

14

Cyclic Structures

n Pointer reassignment
n val Person = (rec v.[Name=“Mark”, Likes=v])

Person

Name Likes

Person

…

15

References

n Primitives
n new(v) : reference creation
n !r : dereferencing
n r := v : assignment

n Uniqueness of references
n Person = new ([Name=“Mark”, Age=11])

16

Type Systems

n A set of rules or axioms that are used to
define legal programs in a language

n Typing rules determine types for all
expressions

n Notation

A e : τ
Under type
assignment

(in the
context of)

it follows that

expression has

type τ

17

Example of a Type Rule

if eq(x*x, y) then x - y

A e1 : τ A e2 : τ

A eq(e1, e2) : bool

18

Why Machiavelli?
n It is an ML-based language
n Developed at UPenn
n Serves as a framework to fulfill the main goal

of this work
n Develop a polymorphic type system that

represents various database structures

n Example
n Function Wealthy(S)= SELECT x.Name FROM x←S

WHERE x. Salary > 100,000

19

Kinded Types in Machiavelli

Name : δ, Salary : int{τ:: }Wealthy:

ClassPolymorphic method

{[Name : string, Salary : int]} →{string}
{[Name : string, Age : int, Salary : int]} →{string}

{[Name : string} →{string}
{[Name : string, Age : int, Salary : string]} →{string}

→{δ}

20

Relational Algebra

n Algebraic notation used to express
queries by applying specialized
operators to relations
n Limited expressive power of operators
n Finiteness of relations (complement

operator)
n Rich enough language to express things

that make database systems useful

21

Operators of Relational Algebra
n Union: R ∪ S
n Set difference: R – S
n Cartesian product: R × S
n Projection: π3,1(R)
n Selection: σ$2>$3 ∧ $1=“Mark”

n Join: R S ≡ σ$iΘ$jR × S

n Semijoin: R S ≡ πR(R S)

iΘj

22

Operators of Relational Algebra
n Union: R ∪ S
n Set difference: R – S
n Cartesian product: R × S
n Projection: π3,1(R)
n Selection: σ$2>$3 ∧ $1=“Mark”

n Join: R S ≡ σ$iΘ$jR × S

n Semijoin: R S ≡ πR(R S)

iΘj

A B C D E A B C D E
1 2 3 3 1 1 2 3 3 1
4 5 6 6 2 1 2 3 6 2
7 8 9 4 5 6 6 2

B<DR S

23

Operators of Relational Algebra
n Union: R ∪ S
n Set difference: R – S
n Cartesian product: R × S
n Projection: π3,1(R)
n Selection: σ$2>$3 ∧ $1=“Mark”

n Join: R S ≡ σ$iΘ$jR × S

n Semijoin: R S ≡ πR(R S)

iΘj

A B C
a b c
d b c
b b f
c a d

B C D
b c d
b c e
a d b

A B C
a b c
d b c
c a d

24

Why to Generalize Relational
Algebra?

n Machiavelli does not have a number of
required operators
n Projection
n Join

n Join operator requires to extend the
notion of kinded types
n Based on many papers

25

Generalization
n Add relational operators to Machiavelli
n Make them as polymorphic as possible
n Natural limitations: equality
n Operators

n eq(e1, e2) : equality test
n join(e1, e2) : database join
n con(e1, e2) : consistency check
n project (e, δ) : projection of e onto type δ

26

Join
n t1 = [Name=[First=“Joe”]]
n t2 = [Name=[Last=“Doe”]]
n join(t1 , t2) → t
n t = [Name=[First=“Joe”, Last=“Doe”]]
n Ordering is induced by the inclusion of

record fields
n t is the least upper bound of t1 and t2

n join(t1 , t2) = t1 t2

27

Equal Operator

n Tests the equality on the amount of
information

n Characterized by the equivalence
relation

n Information ordering

n eq(d1, d2) = d1 d2 ∧ d2 d1

n Null values: null(b)

28

Projections

n Projection of a complex description onto
some “substructure”, i.e. it throws away
some type information
n Project([Name=“Mark”, Age=3, Salary=10],

[Name=“John”, Age=7, Salary=27]},
[Name:string, Salary:int]}) =

{[Name=“Mark”, Salary=10],
[Name=“John”, Salary=27]}

29

Type Inference
n Principal conditional typing theorem

n Theorem 4, page 32
n Any term can either be typed or produces a failure

n Examples
n Join3([Name=“Mark”],[Age=7],[Office=523])
n val it=[Name=“Mark”,Age=7,Office=523]:

[Name:string,Age:int,Office=int]
n project(it, [Name:string])
n val it=[Name=“Mark”]: [Name:string]

30

Heterogeneous Collections
n Contradictory use of inheritance

n In OO languages it means code sharing
n In databases it means entity inclusion

n Leads to losing information in type systems
n A number of solutions are proposed
n This solution

n Do not allow an operation to be applied to a value
of an inappropriate type

n Dynamic type checking in a statically-typed
framework

31

Conclusions

n Offered an extension to the type system
of ML/Machiavelli

n Generalized relational algebra
n How does Machiavelli compare to SQL?
n Many updates

n how garbage collector handles memory

n What about persistence?

