
Kevin Loo 1

Streams, Tuples, Unions, and
Comprehension

CS395T
Fall 2003

Kevin Loo 2

From Meijer and Schulte

• Impendence mismatch for mid-tier in Web App
– Middle tier Java or C# software in n-tier Web

Application vs Databases

• Need for a growing language
– Guy Steele: the language must grow …

• Result: modern OOL + tables & documents
– Proposed data types: Streams, Tuples, Unions,

Content Classes, Queries

Kevin Loo 3

Streams

• An Improvement to IEnumerable

• * arbitrary length of homogenous data

• * (≥0 elements), + (>0 elements),
! (=1 element), ? (≤1 element)

• yield for returning a stream

Kevin Loo 4

Streams (Cont’d)

• null for empty Streams

• Covariance
– If S <: T, then S* <: T*

• Flattening
– T?! = T!, T*+ = T+

Kevin Loo 5

Streams: Type Hierarchy

T*

T+

T!

T?

T

T+ <: T*

T! <: T+

T? <: T*

T <: T?

T! <: T

If T is a value type,

T!

T

T <: T!

T! = T

If T is a reference type,

T

∅?

∅? <: T

∅?

∅? <: T

Kevin Loo 6

Tuples

• Sequences of heterogeneous data
• Values are labeled or unlabeled
• Contrast with

– records (labeled and unordered)
– regular tuples (unlabeled and ordered)
– advantage?

• Example
sequence{Button b; string;}
• First value is labeled b; second value is unlabeled

Kevin Loo 7

Streams+Tuple

• Build Tables from Streams and Tuples

enum FiveWalk {Metal, Wood, Water, Fire, Earth}
enum Year {Rat, Ox, Tiger, Rabbit, Dragon, Snake,

Horse, Goat, Monkey, Rooster, Dog, Boar}
Type FengShui = sequence{

string Name; FiveWalk element; Year animal; int*
badMonths;

}
FengShui* illogical;

Kevin Loo 8

Unions

• Variants
• Choices are idempotent, associative and

commutative
• Often used as a member
• Example

Class Address{
choice{string Street; int POBox;}
string City;

}

Kevin Loo 9

Tuples: Type Hierarchy

choice{… ; T ; …}*

sequence{… ; T ; …}

sequence{… ; T m; …}

sequence{string name, year animal}
can be upcast to
choice{string name, year animal}*

sequence{“John”, Rabbit} upcast to
[“John”, Rabbit]

Kevin Loo 10

Content Classes
• Uses XML for class declaration
• Intuitive correspondence between XSD particles

and previously proposed types
<element name=“FengShui”>

<complexType>
<element name=“Name” type=“string”/>
<element name=“element” type=“FiveWalk”/>
<element name=“animal” type=“Year”/>
<sequence>

<element name=“badMonths” type=“int”/>
<sequence/>

<complexType/>
<element/>

Kevin Loo 11

Data Access

• Wildcard, Transitive and Type-based
Member-access
– Wildcard * returns a stream of all members.
– Transitive .. is used as a path access; type

qualifier chooses members of a certain type
• Select and Join operations

– Optimization? Both operations act on streams
which are stateful?

• Map, Filter and Fold (Apply-to-all block)

Kevin Loo 12

Data Access: Map and Fold

• Comprehension-like features
int* nats = {int i=0; while(true) yield i++;};
Haskell equivalent: [i | i <- [1..]]

int mapsum(int s, int* xs){
xs.{s += it; return;}; return s;}

• Map :: (a → b) → {a} → {b}
• Fold :: (a → b → a) → a → {b} → a

Kevin Loo 13

Comprehension Syntax

• Apply List Comprehension for Queries.

• Structural Recursion allows recursive
functions/queries written in pattern
matching style.

Kevin Loo 14

List Comprehension
[1..4] = [1, 2, 3, 4]

[1..] = Infinite List 1, 2, 3,… with lazy evaluation

[(x,y) | x <- [1..3], y <- [1..3]] =
[(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),
(3,1),(3,2),(3,3)]

sort [] = []
sort (x:xs) = sort [u|u<-[xs],u<=x] ++ [x] ++

sort [u|u<-[xs],u>x]

Kevin Loo 15

Query Comprehension
{[Name = p.Name, Mgr = d.Mgr] |

\p <- Emp,
\d <- Dept,
p.DNum = d.DNum}

– For every Emp
For every Dept

only elements whose DNum’s are the same

Kevin Loo 16

Query Comprehension (Cont’d)

• Collections: Bag {| |}, List {|| ||}, Set { }

• Top level declarations: define

• Relational algebra
define join(\x,\y) =>

{[A = u, B = u’, D = v’] |
[A = \u, B = \u’] <- x,
[C = u’, D = \v’] <- y}

Kevin Loo 17

Query Comprehension (Cont’d)

• Structural Recursion
define fibonacci(0) => 1

| fibonacci(1) => 1
| fibonacci(n) => fibonacci(n-1) +

fibonacci(n-2)

• Use ext for comprehension
ext(f) = define h({| |}) => {| |}

| h({|\x|}) => f(x)
| h(\s1 ⊕ \s2) => h(s1) ⊕ h(s2)

Kevin Loo 18

Power of Comprehension
1. {e | \x <- S,G} = ext(f)S where f(\x) = {e|G}
2. {e | C,G} = if C then {E|G} else { }
3. {e | } = {e}

map :: (a → b) → {a} → {b}
ext :: (a → {b}) → {a} → {b}

map f x = ext g x where g a = {f a}

Kevin Loo 19

Power of Comprehension

fold = recursion

ext = comprehension

map

Kevin Loo 20

Conclusion

• Meijer and Schulte put together lots of
interesting ideas: stream, tuple, etc. data
types, XML and comprehension.

• Comprehension is an very appropriate and
elegant way for relational query
construction. (Personal preference)

Kevin Loo 21

Streams Type Hierarchy (Cont’d)

T

∅?

If T is a reference type, null type is a subtype of T.

T!

T

If T is a value type, T is a subtype of T!.

Kevin Loo 22

e = [A = u, B = u’, D = v’]
\x = [A = \u, B = \u’]
S = m
G = [C = u’, D = \v’] <- n
join(\m, \n) =
{[A = u, B = u’, D = v’] | [A = \u, B = \u’] <- m,
[C = u’, D = \v’] <- n} =

ext(f)m where
f([A = \u, B = \u’]) =
{[A = u, B = u’, D = v’] | [C = u’, D = \v’] <- n} =
ext(g)n where

g([C = u’, D = \v’]) =
{[A = u, B = u’, D = v’] | } =
{[A = u, B = u’, D = v’]}

