
Performance of EJB
Applications

Siddhartha Rai

1

What is EJB?

n A component model for scaleable, reusable,
portable, transactional, and distributed
enterprise applications.

n EJB are server-side components that
encapsulate business logic and are designed
to be run in an EJB container.

n Individual EJB can be combined to create an
enterprise application.

2

EJB

n Enterprise Java beans
q Asynchronous
n Session

q Stateless
q Stateful

n Entity Beans
q Bean Managed Persistence
q Container Managed Persistence

q Message Driven Beans

3

Enterprise Computing Challenges

n Building distributed applications is complex
n Transactions
n State management
n Multi-threading

n Complexities of different operating system
calls, interoperability between different
communication protocols.

n Locating servers easily and transparently
n Solutions – EJB, JNDI, RMI-IIOP

4

Related Technologies - JNDI

n Naming service – mapping of names to
object bindings so clients can access objects
by name.
n (Associated terms – Naming service, contexts, sub

contexts, naming conventions, namespaces.

n Directory Service
n A directory is a connected set of directory objects.
n Directory service organizes directory in a hierarchical

manner.
n Naming service uses a directory service(Such as

Lighweight Directory Access Protocol- LDAP) to provide
association of names to objects.

5

Related technologies - Servlets

n Java code that run in a server application
n provide a component-based, platform-independent

method for building Web-based applications.
n have access to the entire family of Java APIs
n Typical uses

q Processing and/or storing data submitted by an HTML
form.

q Providing dynamic content, e.g. returning the results of a
database query to the client.

q Managing state information on top of the stateless HTTP

6

Related Technologies – RMI-IIOP

n RMI enables distributed computing in Java
n RMI client uses a remote interface to execute methods

on RMI server.
n RMI client uses a stub to marshal a request and

unmarshal the response, RMI server uses a skeleton to
unmarshal this request and to marshal the response.

n RMI uses Java Remote Method Protocol (JRMP) to
hide the low-level networking and data translation
details.

n RMI-IIOP enables interoperability with non-
Java and CORBA clients.

7

J2EE containers

n EJB instances execute within EJB containers.
n Container provides the runtime environment -

-such as JVM- along with Java standard
class libraries and other libraries to support
specific components

n Container interacts with the components by
way of standard API’s and it implicitly
manages security, transactions, and life cycle
of component

8

EJB client view

n Client may be a servlet, JSP, standalone Java or
CORBA app, or another EJB.

n Entity and session beans exist only within their
respective containers and client can only access
them via their interfaces.

n Interfaces
n Two kinds – Remote and Local
n Two more kinds – home and component, within

each category
q Home interface used to manage life cycle of bean instance –

create, remove, find…
q Component interface - business methods

9

Remote and Local Interfaces

n Remote interfaces
n provide location independent view of EJB’s.
n Implement RMI-IIOP interfaces
n Arguments and results are passed by value

n Local Interfaces (EJB 2.0)
n May be used if clients are co-located in the same JVM

as bean instance
n Arguments and results passed by value.

n Before EJB 2.0 vendors optimized local calls
by passing objects by reference
JBoss(optimized) and JonAs(Jeremie).

10

<<interface>>
Java.rmi.remote

<<interface>>
Java.ejb.EJBHome
getEJBMetaData()
getHomeHandle()

Remove(PrimaryKey)

Remove(handle)

Local Home InterfaceRemote Home Interface

<<interface>>
Java.ejb.EJBLocalHome

Remove(PrimaryKey)

11

EJB client view (contd.)

n When client invokes a business method –
n the remote component interface’s stub marshals the

client’s parameters
n sends it to EJBObject whose skeleton unmarshals the

request.
n container performs security, transaction and life-cycle

services
n passes the parameters to the matching method in the

respective bean instance, where it is executed.
n Result is passed back to the EJBObject, whose

skeleton marshals the results before sending it to client.

12

Container Design

n client never references an EJB bean instance
directly, but rather references the EJBObject
and EJBHome which implement the beans
remote and home interfaces respectively.

n Question - Who generates these classes?
n Answer 1 – Container generates them (JOnAS)
n Answer 2 – They are never physically generated, but

realized using dynamic proxies (JBoss)
q Approach in answer 1 is faster when number of

classes is small, while answer 2 is good when
large number of classes have to be generated.

13

Remote and Local Client views

Local Entity Bean

Local Session Bean

Deployment Descriptor

EJB Container

Remote Home Interface

Remote Local Interface

Client

EJBHome

EJBObject

Network

14

Session Beans

n Model “verbs” e.g. buy, sell, approve
n Exist only as long as client session
n Can not be shared
n Can be transactional
n Do not survive a container/server crash
n Two flavors – stateless – for processes that

can be performed in a single request, and
stateful for maintaining info between requests
(e.g. shopping cart)

15

Entity Beans

n Model nouns such as cars, books, invoices
n Provide an in memory view of persistent data

stored in an enterprise system
n Represents persistent data along with data

access logic that business processes can
manipulate

n Transactional, survive server crashes
n Manage persistence

16

Entity Beans (contd.)

n Container and entity bean instance work
together to synchronize the in-memory data
with the database.

n In case the EJB container or server crashes,
the container is able to recreate the entity
bean instance from data saved in the
database.

n Entity beans are identified by primary keys.
n Multiple clients can access an entity bean

instance
17

Entity Bean’s life cycle

n Three states
n Does not exist - bean instance is not available, until container

sets a context. (Container can not access bean instance)
n Pooled - beans are not associated with an object identity or

primary key, invocation of ejbCreate (by client) or ejbActivate
(by container) changes state to pooled. Container may unset a
bean’s context to move it back to Does not exist state.

n Ready – bean is associated with a primary key and can
execute business methods for clients.

n Ps : Session beans do not have primary keys.

18

Entity Contexts

n Allows entity beans to access its primary key, and
local/remote home/component interfaces.

n Allow a bean instance to access transaction related
methods such as getUserTransaction,
getRollbackOnly and setRollBackOnly which it uses
to control its transaction.

n Allow a bean instance to access security related
methods such as getCallerPrincipal and
isCallerInRole which can be used to implement EJB
security .

19

Managing persistence in Entity Beans

n Bean Managed Persistence
q EJB developer is responsible for writing the

necessary database access logic to manage the
persistence in the entity bean class.

n Container Managed Persistence
q Container is responsible for generating the code

necessary for data access and management.
q Bean developer is still responsible for specifying

the container managed persistence fields in the
bean class and declaring abstract persistence
schema in the deployment descriptor.

20

CMP 2.0 Persistence Model

n CMP 2.0 entity beans are associated with an
abstract persistence schema, which is a logical
persistence view.

n The abstract persistence schema is used by EJB QL
(a query language) allowing bean developers to
focus at the object level without having an intimate
knowledge of the physical schema of underlying
database.

n EJB QL statements are used to describe the
behavior of custom finder and select methods.

21

EJB-QL Examples

SELECT OBJECT(p) FROM Player p

Data retrieved: All players.

Finder method: findall()

Description: The FROM clause declares an
identification variable named p,
omitting the optional keyword AS.

The Player element is the abstract schema name of the
PlayerEJB entity bean. Because the bean defines the
findall method in the LocalPlayerHome interface,
the objects returned by the query have the
LocalPlayer type

SELECT DISTINCT OBJECT(p) FROM Player p,
IN (p.teams) AS t
WHERE t.city = ?1

Data retrieved: The players whose teams belong
to the specified city.

Finder method: findByCity(String city)

Description: The FROM clause declares two
identification variables: p and t.
The p variable represents the PlayerEJB entity bean,
and the t variable represents the
related TeamEJB beans. The declaration for t
references the previously declared
p variable. The IN keyword signifies that
teams is a collection of related beans.
The p.teams expression navigates from a
PlayerEJB bean to its related TeamEJB beans.
The period in the p.teams expression is
the navigation operator.

22

Transactions

q Transactions may be declared programmatically (bean
managed) or declaratively (container managed.)

q Every EJB method has following transaction attributes
associated with it

§ NotSupported, Required(default), Supports, RequiresNew,
Mandatory, Never.

q Bean Managed Transactions
n - Using the EJB context (either EntityContext or

SessionContext) the bean methods can access the Tx.
n The Tx is available to EJBMethods using EJBContext.
n Only session and message driven beans support bean

managed Tx.
n Only flat Tx supported.

23

Transactions (contd.)

n Container Managed Transactions
q Entity beans support only container managed Tx.
q Can also be used for session and MDB.
q EJB container demarcates the transaction scope

by calling the appropriate begin(), commit() or
rollback() methods based on the Tx attributes
specified in the deployment descriptor.

q Allows bean developers to force a transaction to
rollback.

24

Distributed EJB Transactions

Database

Resource Manager

Local Tx Manager

Database

Resource manager

Local Tx Manager

Distributed Tx Manager

25

EJB Design Patterns – Value Object

n Motivation
n Increased frequency of get/set methods impacts the

performance of applications, reducing number of remote
method calls will reduce overall network traffic.

n Solution
n A ValueObject encapsulates data so it can be

transferred in a single call
§ populate this object with attributes that the client is

interested
§ Include accessor methods for these attributes
§ Serialize and send it to the client

26

EJB Design Patterns – Session Facade

n Motivating reasons
n Tight coupling between clients and business objects makes

applications brittle.
n Fine-grained method calls made by the client on the

participating business objects increase network traffic.

n Solution
n Use a session bean to encapsulate and hide the interactions

between business objects participating in a workflow.
n Coarse grained access layer responsible for locating, creating

and executing business logic in the business objects.
n handles interactions between business objects.

n PS : Based on the façade design pattern from OOP.
27

EJB Design Patterns – Data Access Object

n Motivations
n The API’s that access the data should not be vendor

specific.
§ Affects portability and flexibility in replacing data store.

q Data Access Object design pattern abstracts and
encapsulates all data-access implementations.

q Manages connection and data access to the data
store.

q Exposed interface can remain same even if
underlying data store is replaced.

n May be used only with BMP entity beans.
28

EJB Design Patterns - Business Delegate

n Motivation
n Reduce the coupling between clients on the

presentation tier and business components in business
tier.

n Use a BusinessDelegate object as a client
side abstraction
n Shields clients from changes in business service API’s.
n BusinessDelegate handles naming and lookup services.
n Provides result caching .
n Use with SessionFacade – (1-1 relationship.)

29

EJB Design Patterns – Value List Handler

n Motivation
n Clients need to retrieve lists of item and display them to

the end user in a scrollable manner.

n Solution
n Use a ValueListHandler, implemented as a session

bean.
§ ValueList handler maintains a ValueList (a list of

ValueObjects.)
§ Return a collection of appropriate size to client .
§ Client may scroll through ValueList.

30

EJB Performance Studies

n Application
n Auction system .
n Comparisons between

q Servlets .
q Session beans.
q Entity beans – CMP .
q Entity beans – BMP.
q Session façade .
q Session façade with EJB 2.0 local interfaces.

31

Results

q Servlets only gives best performance (at peak
load.)

q Followed by
q Session beans
q Session façade with local interfaces
q Session façade
q Entity beans (BMP and CMP)

32

Conclusions

n Were the experiments well designed?
q Can entity beans (nouns) be modeled by session

beans (verbs) and vice versa?
n What other options do current technologies

have to offer?

33

