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Introduction

o Standard for transparent Java object 
persistence.

oDeveloped through the Java Community 
Process (JCP).

o JDO became a standard in March,2002.
oDesigned to allow “pluggable” vendor 

drivers.
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Goals
o Transparent object persistence
n Minimal constraints on building classes
n No new data access language

o Use in a range of implementations
n J2SE (client-server), J2EE (Enterprise Java Beans)

o Data store independence
n Relational, object, object relational, file system…
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Why JDO?
o From an Application developer’s perspective:
n No need to write persistent management code
n Applications view data and relationships as a class 

hierarchy
n Data store independence
o No vendor lock-in
o Portability between relational and object data stores

n Object oriented features are supported
n No coding using SQL
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JDO Classes and Interfaces

PersistenceManagerFactory

PersistenceManager

PersistenceCapable

Transaction

Extent

Query
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JDO Interfaces and Classes
o PersistenceCapable
n Interface implemented by User defined persistence classes
n System-type classes such as Thread, Socket cannot be made persistent

o PersistenceManager
n Manages PersistenceCapable objects.
o Identity management
o Life-cycle management

n Has Query creation methods
n Has Transaction creation methods

o PersistenceManagerFactory
n Creates PersistenceManager instances. 
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Using JDO
o Write your classes and describe persistence needs in a 

XML file.
o Use a JDO enhancer to add hooks
o Use PersistentManagerFactory to get a 

PersistentManager
o Use the PersistentManager to create a Transaction or a 

Query
o Use Transaction to control transaction boundaries
o Use a Query to find objects
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JDO Development Life Cycle
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JDO Architecture
o Non-managed JDO architecture–Client/Server
n Explicit connection and transaction management.
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JDO Architecture
o Managed JDO architecture - EJB
n Implicit connection and transaction management.
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JDO Instances
o Transient
n Non-transactional - Unmanaged
n Transactional - Optional

o Persistent
n Non-transactional - Optional
n Transactional - Required
o JDO implementation tracks the changes made to the instances.
o JDO implementation refreshes and saves values to/from the 

datastore to maintain transactional integrity
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Life Cycle states for JDO instance

o States of JDO instance 
n Transient 
n Persistent-new 
n Hollow 
n Persistent-dirty
n Persistent-clean
n Persistent-deleted
n Persistent-new-deleted
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Life Cycle of JDO Instances
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JDO Identity
o JDO Identity
n Tests whether two in-memory JDO instances represent the same state 

in the datastore.

o JDO identifies three types of JDO identity
n Application identity (primary key) 
o values in the instance determines the identity in the datastore.

n Datastore identity 
o managed by the datastore without being tied to any field values. 

n Nondurable identity 
o managed by the JDO implementation to guarantee uniqueness in the

JVM

o Type of identity used is fixed at enhancement time.
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JDO Persistence Model
o JDO provides transparent data access.
o JDO provides the illusion that the application can 

access the entire graph of connected instances.

o Goals
n All field type in Java are supported 
n All class and field modifiers are supported.
n Some system defined classes, those used for modeling 

state should be persistent capable.
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JDO Persistence model
o First class objects 
n has a JDO identity.
n independently stored, queried and deleted from the datastore.

o Second class objects
n stored only as a part of a first class object
n has no JDO identity
n some instances do not have a literal datastore representation. Eg-

Collection

o A class can be persistence capable independently of the inheritance 
hierarchy. 

o PersistanceCapable classes are indicated in the XML metadata.
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Query Facility in JDO
o Application can get access to a JDO instance 
n Constructing a valid ObjectId
n By iterating over a class extent
n Using the JDO Query interface to acquire a JDO instance based on a 

search criteria

o Goals:
n Query language neutrality 
n Optimization to specific query languages
n Accommodation of multi-tier architectures
o In memory and server side

n Large result set support
n Compiled query support
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JDO Query Facility
o Query has three required elements
n class of the candidate instances
n collection of candidate JDO instances
n query filter

o Query execution
n Query interface provides methods that execute the query based 

on the parameters given.
n Returns an un-modifiable Collection which the user can iterate 

to get results.
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JDO Query Facility
o Filter Specification
n is a string containing a boolean expression to be 

evaluated for each of the instance in the candidate 
collection. 
o boolean expression is expressed using the java language

o Ordering Statement
n is a string containing one or more ordering 

declarations followed by 'ascending' or 'descending'
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Parameters and Variables
o Support for parameterized queries
n Parameters are substituted at execution time
n Parameters are typed
n Parameters are specified using Java syntax

o Support for use of variables in queries
n Variables are typed
n Variables specified using Java syntax
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JDO Query Example
o Class Employee 
{

String name;
Float salary;
Department dept;
Employee boss;

}

o Class Department 
{

String name;
Collection emps;

}

o Selects all ‘Employee’ instances from the 
candidate collection whose ‘salary’ is greater than 
3000.

Class eClass = Employee.class;
Extent cEmp= pm.getExtent(eClass, false);
String fil = "salary > 3000";
Query q = pm.newQuery(eClass, cEmp, fil);
Collection emps = (Collection) q.execute();

o The salary comparison value is parameterized.

String param = “float sal";
q.declareParameters(param);
Collection emps = (Collection) q.execute(new

Float(30000));        
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Transactions
o Persistent objects always work within the context 

of a Transaction
o Transaction and PersistentManager – one-to-one 

relationship
o Methods available in an Unmanaged environment
n begin()
n commit()
n rollback()
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Issues to be resolved
o Some of the features to be added in future 

releases:
n Nested Transactions
n API for enhancer invocation
n API for prefetching
n Support for BLOB/CLOB data-type
n Support for projections in queries
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JDO vs. JDBC
o JDBC provides an interface for applications to issue SQL 

statements.
o JDO provides a transparent persistence model for java 

classes.
o JDBC is a cause for unsafe programming as queries are 

specified as Strings
o JDO has some amount of type checking built into JDO-

QL
o JDBC has no client caching.
o JDO supports caching objects at the clients for scalability
o JDO-QL is not as powerful as SQL.
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JDO vs. CMP
o JDO and CMP were developed concurrently
o JDO works in any tier of an enterprise application.
o CMP is container-bound 
o JDO development is inexpensive
o CMP development is costly due to conformity to EJB 

design
o JDO adopts a language transparent approach (byte-code 

enhancement)
o CMP advocates a functional approach (source-code 

enhancement)
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JDO vs. OPJ
o Very Similar!
o Persistence by reachability
o System classes like Threads are not made persistent.
o In OPJ, all fields of all instances which can be referenced 

from a root are persistent
o In JDO, one can specify the fields that need to persist.
o OPJ implemented by changing a class loader
o JDO implemented by changing the byte code to add 

hooks
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Conclusion
o JDO – a transparent persistence model
o Similar to OPJ and other orthogonally persistent 

systems
o Is JDO the “right” kind of persistence?
n No orthogonal persistence but Selective persistence
n Standardized O/R mapper?
n JDO-QL – API for subset of SQL 

o Is JDO going to replace JBDC ?
o Is JDO going to replace CMP ?
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