
Java Data Objects (JDO)
Java Data Object Expert Group

Vinay Sampath Kumar
30 Oct, 2003

1

Introduction

o Standard for transparent Java object
persistence.

oDeveloped through the Java Community
Process (JCP).

o JDO became a standard in March,2002.
oDesigned to allow “pluggable” vendor

drivers.

2

Goals
o Transparent object persistence
n Minimal constraints on building classes
n No new data access language

o Use in a range of implementations
n J2SE (client-server), J2EE (Enterprise Java Beans)

o Data store independence
n Relational, object, object relational, file system…

3

Why JDO?
o From an Application developer’s perspective:
n No need to write persistent management code
n Applications view data and relationships as a class

hierarchy
n Data store independence
o No vendor lock-in
o Portability between relational and object data stores

n Object oriented features are supported
n No coding using SQL

4

JDO Classes and Interfaces

PersistenceManagerFactory

PersistenceManager

PersistenceCapable

Transaction

Extent

Query

5

JDO Interfaces and Classes
o PersistenceCapable
n Interface implemented by User defined persistence classes
n System-type classes such as Thread, Socket cannot be made persistent

o PersistenceManager
n Manages PersistenceCapable objects.
o Identity management
o Life-cycle management

n Has Query creation methods
n Has Transaction creation methods

o PersistenceManagerFactory
n Creates PersistenceManager instances.

6

Using JDO
o Write your classes and describe persistence needs in a

XML file.
o Use a JDO enhancer to add hooks
o Use PersistentManagerFactory to get a

PersistentManager
o Use the PersistentManager to create a Transaction or a

Query
o Use Transaction to control transaction boundaries
o Use a Query to find objects

7

JDO Development Life Cycle

MyObj.java

Enhanced
Class File

javac

XML Config

MyObj.class

Enhancer

8

JDO Architecture
o Non-managed JDO architecture–Client/Server
n Explicit connection and transaction management.

Local Persistent Storage

Enterprise Information
Systems

Java Virtual Machine

Application

Transient
Instance

Transient
Instance

Query

Transaction

JDO instance

JDO instance

Query

Transaction

JDO PersistenceManager

JDO PersistenceManager

9

JDO Architecture
o Managed JDO architecture - EJB
n Implicit connection and transaction management.

Enterprise Information
Systems

Bean

Servelet

Application Server

Container

Transaction Manger

R
e
so

u
rce

 A
d

a
p

te
r

JD
O

 Im
p
le

m
e
n

ta
tio

n

10

JDO Instances
o Transient
n Non-transactional - Unmanaged
n Transactional - Optional

o Persistent
n Non-transactional - Optional
n Transactional - Required
o JDO implementation tracks the changes made to the instances.
o JDO implementation refreshes and saves values to/from the

datastore to maintain transactional integrity

11

Life Cycle states for JDO instance

o States of JDO instance
n Transient
n Persistent-new
n Hollow
n Persistent-dirty
n Persistent-clean
n Persistent-deleted
n Persistent-new-deleted

12

Life Cycle of JDO Instances

Transient

Persistent-new-deleted

Persistent-new Hollow

makePersistent

rollback

Commit, rollback

deletePersistent

commit

Life Cycle of New-Persistent Instances

Persistent-clean

Persistent-dirty

Hollow

Commit, rollback

Commit, rollback

Read field
Write field

Write field

Life Cycle of Datastore Transactions

13

JDO Identity
o JDO Identity
n Tests whether two in-memory JDO instances represent the same state

in the datastore.

o JDO identifies three types of JDO identity
n Application identity (primary key)
o values in the instance determines the identity in the datastore.

n Datastore identity
o managed by the datastore without being tied to any field values.

n Nondurable identity
o managed by the JDO implementation to guarantee uniqueness in the

JVM

o Type of identity used is fixed at enhancement time.

14

JDO Persistence Model
o JDO provides transparent data access.
o JDO provides the illusion that the application can

access the entire graph of connected instances.

o Goals
n All field type in Java are supported
n All class and field modifiers are supported.
n Some system defined classes, those used for modeling

state should be persistent capable.

15

JDO Persistence model
o First class objects
n has a JDO identity.
n independently stored, queried and deleted from the datastore.

o Second class objects
n stored only as a part of a first class object
n has no JDO identity
n some instances do not have a literal datastore representation. Eg-

Collection

o A class can be persistence capable independently of the inheritance
hierarchy.

o PersistanceCapable classes are indicated in the XML metadata.

16

Query Facility in JDO
o Application can get access to a JDO instance
n Constructing a valid ObjectId
n By iterating over a class extent
n Using the JDO Query interface to acquire a JDO instance based on a

search criteria

o Goals:
n Query language neutrality
n Optimization to specific query languages
n Accommodation of multi-tier architectures
o In memory and server side

n Large result set support
n Compiled query support

17

JDO Query Facility
o Query has three required elements
n class of the candidate instances
n collection of candidate JDO instances
n query filter

o Query execution
n Query interface provides methods that execute the query based

on the parameters given.
n Returns an un-modifiable Collection which the user can iterate

to get results.

18

JDO Query Facility
o Filter Specification
n is a string containing a boolean expression to be

evaluated for each of the instance in the candidate
collection.
o boolean expression is expressed using the java language

o Ordering Statement
n is a string containing one or more ordering

declarations followed by 'ascending' or 'descending'

19

Parameters and Variables
o Support for parameterized queries
n Parameters are substituted at execution time
n Parameters are typed
n Parameters are specified using Java syntax

o Support for use of variables in queries
n Variables are typed
n Variables specified using Java syntax

20

JDO Query Example
o Class Employee
{

String name;
Float salary;
Department dept;
Employee boss;

}

o Class Department
{

String name;
Collection emps;

}

o Selects all ‘Employee’ instances from the
candidate collection whose ‘salary’ is greater than
3000.

Class eClass = Employee.class;
Extent cEmp= pm.getExtent(eClass, false);
String fil = "salary > 3000";
Query q = pm.newQuery(eClass, cEmp, fil);
Collection emps = (Collection) q.execute();

o The salary comparison value is parameterized.

String param = “float sal";
q.declareParameters(param);
Collection emps = (Collection) q.execute(new

Float(30000));

21

Transactions
o Persistent objects always work within the context

of a Transaction
o Transaction and PersistentManager – one-to-one

relationship
o Methods available in an Unmanaged environment
n begin()
n commit()
n rollback()

22

Issues to be resolved
o Some of the features to be added in future

releases:
n Nested Transactions
n API for enhancer invocation
n API for prefetching
n Support for BLOB/CLOB data-type
n Support for projections in queries

23

JDO vs. JDBC
o JDBC provides an interface for applications to issue SQL

statements.
o JDO provides a transparent persistence model for java

classes.
o JDBC is a cause for unsafe programming as queries are

specified as Strings
o JDO has some amount of type checking built into JDO-

QL
o JDBC has no client caching.
o JDO supports caching objects at the clients for scalability
o JDO-QL is not as powerful as SQL.

24

JDO vs. CMP
o JDO and CMP were developed concurrently
o JDO works in any tier of an enterprise application.
o CMP is container-bound
o JDO development is inexpensive
o CMP development is costly due to conformity to EJB

design
o JDO adopts a language transparent approach (byte-code

enhancement)
o CMP advocates a functional approach (source-code

enhancement)

25

JDO vs. OPJ
o Very Similar!
o Persistence by reachability
o System classes like Threads are not made persistent.
o In OPJ, all fields of all instances which can be referenced

from a root are persistent
o In JDO, one can specify the fields that need to persist.
o OPJ implemented by changing a class loader
o JDO implemented by changing the byte code to add

hooks

26

Conclusion
o JDO – a transparent persistence model
o Similar to OPJ and other orthogonally persistent

systems
o Is JDO the “right” kind of persistence?
n No orthogonal persistence but Selective persistence
n Standardized O/R mapper?
n JDO-QL – API for subset of SQL

o Is JDO going to replace JBDC ?
o Is JDO going to replace CMP ?

27

