
Recursive XML Schemas,
Recursive XML Queries,
and Relational Storage:
XML-to-SQL Query Translation

By: Rajasekar Krishnamurthy, etc
Presented by: Wenguo Liu

11/18/2003

1

Outline
n Introduction
n Formal Model
n Query Translation Over Recursive XML

schemas
n Extensions to more complex path

expressions
n Conclusions

2

Introduction – Problem
n Translate path expression queries to

SQL
n Schema-based XML Storage shredding of

XML into relations
n Recursion in the schema
n Recursive XML queries

n Path expression queries having the descendant
axis (//)

3

Introduction – Related Work
n Shredding XML data into relations

n Schema-based techniques
n Schema-oblivious shredding

n Translating XML queries into SQL
n Claim of this paper

n None of previous work solves the query
translation problem for schema-based
shredding in the presence of recursion in
the XML schema

4

Formal Model – XML Schema
Graph
n A directed graph (V, E)
n V: vertices corresponding to

elements and attributes
nLabeled with name of the
element or attribute

n E: edges representing parent-
child relationships
nHave a label from {?, *, +, ε}

5

Formal Model – XML Schema
Graph

<?xml encoding="US-ASCII"?>

<!ELEMENT book(title, author*,section*)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT author (#PCDATA)>

<!ELEMENT section (title, p*, section?,
note*)>

<!ELEMENT note (#PCDATA)>

1book

2title 3author 4section
* *

5title 6p
*

7section

9title 10p
*

*
8note

11note
*

DTD

XML Schema Graph

Recursive

6

Formal Model – Relational
Schema
n Mapping XML elements and relational

columns
n Method: annotate XML schema graph

n Non-leaf (internal) node <= Relation name
n Leaf node <= column name
n Node n has multiple incoming edges

n parentcode = val

7

Formal Model – Annotated
XML Schema Graph

1bookBook

2titleBook.title

3authorAuthor 4sectionSection

* *

5titleSection.title 6pPara
*

7sectionSection

9titleSection.title 10pPara
*

*
8noteNote

11noteNote

*

Annotated XML Schema Graph

e1

e2

e1: parentcode =1
e2: parentcode =2

e2

8

Formal Model – XML to
Relational Mappings
n Relation has an id field (primary key)
n Preserve Document structure

n Parentid
n parentcode

9

Formal Model – Relations

titleid
Book

…parentidid
Author

…parentidid
Para

titleparentcodeparentidid
Section

…parentidid
Note

10

Path Expression Queries
n Simple path expression (SPE)

n s1l1 s2l2… sklk

n si is / or //
n li is a tag name
n sili represents a navigation step of the path expression

n Generalized simple path expression (GSPE)
n p1p2…pk

n Each pi denotes a disjunction of simple path
expressions

11

Query Translation Over
Recursive XML Schemas
n PathId stage

n Identify the paths in the XML schema
graph that satisfy the query

n SQLGen stage
n Construct an equivalent relational query

from the XML-to-Relational mapping

12

Query Translation – PathId
n Query Q = p1p2…pk

n The path in schema graph satisfy Q
n Problems

n Could be infinite for recursive schema!
n Could be exponential for DAG schema graphs!

n Solution
n Representing the matching paths as a graph!

13

Query Translation – PathId

1book

4section

5title 7section

9title

0

1

4

7

9

5

book

section

title

title

section

S AS

Q: /book/section/title

0

1

2

3

book

section

title

AQ

0,0

1,1

4,2

5,3

book

section

title

ASQ

1,1book

4,2section

5,3title

SSQ

14

Query Translation – PathId

1book

4section

5title 7section

9title

0

1

4

7

9

5

book

section

title

title

section

S AS

Q1: /book/section//title

0

1

2

3

book

section

title

AQ1

0,0

1,1

4,2

9,3

book

section

section

ASQ1

1,1book

4,2section

7,2section

SSQ1

*

5,3

title

7,2

title

5,3title

9,3title

15

Query Translation - PathId
n Result from PathId

n Cross product schema SSQ

n Matching paths encoded in SSQ

n Union of all root-to-leaf paths in SSQ
corresponds to the query result

16

Query Translation – SQLGen
n SQLGen steps

1. Identify strongly connected components (SCCs)
in SSQ

2. Merge adjacent SCCs based on dominance
3. For each SCC

i. Generate the query for this SCC
ii. A relational query T(n) is associated with each left

node n
4. finalQ = U n is a leaf node “select * from T(n)”
5. Output results

i. If duplicate elimination needed, output “select
distinct(*) from finalQ”

ii. Else, “select * from finalQ”

17

Query Translation – SQLGen
R0E0

R1E1 R2E2

R3E3

R4E4 R5E5

R6E6

R7E7 R8E8

R9E9

R10E10

elemid
R10.elemid

* *

* * *

* * *

*

* *
** *

*
*

A recursive Schema

18

SQLGen – Steps 1 and 2
R0E0

R1E1 R2E2

R3E3

R4E4 R5E5

R6E6

R7E7 R8E8

R9E9

R10E10

elemid
R10.elemid

* *

* * *

* * *

*

* *
** *

*
*

Step 1
and Step2

c1

c2

c3

Recursive!

19

SQLGen – Step 3
n Generate the query for SCCs

n If a SCC c is not recursive
n SQLForDAG(c)

n If a SCC c is recursive
n SQLForRecursive(c)

20

SQLGen – Step 3:
SQLForDAG(c)
n Associate a temporary relation T(n) with

a node n which
n is leaf node, or
n has a parent or child in a different

component, or
n has multiple incoming/outgoing edges

n T(n) is the union of all SQL generated
along possible paths

21

SQLGen – Step 3
R0E0

R1E1 R2E2

R3E3

R4E4 R5E5

R6E6

R7E7 R8E8

R9E9

R10E10

elemid
R10.elemid

* *

* * *

* * *

*

* *
** *

*
*

Step 3

c1

c2

c3

Recursive!
SQLForDAG

SQLForDAG

with T3 as (

select R3.*

from R0, R1, R3

where R0.id = R1.parentid

and R1.id=R3.parentid

and R3.parentCode=1

union all

select R3.*

from T2, R3

where T2.id=R3.parentid

and R3.parentCode=2

)

22

SQLGen – Step 3:
SQLForRecursive(c)
n Associate a temporary relation TR to c

n Initialization part
n Captures all incoming edges into c from a

different component, (2,8) and (3,7)

n Recursive part
n The union across all edges within the

component

23

SQLGen – Step 3
R0E0

R1E1 R2E2

R3E3

R4E4 R5E5

R6E6

R7E7 R8E8

R9E9

R10E10

elemid
R10.elemid

* *

* * *

* * *

*

* *
** *

*
*

Step 3

c1

c2

c3

SQLForRecursive

with TR as (
…
select R7.*, id(7)
from TR, R7
where R7.parentid=TR.id
and TR.schemanode=id(8)

and R7.parentid=8
…
)

24

Extensions to more complex
path expressions
n Branching path expression queries

n p1[p2] or p1[p2 op value], p1 and p2 are GSPE
queries

n PathId stage
n Deal with p1 first, let F be the final states
n Compute an automaton for p2 with a f in F as start

state
n SQLGen stage

n Deal with p1 and p2 consecutively

25

Handling Order
n Handling order in XPath semantics

n Queries need to return results in document
order

n XML into relations with positions
n Maintain the relative position among sibling

XML elements
n Not the focus of this paper

26

Conclusions
n An algorithm to translate path

expression queries to SQL
n Recursion in the XML schema
n Recursion in the queries

n This algorithm is not quite general
n Apply to SPE and GSPE

n Linear recursion in SQL99 is sufficient
for this translation

27

Discussions
n XML-to-Relational mapping

n There must be no data in the relations
other than that which is present in the XML
document? True?

n SPE and GSPE are quite similar to
regular expressions
n Why not just use regular expression

approach?
n More complex applications

n FLWR

28

