
Rethinking Database System
Architecture:

Towards a Self-tuning RISC-style
Database System

1

Overview of the Problem

n Databases are widely popular and vital
n laden down with features
n increasingly complex
n pain of configuring/maintaining beginning to

outweigh the gain of using it

2

Overview of the Goal

Databases should be:
n Easy to manage
n predictable in their performance

characteristics
n self-tuning

3

Overview of the Solution

To achieve the aforementioned goals:
n RISC-style simplification of server functions
n small data managers with specialized APIs
n self-assessment/auto-tuning capabilities

4

The Case for Departure

n Expenses due to administration and tuning
dominate the cost of ownership of a database
system.

n Databases are packaged into a single unit of
deployment, development, maintenance, and
operation.

n large footprint, requiring database to exist
separate from applications.

5

Incredible Crisis: Feature Creep

n “Featurism drives products beyond
manageability.”

n features added for marketing
n database systems become overloaded with

features, when only a small fraction of those
features are ever used.

6

Incredible Crisis: The Pain of SQL

n “way too complex for the typical application
developer”

n the “core” is useful, but the bells and whistles
gum up the works.

n SQL becomes highly unreadable when trying
to put everything into one statement.

7

Incredible Crisis: Unpredictable
Performance
n time-to-market pressures and feature creep

lead to highly unpredictable behavior and
performance.

n no one understands all the nuances of query
optimization

n Unfortunately, service quality guarantees are
more and more often a necessity.

8

Incredible Crisis: Tuning=Nightmare,
Auto-Tuning=Vaporware
n Modern database systems, designed for a

wide range of applications, provides scores of
tuning knobs. These must be configured by
gurus or fine-tuned through trial and error.

n Universal default settings simply don’t exist,
and auto-tuning is still in the research phase.

9

Incredible Crisis: Playing with the
Neighbors
n Databases often used as glorified BLOB

servers, due to complexity.
n Many applications add an additional layer of

querying and query optimization so that that
the functionality can be tuned to a specific
domain.

10

Incredible Crisis: Giant Feet!

n There is an emerging market for database
systems to run on embedded systems, such
as palm pilots and mobile phones.

n Unfortunately, the bloated system
requirements make this a hefty task.

11

Incredible Crisis: Database Research Sucks

n The complexity of real world database
systems makes research a frustrating
prospect.

n systems-oriented database topics have been
beaten to death.

n teaching databases is no fun, because of all
the tricks and hacks found in some systems

12

It’s a Trap!

n Universality-the trend to make systems general
purpose, decreasing their usefulness when taken
too far

n Cost- since it’s cheap to ‘manufacture’ all the
features get crammed into one system

n Transparency- high level functions hide expensive
operations. You can’t necessarily use the full
expressiveness of SQL and expect the query
optimizer to work magic.

n Resource Sharing- putting disparate applications
(such as video streaming and traditional data
sources) on a single system causes an extremely
nasty tuning problem.

13

Previous Attempts: Database System
Generators
n generates customized database systems

from a large library of primitive components
n the subtle interplay of cache management,

concurrency control, recovery, query
optimization and other components makes
generation of custom configurations difficult,
if not impossible.

n interesting, but not successful

14

Previous Attempts: Extensible Kernel
Systems
n put core funtionality into a kernel system and

provide a means for extending the
functionality.

n “data blades”, “cartridges”, “extenders”
n extensibility with regards to ADTs and UDFs

is going well, but extending the internals is a
nightmare, and pretty much impossible.

n most extensions written by the vendor
anyways.

15

Previous Attempts: Unbundled
Technology
n unbundling database systems and exploiting

it in many varied services
n mail servers, document servers, switching

and billing in telecommunication.
n close to RISC-style, but doesn’t address the

future of database systems as a discrete
entity.

16

RISC Style Components- Requirements

Each component must:
n support richer components built on top of

them (layered approach)
n be clearly separated from other components
n have a well defined and narrow functionality

17

RISC Style Components- Properties

n predictable behavior/self-tuning capability
(due to simplicity).

n compartmentalized nature makes it suited for
various applications.

n even monolithic systems benefit from
component-oriented approach, due to
reliability.

18

RISC Approach to Queries

n single table selection processor, which
supports single-table selection processing
and simple updates with B+ indexing.

n even this simple component is useful in many
contexts

n supports a programmer-friendly API, due to
its simplicity, and SQL can simply be ignored

19

RISC Approach to Queries

n Select-Project-Join (SPJ) query processing
engine, suitable for OLTP

n built on top of the single table selection
processor

n much more well understood than full-blown
SQL engine

n adding in aggregation makes it quite powerful
n layering allows us to view aggregation as a

problem in terms of SPJ query sub-trees.

20

RISC Approach to Queries

n full-fledged SQL on top of SPJ+Aggregation
n decomposes the optimization problem and

thus the search complexity
n Reduced functionality and raw performance

are the trade-off for reliability and
predictability

21

Other Component Possibilities

n Storage Management, with different
components for multimedia as opposed to
generic data.

n index manager (immediate versus deferred
index maintenance)

n tuning becomes a per-component operation,
and the uncertainty of monolithic tuning
disappears.

22

Ramifications

n componentization limits interaction among
components- limited APIs are the only
methods of communication

n API should expose functionality and
import/export of meta information

n meta information would be used to gather
performance estimates and influence query
execution

23

challenges

specify the components such that:
1. the interfaces can be exploited by a number

of applications
2. the performance loss is tolerable
3. each component is self-tunable and

predictable

24

Simplification Recommendations

n support only for limited data types: limiting
the responsibilities of a dbs to data in table
format makes the system much more
manageable

n no more SQL: instead, a streamlined API
where programs submit operator trees to the
database server modules. the key to
simplification lies in limiting the functionality
and expressiveness

25

Simplification Recommendations

n Disjoint, manageable resources: No dynamic
resource sharing among components. Each
major component should have its own
hardware (video server, text document
server, table manager, etc).

n Pre-configuration: each component should
come pre-configured with 5 or 10 “power
levels”. (basic, advanced, etc, or “mostly read
workloads, small to medium data volumes,
etc)

26

Prerequisites

n Universal Glue: OLE-DB or EJB or some
such so that all components know how to talk
to each other.

n Occam’s Razor: select the simple and
necessary features when
choosing/developing components.

27

Prerequisites: Self-Tuning Framework

1. Identifying the need for tuning
2. identifying the bottleneck
3. analyzing the bottleneck
4. estimating the performance impact of

possible tuning options
5. adjusting the most cost-effective tuning

knob.

28

Research Agenda

n develop scalable OLTP systems and OLAP-
style data management services.

n meta-data manager
n mail server
n testbed for RISC-style components
n work out the APIs for the most important

components
n hold a competition for components
n identify the universal glue precisely

29

Conclusion

n Architectural simplification is overdue and
critically needed.

n The true test will be if it can be used broadly
in many contexts.

n The root goal is to improve the “gain/pain
ratio” of database technology. Tolerate a
moderate decrease in gain in return for an
orders of magnitude reduction of pain.

30

